Теплотехнический расчет — XPS Корпорации ТЕХНОНИКОЛЬ
В зависимости от типа строительной конструкции существуют разные виды утеплителей, которые обладают определённым набором технических характеристик. Они варьируются по плотности, весу, теплопроводности и др.
Эта страница поможет наглядно оценить преимущества экструзионного пенополистирола ТЕХНОПЛЕКС для утепления вашего жилища.
Основные показатели, на которые следует обращать внимание при выборе теплоизоляционного материала – это
- Термическое сопротивление(R), м²×°С/Вт
- Теплопроводность λ, Вт/(м×°С)
- Толщина теплоизоляционного материала d, мм
Представленный теплотехнический расчёт доказывает, что при одинаковом термическом сопротивлении разных материалов, именно XPS обладает лучшими показателями теплопроводности при наименьшей толщине материала.
Материал | Термическое сопротивление(R), м²×°С/Вт | Теплопроводность λ, Вт/(м×°С) | Толщина теплоизоляционного материала d, мм |
---|---|---|---|
XPS ТЕХНОПЛЕКС | 1,72 | 0,029 | 50 |
ПСБ-С | 1,72 | 0,043 | 75 |
Минеральная вата (тяжелая) | 1,72 | 0,054 | 95 |
Дерево | 1,72 | 0,36 | 620 |
Ячеистый бетон | 1,72 | 0,39 | 670 |
Кирпичная кладка (кирпич сплошной) | 1,72 | 0,61 | 1050 |
ТОЛЩИНА МАТЕРИАЛА
при одинаковом термическом сопротивлении
Таким образом из расчетов видно, что:
- теплопроводность XPS ТЕХНОПЛЕКС В 1,5 раза лучше, чем теплопроводность ПСБ-С
- теплопроводность XPS ТЕХНОПЛЕКС В 1,9 раз лучше, чем теплопроводность минеральной ваты
- теплопроводность XPS ТЕХНОПЛЕКС В 12,4 раз лучше, чем теплопроводность дерева
- теплопроводность XPS ТЕХНОПЛЕКС В 13,4 раз лучше, чем теплопроводность ячеистого бетона
- теплопроводность XPS ТЕХНОПЛЕКС В 21 раз лучше, чем теплопроводность кирпичной кладки
Расчёт основан на данных:
- Протокол испытаний №76479-22 от 27.03.2013 г к СТО (ТУ) 72746455-3_3_1-2012 «Плиты пенополистирольные экструзионные ТУ»
- ГОСТ 15588-86 ПЛИТЫ ПЕНОПОЛИСТИРОЛЬНЫЕ (п.2)
- ГОСТ 9573-96 плиты из минеральной ваты на синтетическом связующем теплоизоляционные (п.3.2)
- СП 23-101-2004 ПРОЕКТИРОВАНИЕ ТЕПЛОВОЙ ЗАЩИТЫ ЗДАНИЙ (Таблица Д.1)
- СП 23-101-2004 ПРОЕКТИРОВАНИЕ ТЕПЛОВОЙ ЗАЩИТЫ ЗДАНИЙ (Таблица Д.1)
xps.tn.ru
Рубероид и его разновидности — ТЕХНОНИКОЛЬ
Рубероид – это кровельный рулонный гидроизоляционный материал, который получается в результате пропитки кровельного картона нефтяными битумами и покрытия верхней и нижней поверхностей рубероида слоем тугоплавкого битума.
Разновидности рубероида
1. Рубемаст – рулонный наплавляемый рубероид , основой для которого служит кровельный картон. Благодаря высокому содержанию вяжущего битума на нижней стороне такой рубероид характеризуется трещиностойкостью и пластичностью, а также долговечностью.
2. Стеклорубероид (стекломаст, стеклоизол) – материал, идентичный рубемасту, но с основой из стеклоткани.
3. Еврорубероид (модифицированный рубероид) изготавливается на стекловолокнистой или синтетической основе, с нанесением покровного слоя (смесь битума и полимерных добавок) 2-5 кг на 1 кв. м.
4. Толь – картон, который пропитан сланцевым или каменноугольным продуктом и имеет минеральную посыпку с обеих сторон.
Основные виды рубероида
РКП – мягкий рубероид. Используется для нижних слоев кровельного ковра.
Характеристики |
|
|
Масса покровного слоя, г/м² |
800 |
|
Величина разрывной нагрузки, кгс |
26 | |
Теплостойкость в течение 2 часов не менее, °C |
80 |
|
Водонепроницаемость при давлении 0,01 кгс/cм², часов |
72 |
|
Гибкость / нет трещин на R-25 мм при t, °C |
5 |
|
Площадь рулона, м² |
15±0,5 |
|
Справочная масса рулона, кг |
20-24 |
|
Покрытие, верх, низ |
тальк |
РПП – рубероид подкладочный, на который нанесена пылевидная посыпка. Используется для нижних слоев кровельного ковра.
Характеристики |
|
|
Масса покровного слоя, г/м² |
500 |
|
Величина разрывной нагрузки, кгс |
22 |
|
|
80 |
|
Водонепроницаемость при давлении 0,01 кгс/cм², часов |
72 |
|
Гибкость / нет трещин на R-25 мм при t, °C |
5 |
|
Площадь рулона, м² |
15±0,5 |
|
Справочная масса рулона, кг |
19,5 |
|
Покрытие, верх, низ |
тальк |
РКК – рубероид с крупнозернистой посыпкой. Используется для верхнего слоя кровельного ковра, обработанного защитным слоем, и для нижних слоев.
Характеристики |
|
|
Масса покровного слоя, г/м² |
800 |
|
Величина разрывной нагрузки, кгс |
32 |
|
Теплостойкость в течение 2 часов не менее, °C |
80 |
|
Водонепроницаемость при давлении 0,01 кгс/cм², часов |
72 |
|
Гибкость / нет трещин на R-25 мм при t, °C |
5 |
|
Потеря крупнозернистой посыпки, г/обр |
3 |
|
Площадь рулона, м² |
10±0,5 |
|
Справочная масса рулона, кг |
22 — 25 |
|
Покрытие, верх, низ |
тальк |
Еврорубероид – это материал рулонный кровельный и гидроизоляционный.
Еврорубероид получают путем двустороннего нанесения на стекловолокнистую (стеклохолст, стеклоткань) основу битумного вяжущего, состоящего из битума, наполнителя, и технологических добавок с последующим нанесением на обе стороны полотна защитных слоев. В качестве защитных слоев используют крупнозернистую (сланец) и мелкозернистую (песок) посыпки.
В зависимости от вида защитных слоев и области применения Еврорубероид выпускают двух марок:
Еврорубероид П — с мелкозернистой посыпкой с обеих сторон полотна; применяется для устройства нижних слоев кровельного ковра и гидроизоляции строительных конструкций.
Предназначен для устройства кровельного ковра зданий и сооружений и гидроизоляции строительных конструкций.
Характеристики |
|
|
Масса* 1 м2, не менее |
1,7 |
|
Разрывная сила* в продольном / поперечном направлении, Н, не менее |
294/- |
|
Водопоглощение* в течение 24 ч, % по массе, не более |
1 |
|
Температура гибкости* на брусе R=25 мм, оС, не выше |
0 |
|
Водонепроницаемость* при давлении не менее 0,001 МПа в течение 72 ч |
— |
|
Водонепроницаемость* при давлении не менее 0,2 МПа в течение 2 ч |
абсолютная |
|
Теплостойкость*, оС, не менее |
80 |
|
Тип защитного покрытия |
|
|
верхняя сторона |
песок |
|
нижняя сторона |
песок |
|
Длина / ширина, м |
15х1 |
|
Упаковка поддона |
термоусадочный пакет белый |
Скачать технический лист на еврорубероид
Где купить?
Читайте также:
Как правильно выбрать рубероид? Каковы критерии качества?
Как правильно укладывать рубероид?
Гидроизоляция кровли
www.tn.ru
Таблица теплопроводности строительных материалов
Теплый дом – это несколько слоев разных строительных материаловПрочный и теплый дом – это основное требование, которое предъявляется проектировщикам и строителям. Поэтому еще на стадии проектирования зданий в конструкцию закладываются две разновидности стройматериалов: конструкционные и теплоизоляционные. Первые обладают повышенной прочностью, но большой теплопроводностью, и именно их чаще всего и используют для возведения стен, перекрытий, оснований и фундаментов. Вторые – это материалы с низкой теплопроводностью. Их основное назначение – закрыть собой конструкционные материалы, чтобы понизить их показатель тепловой проводимости. Поэтому для облегчения расчетов и выбора используется таблица теплопроводности строительных материалов.
Читайте в статье:
Что такое теплопроводность
Законы физики определяют один постулат, который гласит, что тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. При этом, проходя через строительный материал, тепловая энергия затрачивает какое-то время. Переход не состоится лишь в том случае, если температура на разных сторонах от стройматериала одинаковая.
То есть, получается так, что процесс перехода тепловой энергии, к примеру, через стену, это время проникновения тепла. И чем больше времени на это затрачивается, тем ниже теплопроводность стены. Вот такое соотношение. К примеру, теплопроводность различных материалов:
- бетон –1,51 Вт/м×К;
- кирпич – 0,56;
- древесина – 0,09-0,1;
- песок – 0,35;
- керамзит – 0,1;
- сталь – 58.
Чтобы было понятно, о чем идет речь, надо обозначить, что бетонная конструкции не будет ни под каким предлогом пропускать через себя тепловую энергию, если ее толщина будет в пределах 6 м. Понятно, что это просто невозможно в домостроении. А значит, придется для снижения теплопроводности использовать другие материалы, у которых показатель ниже. И ими облицовывать бетонное сооружение.
Понятие теплопроводностиЧто такое коэффициент теплопроводности
Коэффициент теплоотдачи или теплопроводности материалов, который также обозначен в таблицах, это характеристика тепловой проводимости. Он обозначает количество тепловой энергии, проходящий через толщу стройматериала за определенный промежуток времени.
В принципе, коэффициент обозначает именно количественный показатель. И чем он меньше, тем теплопроводность материала лучше. Из сравнения выше видно, что стальные профили и конструкции обладают самым высоким коэффициентом. А значит, они практически не держат тепло. Из строительных материалов,сдерживающих тепло, которые используются для сооружения несущих конструкций, это древесина.
Но надо обозначить и другой момент. К примеру, все та же сталь. Этот прочный материал используют для отведения тепла, где есть необходимость сделать быстрый перенос. К примеру, радиаторы отопления. То есть, высокий показатель теплопроводности – это не всегда плохо.
Коэффициент теплопроводности стены из разных материалов при разной толщинеЧто влияет на теплопроводность строительных материалов
Есть несколько параметров, которые сильно влияют на тепловую проводимость.
- Структура самого материала.
- Его плотность и влажность.
Что касается структуры, то здесь огромное разнообразие: однородная плотная, волокнистая, пористая, конгломератная (бетон), рыхлозернистая и прочее. Так вот надо обозначить, что чем неоднороднее структура у материала, тем ниже у него теплопроводность. Все дело в том, что проходить сквозь вещество, в котором большой объем занимают поры разного размера, тем сложнее энергии через нее перемещаться. А ведь в данном случае тепловая энергия – это излучение. То есть, оно не проходит равномерно, а начинает изменять направления, теряя силу внутри материала.
Пористая структура строительного материалаТеперь о плотности. Этот параметр обозначает, на каком расстоянии между собой располагаются частички материала внутри его самого. Исходя из предыдущей позиции, можно сделать вывод: чем меньше это расстояние, а значит, больше плотность, тем тепловая проводимость выше. И наоборот. Тот же пористый материал имеет плотность меньше, чем однородный.
У влажной стены тепловая проводимость вышеВлажность – это вода, которая имеет плотную структуру. И ее теплопроводность равна 0,6 Вт/м*К. Достаточно высокий показатель, сравнимый с коэффициентом теплопроводности кирпича. Поэтому когда она начинает проникать в структуру материала и заполнять собой поры, это увеличение тепловой проводимости.
Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица
Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.
- через стены уходит до 30% тепловой энергии общего расхода.
- Через полы – 10%.
- Через окна и двери – 20%.
- Через крышу – 30%.
То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.
Мнение эксперта
Андрей Павленков
Инженер-проектировщик ОВиК (отопление, вентиляция и кондиционирование) ООО «АСП Северо-Запад»
Спросить у специалиста“Идеальный дом должен быть построен из теплоизоляционных материалов, в котором все 100% тепла будут оставаться внутри. Но по таблице теплопроводности материалов и утеплителей вы не найдете тот идеальный стройматериал, из которого можно было бы возвести такое сооружение. Потому что пористая структура – это низкие несущие способности конструкции. Исключением может быть древесина, но и она не идеал.”
Стена из бревен – одна из самых утепленныхПоэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.
Устройство каркасного дома в плане его утепленияРассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.
Теплопроводность кирпича: таблица по разновидностям
Фото | Вид кирпича | Теплопроводность, Вт/м*К |
---|---|---|
Керамический полнотелый | 0,5-0,8 | |
Керамический щелевой | 0,34-0,43 | |
Поризованный | 0,22 | |
Силикатный полнотелый | 0,7-0,8 | |
Силикатный щелевой | 0,4 | |
Клинкерный | 0,8-0,9 |
Теплопроводность дерева: таблица по породам
Порода дерева | Береза | Дуб поперек волокон | Дуб вдоль волокон | Ель | Кедр | Клен | Лиственница |
---|---|---|---|---|---|---|---|
Теплопроводность, Вт/м С | 0,15 | 0,2 | 0,4 | 0,11 | 0,095 | 0,19 | 0,13 |
Порода дерева | Липа | Пихта | Пробковое дерево | Сосна поперек волокон | Сосна вдоль волокон | Тополь |
---|---|---|---|---|---|---|
Теплопроводность, Вт/м С | 0,15 | 0,15 | 0,045 | 0,15 | 0,4 | 0,17 |
Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.
У древесины теплопроводность ниже, чем у бетона и кирпичаТеплопроводность металлов: таблица
Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.
Вид металла | Сталь | Чугун | Алюминий | Медь |
---|---|---|---|---|
Теплопроводность, Вт/м С | 47 | 62 | 236 | 328 |
Теперь, что касается соотношения с температурой.
- У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С – 238. При +100°С – 230, при +700°С – 0,9.
- У меди: при -100°С –405, при 0°С – 385, при +100°С – 380, а при +700°С – 350.
Таблица теплопроводности других материалов
В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.
Теплоизоляционный материал | Плотность, кг/м³ | Теплопроводность, Вт/м*К |
---|---|---|
Минеральная вата (базальтовая) | 50 | 0,048 |
100 | 0,056 | |
200 | 0,07 | |
Стекловата | 155 | 0,041 |
200 | 0,044 | |
Пенополистирол | 40 | 0,038 |
100 | 0,041 | |
150 | 0,05 | |
Пенополистирол экструдированный | 33 | 0,031 |
Пенополиуретан | 32 | 0,023 |
40 | 0,029 | |
60 | 0,035 | |
80 | 0,041 |
И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.
Строительный материал | Плотность, кг/м³ | Теплопроводность, Вт/м*К |
---|---|---|
Бетон | 2400 | 1,51 |
Железобетон | 2500 | 1,69 |
Керамзитобетон | 500 | 0,14 |
Керамзитобетон | 1800 | 0,66 |
Пенобетон | 300 | 0,08 |
Пеностекло | 400 | 0,11 |
Коэффициент теплопроводности воздушной прослойки
Всем известно, что воздух, если его оставить внутри строительного материала или между слоями стройматериалов, это великолепный утеплитель. Почему так происходит, ведь сам воздух, как таковой, не может сдерживать тепло. Для этого надо рассмотреть саму воздушную прослойку, огражденную двумя слоями стройматериалов. Один из них соприкасается с зоной положительных температур, другой с зоной отрицательный.
Воздушная прослойка между внешней облицовкой и теплоизоляционным слоемТепловая энергия движется от плюса к минусу, и встречает на своем пути слой воздуха. Что происходит внутри:
- Конвекция теплого воздуха внутри прослойки.
- Тепловое излучение от материала с плюсовой температурой.
Поэтому сам тепловой поток – это сумма двух факторов с добавлением теплопроводности первого материала. Необходимо сразу отметить, что излучение занимает большую часть теплового потока. Сегодня все расчеты теплосопротивления стен и других несущих ограждающих конструкций проводят на онлайн-калькуляторах. Что касается воздушной прослойки, то такие расчеты провести сложно, поэтому берутся значения, которые в 50-х годах прошлого столетия были получены лабораторными исследованиями.
Воздушная прослойка внутри стеныВ них четко оговаривается, что если разница температур стен, ограниченных воздухом, составляет 5°С, то излучение возрастает с 60% до 80%, если увеличить толщину прослойки с 10 до 200 мм. То есть, общий объем теплового потока остается тот же, излучение вырастает, а значит, теплопроводность стены падает. И разница значительная: с 38% до 2%. Правда, возрастает конвекция с 2% до 28%. Но так как пространство замкнутое, то движение воздуха внутри него никак не действует на внешние факторы.
Расчет толщины стены по теплопроводности вручную по формулам или калькулятором
Рассчитать толщину стены не так просто. Для этого нужно сложить все коэффициенты теплопроводности материалов, которые были использованы для сооружения стены. К примеру, кирпич, штукатурный раствор снаружи, плюс наружная облицовка, если такая будет использоваться. Внутренние выравнивающие материалы, это может быть все та же штукатурка или гипсокартонные листы, другие плитные или панельные покрытия. Если есть воздушная прослойка, то учитывают и ее.
Толщина стен из разных стройматериалов с одинаковым тепловым сопротивлениемЕсть так называемая удельная теплопроводность по регионам, которую берут за основу. Так вот расчетная величина не должна быть больше удельной. В таблице ниже по городам дана удельная тепловая проводимость.
Регион | Москва | Санкт-Петербург | Ростов | Сочи |
---|---|---|---|---|
Теплопроводность | 3,14 | 3,18 | 2,75 | 2,1 |
То есть, чем южнее, тем общая теплопроводность материалов должна быть меньше. Соответственно, можно уменьшать и толщину стены. Что касается онлайн-калькулятора, то предлагаем ниже посмотреть видео, на котором разбирается, как правильно пользоваться таким расчетным сервисом.
Если у вас возникли вопросы, на которые, как вам показалось, вы не нашли ответы в этой статье, пишите их в комментариях. Наша редакция постарается на них ответить.
seti.guru
Теплопроводность строительных материалов: таблица параметров
Ссылка на статью успешно отправлена!
Отправим материал вам на e-mail
Любые строительные работы начинаются с создания проекта. При этом планируется как расположение комнат в здании, так и рассчитываются главные теплотехнические показатели. От данных значений зависит, насколько будущая постройка будет теплой, долговечной и экономичной. Позволит определить теплопроводность строительных материалов – таблица, в которой отображены основные коэффициенты. Правильные расчеты являются гарантией удачного строительства и создания благоприятного микроклимата в помещении.
Чтобы дом был теплым без утеплителя потребуется определенная толщина стен, которая отличается в зависимости от вида материала
Содержание статьи
Теплопроводность: понятие и теория
Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.
Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей
Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.
Потери тепла на разных участках постройки будут отличаться
Полезный совет! При постройке домов стоит использовать сырье с минимальной проводимостью тепла.
От чего зависит величина теплопроводности?
От множества факторов зависит значение теплопроводности строительных материалов. Таблица коэффициентов, представленная в нашем обзоре, это наглядно показывает.
Наглядный пример демонстрирует свойство теплопроводности
На данный показатель оказывают влияние следующие параметры:
- более высокая плотность способствует прочному взаимодействию частиц друг с другом. При этом уравновешивание температур производится более быстро. Чем плотнее материал, тем лучше пропускается тепло;
- пористость сырья свидетельствует о его неоднородности. При перемещении тепловой энергии через подобную структуру охлаждение будет небольшим. Внутри гранул находится только воздух, который обладает минимальным количеством коэффициента. Если поры маленькие, то при этом затрудняется передача тепла. Но повышается значение теплопроводность;
- при повышенной влажности и промокании стен здания показатель прохождения тепла будет выше.
Чем ниже показатель теплопроводности строительного сырья, тем уютнее и теплее в помещении
Использование значений теплопроводности на практике
Материалы, используемые в строительстве, могут быть конструкционными и теплоизолирующими.
Существует огромное количество материалов с теплоизолирующими свойствами
Самое большое значение теплопроводности у конструкционных материалов, которые используются при возведении перекрытий, стен и потолков. Если не использовать сырье с теплоизолирующими свойствами, то для сохранения тепла потребуется монтаж толстого слоя утеплителя для возведения стен.
Часто для утепления строений используются более простые материалы
Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов, таблица показывает все значения.
В некоторых случаях более эффективным считается утепление снаружи
Полезная информация! Для построек из древесины и пенобетона не обязательно использовать дополнительное утепление. Даже применяя низкопроводной материал, толщина сооружения не должна быть менее 50 см.
Особенности теплопроводности готового строения
Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.
В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением
Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из кирпича, бетона и камня дополнительно утеплять.
Утепление построек из бетона или камня повышает комфортные условия внутри здания
Полезный совет! Перед тем как утеплять жилище, необходимо продумать качественную гидроизоляцию. При этом даже повышенная влажность не повлияет на особенности теплоизоляции в помещении.
Разновидности утепления конструкций
Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:
- при возведении каркасной постройки, используемая древесина обеспечивает жесткость здания. Утеплитель прокладывается между стойками. В некоторых случаях применяется утепление снаружи здания;
Монтажные работы по утеплению каркасного сооружения требуют использования дополнительных конструктивных элементов
- здание из стандартных материалов: шлакоблоков или кирпича. При этом утепление часто проводится по наружной стороне.
Особенности монтажа теплоизолирующего материала с внутренней стороны
Как определить коэффициенты теплопроводности строительных материалов: таблица
Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:
Необходимые коэффициенты для самых различных материалов
Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.
Технические характеристики утеплителей для бетонных полов
О значении теплопроводности можно судить по сравнительным характеристикам
Полезные рекомендации
Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.
Выполняя утепление потолка на веранде или террасе, можно использовать более легкие стройматериалы
Утепление потолочного перекрытия на верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.
При утеплении потолка, стоит подобрать материал для пароизоляции и для гидроизоляции
Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.
Создание теплого пола требует особых знаний. Важно учитывать высоту и толщину материалов
Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления. При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:
- если какая-то часть батарей холодная, то требуется спустить воздух. При этом открывается специальный клапан;
- чтобы тепло проникало внутрь дома, на не обогревало стены, рекомендуется установить защитный экран с покрытием из фольги;
- для свободной циркуляции подогретого воздуха не стоит радиаторы загромождать мебелью или шторами;
- если снять декоративный экран, то теплоотдача увеличиться на 25 %.
Выбор качественных радиаторов позволяет лучше сберечь тепло в помещении
Тепловые потери через входные двери могут составлять до 10 %. При этом значительное количество тепла тратится на воздушные массы, которые поступают снаружи. Для устранения сквозняков надо переустановить изношенные уплотнители и щели, которые могут появиться между стеной и коробом. В данном случае дверное полотно можно обить, а щели заполнить с помощью монтажной пены.
Выбор утеплителя зависит от материала самой двери
Одним из основных источников теплопотерь являются окна. Если рамы старые, то появляются сквозняки. Через оконные проемы теряется около 35% тепловой энергии. Для качественного утепления применяются двухкамерные стеклопакеты. К другим способам относится утепление щелей монтажной пеной, оклейка мест стыков с рамой специальным уплотнителем и нанесение силиконового герметика. Правильное и комплексное утепление является гарантией комфортного и теплого дома, в котором не появиться плесень, сквозняки и холодный пол.
Экономьте время: отборные статьи каждую неделю по почте
homemyhome.ru
Теплопроводность — ТЕХНОНИКОЛЬ
Теплопроводность – это свойство двух тел обмениваться теплом друг с другом, во время чего происходит теплообмен между атомами и молекулами тела. Такие процессы происходят во всех телах с неоднородным распределением температуры. При взаимодействии одного тела с другим образуется температура, которая определяется кинетической энергией молекул и атомов, что собственно и представляет собой теплопроводность.
Характеристики теплопроводности
Определить теплопроводность можно, исходя из того насколько равномерно распределяется тепло по веществу или материалу любого происхождения. В числовом варианте это возможно при определении количества проходимого через материал тепла. Понятие теплопроводности как таковое невозможно без физического контакта между двумя телами, ведь только в таком случае происходит передача тепла.
При производстве систем теплоизоляции учитываются все вышеперечисленные данные о теплопроводности. Для того чтобы создать качественный теплоизоляционный материал, нужно провести все необходимые расчеты, связанные с исчислением показателей и коэффициентов теплопроводности.
Современная классификация теплоизоляционных материалов
Для того чтобы обеспечить теплоизоляцию помещения, тем самым сократив энергозатраты и сохранив тепло, используются специальные теплоизоляционные материалы. Современный рынок представляет большое количество материалов и систем теплоизоляции, но нужно останавливать свой выбор на действительно надежных и эффективных.
В зависимости от плотности:
- особо легкими;
- легкими;
- средней плотности;
- плотными.
Зависимо от степени жесткости:
- мягкими;
- полужесткими;
- жесткими;
- твердыми.
Зависимо от исходного сырья, использованного при производстве системы теплоизоляции:
- органическими;
- неорганическими.
Зависимо от структуры:
- волокнистыми;
- ячеистыми;
- зернистыми.
www.tn.ru
Коэффициент теплопроводности материалов таблица, формулы
Термин «теплопроводность» применяется к свойствам материалов пропускать тепловую энергию от горячих участков к холодным. Теплопроводность основана на движении частиц внутри веществ и материалов. Способность передавать энергию тепла в количественном измерении – это коэффициент теплопроводности. Круговорот тепловой энергопередачи, или тепловой обмен, может проходить в любых веществах с неравнозначным размещением разных температурных участков, но коэффициент теплопроводности зависим от давления и температуры в самом материале, а также от его состояния – газообразного, жидкого или твердого.Эквивалентная теплопроводимость строительных материалов и утеплителей
Физически теплопроводность материалов равняется количеству тепла, которое перетекает через однородный предмет установленных габаритов и площади за определенный временной отрезок при установленной температурной разнице (1 К). В системе СИ единичный показатель, который имеет коэффициент теплопроводности, принято измерять в Вт/(м•К).
Как рассчитать теплопроводность по закону Фурье
В заданном тепловом режиме плотность потока при передаче тепла прямо пропорциональна вектору максимального увеличения температуры, параметры которой изменяются от одного участка к другим, и по модулю с одинаковой скоростью увеличения температуры по направлению вектора:
q → = − ϰ х grad х (T), где:
- q → – направление плотности предмета, передающего тепло, или объем теплового потока, который протекает по участку за заданную временную единицу через определенную площадь, перпендикулярный всем осям;
- ϰ – удельный коэффициент теплопроводности материала;
- T – температура материала.
Знак «-» в формуле перед «ϰ» указывает, что тепло движется в противоположном направлении от вектора grad х (T)/ – в направлении уменьшения температуры предмета. Эта формула отражает закон Фурье. В интегральном выражении коэффициент теплопередачи согласно закону Фурье будет выглядеть как формула:
- P = − ϰ х S х ΔT / l, выражается в (Вт/(м•К) х (м2•К) / м = Вт/(м•К) х (м•К) = Вт), где:
- P – общая мощность потерь теплоотдачи;
- S – сечение предмета;
- ΔT – разница температуры по стыкам сторон предмета;
- l – расстояние между стыками сторон предмета – длина фигуры.
Электропроводность и коэффициент теплопередачи
Собственно, коэффициент теплопроводности металлов «ϰ» связан с их удельной электропроводимостью «σ» согласно закону Видемана-Франца, в соответствии с которым коэффициент теплопроводности металлов зависит от удельной электропроводимости прямо пропорционально температуре:
Κ / σ = π2 / 3 х (К / e)2 х T, где:
- К – постоянный коэффициент Больцмана, устанавливающий закономерность между тепловой энергией тела и его температурой;
- e – заряд электрона;
- T – термодинамическая температура предмета.
Коэффициент теплопроводности газовой среды
В газовой среде коэффициент теплопроводности воздуха может рассчитываться по приблизительной формуле:
ϰ ~ 1/3 х p х cv х Λλ х v–, где:
- pv – плотность газовой среды;
- cv – удельная емкость тепловой энергии при одном и том же объеме тела;
- Λλ – расстояние свободного перемещения молекул в газовой среде;
- v– – скорость передачи тепла.
Или:
ϰ = I x К / 3 x π3/3 x d2 √ RT / μ, где:
- i – результат суммирования уровней свободы прямого движения и вращения молекул в газовой среде (для 2-атомных газов i=5, для 1-атомных i=3;
- К – коэффициент Больцмана;
- μ – отношение массы газа к количеству молей газа;
- T – термодинамическая температура;
- d – ⌀ молекул газа;
- R – универсальный коэффициент для газовой среды.
Согласно формуле минимальная теплопроводность материалов существует у тяжелых инертных газов, максимально эффективная теплопроводность строительных материалов – у легких.
Теплопроводимость в газовой разреженной среде
Газовая среда и теплопроводность
Результат по выкладкам выше, по которым делают расчет теплопроводности для газовой среды, от давления не зависит. Но в очень разреженной газовой среде расстояние свободного перемещения молекул зависит не от столкновений частиц, а от препятствий в виде стен резервуара. При этом ограничение перемещения молекул в соответствующих единицах измерения называют высоковакуумной средой, при которой степень теплообмена уменьшается в зависимости от плотности материала и прямо пропорциональна значению давления в резервуаре:
ϰ ~ 1/3 х p х cv х l х v–, где:
i – объем резервуара;
Р – уровень давления в резервуаре.
Согласно этой формуле теплопроводность в вакуумной среде стремится к нулевой отметке при глубоком вакууме. Это объясняется тем, что в вакууме частицы, которые передают тепловую энергию, имеют низкую плотность на единицу площади. Но тепловая энергия в вакуумной среде перетекает посредством излучения. В качестве примера можно привести обычный термос, в котором для уменьшения потерь тепловой энергии стенки должны быть двойными и посеребренными, без воздуха между ними.Что такое тепловое излучение
При применении закона Фурье не принимают во внимание инерционность перетекания тепловой энергии, а это значит, что имеется в виду мгновенная передача тепла из любой точки на любое расстояние. Поэтому формулу нельзя использовать для расчетов передачи тепла при протекании процессов, имеющих высокую частоту повторения. Это ультразвуковое излучение, передача тепловой энергии волнами ударного или импульсного типа и т.д. Существует решение по закону Фурье с релаксационным членом:
τ х ∂q / ∂t = − (q + ϰ х ∇T) .
Если релаксация τ мгновенная, то формула превращается в закон Фурье.
Ориентировочная таблица теплопроводности материалов:
Основа | Значение теплопроводности, Вт/(м•К) |
Жесткий графен | 4840 +/– 440 – 5300 +/– 480 |
Алмаз | 1001-2600 |
Графит | 278,4-2435 |
Бора арсенид | 200-2000 |
SiC | 490 |
Ag | 430 |
Cu | 401 |
BeO | 370 |
Au | 320 |
Al | 202-236 |
AlN | 200 |
BN | 180 |
Si | 150 |
Cu3Zn2 | 97-111 |
Cr | 107 |
Fe | 92 |
Pt | 70 |
Sn | 67 |
ZnO | 54 |
Черная сталь | 47-58 |
Pb | 35,3 |
Нержавейка | Теплопроводность стали – 15 |
SiO2 | 8 |
Высококачественные термостойкие пасты | 5-12 |
Гранит (состоит из SiO2 68-73 %; Al2O3 12,0-15,5 %; Na2O 3,0-6,0 %; CaO 1,5-4,0 %; FeO 0,5-3,0 %; Fe2O3 0,5-2,5 %; К2О 0,5-3,0 %; MgO 0,1-1,5 %; TiO2 0,1-0,6 %) | 2,4 |
Бетонный раствор без заполнителей | 1,75 |
Бетонный раствор со щебнем или с гравием | 1,51 |
Базальт (состоит из SiO2 – 47-52%, TiO2 – 1-2,5%, Al2O3 – 14-18%, Fe2O3 – 2-5%, FeO – 6-10%, MnO – 0,1-0,2%, MgO – 5-7%, CaO – 6-12%, Na2O – 1,5-3%, K2O – 0,1-1,5%, P2O5 – 0,2-0,5 %) | 1,3 |
Стекло (состоит из SiO2, B2O3, P2O5, TeO2, GeO2, AlF3 и т.д.) | 1-1,15 |
Термостойкая паста КПТ-8 | 0,7 |
Бетонный раствор с наполнителем из песка, без щебня или гравия | 0,7 |
Вода чистая | 0,6 |
Силикатный или красный кирпич | 0,2-0,7 |
Масла на основе силикона | 0,16 |
Пенобетон | 0,05-0,3 |
Газобетон | 0,1-0,3 |
Дерево | Теплопроводность дерева – 0,15 |
Масла на основе нефти | 0,125 |
Снег | 0,10-0,15 |
ПП с группой горючести Г1 | 0,039-0,051 |
ЭППУ с группой горючести Г3, Г4 | 0,03-0,033 |
Стеклянная вата | 0,032-0,041 |
Вата каменная | 0,035-0,04 |
Воздушная атмосфера (300 К, 100 кПа) | 0,022 |
Гель на основе воздуха | 0,017 |
Аргон (Ar) | 0,017 |
Вакуумная среда | 0 |
Приведенная таблица теплопроводности учитывает теплопередачу посредством теплового излучения и теплообмена частиц. Так как вакуум не передает тепло, то оно перетекает при помощи солнечного излучения или другого типа генерации тепла. В газовой или жидкой среде слои с разной температурой смешиваются искусственно или естественным способом.
Таблица теплопроводимости стройматериалов
Проводя расчет теплопроводности стены, необходимо принимать во внимание, что теплопередача сквозь стеновые поверхности меняется от того, что температура в здании и на улице всегда разная, и зависит от площади всех поверхностей дома и от теплопроводности стройматериалов.
Чтобы количественно оценить теплопроводность, ввели такое значение, как коэффициент теплопроводности материалов. Он показывает, как тот или иной материал способен передавать тепло. Чем выше это значение, например, коэффициент теплопроводности стали, тем эффективнее сталь будет проводить тепло.
- При утеплении дома из древесины рекомендуется выбирать стройматериалы с низким коэффициентом.
- Если стена кирпичная, то при значении коэффициента 0,67 Вт/(м2•К) и толщине стены 1 м при ее площади 1 м2 при разнице наружной и внутридомовой температуры 10С кирпич будет пропускать 0,67 Вт энергии. При разнице температур 100С кирпич будет пропускать 6,7 Вт и т.д.
Стандартное значение коэффициента теплопроводимости теплоизоляции и других строительных материалов верно для толщины стены 1 м. Чтобы провести расчет теплопроводности поверхности другой толщины, следует коэффициент поделить на выбранное значение толщины стены (метры).Ориентировочные показатели коэффициентов теплопроводимости
В СНиП и при проведении расчетов фигурирует термин «тепловое сопротивление материала», он означает обратную теплопроводность. То есть при теплопроводности листа пенопласта 10 см и его теплопроводности 0,35 Вт/(м2•К) тепловое сопротивление листа – 1 / 0,35 Вт/(м2•К) = 2,85 (м2•К)/Вт.
Ниже – таблица теплопроводности для востребованных строительных материалов и теплоизоляторов:
Стройматериалы | Коэффициент теплопроводимости, Вт/(м2•К) |
Плиты из алебастра | 0,47 |
Al | 230 |
Шифер асбоцементный | 0,35 |
Асбест (волокно, ткань) | 0,15 |
Асбоцемент | 1,76 |
Асбоцементные изделия | 0,35 |
Асфальт | 0,73 |
Асфальт для напольного покрытия | 0,84 |
Бакелит | 0,24 |
Бетон с заполнителем щебнем | 1,3 |
Бетон с заполнителем песком | 0,7 |
Пористый бетон – пено- и газобетон | 1,4 |
Сплошной бетон | 1,75 |
Термоизоляционный бетон | 0,18 |
Битумная масса | 0,47 |
Бумажные материалы | 0,14 |
Рыхлая минвата | 0,046 |
Тяжелая минвата | 0,05 |
Вата – теплоизолятор на основе хлопка | 0,05 |
Вермикулит в плитах или листах | 0,1 |
Войлок | 0,046 |
Гипс | 0,35 |
Глиноземы | 2,33 |
Гравийный заполнитель | 0,93 |
Гранитный или базальтовый заполнитель | 3,5 |
Влажный грунт, 10% | 1,75 |
Влажный грунт, 20% | 2,1 |
Песчаники | 1,16 |
Сухая почва | 0,4 |
Уплотненный грунт | 1,05 |
Гудроновая масса | 0,3 |
Доска строительная | 0,15 |
Фанерные листы | 0,15 |
Твердые породы дерева | 0,2 |
ДСП | 0,2 |
Дюралюминиевые изделия | 160 |
Железобетонные изделия | 1,72 |
Зола | 0,15 |
Известняковые блоки | 1,71 |
Раствор на песке и извести | 0,87 |
Смола вспененная | 0,037 |
Природный камень | 1,4 |
Картонные листы из нескольких слоев | 0,14 |
Каучук пористый | 0,035 |
Каучук | 0,042 |
Каучук с фтором | 0,053 |
Керамзитобетонные блоки | 0,22 |
Красный кирпич | 0,13 |
Пустотелый кирпич | 0,44 |
Полнотелый кирпич | 0,81 |
Сплошной кирпич | 0,67 |
Шлакокирпич | 0,58 |
Плиты на основе кремнезема | 0,07 |
Латунные изделия | 110 |
Лед при температуре 00С | 2,21 |
Лед при температуре -200С | 2,44 |
Лиственное дерево при влажности 15% | 0,15 |
Медные изделия | 380 |
Мипора | 0,086 |
Опилки для засыпки | 0,096 |
Сухие опилки | 0,064 |
ПВХ | 0,19 |
Пенобетон | 0,3 |
Пенопласт марки ПС-1 | 0,036 |
Пенопласт марки ПС-4 | 0,04 |
Пенопласт марки ПХВ-1 | 0,05 |
Пенопласт марки ФРП | 0,044 |
ППУ марки ПС-Б | 0,04 |
ППУ марки ПС-БС | 0,04 |
Лист из пенополиуретана | 0,034 |
Панель из пенополиуретана | 0,024 |
Облегченное пеностекло | 0,06 |
Тяжелое вспененное стекло | 0,08 |
Пергаминовые изделия | 0,16 |
Перлитовые изделия | 0,051 |
Плиты на цементе и перлите | 0,085 |
Влажный песок 0% | 0,33 |
Влажный песок 0% | 0,97 |
Влажный песок 20% | 1,33 |
Обожженный камень | 1,52 |
Керамическая плитка | 1,03 |
Плитка марки ПМТБ-2 | 0,035 |
Полистирол | 0,081 |
Поролон | 0,04 |
Раствор на основе цемента без песка | 0,47 |
Плита из натуральной пробки | 0,042 |
Легкие листы из натуральной пробки | 0,034 |
Тяжелые листы из натуральной пробки | 0,05 |
Резиновые изделия | 0,15 |
Рубероид | 0,17 |
Сланец | 2,100 |
Снег | 1,5 |
Хвойная древесина влажностью 15% | 0,15 |
Хвойная смолистая древесина влажностью 15% | 0,23 |
Стальные изделия | 52 |
Стеклянные изделия | 1,15 |
Утеплитель стекловата | 0,05 |
Стекловолоконные утеплители | 0,034 |
Стеклотекстолитовые изделия | 0,31 |
Стружка | 0,13 |
Тефлоновое покрытие | 0,26 |
Толь | 0,24 |
Плита на основе цементного раствора | 1,93 |
Цементно-песчаный раствор | 1,24 |
Чугунные изделия | 57 |
Шлак в гранулах | 0,14 |
Шлак зольный | 0,3 |
Шлакобетонные блоки | 0,65 |
Сухие штукатурные смеси | 0,22 |
Штукатурный раствор на основе цемента | 0,95 |
Эбонитовые изделия | 0,15 |
Кроме того, необходимо учитывать теплопроводность утеплителей из-за их струйных тепловых потоков. В плотной среде возможно «переливание» квазичастиц из одного нагретого стройматериала в другой, более холодный или более теплый, через поры субмикронных размеров, что помогает распространять звук и тепло, даже если в этих порах будет абсолютный вакуум.
jsnip.ru
Описание теплопроводности различных строительных материалов и таблица коэффициентов теплопроводности
Строительство частного дома – очень непростой процесс от начала и до конца. Одним из основных вопросов данного процесса является выбор строительного сырья. Этот выбор должен быть очень грамотным и обдуманным, ведь от него зависит большая часть жизни в новом доме. Особняком в этом выборе стоит такое понятие, как теплопроводность материалов. От неё будет зависеть, насколько в доме будет тепло и комфортно.
Теплопроводность – это способность физических тел (и веществ, из которых они изготовлены) передавать тепловую энергию. Объясняя более простым языком, это перенос энергии от тёплого места к холодному. У некоторых веществ такой перенос будет происходить быстро (например, у большинства металлов), а у некоторых, наоборот – очень медленно (резина).
Если говорить ещё более понятно, то в некоторых случаях, материалы, имея толщину в несколько метров, будут проводить тепло гораздо лучше, чем другие материалы, с толщиной в несколько десятков сантиметров. Например, несколько сантиметров гипсокартона смогут заменить внушительную стену из кирпича.
Основываясь на этих знаниях, можно предположить, что наиболее правильным будет выбор материалов с низкими значениями этой величины, чтобы дом быстро не остывал. Для наглядности, обозначим процентное соотношение потерь тепла в разных участках дома:
- Крыша. На крышу приходится основной процент отдачи тепла. Обычно он составляет 20-30%. Поэтому следует озаботиться качественно и долговечной теплоизоляцией крыши.
- Стены. В данном случае потери составляют примерно 10-15 процентов.
- Окна. В данном случае тепловые потери зависят от типа окон. В случае обычных стеклянных окон в деревянных рамах, такие потери могут составлять 10-15 процентов. Для пластиковых окон эти значения гораздо ниже.
- Дверь. Тут всё так же зависит от типа двери, но чаще всего, процент не очень большой.
От чего зависит теплопроводность?
Значения данной величины могут зависеть от нескольких факторов. Например, коэффициент теплопроводности, о котором мы поговорим отдельно, влажность строительного сырья, плотность и так далее.
- Материалы, имеющие высокие показатели плотности, имеют, в свою очередь, и высокую способность к теплоотдаче, за счёт плотного скопления молекул внутри вещества. Пористые материалы, наоборот, будут нагреваться и остывать медленнее.
- На теплопередачу оказывает влияние и влажность материалов. Если материалы промокнут, то их теплоотдача возрастёт.
- Также, сильно влияет на этот показатель структура материала. Например, дерево с поперечными и продольными волокнами будет иметь разные значения теплопроводности.
- Показатель изменяется и при изменениях таких параметров, как давление и температура. С ростом температуры он увеличивается, а с ростом давления, наоборот – уменьшается.
Коэффициент теплопроводности
Для количественной оценки такого параметра, используются специальные коэффициенты теплопроводности, строго задекларированные в СНИП. Например, коэффициент теплопроводности бетона равен 0,15-1,75 ВТ/(м*С) в зависимости от типа бетона. Где С – градусы Цельсия. На данный момент расчёт коэффициентов есть практически для всех существующих типов строительного сырья, применяющихся при строительстве. Коэффициенты теплопроводности строительных материалов очень важны в любых архитектурно-строительных работах.
Для удобного подбора материалов и их сравнения, используются специальные таблицы коэффициентов теплопроводности, разработанные по нормам СНИП(строительные нормы и правила). Теплопроводность строительных материалов, таблица на которых будет приведена ниже, очень важна при строительстве любых объектов.
- Древесные материалы. Для некоторых материалов параметры будут приведены как вдоль волокон(Индекс 1, так и поперёк – индекс 2)
Материал | Плотность | Теплопроводность |
Берёза | 510-770 кг / м3 | 1250 Вт/кг*С |
Дуб 1 | 700 кг / м3 | 0,23 Вт / кг*С |
Клён | 620-750 кг / м3 | 0,19 Вт / кг*С |
Дуб 2 | 700 кг / м3 | 0,1 Вт / кг*С |
Сосна 1 и ель 1 | 500 кг / м3 | 0,18 Вт / кг*С |
Сосна 2 и ель 2 | 500 кг / м3 | 0,09 Вт/кг*С |
Лиственница | 670 кг / м3 | 0,13 Вт / кг*С |
Липа | 360-650 кг / м3 | 0,15 Вт / кг*С |
Пихта | 450-550 кг / м3 | 0,1-0,26 Вт / кг*С |
T ополь | 350-500 кг / м3 | 0,17 Вт / кг*С |
- Различные типы бетона.
Вид бетона | Плотность | Теплопроводность |
Сплошной | — | 1,75 Вт / кг*С |
Теплоизоляционный | 500 кг / м3 | 0,18 Вт / кг*С |
На основе песка | 1800-2500 кг / м3 | 0,7 Вт / кг*С |
На основе гравия | 2400 кг / м3 | 1,51 Вт / кг*С |
Силикатный | 1800 кг / м3 | 0,81 Вт / кг*С |
Железобетон | 2500 кг / м3 | 1,7 Вт / кг*С |
Газо-и пен o бетон | 300-1000 кг / м3 | 0,08-0,21 Вт / кг*С |
- Различные виды строительного и декоративного кирпича.
Тип кирпича | Плотность | Теплопроводность |
Огнеупорный | 1000-2000 кг / м3 | 0,5-0,8 Вт / кг*С |
Строительный | 800-1500 кг / м3 | 0,23-0,3 Вт / кг*С |
Изоляционный | — | 0,14 Вт / кг*С |
Облицовочный | 1800 кг / м3 | 0,93 Вт / кг*С |
Пустотелый | — | 0,44 Вт / кг*С |
Диатомовый | 500 | 0,8 Вт/кг*С Вт/кг*С |
Силикатный | 1000-2200 кг / м3 | 0,5-1,3 Вт / кг*С |
Сплошной | — | 0,67 Вт / кг*С |
Шлаковый | 1100-1400 кг / м3 | 0,58 Вт / кг*С |
Трепельный | 700-1300 кг / м3 | 0,27 Вт / кг*С |
Клинкерный | 1800-2200 кг / м3 | 0,8-1,3 Вт / кг*С |
Расчёт толщины утеплителя
Из вышеприведённых таблиц мы видим, насколько могут отличаться коэффициенты проводимости тепла у разных материалов. Для расчёта теплосопротивления будущей стены, существует нехитрая формула, которая связывает толщину утеплителя и коэффициент его теплопроводности.
R = p / k , где R -показатель теплосопротивления, p -толщина слоя, k – коэффициент.
Из этой формулы несложно выделить и формулу расчёта толщины слоя утеплителя для требуемого теплосопротивления. P = R * k . Значение теплосопротивление разное для каждого региона. Для этих значений тоже существует специальная таблица, где их и можно посмотреть при расчёте толщины утеплителя.
Теперь приведём примеры некоторых наиболее популярных утеплителей и их технических характеристик.
- Гипсокартон. Гиспокартон является очень популярным строительным материалом и часто применяется для утепления стен изнутри. Имеет плотность от 500 до 900 кг/м3, коэффициент теплопроводности от 0,12 до 0,2 Вт/кг*С в зависимости от разновидности гипсокартона.
- Стекловата. Довольно популярный утеплитель. Сейчас применяется значительно реже, чем раньше. Плотность стекловаты 15-45 кг / м3 а коэффициент – 0,38-0,46 Вт / кг*С 1.
- Существует ещё большое количество различных утеплителей для дома, как применяемых, так и не очень. При выборе нужно иметь в виду свои экономические возможности и результаты расчёта по вышеприведённым формулам.
remontoni.guru