Posted on

принцип работы, устройство, маркировка, типы и виды, срок службы

Люминесцентными называются электрические газоразрядного типа лампы, отличающиеся большим сроком службы. Изделия обеспечивают искусственное освещение в жилых комплексах, офисных и торговых центрах, промышленных объектах. Разработаны варианты устройств с разными оттенками излучения, видом цоколя, формой трубки, функциональностью и т.д.

Что такое люминесцентная лампа и как она работает?

Что такое люминесцентная лампа и как она работает?

Устройство и принцип работы ламп

Согласно истории люминесцентной лампы, первое осветительное устройство газоразрядного типа было сконструировано в 1856 г. Г. Гейслером. Конструкция приборов усовершенствовалась. Лампы дневного света в массовое коммерческое использование поступили в конце 30 г. XX в.

Конструкция относится к газоразрядным источникам освещения, сконструирована с использованием трубки из стекла, которая с двух сторон запаяна. Изнутри на поверхности лампы нанесен слой специального вещества (люминофора). Устройство излучает рассеивающий свет после подключения к источнику электропитания. Изнутри колбу наполняют аргоном.

Люминесцентное устройство включает:

  • катоды, защищенные эмиттерным слоем;
  • выводные штыри;
  • концевую панель;
  • трубки для отвода инертного газа;
  • ртуть;
  • стеклянную штампованную ножку, дополненную электровводами и т.д.

Принцип функционирования основывается на возникновении электроразряда между электродами после подсоединения к электросети. После взаимодействия разряда с газами инертными и испарениями ртути возникает излучение ультрафиолета, воздействующее на люминофор, преобразующий энергию в световое излучение. Для корректировки оттенков ртутьсодержащих устройств применяются люминофоры с разными химическими компонентами.

Что такое люминесцентная лампа и как она работает?

Что такое люминесцентная лампа и как она работает?

Дуговой разряд в колбе создается оксидным самокалящимся катодом, на который воздействует электричество. Для включения ламп ДРЛ, ЛД катоды разогревают посредством пропускания разряда тока. Устройства с холодным катодом запускаются ионным воздействием в тлеющем разряде высокого напряжения.

Для функционирования люминесцентным приборам требуется дополнительный узел (балласт), обеспечивающий работу дросселем и стартером. Балласт регулирует силу разряда и выпускается 2 видов (электромагнитный и электронный).

Электромагнитный балласт является механическим. Устройство относится к бюджетным вариантам, в работе прибор может издавать шум.

Что такое люминесцентная лампа и как она работает?

Что такое люминесцентная лампа и как она работает?

Электронные узлы дороже по стоимости, работают бесшумно, оперативно включают систему, компактны.

Классификация люминесцентных ламп

По показателю спектрального излучения приборы люминесцентного типа подразделяются на 3 категории:

  • стандартные;
  • с усовершенствованной передачей цвета;
  • со специальными функциональными назначениями.

Стандартные приборы снабжаются люминофорами однослойными, позволяющими излучать разные тона белого. Приборы оптимальны для освещения жилых помещений, административных и производственных блоков.

Люминесцентные лампы с усовершенствованной передачей света оснащаются люминофором с 3-5 слоями. Структура позволяет качественно отражать оттенки за счет усиленной световой отдачи (на 12% больше типовых ламп). Модели подходят для витрин магазинов, выставочных залов и т.д.

Люминесцентные лампы специализированного назначения совершенствуются с помощью разных составов в трубке, позволяющих поддерживать заданную частоту спектра. Устройства применяют в больницах, концертных залах и т.д.

Приборы разделяются на модели высокого и низкого давления.

Конструкции с высоким давлением оптимальны для монтажа в уличных лампах и приборах, имеющих большую мощность.

Лампы невысокого давления применяются в квартирах, административных комплексах, производственных помещениях.

По внешнему виду ЛЛ представлены линейным и компактным вариантами.

Что такое люминесцентная лампа и как она работает?

Что такое люминесцентная лампа и как она работает?

Линейная конструкция колбы удлиненная, применяется для промышленных помещений, торговых центров, офисов, медучреждений, спортивных организаций, заводских цехов и т.д. Линейная модель представлена разными вариантами диаметров трубки и конфигураций цоколя. Устройства обозначаются кодами. Прибор с диаметром 1,59 см на упаковке отмечается знаком Т5, с размером 2,54 см — Т8 и т.д.

Компактные люминесцентные лампы (КЛЛ) представляют спиралевидную стеклянную трубку и предназначены для установки в квартирах, офисах и т.д. КЛЛ делятся на 2 типа, главное отличие — виды цоколей (стандартный и с основанием в форме штыря).

Традиционный цоколь в форме резьбы отмечается знаком «Е» и кодом с размером диаметра.

Штырьковый вид цоколя отмечается символом «G»; цифровые данные обозначают расстояние между штырями. Этот вил лампы оптимален для установки в настольных лампах, подвесных бра в небольших помещениях.

Люминесцентные лампы различаются мощностью (слабые и сильные). Мощность люминесцентной лампы в Вт может превышать показатель 80 единиц. Устройства с небольшой мощностью представлены изделиями до 15 Вт.

По показателю распределения света устройства могут быть направленного действия (рефлекторные, щелевого типа) либо ненаправленного.

По типу разряда приборы подразделяются на дуговые, устройства свечения либо тлеющего разряда.

Различается сфера применения осветительных устройств (наружные, внутренние, взрывозащищенные, консольные).

Наружные устройства подходят для оформления зданий с внешней стороны, для освещения беседок, оформления двора и т.д. При выборе необходимо учитывать температурные режимы региона.

Внутренние подходят для офисных и жилых зданий. Устройства снабжаются защитой от влажности и воздействия пыли. Детали корпуса соединяются герметичным способом. Конструкция ламп может быть прямой, подвесной, предназначенной для крепления к поверхности потолка.

Приборы взрывозащищенные разработаны для территорий с риском возникновения взрывов (склады, цеха по производству красителей и т.д.).

Приборы консольного типа монтируются с помощью специальных креплений и имеют индивидуальный корпус.

Маркировка

Маркировочное обозначение люминесцентных ламп указано на коробке и содержит данные о фирме, мощности, конструкции цоколя, периоде работы, оттенке свечения и т.д.

Маркировка люминесцентных ламп

Маркировка люминесцентных ламп

Искусственное освещение растений — Википедия

Для выращивания растений при искусственном освещении используются, в основном, электрические источники света, разработанные специально для стимуляции роста растений за счет излучения волн электромагнитного спектра, благоприятных для фотосинтеза. Источники фитоактивного освещения используются при полном отсутствии естественного света или при его недостатке. Например, зимой, когда продолжительности светового дня недостаточно для роста растений, искусственное освещение позволяет увеличить продолжительность их светового облучения.

Впервые применил в 1868 году керосиновые лампы для выращивания растений русский ботаник Андрей Фаминцын[1].

Искусственный свет должен обеспечивать тот спектр электромагнитного излучения, который растения в природе получают от солнца, или хотя бы такой спектр, который удовлетворял бы потребности выращиваемых растений. Уличные условия имитируются не только путём подбора цветовой температуры света и его спектральных характеристик, но и с помощью изменения интенсивности свечения ламп. В зависимости от вида выращиваемого растения, его стадии развития (прорастание, рост, цветение или созревание плодов), а также текущего фотопериода требуется особый спектр, световая отдача и цветовая температура источника света.

Источники искусственного света применяются в садоводстве, при озеленении помещений, при выращивании посевного материала, в производстве пищи (включая гидропонику и выращивание водорослей). Несмотря на то, что большинство источников фитоактивного света разработаны для применения в промышленных масштабах, возможно их применение и в бытовых условиях.

Согласно закону обратных квадратов, интенсивность светового излучения падает обратно пропорционально квадрату расстояния до источника света. Если, например, расстояние до лампы увеличить в два раза, то интенсивность света, достигающего объект, уменьшится в четыре раза. Этот закон служит серьезным препятствием для садоводов, поэтому много усилий направлено на улучшение утилизации света. Фермеры используют всевозможные рефлекторы, позволяющие сконцентрировать свет на небольшой площади, стараются высаживать саженцы как можно ближе друг к другу, делают все для того, чтобы свет попадал как можно больше на растения, а не рассеивался в пространстве.

В качестве источников света можно использовать лампы накаливания, люминесцентные лампы (ЛЛ), газоразрядные лампы (ГР), индукционные лампы, а также светодиоды. В настоящее время профессионалами, в основном, используются газоразрядные и люминесцентные лампы. В помещениях теплиц обычно устанавливают натриевые лампы высокого давления (НЛВД) или металлогалогенные (МГ) лампы, последние, правда, все чаще стали заменять на люминесцентные в виду их большей эффективности и экономичности.

Металлогалогенные лампы иногда используют в первой (вегетативной) фазе роста растений, поскольку такие лампы излучают достаточное количество синего света, а синий свет способствует росту зелёной массы на первых стадиях развития растений; в то же время МГ-лампы имеют пик излучения в районе жёлтого цвета.

Натриевые лампы высокого давления используются во второй (репродуктивной) фазе роста, поскольку их излучение имеет красноватый оттенок. Красный спектр способствует цветению и образованию плодов. Если натриевые лампы использовать в стадии вегетативного роста, растения развиваются и растут быстрее, но при этом расстояния между междоузлиями у них больше и, в целом, растения оказываются выше.

Иногда в обоих периодах применяются МГ-лампы с добавлением красного спектра или НЛВД-лампы с добавлением синего спектра.

Цветовая температура различных источников света, используемых в растениеводстве

Применяются лампы разных типов, включая металлогалогенные, люминесцентные, накаливания, натриевые высокого давления и светодиодные.

Светодиоды[править | править код]

Последние разработки в светодиодной отрасли позволили производить недорогие, яркие, с большим сроком службы источники фитосвета. Большим преимуществом светодиодных источников является возможность получения излучения исключительно в фитоактивной части спектра. Привлекательность светодиодов для выращивания растений в помещениях обусловлена многими факторами. Среди них: низкая электрическая мощность, отсутствие балласта, низкое тепловыделение, что позволяет устанавливать светодиоды вплотную к растениям без риска повредить их. Также необходимо отметить, что использование светодиодов снижает испарение, приводя к удлинению периодов между поливами

[2].

Существует несколько активных участков спектра: для хлорофилла и каротиноидов. Поэтому в светодиодном светильнике могут сочетаться несколько цветов, перекрывающих эти фитоактивные участки.

Рекомендации по оптимальному сочетанию светодиодов сильно разнятся. Например, в одном из источников, для максимизации роста и здоровья растений рекомендуется следующая пропорция «12 красных светодиодов с длиной волны 660 нм плюс 6 оранжевых светодиодов с длиной волны 612 нм и один синий светодиод с длиной волны 470 нм»

[3].

Пурпурный оттенок светодиодного фитоосвещения

Также имеются публикации, в которых на период вегетативного роста рекомендуется отдавать приоритет светодиодам синего цвета (с длиной волны в районе середины спектра 400—500 нм). Для роста плодов и цветов рекомендуется увеличить долю светодиодов глубоко красного оттенка (с длиной волны от 630 до 670 нм). Следует отметить, что точность при выборе длины волны красных светодиодов более важна, нежели при выборе светодиодов синего спектра. Исследования показали полезность дополнительной подсветки растений светодиодами инфракрасного и ультрафиолетового спектра. При смешении красного и синего света получается свет пурпурного (розового) оттенка. Зелёный свет при искусственном освещении растений может применяться в эстетических целях для нейтрализации неприятного для глаз пурпурного свечения фитосветодиодов или для облегчения визуального контроля зеленых побегов и состояния почвы, поскольку глаз человека лучше всего различает детали именно в зелёной части спектра. Фотосинтетическая эффективность зелёного света крайне низка ввиду высокой степени отражения лучей данного спектра хлорофиллом.

Вышесказанное про отдельные светодиоды разных цветов не имеет отношения к современным фитодиодам, в которых уже применены все необходимые люминофоры и их спектр имеет два максимума в зоне работы фотосинтеза.

Мощность светодиодов, получаемых по старой технологии, составляла сотые доли ватта, что не позволяло эффективно заменять ими ГР-лампы. Современные усовершенствованные светодиоды и светодиодные матрицы обладают мощностью, исчисляемой десятками и даже сотнями ватт, что делает их достойной альтернативой ГР-лампам.

Мощность и эффективность фитосветодиодов продолжает расти. Наиболее важными параметрами при выборе светодиодов являются энергетическая эффективность и спектральный состав излучения.

В следующей таблице приведена световая эффективность различных источников света

У каждого растения особые требования к освещению для правильного развития. Источники искусственного света должны имитировать условия освещения, к которым приспособлено растение. Чем больше растение, тем большее количество света ему требуется. При недостатке света растение перестает расти, независимо от прочих условий.

Например, овощные культуры растут лучше всего при естественном дневном свете, поэтому для выращивания при искусственном освещении им требуется постоянный интенсивный источник света, такой, как белый светодиод. Лиственные растения (например, филодендрон) растут в условиях постоянного затенения, для нормального роста им не требуется много света, поэтому будет достаточно обычных ламп накаливания.

Растениям необходимо чередование темных и светлых («фото»-) периодов. По этой причине освещение должно периодически включаться и выключаться. Оптимальное соотношение светлых и темных периодов зависит от вида и сорта растения. Так некоторые виды предпочитают длинные дни и короткие ночи, а другие наоборот.

Однако освещённость является световой величиной, то есть характеризует свет в соответствии с его способностью вызывать зрительные ощущения у человека и соответствующим образом зависит от спектрального состава света. Поэтому освещённость плохо подходит для использования при определении эффективности систем освещения в садоводстве. Вместо этого используются другие величины, такие как облучённость (энергетическая освещённость), выражаемая в Вт/м2, или фотосинтетически активная радиация (ФАР). Альтернативная величина измерения выражается в микромоль- фотонах в секунду (μmol/s) на единицу площади.

Искусственное освещение растений из космоса[править | править код]

В 1970-х годах известный американский специалист по ракетной технике Краффт Эрике[en] предложил освещать посевы из космоса отражённым солнечным светом при помощи специального спутника с огромной отражающей поверхностью (200—2550 квадратных миль в зависимости от орбиты), названного автором Солеттой, с яркостью 0,2—0,5 солнечной. Планировали развернуть этот отражатель в 1995—2005 гг. с затратами порядка 30—60 млрд долларов. Предполагалось, что это увеличит мировое производство сельскохозяйственных растений на 3—5 процентов и окупится менее чем за 20 лет

[21], однако проект не был осуществлён.

  1. Светокультура — статья из Большой советской энциклопедии. 
  2. Гавриленко А. П. светодиодный свет для теплиц (неопр.). ООО «ЭНОВА Лайт» (май 2016).
  3. ↑ Patent US6921182 — Efficient LED lamp for enhancing commercial and home plant growth – Google Patents (неопр.). Google.com. Дата обращения 26 февраля 2013.
  4. ↑ Нормированный так, чтобы максимальное значение составляло 100 %.
  5. ↑ 1 кандела*4π стерадиан/40 Вт
  6. ↑ Waymouth, John F., «Optical light source device», US patent # 5079473, published September 8, 1989, issued January 7, 1992. col. 2, line 34.
  7. Keefe, T.J. The Nature of Light (неопр.) (2007). Дата обращения 5 ноября 2007. Архивировано 1 июня 2012 года.
  8. ↑ How Much Light Per Watt?
  9. ↑ Bulbs: Gluehbirne.ch: Philips Standard Lamps (German)
  10. ↑ Osram halogen (нем.) (PDF) (недоступная ссылка). www.osram.de. Дата обращения 28 января 2008. Архивировано 7 ноября 2007 года.
  11. ↑ Osram Miniwatt-Halogen (неопр.) (недоступная ссылка). www.ts-audio.biz. Дата обращения 28 января 2008. Архивировано 17 февраля 2012 года.
  12. Klipstein, Donald L. The Great Internet Light Bulb Book, Part I (неопр.) (1996). Дата обращения 16 апреля 2006. Архивировано 1 июня 2012 года.
  13. ↑ China energy saving lamp
     (неопр.)
    . Дата обращения 16 апреля 2006. Архивировано 17 февраля 2012 года.
  14. 1 2 Federal Energy Management Program. How to buy an energy-efficient fluorescent tube lamp (англ.) : journal. — U.S. Department of Energy, 2000. — December. Архивировано 2 июля 2007 года. Архивная копия от 2 июля 2007 на Wayback Machine
  15. Department of the Environment, Water, Heritage and the Arts, Australia. Energy Labelling—Lamps (неопр.) (недоступная ссылка). Дата обращения 14 августа 2008. Архивировано 24 января 2007 года.
  16. 1 2 Technical Information on Lamps (неопр.) (pdf) (недоступная ссылка). Optical Building Blocks. Дата обращения 14 октября 2007. Архивировано 27 октября 2007 года. Note that the figure of 150 lm/W given for xenon lamps appears to be a typo. The page contains other useful information.
  17. ↑ OSRAM Sylvania Lamp and Ballast Catalog (неопр.). — 2007.
  18. 1 2 LED or Neon? A scientific comparison (неопр.). Архивировано 9 апреля 2008 года.
  19. ↑ Why is lightning coloured? (gas excitations) (неопр.). Архивировано 17 февраля 2012 года.
  20. ↑ The Metal Halide Advantage (неопр.). Venture Lighting (2007). Дата обращения 10 августа 2008. Архивировано 17 февраля 2012 года.
  21. ↑ Walter Sullivan «Huge Space Mirrors Proposed to Light the Night.” The New York Times. February 6, 1977

Химический источник света — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 марта 2019; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 марта 2019; проверки требуют 2 правки. 1. Внешняя оболочка из прозрачного пластика.
2. Стеклянная капсула.
3. Раствор фенилоксалата и флюоресцетного красителя.
4. Раствор перекиси водорода.
5. Компоненты смешиваюся при разламывании капсулы, начинается реакция со свечением.

Химический источник света, хемилюминесцентные источники света (ХИС) — устройства, генерирующие свет при протекании химической реакции: например, каталитической реакции некоторых сложных эфиров щавелевой кислоты с пероксидом водорода[1] в присутствии люминофора.

Зелёный и синий ХИС

Широко применяются в качестве автономных (до 12 часов свечения[1]) источников света при различных аварийно-спасательных, дорожных, уличных работах, в чрезвычайных ситуациях, в туризме и спелеологии, подводном плавании, для подачи сигналов, вообще в качестве различного рода резервных осветителей, в декоративном освещении, для развлечений. Будучи полностью автономными, прочными, пожаробезопасными и водонепроницаемыми, пригодными для долгого хранения, источники могут использоваться в широком диапазоне применений. Выпускаются, как правило, в виде пластиковых палочек или браслетов, которые при надламывании начинают светиться бледным светом.

Цвет источников может иметь флуоресцентные оттенки различных цветов, как правило зелёного, голубого, оранжевого[1][2].

Обычно бытовые ХИС обеспечивают освещенность около 100 люкс сразу после активирования, снижая мощность до 20−40 люкс через 10−15 минут[3].

Регенерируемые «ХИС»

До конца 1990-х годов в массовой продаже встречались изделия, способные продолжить работу после полного затухания и окончания протекания химической реакции. После непродолжительного механического воздействия в течение 1−2 минут изделие испускало свет на протяжении 1−3 часов, в течение 4−5 циклов такой «перезарядки» постепенно интенсивность свечения снижалась, пока не сходила на нет. В 2000-х годах производство было остановлено из-за использования дорогостоящих материалов и их высокой токсичности.

Считается, что светящиеся палочки могут быть помещены в морозильник, чтобы замедлить химические реакции, что позволяет палочкам храниться в течение двух-трёх ночей. Холод возбуждает переход смеси в твердое состояние и замедляет освобождение фотонов. Наоборот, под воздействием микроволнового излучения или горячей воды ускоряется освобождение фотонов и увеличивается яркость свечения, но уменьшается его продолжительность. Это, однако, как правило, зависит от конкретного состава химических веществ в конкретной светящейся палочке.

Жидкости, содержащиеся в некоторых ХИС (до десятков миллилитров), могут представлять опасность при нарушении целостности оболочки источника и попадании на кожу.[1]

Индукционная лампа — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 апреля 2016; проверки требуют 8 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 апреля 2016; проверки требуют 8 правок. Индукционный разряд в парах ртути в трубке 200×Ø36 мм со средней мощностью 1-5 кВт с частотой 1-15 кГц при низких (сверху) и больших (снизу) давлениях

Индукционная лампа — безэлектродная газоразрядная лампа, в которой первичным источником света служит плазма, возникающая в результате ионизации газа высокочастотным магнитным полем. Для создания магнитного поля баллон с газом лампы размещают рядом с катушкой индуктивности. Отсутствие прямого контакта электродов с газовой плазмой позволяет назвать лампу безэлектродной. Отсутствие металлических электродов внутри баллона с газом значительно увеличивает срок службы и улучшает стабильность параметров.

Лампа ВКСШ-10000, 10 кВт, СССР, 1975 г.

Индукционная лампа состоит из:

  • газоразрядной трубки, внутренняя поверхность которой может быть покрыта люминофором для получения видимого света;
  • катушки (первичной обмотки трансформатора), у которой полость лампы является вторичным витком;
  • электронного генератора высокочастотного тока для запитки катушки;
  • для уменьшения рассеяния высокочастотного магнитного поля (что улучшает электромагнитную совместимость, увеличивает эффективность) может снабжаться ферромагнитными экранами и/или сердечниками.

Различают два типа конструкции индукционных ламп по способу размещения электронного устройства:

  • Индукционная лампа с внешним генератором (электронное устройство и лампа являются разнесёнными устройствами).
  • Индукционная лампа со встроенным генератором (конструктивно генератор и лампа скомпонованы в одном корпусе).

Электронный генератор вырабатывает высокочастотный ток, протекающий по обмотке накачки лампы. Вторичная «обмотка» трансформатора короткозамкнутая, это ионизированный газ трубки. При достижении напряженности электрического поля в газе, достаточной для электрического пробоя, газ превращается в низкотемпературную плазму. Так как плазма хорошо проводит электрический ток, в газовой полости лампы начинает выделяться энергия от протекания электрического тока и поддерживается устойчивый плазменный шнур.

Возбуждённые электрическим разрядом атомы газа, наполняющего полость лампы, излучают фотоны с длинами волн, характерными для атомов наполняющего лампу газа (эмиссионные линии спектра). Обычно эти лампы наполняют смесью аргона с парами ртути, аргон добавляют для облегчения зажигания лампы при низких температурах, когда давление паров ртути недостаточно для возникновения газового разряда, но в лампах для имитации воздействия солнечного излучения (например серий ФБ и ВКсШ) наполнение состоит из таких инертных газов как ксенон-аргон-криптон-неон. Атомы ртути в газовом разряде ярко излучают в эмиссионных линиях в невидимой глазом ультрафиолетовой части спектра. Если необходимо, ультрафиолетовое излучение атомов ртути преобразуется в видимое излучение посредством люминофора, нанесённого на внутреннюю поверхность стеклянной трубки лампы. Такие лампы можно отнести к люминесцентным лампам.

Многие лампы с внешними электродами не имеют люминофорного покрытия и излучают наружу только тот свет, который излучается ионизированным газом (плазмой). Такие лампы относятся к газосветным лампам.

Основное преимущество ламп с внешними электродами над газоразрядными лампами с электродами — длительный срок службы и высокая стабильность параметров. Это вызвано тем, что внутри лампы нет металлических деталей, способных разрушаться под ударами ионов и электронов и изменять состав газовой среды.

  • Заявляемый производителями срок службы: 60 000—150 000 часов (опытные данные отсутствуют). Благодаря безэлектродному исполнению срок службы значительно выше, чем у традиционных электродных люминесцентных ламп. Но у высокочастотных ламп серий ФБ и ВКсШ срок службы 50-150 часов (скорее всего такой небольшой срок службы связан с тем, что эти лампы обладают огромной мощностью при небольших размерах, из-за этого внутренний кварцевый патрубок быстро деградирует и рассыпается при нагрузке на него).
  • Номинальная светоотдача: более 80 лм/Вт и при увеличении мощности лампы увеличивается световой поток, при этом снижается срок службы за счет повышенной эксплуатационной нагрузки. Так например лампа 300 Вт выдаёт 90 Лм/Вт.
  • Производители заявляют высокий уровень светового потока после длительного использования. К примеру, после 60 000 часов наработки уровень светового потока по расчетам должен составлять свыше 70 % от первоначального (60000 часов=13 лет использования в 12 часовом режиме).
  • Мгновенное включение/выключение (отсутствует время ожидания между переключениями, что является хорошим преимуществом перед большинством газоразрядных ламп (ртутной лампой ДРЛ, натриевой лампой ДНаТ и металлогалогенной лампой ДРИ), для которых требуется время для выхода на рабочий режим и время остывания 5—15 минут после внезапного отключения электросети).
  • Неограниченное количество циклов включения/выключения.
  • Цветопередача люминесцентных безэлектродных индукционных ламп аналогична цветопередаче обычных ртутных газоразрядных ламп с люминофором, так как они обычно наполнены тем же рабочим газом и используют те же люминофоры (специальные лампы серий ФБ и ВКсШ за счет своего специфического наполнения применяются в качестве мощного источника имитирующего мощное солнечное излучение, и как источник УФ-излучения для наблюдения сроков деградации различных пластических масс).
  • Так же как и люминесцентные лампы, требуют специальной утилизации из-за присутствия ртутных соединений и электронных компонентов.

Благодаря высокой стабильности параметров безэлектродные ртутные газоразрядные лампы применяются в качестве прецизионных источников ультрафиолетового излучения, например, в спектрометрии.

Индукционный принцип возбуждения газа используется в накачке газовых лазеров.

Индукционные лампы применяются для наружного и внутреннего освещения, особенно в местах, где требуется хорошее освещение с высокой светоотдачей, длительным сроком службы: улицы, магистрали, тоннели, промышленные и складские помещения, производственные цеха, автостоянки, стадионы. Ввиду присутствия высокочастотных электромагнитных излучений не рекомендуется установка в аэропорты, железнодорожные станции, автозаправочные станции[источник не указан 2229 дней].

Бытовой прибор «Фотон» производства СССР являлся источником УФ излучения для косметических целей, а также иногда использовался в радиолюбительской практике.

Данные, полученные Фрэнсисом Рубинштейном из отдела строительных технологий, Национальной лаборатории им. Лоуренса в Беркли, Калифорния, позволяют перевести данные, полученные при измерении светового потока традиционным измерительным прибором (Lm) в визуально эффективные люмены (PLm). Просто умножив показания люксметра на соответствующий коэффициент, получаются значения видимой освещенности.

Таблица коэффициентов пересчета показаний светового потока в Lm (люменах) в визуально эффективные люмены (PLm)[источник не указан 2481 день]
Тип источника светаS/P коэффициент
Лампа на светодиодах CREE X-PG 5000 К2,34
Индукционная лампа 6500 К2,22
Галогенная лампа1,5
Металлогалогенная лампа1,49
Лампа накаливания1,41
Люминесцентная лампа 4200 К1
Ртутная лампа высокого давления0,8
Натриевая низкого давления0,35

Коэффициент S/P — это отношение измерений люксметра, скорректированного по цветовой кривой дневного света, к измерениям люксметра, настроенного по кривой ночного зрения.

  • Индукционные лампы — новое энергоэффективное решение в уличном освещении // Журнал «Pro электричество» № 1/32 январь-март 2010 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *