генератор переменного тока, график, зачем он нужен
Несмотря на столь широкое применение, немногие знают, что собой представляет трехфазный ток. И это простительно, поскольку не все получали высшее профильное образование по профессии электрика. Поэтому цель этой статьи — рассказать в общих чертах о переменном трехфазном электрическом токе. Людям, не связанным с техническим науками, а также начинающим специалистам, будет интересно узнать, что это такое, где применяется, в том числе о его положительных и отрицательных сторонах.
Что такое трехфазный ток
Электрической цепью с трехфазной системой называют схему подключения, к которой подводят три жилы кабеля. В каждой действуют переменные электродвижущие силы одинаковых частот, но сдвинутых по фазе на одну треть периода относительно друг друга. На языке физике сдвиг выглядит как alpha = 2*pi/3. Каждую отдельную цепь всей схемы в целом называют фазой. А поскольку их три, то и вся схема получила соответствующее название.
Принцип действия трехфазного генератора
Практически все генераторы электрических станций вырабатывают трехфазный ток. Они совмещают в себе конструкцию одновременной инициации возбуждения сдвинутых относительно друг друга электродвижущих сил. В его устройство входят три независимых якоря, расположенных на статоре установки и удаленных друг от друга на одну треть окружности. В центре размещается элемент индукции, представленный как постоянный магнит.
На рисунке видно отличие трехфазного тока от однофазного. На схеме показаны три катушки, которые сами по себе являются независимыми генераторами напряжения. Если включить каждую из них в отдельную сеть со своей нагрузкой, то они способны питать электричеством любые приборы.
Однако продолжая логику схематического подключения проводки, для общего электроснабжения оборудования-приемника потребуется шесть кабелей. С точки зрения рациональности, такая цепь будет громоздкой и не экономной. Поэтому катушки соединяют таким образом, чтобы обойтись всего тремя или четырьмя кабелями. Такую систему называют трех- и четырехжильной, одна из которых нулевая, то есть не находится под токовым напряжением.
Подключение звездой
Зачем нужен трехфазный ток
Однофазный и трехфазный переменный ток широко применяются в промышленной и бытовой сфере. Однако в последнее время все больше потребителей предпочитают отказываться от первого и склоняются к последнему.
И дело даже не в увеличении мощности и включении большего количества электрического оборудования. Порой разница между силовой нагрузкой даже не заметна, а при определенных параметрах сети входная мощность для обоих цепей может быть одинаковой.
Основным потребителем является трехфазное оборудование. В эту группу входит:
- асинхронные электроприводы;
- нагревательные установки;
- промышленное оборудование.
Наиболее частым потребителем трехфазного тока является асинхронный двигатель. Именно в составе этой сети они показывают наилучшие рабочие параметры, высокое КПД при относительно низких энергозатратах.
Асинхронный двигатель
К тому же, приводы, обогреватели, котлы, электрические печи, обогреватели не перекашивают фазы. Для чувствительного оборудования такое проседание — тема очень щекотливая.
Обратите внимание! В реальности обеспечить одинаковую нагрузку на всех трех фазах невозможно. Соответственно, напряжение всегда будет неодинаковым.
Поскольку в помещении присутствует еще несколько потребителей, необходима дополнительная система, которая сможет распределять нагрузку равномерно по всем приемникам. Для этого нужна трехкабельная цепь. Включение нагрузки в сеть трехфазного тока происходит к той цепи, на которую приходится меньше всего потребителей.
Схема подключения трехфазного тока
Однако распределительные системы для цепей трехфазного тока получаются очень громоздкими и занимают много места. Оно требует дополнительных систем безопасности, так как напряжение таких сетей составляет 380 В. При коротком замыкании ток будет в разы больше, чем при привычных нам 220 В.
Преимущества и недостатки
Как и все материальное, трехфазный ток имеет свои плюсы и минусы. К положительным моментам применения систем с тремя или четырьмя проводами относится:
- экономичность. Для передачи электроэнергии на большие расстояния используют жилы из цветных металлов, имеющих небольшие удельные сопротивления. Вольтаж делят пропорционально количеству кабелей. За счет распределения нагрузок инженеры могут уменьшить количество проводов и их сечение, что при стоимости редких материалов дает заметную экономию;
- эффективность. Параметры мощности трехфазных трансформаторов на порядок выше однофазных при меньших размерах магнитопровода;
Трансформатор 3-фазного тока
- простота. При одновременном подключении потребителей к трехфазной системе генерируется дополнительное электромагнитное поле. Эффект сдвига фаз позволил создать простые и надежные бесколлекторные электродвигатели, ротор которых выполнен по принципу обычной болванки и устанавливается на шариковые подшипники. Асинхронные электроприводы с короткозамкнутым ротором широко применяются в качестве силовых агрегатов. Главным преимуществом таких моторов является возможность менять направления вращения оси путем переключения на разные фазные провода;
- вариативность. В цепях с несколькими фазами существует возможность получать разные напряжения. Пользователь сможет менять мощность нагревателя или сервопривода, переключившись с одного кабеля на другой;
- уменьшение стробоскопического эффекта. Он достигается за счет независимого подключения разных ламп к отдельным фазам.
Наравне с достоинствами трехфазный ток имеет свои недостатки. Они включают в себя:
- сложность подключения. Для подведения трехфазной сети к частному или промышленному зданию необходимо получить специальное разрешение и технические условия от локальной компании по энергосбыту. Это мероприятие достаточно затратное и хлопотное. Даже при выполнении всех условий положительный результат не всегда гарантирован;
- применения усиленных систем безопасности. В трехфазной сети подается напряжение 380 В, поэтому необходимы дополнительные устройства защиты от поражения электрическим током и короткого замыкания, которое может привести к пожару. В таких случая на входе ставят еще один трехполюсный автоматический выключатель с большими номинальными характеристиками. Он поможет избежать возгорания в случае замыкания цепи;
- необходимость монтажа вспомогательных модулей для ограничения перенапряжения в распределительном щите. Он необходим на случай обрыва нулевого кабеля, что приведет к увеличению напряжения в одной из фаз.
Переход на трехфазный ток целесообразен для владельцев помещений, площадь которых больше 100 кв. метров. Это относится к частным домам и к производственным зданиям. Такая схема подключения позволит перераспределять равномерно нагрузку по всем потребителям и избежать скачков напряжения.
Чем отличается трехфазный ток от однофазного
Основное отличие однофазной цепи от трехфазной:
- однофазный ток подается потребителям через один проводник, трехфазный — через три;
- для завершения сети необходим нулевой кабель, поэтому в цепях с одной фазой их два, а в трех — четыре;
- мощность повышается с увеличением количества фаз;
- простота сетевой конструкции;
- в однофазной цепи появляются перепады напряжения с увеличением количества потребителей электроэнергии;
- при отключении одной жилы в трехфазном, ток продолжает течь в оставшихся двух проводах. В однофазном напряжение полностью пропадает.
Обратите внимание! Трехфазная система позволяет использовать разные номиналы напряжений при питании оборудования с разными параметрами мощности.
Почему обычно три фазы, а не четыре
Таким вопросом задаются практически все начинающие электрики. По сути, количество фаз не ограничено. Их может быть 1, 2, 3, 4 и даже 10. Однако широкое применение получили трехфазные системы. Это связано с тем, что такой цепи достаточно для решения большинства задач.
Такие системы в большей степени используют для силовых установок на производстве. Вращение ротора составляет 360 градусов, а сдвиг по фазам составляет 120 градусов. Его вполне достаточно, чтобы раскрутить якорь до нужных оборотов и получить с двигателя нужную мощность. Увеличение количества фаз лишь повысит стоимость самой установки, поскольку потребует установки дополнительных катушек и подведения лишних кабелей.
Важно! Добавление фаз к существующим трем не повышает КПД агрегата, не увеличивает его мощность. С точки зрения рациональности, это лишь добавляет стоимость установок при сохранении прежних параметров работы.
График трехфазного тока
Ниже представлен график трехфазного тока.
График трехфазного тока
На рисунке видно, что каждая ветка имеет одинаковую частоту, но в каждой цепи периода прохождения тока через проводник сдвинуты по фазе на одну треть.
Система подключения
Существует два вида подключения катушек в электрогенераторе:
- звездой. Суть системы заключается в соединении всех концов катушек в одну точку, которая является нейтральной. Нулевой провод и остальные три провода подключаются к потребителю;
- треугольником. При таком способе каждый вывод обмотки соединяется со следующим. В результате они образуют замкнутый на отдельных контактах треугольник, а линейные кабели соединяются с оборудованием.
Схема подключения «Звезда» и «Треугольник»
На рисунке показано схематическое подключение катушек в электрогенераторе.
Трехфазная система подачи тока потребителям приобрела широкую популярность благодаря эффективности и экономичности. Также она позволяет повышать коэффициент полезного действия силового оборудования, его мощность, упрощая при этом его конструкцию.
Самодельный трехфазный генератор
В статье представлены различные варианты трехфазных генераторов, которые сделаны своими руками
Генератор из постоянных магнитов И. Белецкого
Генератор из асинхронного двигателя своими руками: 3 схемы
Электрики давно научились извлекать пользу из принципа обратимости электрических машин: когда попадает в руки вроде бы ненужный трехфазный движок, то его можно раскрутить от бытовой сети или вырабатывать бесплатную электрическую энергию.
Эта статья рассказывает, как можно просто и надежно сделать генератор из асинхронного двигателя своими руками по одной из трех доступных схем, а в ее конце приведен видеоролик, автор которого воплотил в железе эту идею.
Однако там есть ошибочные выводы. Не повторяйте их.
Секреты подбора электродвигателя
Асинхронная машина может работать в режиме:
1. двигателя, когда на нее подается электрическое напряжение;
2. или генератора, если вращать ее ротор с определенной величиной крутящего момента от дополнительного источника. Им может быть любой двигатель внутреннего сгорания, водяная турбина, ветряное колесо или другой источник энергии.
Отработавшие на производстве трехфазные электродвигатели часто списывают. Они попадают в руки домашнего мастера практически бесплатно или по символической цене.
Ими не сложно воспользоваться для решения бытовых или хозяйственных задач. Потребуется только оценить конструкцию: возможности по выработке электроэнергии определенного напряжения и мощности от источника энергии с конкретным числом оборотов.
Для этого следует изучить характеристики статора и ротора.
Коротко о статоре
Конструкция статора асинхронного двигателя представлена:
· тремя обмотками, по которым проходит электрический ток;
· магнитопроводом из пластин электротехнического железа, созданному для передачи магнитного потока.
Соединение концов обмоток может выполняться схемой звезды либо треугольника. Каждый вариант имеет свои особенности. Их надо учитывать для различных условий эксплуатации.
Что надо знать о роторе
Он имеет три обмотки из изолированного провода. по которым протекают наводимые токи и формируют суммарный крутящий момент магнитного поля.
Эти обмотки могут быть:
1. выведены на внешние клеммы статора через контактные вращающиеся кольца с щеточным механизмом. Его называют ротором с фазной обмоткой;
2. короткозамкнуты встроенным алюминиевым кольцом — «беличье колесо».
Выглядят они следующим образом.
Для бытовых целей предпочтительнее использовать электродвигатель у которого работает короткозамкнутый ротор. О нем идет речь дальше.
Однако, если попалась в руки модель с фазным ротором, то ее легко переделать в короткозамкнутую: достаточно просто зашунтировать выходные контакты между собой.
Важные электрические характеристики
Чтобы сделать генератор из асинхронного двигателя стоит учесть:
· поперечное сечение провода обмотки. Оно ограничивается тепловым воздействием от протекающих суммарных токов, формируемых как от активной нагрузки, так и реактивных составляющих;
· число оборотов, на которые рассчитан электродвигатель. Это оптимальная величина, котрой следует придерживаться при выборе подключения к источнику энергии;
· КПД, cos φ;
· схему подключения обмоток.
Эти величины указываются на табличке корпуса или рассчитываются косвенными методами.
Как работает двигатель в режиме генератора
При раскрутке ротора необходимо возбудить электромагнитное поле. Его добиваются за счет параллельного подключения к обмоткам емкостной нагрузки от батареи конденсаторов разными методами. Рассмотрим их.
Две схемы звезды
Типовое подключение выглядит следующим образом.
Упрощенный вариант схемы показан ниже.
Здесь применяют рабочий и пусковой конденсаторы, которые коммутируются собственными переключателями.
Схема треугольника
Она позволяет вырабатывать 220 вольт линейного напряжения.
Как подобрать конденсаторы
Емкость конденсатора для возбуждения генератора можно подсчитать по формуле, исходя из реактивной мощности, частоты и напряжения.
С=Q/2π∙f∙U2.
Следует учитывать, что они по разному влияют на нагрев обмоток в различных режимах. Поэтому для холостого хода и работы генератора используют ступенчатое переключение.
Рекомендуемые расчеты представлены таблицей.
Конденсаторную батарею рекомендую набирать из бумажных моделей на 500 вольт. Пользоваться электрическими конструкциями не рекомендую даже при включении каждой полугармоники через диод.
Электролит при нагревании может закипеть, что приведет к взрыву корпуса.
Особенности эксплуатации
Для безопасной работы необходимо:
· правильно подобать измерительные приборы;
· включить в схему защиты автоматический выключатель и УЗО;
· смонтировать схему резервного питания;
· правильно выбрать систему напряжения;
· избегать перегрузок за счет эффективного подключения потребителей;
· контролировать рабочую частоту на выходе.
Ее хорошо дополняет видеоролик Ильи Петровича. Обязательно посмотрите и ознакомьтесь с комментариями. Он допустил несколько характерных ошибок, а люди в своих комментариях указали на них. Надеюсь, что эта информация будет полезной для вас.
zen.yandex.ru
3-фазный генератор Марк 7
Видео канала GorillaGlass Live channel, который представил зрителям просто монстра – трехфазный генератор mark 7. Он сделан своими руками, но поразил с первого тестирования. Дело в том, что подключил сразу только 3 катушки. То есть подключил один трехфазный генератор из восьми, вывел трехфазный диодный мост. Проверка устройства проводится на велосипеде.
Самодельный трехфазный генератор односторонний.
Имеет 32 магнита 10х10.
24 катушки провод эмаль медь 0.8, сопротивление одной катушки 0.3 ома.
Материалы: сталь, алюминий, фанера, припой (пос 60), эпоксидная смола, лак паркетный износостойкий.
Инструменты: напильники, надфили, ножовка, циркуль, паяльник (100W), накирка, чертилка, линейка, молоток, рашпили, ручная дрель, сверла.
Посмотрим некоторые тесты. Сначала под напряжением, но большого не будет, потому что нужно по-другому делать не много, и будет хорошее напряжение. Немного покрутим. Слышите – он как самолет. Но 7 вольт, что разогнал – всего лишь работает 1 трехфазный генератор из восьми.
Почему один из трех? Статор состоит из 24 катушек, а ротот из 32 магнитов.
Давайте посмотрим на mark 5. Тот генератор был сделан на основе этого. У нас – вы знаете – 16 магнитов, 12 катушек, провод 0.4. Тут 32 магнита, 34 катушки – соединять можно как угодно. Видите, вывел все выводы – это большой плюс.
Что поразило в данном трехфазном генераторе – ток замыкания всего лишь трех катушек, и при том, что при этих 3.5 амперах катушки не греются.
Поставим. Ротор конечно надо будет балансировать – как ни крути – так как он бьет. Нужно заняться балансировкой – снимем ротор, магниты, напаяем, где надо, и будем стачивать.
Давайте покрутим – уже, видите, 1 ампер там. Слышите, он шумит, как самолет. С нормальной скоростью крутим 3.5 ампера. Посидим 30 секунд, покрутим, и потрогаем катушки. Они были не нагретые нисколько. То есть, если сделаем 8 выводов – 8 плюсов и 8 минусов получится – и соединим все в параллель, то ток короткого замыкания без нагрева будет примерно 24 ампера. Представляете?
О динамо-машине статья.
izobreteniya.net
Трехфазные электрические цепи
В настоящее время электрическая энергия переменного тока вырабатывается, передается и распределяется между отдельными токоприемниками в системе трехфазных цепей.
Принцип соединения проводов.
Системой трехфазных цепей называют такую совокупность электрических цепей, в которой токоприемники получают питание от общего трехфазного генератора.
Трехфазным называется генератор, который имеет обмотку, состоящую из трех частей. Каждая часть этой обмотки называется фазой. Поэтому эти генераторы и получили название трехфазные. Следует отметить, что термин «фаза» в электротехнике имеет два значения:
- в смысле определенной стадии периодического колебательного процесса;
- как наименование части электрической цепи переменного тока (например, часть обмотки электрической машины).
Рис. 1. Схема трехфазного генератора.
Для уяснения принципа действия трехфазного генератора обратимся к модели, схематически изображенной на рисунке 1. Модель состоит из статора, изготовленного в виде стального кольца, и ротора — постоянного магнита. На кольце статора расположена трехфазная обмотка с одинаковым числом витков в каждой фазе. Фазы обмотки смещены в пространстве одна относительно другой на угол 120°.
Представим себе, что ротор модели генератора приведен во вращение с постоянной скоростью против движения часовой стрелки. Вследствие непрерывного движения полюсов постоянного магнита относительно проводников обмотки статора в каждой ее фазе будет наводиться ЭДС.
Применяя правило правой руки, можно убедиться, что ЭДС, наводимая в фазе обмотки северным полюсом вращающегося магнита, будет действовать в одном направлении, а наводимая южным полюсом — в другом. Следовательно, ЭДС фазы генератора будет переменной.
Крайние точки (зажимы) каждой фазы генератора всегда размечают: одну крайнюю точку фазы называют началом, а другую — концом. Начала фаз обозначают латинскими буквами A, B, C, а концы их — соответственно X, Y, Z. Наименования «начало» и «конец» фазы дают, руководствуясь следующим правилом: положительная ЭДС генератора действует в направлении от конца фазы к ее началу.
ЭДС генератора условимся считать положительной, если она наведена северным полюсом вращающегося магнита. Тогда разметка зажимов генератора для случая вращения его ротора против движения часовой стрелки должна быть такой, как показано на рисунке 1.
При постоянной скорости вращения полюсов ротора амплитуда и частота ЭДС, создаваемых в фазах обмотки статора, сохраняются неизменными. Однако в каждое мгновение величина и направление действия ЭДС одной из фаз отличаются от величины и направления действия ЭДС двух других фаз. Это объясняется пространственным смещением фаз. Все явления во второй фазе повторяют явления в первой фазе, но с опозданием.
Рис. 2. Кривые мгновенных значений трехфазной системы Э.Д.С.
Говорят, что ЭДС второй фазы отстает во времени от ЭДС первой фазы. Они, например, в разное время достигают своих амплитудных значений. Действительно, наибольшее значение ЭДС, наведенной в какой-либо фазе, будет в тот момент, когда центр полюса ротора проходит середину этой фазы. В частности, для момента времени, соответствующего расположению ротора, показанному на рисунке 1, электродвижущая сила первой фазы генератора будет положительной и максимальной.
Положительное максимальное значение ЭДС второй фазы наступит позже, когда ротор повернется на угол 120°. Поскольку за один оборот двухполюсного ротора генератора происходит полный цикл изменения ЭДС, то время T одного оборота является периодом изменения ЭДС. Очевидно, что для поворота ротора на 120° необходимо время, равное одной трети периода (T/3).
Следовательно, все стадии изменения ЭДС второй фазы наступают позже соответствующих стадий изменения ЭДС первой фазы на одну треть периода. Такое же отставание в периодическом изменении ЭДС наблюдается в третьей фазе по отношению ко второй. Разумеется, что по отношению к первой фазе периодические изменения ЭДС третьей фазы совершаются с опозданием на две трети периода (2/3 T).
Рис.3. Схема несвязанной трехфазной цепи.
Путем придания соответствующей формы полюсам магнитов можно добиться изменения ЭДС во времени по закону, близкому к синусоидальному.
Следовательно, если изменение ЭДС первой фазы генератора происходит по закону синуса
e1 = Eмsin?t ,
то закон изменения ЭДС второй фазы может быть записан формулой
e2 = Eм sin? (t ? T/3) , а третьей — формулой e3 = Eм sin? (t ? 2/3 T).
Сказанное иллюстрирует график рисунка 2.
Таким образом, можно сделать следующий вывод: при равномерном вращении полюсов ротора во всех трех фазах генератора наводятся переменные ЭДС одинаковой частоты и амплитуды, периодические изменения которых по отношению друг к другу совершаются с запаздыванием на 1/3 периода.
Трехфазный генератор служит источником питания как однофазных, так и трехфазных электрических устройств. Однофазные токоприемники, как известно, имеют два внешних зажима. К ним относятся, например, осветительные лампы, различные бытовые приборы, электросварочные аппараты, индукционные печи, электродвигатели с однофазной обмоткой.
Трехфазные устройства в общем случае имеют шесть внешних зажимов. Каждое такое устройство состоит из трех (обычно одинаковых) электрических цепей, которые называются фазами. Примерами трехфазных токоприемников могут служить электрические дуговые печи с тремя электродами или электродвигатели с трехфазной обмоткой.
Способы соединения фаз генератора и токоприемника
Трехфазную цепь называют несвязанной, если каждая фаза генератора независимо от других соединена двумя проводами со своим токоприемником (рис. 3). Основной недостаток несвязанной трехфазной цепи заключается в том, что для передачи энергии от генератора к приемникам нужно применять шесть проводов. Число проводов может быть уменьшено до четырех или даже до трех, если фазы генератора и токоприемников соединить между собой соответствующим способом. В этом случае трехфазную цепь называют связанной трехфазной цепью.
Рис.4. Трехфазная обмотка, соединенная звездой: а — схема соединения, б — схема обмотки.
На практике почти всегда применяют связанные трехфазные цепи как более совершенные и экономичные. Существует два основных способа соединения фаз генератора и фаз приемников: соединение звездой и соединение треугольником.
При соединении фаз генератора звездой (рис. 4, а) все «концы» фазных обмоток X, Y, Z соединяют в одну общую точку 0, называемую нейтральной или нулевой точкой генератора.
На рисунке 4, б схематически показаны три фазы генератора в виде катушек, оси которых смещены в пространстве одна относительно другой на угол 120°.
Напряжение между началом и концом каждой фазы генератора называют фазным напряжением, а между началами фаз — линейным.
Поскольку фазные напряжения изменяются во времени по синусоидальному закону, то линейные напряжения также будут изменяться по синусоидальному закону. Условимся за положительное направление действия линейных напряжений считать то направление, когда они действуют:
звездой: а — схема соединения, б — схема обмотки
- от зажима A первой фазы к зажиму B второй фазы;
- от зажима B второй фазы к зажиму C третьей фазы;
- от зажима C третьей фазы к зажиму A первой фазы.
Рис.5. Четырехпроводная трехфазная цепь.
Эти три условно положительных направления действия линейных напряжений на рисунке 4, б показаны стрелками.
Расчеты и измерения показывают, что действующее значение линейного напряжения генератора, три фазы которого соединены в звезду, больше действующего значения фазного напряжения.
Для передачи энергии от генератора, соединенного звездой, к однофазным или трехфазным токоприемникам в общем случае нужны четыре провода. Три провода присоединяют к началам фаз генератора (A, B, C). Эти провода называют линейными проводами. Четвертый провод соединяют с нейтральной точкой (0) генератора и называют нейтральным (нулевым) проводом.
Трехфазная цепь с нейтральным проводом дает возможность использовать два напряжения генератора. Приемники в такой цепи можно включать между линейными проводами на линейное напряжение или между линейными проводами и нейтральным проводом на фазное напряжение.
Рис.6. Схема включения однофазных токоприемников в четырехпроводную сеть.
На рисунке 5 показана схема включения токоприемников, рассчитанных на фазное напряжение генератора. В этом случае фазы токоприемников будут иметь общую точку соединения — нейтральную точку 0’, а токи в линейных проводах (линейные токи) будут равны токам в соответствующих фазах нагрузки (фазным токам).
Каждая фаза нагрузки может быть образована как одним токоприемником, так и несколькими токоприемниками, включенными между собой параллельно (рис. 6).
Если фазные токи и углы сдвига фаз этих токов по отношению к фазным напряжениям одинаковы, то такая нагрузка называется симметричной. Если хотя бы одно из указанных условий не соблюдается, то нагрузка будет несимметричной.
Симметричная нагрузка может быть создана, например, лампами накаливания одинаковой мощности. Допустим, что каждая фаза нагрузки образована тремя одинаковыми лампами (рис. 7).
Путем непосредственных измерений можно убедиться, что при включении нагрузки звездой с нейтральным проводом напряжение на каждой фазе нагрузки Uф будет меньше линейного напряжения Uл подобно тому, как это было при включении звездой фаз обмоток генератора.
Рис. 7. Схема соединения симметричной нагрузки звездой.
На практике широкое распространение получили трехфазные цепи с нейтральными проводами при напряжениях
Uл = 380 В; Uф = 220 В
или
Uл = 220 В; Uф = 127 В.
Из рисунка 7 видно, что ток в линейном проводе (Iл) равен току в фазе (Iф)
Iл = Iф.
Величина тока в нейтральном проводе при симметричной нагрузке равна нулю, в чем можно убедиться также путем непосредственного измерения.
Но если ток в нейтральном проводе отсутствует, то зачем же нужен этот провод?
Для выяснения роли нейтрального провода проделаем следующий опыт. Допустим, что в каждой фазе нагрузки имеется по три одинаковых лампы и одному вольтметру, а в нейтральный провод включен амперметр (см. рис. 7). Когда в каждой фазе включены по три лампы, то все они находятся под одним и тем же напряжением и горят с одинаковым накалом, а ток в нейтральном проводе равен нулю.
Рис. 8. Схема осветительной сети жилого дома при соединении фаз нагрузки звездой.
Изменяя число включенных ламп в каждой фазе нагрузки, мы убедимся в том, что фазные напряжения не изменяются (все лампы будут гореть с прежним наклоном), но в нейтральном проводе появится ток.
Отключим нейтральный провод от нулевой точки приемников и повторим все изменения нагрузки в фазах.
Теперь мы заметим, что большее напряжение будет приходиться на ту фазу, сопротивление которой больше других, то есть где включено меньшее количество ламп. В этой фазе лампы будут гореть с наибольшим накалом и даже могут перегореть. Это объясняется тем, что в фазах нагрузки с большим сопротивлением происходит и большее падение напряжения.
Следовательно, нейтральный провод необходим для выравнивания фазных напряжений нагрузки, когда сопротивления этих фаз различны.
Благодаря нейтральному проводу каждая фаза нагрузки оказывается включенной на фазное напряжение генератора, которое практически не зависит от величины тока нагрузки, так как внутреннее падение напряжения в фазе генератора незначительно. Поэтому напряжение на каждой фазе нагрузки будет практически неизменным при изменениях нагрузки.
Если сопротивления фаз нагрузки будут равными по величине и однородными, то нейтральный провод не нужен (рис. 7). Примером такой нагрузки являются симметричные трехфазные токоприемники.
Обычно осветительная нагрузка не бывает симметричной, поэтому без нейтрального провода ее не соединяют звездой (рис. 8). Иначе это привело бы к неравномерному распределению напряжений на фазах нагрузки: на одних лампах напряжение было бы выше нормального и они могли бы перегореть, а другие, наоборот, находились бы под пониженным напряжением и горели бы тускло.
По этой же причине никогда не ставят предохранитель в нейтральный провод, так как перегорание предохранителя может вызвать недопустимые перенапряжения на отдельных фазах нагрузки (см. рис. 8).
Рис. 9. Трехпроводная трехфазная цепь.
Если три фазы нагрузки включить непосредственно между линейными проводами, то мы получим такое соединение фаз токоприемников, которое называется соединением треугольником (рис. 9).
Допустим, что первая фаза нагрузки R1 включена между первым и вторым линейными проводами, вторая R2 — между вторым и третьим проводами, а третья R3 — между третьим и первым проводами. Каждый линейный провод соединен с двумя различными фазами нагрузки.
Соединять треугольником можно любые нагрузки. На рисунке 10 дана
такая схема.
Рис. 10. Схема осветительной сети жилого дома при соединении фаз нагрузки треугольником.
Соединение треугольником осветительной нагрузки жилого дома показано на рисунке 11. При соединении фаз нагрузки треугольником напряжение на каждой фазе нагрузки равно линейному напряжению.
Uл = Uф
Это соотношение сохраняется и при неравномерной нагрузке.
Линейный ток при симметричной нагрузке фаз, как показывают измерения, будет больше фазного тока.
Однако следует иметь в виду, что при несимметричной нагрузке фаз это соотношение между токами нарушается.
Рис. 11. Схема осветительной сети жилого дома при соединении фаз нагрузки треугольником .
Принципиально можно соединять треугольником и фазы генератора, но обычно этого не делают. Дело в том, что для создания заданного линейного напряжения каждая фаза генератора при соединении треугольником должна быть рассчитана на напряжение большее, чем в случае соединения звездой. Более высокое напряжение в фазе генератора требует увеличения числа витков и усиленной изоляции для обмоточного провода, что увеличивает размеры и стоимость машины. Именно поэтому фазы трехфазных генераторов почти всегда соединяют звездой.
Приемники электрической энергии независимо от способа соединения обмоток генератора могут быть включены либо звездой, либо треугольником. Выбор того или иного способа соединения определяется величиной напряжения сети и номинальным напряжением приемников.
fazaa.ru
трехфазный генератор переменного тока своими руками
Не все существующие электросети (в особенности действующие в удалённых от городов регионах) могут обеспечить потребителя полноценным питанием, подходящим для работы современного бытового оборудования. В связи с низким качеством поступающего с подстанций напряжения и его частыми отключениями многие пользователи вынуждены задумываться о том, чтобы изготовить самодельный генератор электроэнергии. С тем, как выглядит такой асинхронный генератор внешне, можно ознакомиться на рис. ниже.
Общий вид самодельного генераторного устройства
Указанный подход к решению проблемы электропитания за городом позволяет существенно сэкономить в сравнении с ситуацией, когда генераторное оборудование приобретается через торговую сеть в готовом виде.
Эффект обратимости
Известно, что принцип работы любого генерирующего электрический ток устройства основан на преобразовании одной формы энергии (тепла, например) в необходимый для электропитания оборудования вид. Можно воспользоваться так называемыми альтернативными (их ещё называют возобновляемыми) источниками энергоснабжения, однако указанный способ связан с ещё большими материальными и производственными издержками.
Гораздо проще и экономнее сделать самодельный генератор тока, воспользовавшись потенциальными возможностями имеющегося в распоряжении пользователя старого асинхронного электродвигателя.
Основанием для такого изготовления является известный в электротехнике принцип обратимости процессов взаимодействия электромагнитных полей, что объясняется спецификой происходящих при этом электрических процессов. Если в двигателе трёхфазную энергию тока используют для превращения её в механическое вращение вала, то в генераторе всё происходит строго наоборот. В этих агрегатах принудительное вращение якоря трансформируется в текущий по фазным обмоткам электрический ток, мощность которого расходуется на обслуживание потребителя (смотрите рисунок ниже).
Принцип работы генератора
Таким образом, перед тем, как сделать образец самодельного электрогенератора из бывшего в употреблении асинхронного двигателя в самом общем случае необходимо проделать следующие манипуляции:
- Клеммы, на которые подаётся трёхфазное (или однофазное – для коллекторных образцов изделий) напряжение нужно превратить в выходные контакты генератора;
- К подвижной части генератора, от которой работал тот или иной механизм (станок, например) следует приспособить привод от внешнего источника механического вращательного импульса;
Дополнительная информация. В качестве такого источника может применяться любой подходящий для конкретных условий движитель, вращающийся под воздействием энергии сгорающего топлива (бензина, газа или солярки). При наличии в частном хозяйстве ветряка или самодельной водяной мельницы решение вопроса с приводом существенно упрощается.
- Из-за дороговизны бензина в условиях загородного хозяйства единственно приемлемым вариантом является изготовление небольшой электростанции, работающей от дизельного движка или на газу.
В этом случае работающий на сравнительно дешёвом топливе двигатель через специальную приводную муфту подсоединяется к валу сооружаемой конструкции, которая после небольшой доработки превращается в генератор переменного тока.
Выбор конструкции
Изготовить генератор из асинхронного двигателя можно вполне успешно, если внимательно изучить конструкцию и устройство каждого из указанных механизмов. Рассмотрим сначала типовой асинхронный двигатель, работающий по принципу скольжения ротора в отстающем по фазе электромагнитном поле статора. Неподвижная часть этого агрегата (статор) оборудуется, как известно, тремя катушками, смещёнными относительно друг друга в пространстве на 120 геометрических градусов.
За счёт взаимодействия подвижного и неподвижного поля в статорных катушках наводится переменное напряжение, представленное последовательностью трёх рабочих фаз (А, В и С).
Более простой вариант изготовления синхронной машины (генератора) предполагает применение б/у коллекторного однофазного двигателя, имеющего в своём составе устройство смещения фазы на конденсаторе фиксированной ёмкости.
Изготовление однофазной системы существенно упрощает конструкцию будущего генератора, но мощность такого изделия сравнительно невелика. Это обстоятельство не позволяет использовать его для питания некоторых образцов однофазных силовых агрегатов (скважинного насоса, например).
Обратите внимание! Однофазного устройства, собранного на базе коллекторного движка, по мощности может хватить разве что на энергоснабжение домашней осветительной сети.
В случаях, когда возникает необходимость в подключении к питающей линии более мощного силового оборудования, единственно правильное решение – изготовить генератор из асинхронного механизма (рисунок ниже).
Асинхронный двигатель
Рассмотрим, как можно переделать этот механизм в трехфазный генератор, более подробно.
Порядок доработки обмоток
Прежде чем сделать генератор из асинхронного двигателя, следует разобраться с его статорными катушками, соединёнными между собой и включаемыми в питающую линию по определённой схеме.
Дополнительная информация. Для классического подключения асинхронных механизмов используются два типа включения статорных обмоток: по так называемой схеме «звезда» или «в треугольник».
В первом случае все три линейных катушки (А, В и С) с одной стороны объединяются в общий нулевой провод, в то время как вторые их концы подключаются к трём фазным линиям. При включении «треугольником» конец одной катушки соединяется с началом второй, а её конец, в свою очередь, – с началом третьей обмотки и так далее вплоть до замыкания цепочки.
В результате такого подключения образуется правильная геометрическая фигура, вершины которой соответствуют трём фазным проводам, а нулевой провод вообще отсутствует.
Из соображений простоты монтажа и безопасности эксплуатации в бытовых схемах обычно выбирается подключение типа «звезда», обеспечивающее возможность организации местного (повторного) защитного заземления.
При доработке двигателя следует снять крышку распределительной коробки и получить доступ к клеммам, на которые в нормальных условиях поступает трёхфазное питающее напряжение. В генераторном режиме к этим контактам следует подсоединить питающую линию с подключёнными к ней бытовыми трёхфазными потребителями.
Для организации однофазного питания (розеточных линий и цепей освещения, в частности) их нужно будет подключить одним концом к выбранному фазному контакту А, В или С, а другим – к общему нулевому проводу. Порядок подсоединения проводов к асинхронному двигателю приводится на следующем рисунке.
Схема разводки на распредкоробке
Важно! В случае нескольких линейных (однофазных) нагрузок необходимо распределить их по фазам таким образом, чтобы те были загружены более-менее равномерно.
Таким образом, генератор своими руками, собранный из трёхфазного двигателя, будет нагружен на все питающие цепи, а конечные потребители получат полагающиеся им нормативные мощности.
Организация приводной части
В бытовых условиях в качестве механического привода, как правило, используются типовые бензогенераторы, с которых момент вращения передаётся непосредственно на рабочий вал. Основная проблема при таком подключении – организация надёжного муфтового сцепления, полностью передающего крутящий момент на ось якоря генератора (в данной ситуации его функцию выполняет ротор двигателя).
При её обустройстве самый оптимальный вариант – это обратиться за помощью к профессиональным механикам, которые помогут организовать муфтовое соединение требуемого качества и надёжности.
Обратите внимание! Ротор переделываемого механизма напоминает по своей конструкции обмотку статора с тремя сдвинутыми на 120 градусов обмотками (он называется в этом случае фазным).
Ротор фазного типа
Линейные выводы каждой из обмоток соединяются со съёмными контактными кольцами, посредством которых на механизм двигателя через графитовые щётки подавалось запускающее напряжение. Если оставить всё как было, получается очень непростая в изготовлении и обслуживании конструкция, использовать которую в составе будущего генератора не имеет смысла.
Для удобства переделки лучше всего воспользоваться схемой короткозамкнутой подвижной части, которая может быть получена путём закорачивания рабочих выводов каждой из катушек фазного ротора.
Генератор на постоянных магнитах
Известен ещё один способ обустройства бытовых генераторов, состоящий в использовании при изготовлении мощных постоянных магнитов и ряда дополнительных приспособлений (в некоторых средствах массовой информации их ещё называют «вечными»).
Принцип работы такого источника энергии на магнитах состоит во взаимодействии э\м полей, создаваемых постоянными магнитными заготовками, жёстко закреплёнными на статорной и роторной части устройства (смотрите рисунок ниже).
Генератор на магнитах
Основное преимущество таких двигателей, выполняющих функцию генератора, – отсутствие потребности в источнике внешней энергии или в топливе. Однако и в данном случае не обходится без недостатков, проявляющихся, в первую очередь, в том, что сильные магнитные поля могут негативно сказываться на здоровье обслуживающего персонала.
С учётом этого недостатка во всех остальных ситуациях такой электромотор широко применяется в различных приводных узлах, нередко устанавливаемых на промышленном оборудовании. В качестве примера может быть приведён известный среди специалистов генератор, под обозначением «г 303».
В заключение обзора самодельных генераторов следует заметить, что для переделки их из асинхронных двигателей может потребоваться целый комплект специального съёмного инструмента, по своему составу напоминающий автомобильное оборудование.
Видео
amperof.ru
24. Устройство трехфазного синхронного генератора.
Синхронная машина состоит из двух основных частей — статора и ротора Статор, являющийся неподвижной частью машины, по конструкции аналогичен статору асинхронного двигателя. Трехфазная обмотка статора выполнена с таким же числом полюсов, как и ротора Ротор — вращающаяся часть машины — представляет собой систему полюсов, на которых расположена обмотка возбуждения. Ротор служит для создания основного магнитного потока. По конструкции различают роторы с явно и неявно выраженными полюсами.
Ротор с явно выраженными полюсами (рис 62,а) состоит из стального вала, роторной звезды и полюсов возбуждения с полюсными катушками, укрепленными на ободе роторной звезды.
При больших частотах вращения (3 тыс об/мин), исходя из соображений механической прочности, ротор выполняют неявнопо-люсным (рис 62,6) с выфрезерованнымн на его поверхности продольными пазами, в которые закладывают обмотку возбуждения.
На валу ротора устанавливают контактные кольца, к которым присоединяют выводы обмотки возбуждения. Кольца надежно изолируют от вала и друг от друга. К кольцам прилегают щетки,
укрепленные в щеткодержателях, образуя скользящпй контакт. Через скользящий кон- такт обмотка возбуждения подключается к источнику постоянного тока. При подключе нии обмотки возбуждения вращающегося ротора к источнику постоянного тока создается вращающийся вместе с ротором магнитный поток Ф, пересекающий трехфазную обмотку статора и по закону электромагнитной индукции в каждой фазной обмотке образуется наводящий э д с.
Э д с статора составляет симметричную трехфазную э д с, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагружается симметричной системой токов. Машина при этом работает в режиме генератора
Как и все электрические машины, синхронные машины обратимы. У синхронных машин частота вращения п ротора равна частоте вращения n1 магнитного поля статора.
25. Принцип работы трехфазного синхронного генератора.
Синхронными называются электрические машины, частота вращения которых связана постоянным соотношением с частотой сети переменного тока, в которую эта машина включена. Синхронные машины служат генераторами переменного тока на электрических станциях, а синхронные двигатели применяются в тех случаях, когда нужен двигатель, работающий с постоянной частотой вращения. Синхронные машины обратимы, т.е. они могут работать и как генераторы, и как двигатели, хотя в конструкциях современных синхронных генераторов и двигателей имеются небольшие, но практически весьма существенные отличия. Синхронная машина переходит от режима генератора к режиму двигателя в зависимости от того, действует ли на ее вал вращающая или тормозящая механическая сила. В первом случае она получает на валу механическую, а отдает в сеть электрическую энергию, а во втором случае она потребляет из сети электрическую энергию, а отдает на валу механическую энергию.
Основной магнитный поток синхронного генератора, создаваемый вращающимся ротором, возбуждается посторонним источником-возбудителем, которым обычно является генератор постоянного тока небольшой мощности, установленный на общем валу с синхронным генератором. Постоянный ток от возбудителя подается на ротор через щетки и контактные кольца, установленные на валу ротора.
На валу ротора устанавливают контактные кольца, к которым присоединяют выводы обмотки возбуждения. Кольца надежно изолируют от вала и друг от друга. К кольцам прилегают щетки,
укрепленные в щеткодержателях, образуя скользящий контакт. Через скользящий контакт обмотка возбуждения подключается к источнику постоянного тока. При подключении обмотки возбуждения вращающегося ротора к источнику постоянного тока создается вращающийся вместе с ротором магнитный поток, пересекающий трехфазную обмотку статора и по закону электромагнитной индукции в каждой фазной обмотке образуется наводящий э д с.
Э д с статора составляет симметричную трехфазную э д с, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагружается симметричной системой токов. Машина при этом работает в режиме генератора.
Как и все электрические машины, синхронные машины обратимы. У синхронных машин частота вращения ротора равна частоте вращения магнитного поля статора.
studfile.net
Трехфазный генератор
Под трехфазной цепью (системой) понимают совокупность трехфазного источника (генератора), нагрузки и соединительных проводов.
Известно, что при вращении проводника в равномерном магнитном поле в нем наводится ЭДС
. (1.1)
Закрепим жестко на одной оси три одинаковые катушки (обмотки), смещенные относительно друг друга в пространстве на(120) и начнем их вращать в равномерном магнитном поле с угловой скоростью (рис. 1.1).
При этом в катушке A будет наводиться
. (1.2)
Такие же значения ЭДС возникнут в катушках BиC, но соответственно через 120и 240после начала вращения, т.е.
(1.3)
Совокупность трех катушек (обмоток), вращающихся на одной оси с угловой скоростью , в которых наводятся ЭДС, равные по модулю и сдвинутые друг от друга на угол 120называютсимметричнымтрехфазным генератором.Каждая катушка генератора – этофаза генератора. В генераторе на рис. 1.1 фазаB «следует» за фазойA, фазаC – за фазойB. Такая последовательность чередования фаз называетсяпрямой последовательностью. При изменении направления вращения генератора будет иметь местообратная последовательностьчередования фаз. Прямой последовательности на основании соотношений (1.2, 1.3) соответствует векторная диаграмма ЭДС, изображенная на рис. 1.2, а, для обратной – векторная диаграмма ЭДС на рис. 1.2, б.
Вдальнейшем все рассуждения по расчету трехфазных цепей будут касаться только трехфазных систем с прямой последовательностью следования генераторных ЭДС.
Перейдем от мгновенных значений ЭДС к их комплексам:
(1.4)
где оператор поворота
и т.д.
Сумме мгновенных ЭДС соответствует сумма комплексов этих ЭДС.
. (1.5)
График изменения мгновенных значений ЭДС при = 90представлен на рис. 1.3. В каждое мгновение алгебраическая сумма ЭДС равна нулю.
Крайним точкам катушек (обмоток) дают название конец иначало.Начала катушек обозначаютA, B, C, концы соответственноX, Y, Z (рис. 1.4,а).
Фазные обмотки трехфазного генератора могут быть изображены в виде источников ЭДС(рис. 1.4,б).
Соединения в звезду и треугольник, фазные и линейные величины
В трехфазных цепях применяют два вида соединений генераторных обмоток – в звезду и треугольник (рис. 1.5).
При соединении в звезду все концы фазных обмоток соединяют в один узел, называемыйнейтральной илинулевой точкой, и обозначают, как правило, буквойO. При соединении в треугольник обмотки генератора соединяют так, чтобы начало одной соединялось с концом другой. ЭДС в катушках в этом случае обозначают соответственноЕсли генератор не подключен к нагрузке, то по его обмоткам не протекают токи, т.к. сумма ЭДС равна нулю.
Взвезду и треугольник включаются и сопротивления нагрузки так, как показано на рис. 1.6.
Фазные сопротивления , соединенные в треугольник или в звезду, называютфазами нагрузки.
Существует пять видов соединения генераторов с нагрузкой: звезда – звезда с нулевым проводом, звезда – звезда без нейтрального провода, треугольник – треугольник, звезда – треугольник и треугольник – звезда (рис. 1.7).
Соединительные провода между началами фаз нагрузки и началами фаз генератора называют линейными проводами. Как правило, начала фаз генераторов обозначают заглавными буквами, а нагрузки – прописными. Провод, соединяющий нулевые точки генератора и нагрузки, называютнулевым илинейтральным проводом.
Направление токов в линейных проводах принято выбирать от генератора к нагрузке, а в нулевом – от нагрузки к генератору. На рис. 1.7 –линейные напряжения и токи.
–фазные напряжения и токи.
Линейные напряжения (напряжения между линейными проводами) – это разность соответствующих фазных напряжений
. (1.6)
Линейные токи при принятых направлениях токов (рис. 1.7) определяются по первому закону Кирхгофа
. (1.7)
Таким образом, фазные напряжения на генераторе – это напряжения, приложенные к обмоткам генератора , а напряжения фаз нагрузки – это напряжения на соответствующих сопротивлениях. Фазные токи – это токи, протекающие в фазах генератора или нагрузки. Следует отметить, что фазные и линейные напряжения в треугольнике равны, так же как фазные и линейные токи в звезде.
Совокупность соответствующей фазы генератора, соединительного провода и фазы нагрузки называют фазой трехфазной цепи. (Не путать с начальной фазой гармонической функции!).
studfile.net
Трёхфазный выпрямитель — Википедия
Трёхфазный выпрямитель — устройство применяемое для получения постоянного тока из трёхфазного переменного тока системы Доливо-Добровольского.
Схема трёхфазного выпрямителя Ларионова на трёх диодных полумостах (на 6 диодах)Наиболее распространены трёхфазный выпрямитель по схеме Миткевича В. Ф. (на трёх диодах), предложенный им в 1901 г.[1], и трёхфазный выпрямитель по схеме Ларионова А. Н. (на шести диодах), предложенный им в 1924 г.[2].[источник не указан 1301 день] В 1923 году в США также подаётся патент US1610837 A на трёхфазные выпрямители.
Менее известны трёхфазные выпрямители по схемам «три параллельных моста» (на двенадцати диодах), «три последовательных моста» (на двенадцати диодах) и др., которые по многим параметрам превосходят и схему Миткевича и схему Ларионова. При этом требуются диоды со средним током через один диод почти вдвое меньшим, чем в схеме Ларионова.
Следует отметить, что выпрямитель Миткевича является четвертьмостовым параллельным, выпрямитель Ларионова является не полномостовым, как его часто считают, а полумостовым параллельным («три параллельных полумоста»). В зависимости от схемы включения трёхфазного трансформатора или трёхфазного генератора (звезда, треугольник) схема Ларионова имеет две разновидности: «звезда-Ларионов» и «треугольник-Ларионов», которые имеют разные напряжения, токи, внутренние сопротивления.
По схемам можно заметить, что схема Миткевича является недостроенной схемой Ларионова, а схема Ларионова является недостроенной схемой «три параллельных моста».
Из-за принципа обратимости электрических машин по этим же схемам строятся и преобразователи (инверторы).
Трёхфазный выпрямитель «три четвертьмоста параллельно» (Миткевича В. Ф.)[править | править код]
Схема трёхфазного ртутного выпрямителя по схеме В. Ф. Миткевича приведена в[3].
Вид ЭДС на входе (точками) и на выходе (сплошной). |
«Частично трёхполупериодный с нулевым выводом». Площадь под интегральной кривой равна:
- S=6∫π/6π/2Emsin(ωt)d(ωt)=632Em=33Em{\displaystyle S=6\int \limits _{\pi /6}^{\pi /2}E_{\text{m}}\sin(\omega t)\,d(\omega t)=6{\frac {\sqrt {3}}{2}}E_{\text{m}}=3{\sqrt {3}}E_{\text{m}}},
где Em=2E2eff{\displaystyle E_{\text{m}}={\sqrt {2}}E_{\text{2eff}}} — максимальное (наибольшее) мгновенное значение ЭДС, E2eff{\displaystyle E_{\text{2eff}}} — эффективное (действующее) значение ЭДС вторичной обмотки трансформатора или генератора.
Средняя ЭДС равна: Esr=33Em2π=0,83Em=1,17E2eff.{\displaystyle E_{\text{sr}}={\frac {3{\sqrt {3}}E_{\text{m}}}{2\pi }}=0{,}83E_{\text{m}}=1{,}17E_{\text{2eff}}.}
На холостом ходу и близких к нему режимах ЭДС в ветви с наибольшей на данном отрезке периода ЭДС обратносмещает (закрывает) диоды в ветви с меньшей на данном отрезке периода ЭДС. Относительное эквивалентное активное сопротивление при этом равно сопротивлению одной ветви 3r. При увеличении нагрузки (уменьшении Rn) появляются и увеличиваются отрезки периода на которых обе ветви работают на одну нагрузку параллельно. Относительное эквивалентное внутреннее активное сопротивление на этих отрезках равно 3r/2. В режиме короткого замыкания эти отрезки максимальны, но полезная мощность в этом режиме равна нулю.
Отрицательные полупериоды в выпрямителе Миткевича не используются. Из-за этого выпрямитель Миткевича имеет очень низкий коэффициент использования габаритной мощности трансформатора и применяется при малых мощностях.
Частота пульсаций равна 3f, где f — частота сети.
Абсолютная амплитуда пульсаций равна 0,5Em{\displaystyle 0{,}5E_{\text{m}}}.
Относительная амплитуда пульсаций равна 0,5/0,83 = 0,6 (60 %).
Три разделённых полумоста параллельно (три «с удвоением напряжения» параллельно)[править | править код]
Трёхфазный выпрямитель «три полумоста параллельно, объединённые кольцом (треугольником)» («треугольник-Ларионова»)[править | править код]
Вид ЭДС на входе (точками) и на выходе (сплошной).В некоторой электротехнической литературе иногда не различают схемы «треугольник-Ларионов» и «звезда-Ларионов», которые имеют разные значения среднего выпрямленного напряжения, максимального тока, эквивалентного активного внутреннего сопротивления и др.
В выпрямителе «треугольник-Ларионов» потери в меди больше, чем в выпрямителе «звезда-Ларионов», поэтому на практике чаще применяется схема «звезда-Ларионов».
Кроме этого, выпрямители Ларионова А. Н. часто называют мостовыми, на самом деле они являются полумостовыми параллельными.
В некоторой литературе выпрямители Ларионова и подобные называют «полноволновыми» (англ. full wave), на самом деле полноволновыми являются выпрямитель «три последовательных моста» и подобные.
Площадь под интегральной кривой равна:
- S=12∫π/3π/2Emsin(ωt)d(ωt)=1212Em=6Em{\displaystyle S=12\int \limits _{\pi /3}^{\pi /2}E_{\text{m}}\sin(\omega t)\,d(\omega t)=12{\frac {1}{2}}E_{\text{m}}=6E_{\text{m}}}.
Средняя ЭДС равна: Esr=6Em2π=3Emπ=0,955Em=1,35E2eff{\displaystyle E_{\text{sr}}={\frac {6E_{\text{m}}}{2\pi }}={\frac {3E_{\text{m}}}{\pi }}=0{,}955E_{\text{m}}=1{,}35E_{\text{2eff}}}, то есть больше, чем в выпрямителе Миткевича.
В работе схемы «треугольник-Ларионов» есть два периода. Большой период равен 360° (2π{\displaystyle 2\pi }). Малый период равен 60° (π/3{\displaystyle \pi /3}), и повторяется внутри большого 6 раз. Малый период состоит из двух малых полупериодов по 30° (π/6{\displaystyle \pi /6}), которые зеркальносимметричны и поэтому достаточно разобрать работу схемы на одном малом полупериоде в 30°.
На холостом ходу и в режимах близких к нему ЭДС в ветви с наибольшей на данном отрезке периода обратносмещает (закрывает) диоды с меньшими на данном отрезке периода ЭДС.
В начальный момент (ωt=0{\displaystyle \omega t=0}) ЭДС в одной из ветвей равна нулю, а ЭДС в двух других ветвях равны 0,87Em{\displaystyle 0{,}87E_{\text{m}}}, при этом открыты два верхних диода и один нижний диод. Эквивалентная схема представляет собой две параллельные ветви с одинаковыми ЭДС (0,87) и одинаковыми сопротивлениями по 3r каждое, эквивалентное сопротивление обеих ветвей равно 3r/2. Далее, на малом полупериоде, одна из двух ЭДС, равных 0,87, растёт до 1,0, другая уменьшается до 0,5, а третья растёт от 0,0 до 0,5. Один из двух открытых верхних диодов закрывается, и эквивалентная схема становится параллельным включением двух ветвей, в одной из которых бо́льшая ЭДС и её сопротивление равно 3r, в другой ветви образуется последовательное включение двух меньших ЭДС, и её сопротивление равно 2 × 3r = 6r, эквивалентное сопротивление обеих ветвей равно
- 3r⋅6r/(3r+6r)=18r2/(9r)=2r.{\displaystyle 3r\cdot 6r/(3r+6r)=18r^{2}/(9r)=2r.}
Частота пульсаций равна 6f, где f — частота сети.
Абсолютная амплитуда пульсаций равна (1−32)Em=(1−0,87)Em=0,13Em{\displaystyle \left(1-{\tfrac {\sqrt {3}}{2}}\right)E_{\text{m}}=(1-0{,}87)E_{\text{m}}=0{,}13E_{\text{m}}}.
Относительная амплитуда пульсаций равна 0,13/0,95 = 0,14 (14 %).
Трёхфазный выпрямитель «три полумоста параллельно, объединённые звездой» («звезда-Ларионова»)[править | править код]
Три полумоста параллельно, объединённые звездой («звезда-Ларионов»).Выпрямитель звезда-Ларионов (шестипульсный) применяется в генераторах электроснабжения бортовой сети почти на всех средствах транспорта (автотракторных, водных, подводных, воздушных и др.). В электроприводе дизельэлектровозов и дизельэлектроходов почти вся мощность проходит через выпрямитель звезда-Ларионов.
Площадь под интегральной кривой равна:
- S=12(∫π/3π/2Emsin(ωt)d(ωt)+∫π/6π/3Emsin(ωt)d(ωt))={\displaystyle S=12(\int \limits _{\pi /3}^{\pi /2}E_{\text{m}}\sin(\omega t)\,d(\omega t)+\int \limits _{\pi /6}^{\pi /3}E_{\text{m}}\sin(\omega t)\,d(\omega t))=}
- =1232Em=63Em{\displaystyle =12{\frac {\sqrt {3}}{2}}E_{m}=6{\sqrt {3}}E_{\text{m}}}.
Средняя ЭДС равна: Esr=63Em2π=33Emπ=1,65Em=2,34E2eff{\displaystyle E_{\text{sr}}={\frac {6{\sqrt {3}}E_{\text{m}}}{2\pi }}={\frac {3{\sqrt {3}}E_{\text{m}}}{\pi }}=1{,}65E_{\text{m}}=2{,}34E_{\text{2eff}}}, то есть в 3{\displaystyle {\sqrt {3}}} раз больше, чем в схемах «треугольник-Ларионов» и «три параллельных полных моста» и вдвое больше, чем в схеме Миткевича.
В этом выпрямителе есть большой период равный 360° и малый период, равный 60°. В большом периоде помещаются 6 малых периодов. Малый период в 60° состоит из двух зеркальносимметричных частей по 30°, поэтому для описания работы этой схемы достаточно разобрать её работу на одной части в 30° малого периода. В начале малого периода (ωt=0{\displaystyle \omega t=0}) ЭДС в одной из ветвей — фазы U1 равна нулю, а в двух других фазах U2 и U3 — по 0,87 × Emax. Эти две фазы U2 и U3 в данный, начальный момент времени ωt=0{\displaystyle \omega t=0} включены последовательно. Эквивалентное внутреннее активное сопротивление при этом равно 6r{\displaystyle 6r}. Далее, одна из ЭДС фаза U2 увеличивается от 0,87 — до 1,0, другая U3 уменьшается от 0,87 до 0,5, а третья фаза U1 растёт от 0,0 до 0,5. — где и пересекается на графике в точке 0.5Emax с фазой U3 — смотрите рисунок наглядного изменения фаз по ссылке https://upload.wikimedia.org/wikipedia/commons/5/5d/Spannungsverlauf_Dreiphasen-Wechselstrom.gif Эквивалентная схема при этом изменяется и представляет собой две последовательно включенные ветви, в одной из которых одна ЭДС и её сопротивление равно сопротивлению одной обмотки 3r, в другой две параллельно включенные ЭДС с сопротивлением 3r каждая, эквивалентное сопротивление двух параллельных ветвей равно 3r/2. Эквивалентное активное внутреннее сопротивление всей цепи равно 3r/2 + 3r = 9r/2 = 4,5r. В режимах близких к холостому ходу (при малых нагрузках) в параллельных ветвях ЭДС в ветви с большей ЭДС обратносмещает (закрывает) диод в ветви с меньшей ЭДС, при этом изменяется эквивалентная схема. При увеличении нагрузки появляются и увеличиваются отрезки периода на которых обе ветви работают на нагрузку параллельно. В режиме короткого замыкания отрезки параллельной работы увеличиваются до длины всего периода, но полезная мощность в этом режиме равна нулю.
Частота пульсаций равна 6f, где f — частота сети.
Абсолютная амплитуда пульсаций равна (3−1,5)Em=(1,73−1,5)Em=0,23Em{\displaystyle ({\sqrt {3}}-1{,}5)E_{\text{m}}=(1{,}73-1{,}5)E_{\text{m}}=0{,}23E_{\text{m}}}.
Относительная амплитуда пульсаций равна 0,23/1,65 = 0,14 (14 %).
Трёхфазный выпрямитель «три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича параллельно» (6 диодов)[править | править код]
В литературе иногда называют «шестифазный» (см. немецкую страницу в Википедии de:Gleichrichter#Gleichrichter für Dreiphasenwechselstrom Sechspuls-Sternschaltung (M6): 6-Phasen-Gleichrichter mit Mittelpunktanzapfungen am Drehstromtransformator).
Является почти аналогом выпрямителя «три полных моста параллельно» и имеет почти такие же свойства, как и выпрямитель «три полных моста параллельно», но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больший.
Площадь под интегральной кривой равна:
- S=12∫π/3π/2Emsin(ωt)d(ωt)=1212Em=6Em{\displaystyle S=12\int \limits _{\pi /3}^{\pi /2}E_{\text{m}}\sin(\omega t)\,d(\omega t)=12{\frac {1}{2}}E_{\text{m}}=6E_{\text{m}}}.
Средняя ЭДС равна: Esr=6Em2π=3Emπ=0,95Em=1,35E2eff{\displaystyle E_{\text{sr}}={\frac {6E_{m}}{2\pi }}={\frac {3E_{m}}{\pi }}=0{,}95E_{\text{m}}=1{,}35E_{\text{2eff}}}, то есть такая же, как и в схеме «треугольник-Ларионов» и в 3{\displaystyle {\sqrt {3}}} раз меньше, чем в схеме «звезда-Ларионов».
Трёхфазный выпрямитель «три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно» (6 диодов)[править | править код]
Является почти аналогом выпрямителя «три полных моста последовательно» и имеет почти такие же свойства, но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больше.
Трёхфазный выпрямитель «три полных моста параллельно» (12 диодов)[править | править код]
Вид ЭДС на входе (точками) и на выходе (сплошной).Менее известны полномостовые трёхфазные выпрямители по схеме «три параллельных моста» (на двенадцати диодах), «три последовательных моста» (на двенадцати диодах), и др., которые по многим параметрам превосходят выпрямитель Ларионова А. Н.. По схемам выпрямителей можно видеть, что выпрямитель Миткевича В. Ф. является «недостроенным» выпрямителем Ларионова А. Н., а выпрямитель Ларионова А. Н. является «недостроенным» выпрямителем «три параллельных моста».
Площадь под интегральной кривой равна:
- S=12∫π/3π/2Emsin(ωt)d(ωt)=1212Em=6Em{\displaystyle S=12\int \limits _{\pi /3}^{\pi /2}E_{\text{m}}\sin(\omega t)\,d(\omega t)=12{\frac {1}{2}}E_{\text{m}}=6E_{\text{m}}}.
Средняя ЭДС равна: Esr=6Em2π=3Emπ=0,955Em=1,35E2eff{\displaystyle E_{\text{sr}}={\frac {6E_{m}}{2\pi }}={\frac {3E_{m}}{\pi }}=0{,}955E_{\text{m}}=1{,}35E_{\text{2eff}}}, то есть такая же, как и в схеме «треугольник-Ларионов» и в 3{\displaystyle {\sqrt {3}}} раз меньше, чем в схеме «звезда-Ларионов».
В режиме холостого хода ЭДС в мосту с наибольшей на данном отрезке большого периода ЭДС обратносмещает (закрывает) диоды в мостах с меньшими на данном отрезке большого периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно активному сопротивлению одного моста (одной обмотки) 3r. При увеличении нагрузки (уменьшении Rn) появляются и увеличиваются отрезки периода на которых два моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода при этом равно сопротивлению двух параллельных мостов 3r/2 = 1,5r. При дальнейшем увеличении нагрузки появляются и увеличиваются отрезки периода на которых все три моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно сопротивлению трёх параллельных мостов r. В режиме короткого замыкания все три параллельных моста работают на нагрузку, но полезная мощность в этом режиме равна нулю. Из этого следует, что с учётом разницы величин ЭДС (3{\displaystyle {\sqrt {3}}}), эквивалентное внутреннее активное сопротивление (и потери в меди) выпрямителя «три параллельных моста» получается меньше, чем в выпрямителе «звезда-Ларионов». Из-за меньшего эквивалентного внутреннего активного сопротивления в выпрямителе «три параллельных полных моста» нагрузочные характеристики этих двух выпрямителей получаются разными.
Выпрямитель «три параллельных моста» имеет большую надёжность, чем выпрямитель «звезда-Ларионов». При обрыве (выгорании) 5/6 диодов выпрямитель «звезда-Ларионов» становится полностью неработоспособным, а выпрямитель «три параллельных моста», в случае оставшихся диодов в противоположных плечах одного моста, ещё даёт около 1/6 от полной мощности, чего может хватить, чтобы «дотянуть» до ремонта. В выпрямителе «три параллельных полных моста» средний ток через один диод почти вдвое меньше, чем в выпрямителе «звезда-Ларионов», а такие диоды дешевле и доступнее.
- Недостатки
- При очень малых токах нагрузки эквивалентное внутреннее активное сопротивление почти равно активному сопротивлению одной обмотки, то есть больше, чем в выпрямителе «треугольник-Ларионов».
Устранение недостатка. При очень малых токах нагрузки схему «три параллельных моста» можно переключать на схему «треугольник-Ларионов» переключателем с тремя замыкающими контактными группами.
- Из-за четырёхпроводной трёхфазной сети выпрямитель «три параллельных моста» может работать только вблизи трансформатора, выпрямитель Ларионова — на удалении от трансформатора.
Устранение недостатка. Проводка шестипроводной линии электропередачи.
По свойствам этот выпрямитель ближе к источникам тока и может почти во всех устройствах заменить выпрямители «звезда-Ларионов» и «треугольник-Ларионов», (электропривод тепловозов, теплоходов, атомоходов, прокатных станов, буровых вышек, блоки питания мощных электролизёров, мощных радиопередатчиков, мощных радиолокаторов, мощных лазеров, электротранспорта постоянного тока, генераторы бортовой сети автотракторной и др. техники и в других устройствах), при этом уменьшается нагрев обмоток и сберегается около 4 % электроэнергии (топлива)).
Частота пульсаций равна 6f, где f — частота сети.
Абсолютная амплитуда пульсаций равна (1−32)Em=(1−0,87)Em=0,13Em{\displaystyle \left(1-{\tfrac {\sqrt {3}}{2}}\right)E_{\text{m}}=(1-0{,}87)E_{\text{m}}=0{,}13E_{\text{m}}}.
Относительная амплитуда пульсаций равна 0,13/0,95 = 0,14 (14 %).
Трёхфазный выпрямитель «три полных моста последовательно» (12 диодов)[править | править код]
Площадь под интегральной кривой равна:
- S=12[∫0π/6Emsin(ωt)d(ωt)+∫π/6π/3Emsin(ωt)d(ωt)+∫π/3π/2Emsin(ωt)d(ωt)]={\displaystyle S=12\left[\int \limits _{0}^{\pi /6}E_{\text{m}}\sin(\omega t)\,d(\omega t)+\int \limits _{\pi /6}^{\pi /3}E_{\text{m}}\sin(\omega t)\,d(\omega t)+\int \limits _{\pi /3}^{\pi /2}E_{\text{m}}\sin(\omega t)\,d(\omega t)\right]=}
- =12(1−32+32−12+12)Em=12Em.{\displaystyle =12\left(1-{\tfrac {\sqrt {3}}{2}}+{\tfrac {\sqrt {3}}{2}}-{\tfrac {1}{2}}+{\tfrac {1}{2}}\right)E_{\text{m}}=12E_{\text{m}}.}
Средняя ЭДС равна: Esr=12Em2π=6Emπ=1,91Em=2,7E2eff{\displaystyle E_{\text{sr}}={\frac {12E_{\text{m}}}{2\pi }}={\frac {6E_{\text{m}}}{\pi }}=1{,}91E_{\text{m}}=2{,}7E_{\text{2eff}}}, то есть вдвое больше, чем в схеме «треугольник-Ларионов».
Относительное эквивалентное внутреннее активное сопротивление равно сопротивлению трёх последовательно включенных мостов с сопротивлением 3r каждый, то есть 9r.
Ток в нагрузке равен ????
Мощность в нагрузке равна ????
Частота пульсаций равна 6f, где f — частота сети.
Абсолютная амплитуда пульсаций равна
ru.wikipedia.org