Posted on

Содержание

Характеристики люминесцентных ламп | ОСК Лампы.РФ

Давно прошли времена, когда дребезжащие колбы первых моделей компактныx люминесцентныx ламп заливали холодным голубоватым светом коридоры больниц, школьные классы и другие помещения общественных учреждений. Потребность в эффективном энергосбережении пришла в каждый дом, и производители источников освещения предложили отличную альтернативу — компактные люминесцентные лампы (КЛЛ).

Ничего общего с ранними образцами, кроме принципа работы: современные КЛЛ дают качественный, ровный свет нужного оттенка и яркости, потребляют в 5 раз меньше электричества, чем колбы с вольфрамовой спиралью, а служат в 10 раз дольше!

При выборе КЛЛ ориентируйтесь на следующие характеристики:

  • Мощность.
  • Поскольку КЛЛ на каждый люмен светового потока потребляет в пять раз меньше энергии, чем традиционная лампа, то рассчитать нужную мощность можно по формуле:

    мощность лампы накаливания / 5 + 20 % (в процессе эксплуатации мощность устройства снизится на это значение).

  • Цветовую температуру.
  • Глаз человека различает несколько оттенков света — от теплого желтого до холодного синевато-белого, в зависимости от цветовой температуры потока. Этот показатель измеряется в кельвинах (К):

    2 700 К — теплый желтоватый свет,

    4 000 К — холодный белый свет,

    6 500 К — голубоватый (дневной) свет.

    Для каждого помещения нужно подобрать лампы такой цветовой температуры, которая была бы оптимальна с точки зрения функционального назначения. Лампы белого света (4 000 К) хороши для кухни и рабочих зон (например, уголка швеи). Теплый свет подходит для гостиных и спален — там, где нужно создать мягкую, уютную, естественную атмосферу. Яркий дневной свет — решение для складских помещений и уличного освещения.

  • Цветопередачу.
  • Один и тот же предмет, освещенный источниками света с разными характеристиками цветопередачи, будет восприниматься человеческим глазом по-разному. Цветопередача определяется составом нанесенного на колбу люминофора.

  • Скорость запуска.
  • Ни одна лампа не разгорается на полную мощность сразу. Устройства с «теплым стартом», разгорающиеся с задержкой, имеют больший ресурс, чем их аналоги с быстрым пуском. Стоит учесть, что «теплый старт» хорош в помещениях, где свет горит длительное время и включается-выключается относительно редко. Если такие лампы поставить в ванной, туалете и других помещениях, где свет включают часто, но ненадолго, задержки в разгорании будут только раздражать.

  • Ресурс.
  • В идеальных условиях ресурс КЛЛ превышает ресурс лампы накаливания в 8–10 раз: 8 000–11 000 часов (8–11 лет) против 1 000 часов (около года). Примите во внимание, что речь идет именно о времени непрерывного горения лампы. Чем чаще происходит включение/выключение, тем меньше горит лампа: каждое включение/выключение отнимет 1–2 часа расчетного ресурса. А вот перепады напряжения в сети ККЛ не страшны.

Технические характеристики люминесцентных ламп — что нужно знать при выборе

Содержание статьи:

В современном мире, с ростом энерговооруженности человека, остро встает вопрос о внедрении новых энергосберегающих технологий во всех сферах человеческой деятельности. И первое, на что обратили внимание ученые – это электрическое освещение, где преобладали лампы накаливания, которые вырабатывают световую энергию за счет сильного нагрева спирали.

В результате огромное количество просто улетает в атмосферу, а ведь на него было потрачено гигантское количество киловатт-часов. Энергосберегающие или как еще их называют энергоэффективные лампы, это те, которые обладают существенно большей светоотдачей, чем эталонные лампы накаливания. Для начала стоит разобраться, что такое светоотдача.

Световой отдачей источника света называют отношение светового потока — Φv к потребляемой им мощности – P. Она вычисляется по формуле:

η=Φv/P

Измеряется η в лм/Вт, люменах деленных на Ватт. Очевидно, что чем больше светоотдача, тем более энергоэффективной будет лампа.

Светоотдача различных видов ламп

Для того, чтобы определится какие лампы более энергоэффективны приведем значения световой отдачи различных видов ламп.

  • У ламп накаливания, в том числе и галогеновых и высокотемпературных кинопроекционных она составляет от 5 до 35 лм/Вт.
  • У люминесцентных ламп, к которым относятся и линейные T5, T8, T12 и компактные люминесцентные лампы светоотдача находится в пределах от 45 до 100 лм/Вт.
  • У светодиодных ламп, она находится в пределах 10—200 лм/Вт, причем от перспективных образцов ожидается до 260 лм/Вт.
  • У дуговых ламп, ксеноновых и дуговых ртутных она изменяется от 30 до 55 лм/Вт.
  • У газоразрядных ламп высокого давления (ГЛВД), натриевых, серных, а также ламп на основе галогенидов металлов она составляет 65—200 лм/Вт.

Для удобства, данные по светоотдачи ламп сведены в таблице:

Из этого сравнения видно, что ощутимо большую светоотдачу, чем лампы накаливания имеют люминесцентные, светодиодные и ГЛВД. Поэтому, в принципе, их можно назвать энергоэффективными и энергосберегающими по сравнению с лампами накаливания.

Дело в том, что ГЛВД в быту не используются из-за чрезвычайно большой яркости, в процессе работы нагреваются до высоких температур, для их зажигания используется высокое напряжение и они содержат химические соединения опасные для человека и животных. Такие источники света используются для уличного освещения, в прожекторах, для архитектурной подсветки, где требуется мощный световой поток, в автомобильных фарах и в других, явно небытовых целях.

Какие лампы принято относить к энергосберегающим

Исходя из самого понятия энергосберегающей лампочки, к этому классу можно смело отнести следующие виды ламп:

Линейные люминесцентные лампы или как они называются по научному – газоразрядные лампы низкого давления. К ним относятся лампы T4, T5, T8, T10, T12 с диаметром трубки 4/8, 5/8, 8/8, 10/8 и 12/8 соответственно. Цоколь у всех этих ламп один – G13, где расстояние между штырьками составляет 13 мм.

Компактные люминесцентные лампы (КЛЛ) – это те же лампы, но с изогнутой трубкой, позволяющей им иметь меньшие габариты. Эти лампы имеют широкий ряд штырьковых цоколей: 2D, G23, 2G7, G24, G53. Но наиболее известными эти лампы стали благодаря тому, что их стали выпускать со стандартными резьбовыми цоколями E14, E27, E40 и встроенной электронной пускорегулирующей арматурой –

ЭПРА. Это позволило их устанавливать вместо ламп накаливания.

Светодиодные лампы – их свечение основано на принципиально других эффектах – свечении твердого тела полупроводника при пропускании через него электрического тока. Это самые экономичные, экологически чистые и безопасные лампы. Их повсеместное применение ограничивает только пока еще большая цена, которая постоянно снижается. Светодиодные лампы выпускают под все наиболее используемые виды цоколей сменных ламп накаливания и люминесцентных ламп.

Несмотря на то что все вышеперечисленные виды ламп являются энергосберегающими, этим понятием все же принято в быту называть только компактные люминесцентные лампы (КЛЛ), адаптированные под стандартный патрон E14 и E27. Образ именно такой лампы, как энергосберегающей, был навязан в рекламе, именно под таким названием их продают все торговые точки, именно так они указываются в буклетах большинства производителей. Поэтому не будем отходить от этого стойкого заблуждения и рассмотрим технические характеристики именно таких ламп.

Общие ТХ энергосберегающих люминесцентных ламп

На любой упаковке КЛЛ, да и на самой лампе нанесены буквы и цифры, которые красноречиво говорят о предназначении и ее технических характеристиках. Очень часто бывает, что некоторые цифры и таинственные буквенно-цифровые коды ничего не говорят покупателю лампочки, а внимание привлекают кричащие надписи о выдающемся времени работы, световом потоке и чуть ли не пожизненной гарантии.

Настоятельно рекомендуется смотреть именно на технические характеристики лампы, которые расскажут потребителю гораздо больше. Следует отметить, что любой производитель обязан указывать характеристики лампы и в большинстве случаев указывает. И как это бывает в юридических договорах, в том, что написано мелким шрифтом нужной информации гораздо больше. В качестве примера приведем лампу

Osram Dulux Superstar Dim Classic A, 16 W.

Напряжение питания

Напряжение питания в наших электросетях принят 220 В при частоте 50 Гц. Именно к таким параметрам и адаптируют КЛЛ производители. Бывает, что на наш рынок «заносит» лампы из-за рубежа, где существуют другие параметры электросети, но это может произойти только в том случае, если лампа куплена с рук. О параметрах электропитания указано на упаковке и на лампе. Например, 220—240V/50Hz.

Мощность

На лампе обязательно указывается мощность, потребляемая лампой из сети. На упаковках еще любят указывать эквивалентную мощность лампы накаливания, которая обеспечивает аналогичныйсветовой поток. У хороших производителей обычно мощность эквивалентной лампы накаливания в 4–5 раз превышает мощность КЛЛ о чем маркетологи могут сообщить на упаковке в виде неправильного математического равенства 16 Вт=80 Вт, или кричащей надписи «экономия 80%». Мощность указывается в Ваттах. В нашем примере мощность 16 Вт, а эквивалент указан в 69 Вт.

Световой поток

Он характеризует количество световой мощности в общем потоке излучения. Измеряется он лабораторно при помощи специальных приборов. На самой лампе он может быть не указан, но на упаковке и в паспорте должен быть указан обязательно. Обозначается — Φv, измеряется в люменах. В нашем примере Φv=880 лм.

Световая отдача

Эта величина не всегда указывается на лампе и на упаковке, но исходя из вышеизложенного, ее легко вычислить:

η=880/16=55 лм/Вт. Это очень неплохой показатель для КЛЛ.

Цветовая температура

Этот показатель измеряется в градусах Кельвина, и она характеризует то, какого бы цветового тона излучало свет абсолютно черное тело, нагретое до указанной температуры. В паспорте и на упаковке лампы всегда должна быть указана цветовая температура. Этому показателю уделяют при покупке ламп незаслуженно мало внимания и очень зря. От нее зависит то, насколько близко свечение лампы к естественным источникам света. Условно ее делят на три диапазона:

Диапазон 2700—3200 К называют «теплым белым». Лампы, имеющие такие характеристики, излучают белый и мягкий свет, который может быть с оттенками желтого цвета. Для жилых помещений такие лампы – наилучший выбор.

Диапазон 4000—4200 К называют «холодным белым». Такими лампами оправдано освещать общественные здания, рабочие помещения и офисы.
Диапазон 6200—6500 К называют «дневным белым». Такими светильниками освещают улицы, нежилые помещения и театральные сцены. Свет от таких ламп имеет резкий белый свет холодных тонов.

При выборе ламп цветовую температуру нужно учитывать обязательно. При замене нужно покупать лампы той же цветовой температуры, что и другие. На рисунке показан диапазон цветовых температур, а такжекак распределяются по этой шкале источники естественного и искусственного света. В нашем примере лампа Osram Dulux Superstar Dim Classic A, 16 W, выпускается в двух вариантах: 2500 К и 4000 К.

Индекс цветопередачи

Индекс цветопередачи, обозначаемый CRI, показывает насколько естественные цвета, освещенные данным источником света, соответствуют видимым (кажущимся) цветам. За эталон принят самый главный естественный свет – солнечный. Коэффициент цветопередачи CRI изменяется в диапазоне от 0 до 100. Условно он делится на шесть поддиапазонов, указанных в таблице.

На предыдущем рисунке указана шкала и какую цветопередачу обеспечивают те или иные виды ламп. Очевидно, что индекс цветопередачи зависит от вида лампы, ее цветовой температуры, а также от качества люминофора. В КЛЛ с пятикомпонентным люминофором CRI может быть даже больше 90. В нашем случае CRI≥80, что очень хорошо.

Особенности маркировки цветовой температуры и индекса цветопередачи

В международной системе маркировки принято обозначать эти два важных показателя в виде трехзначного цифрового кода, который обозначают как цветность. Первая цифра означает CRI, а вторая и третья – цветовую температуру. В нашем примере цветность равна 825. Каким образом можно расшифровать этот код?

Первую цифру необходимо умножить на 10, и тогда получим CRI=8*10=80.
Вторую и третью цифры надо умножить на 100 и получим цветовую температуру: 25*100=2500 K.

Эксплуатационные характеристики КЛЛ

К этим характеристикам относится несколько показателей:

  • Вид цоколя (E14, E27, E40 и другие).
  • Срок службы лампы в часах. К этому показателю надо относиться очень осторожно, так как он довольно приблизительно показывает, сколько лампа теоретически может гореть при стабильном напряжении сети. В реальности при перепадах напряжениях, при частых включениях и отключениях срок службы сокращается. В нашем примере производитель обещает 10000 часов.
  • Количество циклов включения и отключения. Как известно именно моменты включения и особенно отключения создаются броски тока, которые могут значительно сократить время службы лампы. В нашем примере производитель обещает, что лампа выдержит 30000 циклов.
  • Возможность регулирования яркости. В самых «продвинутых» моделях КЛЛ может быть реализована такая функция, которая позволит регулировать яркость стандартными диммерами. В указанной ранее лампе такая функция есть.
  • Содержание ртути в лампе. Каждая люминесцентная лампа содержит в своем составе пары ртути, что требует ее должной утилизации. В рассматриваемой лампе содержится 2,8 мг ртути.
  • Габаритные размеры и вес. Знание габаритных размеров всегда поможет в подборе нужной лампы для имеющегося светильника.

Заключение

При выборе энергосберегающей лампы всегда следует доверять не столько ярким цифрам на упаковке, сколько характеристикам, указанных на лампе и в паспорте. В одном помещении следует использовать лампы одной цветности (цветовой температуры в сочетании с индексом цветопередачи).

Лучше всего покупать продукцию известных мировых брендов, у этих ламп небольшой разброс параметров.

Следует помнить, что энергосберегающие лампы очень чувствительны к качеству электрической энергии и не любят частых включений и отключений.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

Поделиться ссылкой:

Люминесцентные лампы.

Виды и работа. Применение и маркировка

Свою историю люминесцентные лампы начинают с газоразрядных приборов, изобретенных в XIX веке. По светоотдаче и экономичности они значительно превосходят лампы накаливания. Применяются для освещения жилых помещений, учреждений, больниц, спортивных сооружений, цехов производственных предприятий.

Принцип работы и основные свойства


Чтобы произошел разряд, к колбе с противоположных сторон подсоединены электроды. Напрямую подключать газоразрядные лампы к сети нельзя. Обязательно используется пусковые регулирующие устройства – балласты.

Если число включений не превышает 5 раз в день, то люминесцентный источник гарантированно прослужит 5 лет. Это почти в 20 раз больше, чем для ламп накаливания.


Среди недостатков люминесцентных ламп выделяют:
  • Нестабильную работу при низкой температуре.
  • Необходимость в правильной утилизации из-за паров ртути.
  • Присутствие мерцания, для борьбы с которым требуется усложнять схему.
  • Сравнительно большие размеры.

Однако люминесцентные лампы чрезвычайно экономичны, поскольку потребляют мало энергии, дают больше света и дольше работают. Не удивительно, что они заменили обычные лампочки почти во всех учреждениях и на предприятиях.

Разновидности люминесцентных ламп

Лампы бывают низкого и высокого давления. Трубки низкого давления устанавливают в помещениях, высокого давления – на улицах и в мощных осветительных приборах.

Ассортимент люминесцентных осветительных приборов довольно широк. Они отличаются размером и формой трубки, типом цоколя, мощностью, цветовой температурой, светоотдачей и другими характеристиками.

В зависимости от формы трубки люминесцентные лампы бывают:
  • Трубчатыми (прямыми), обозначаются буквой Т или t, имеют прямую форму.
  • U-образными.
  • Кольцевыми.
  • Компактными, применяются для светильников.

Прямые, U-образные и кольцевые типы объединят в один вид линейных ламп. Наиболее часто встречаются осветительные приборы в форме трубок. После буквы T или t стоит число. Оно указывает на диаметр трубки, выраженный в восьмой части дюйма. Т8 означает, что диаметр составляет 1 дюйм или 25,4 мм, Т4 – 0,5 дюйма или 12,7 мм, Т12 – 1,5 дюйма или 38,1 мм.

Чтобы сделать лампу более компактной, ее колбу изгибают. Для запуска таких ламп используют встроенный электронный дроссель. Цоколь делают либо под стандартные лампы, либо под специальные светильники.

Цоколь люминесцентной лампы может быть типа G (штырьковый с двумя контактами) или типа E (винтовой). Последний тип применяется в компактных моделях. Цифры после буквы G указывают на расстояние между контактами, а после буквы E – диаметр в миллиметрах.

Маркировка

Отечественная и международная маркировка отличается. Российская берет свое начало со времен Советского Союза, в ней используются буквы кириллицы. Значения букв следующие:
  • Л лампа;
  • Д дневной свет;
  • Б белый;
  • Т теплый;
  • Е естественный;
  • Х холодный.

Зная обозначение можно без проблем прочитать маркировку. Например, ЛХБ будет означать лампу с холодным белым светом.

Для компактных моделей впереди ставят букву К. Если в конце маркировки стоит Ц, то применяют люминофор с улучшенной цветопередачей. Две буквы Ц означают, что цветопередача самого высокого качества.

Если лампа дает цветной свет узкого спектра, то после Л стоит соответствующая буква. Например, ЛК означает источник красного свечения, ЛЖ – желтого, и так далее.

Согласно международной маркировке на лампе пишут мощность и через косую черту трехзначное число, которое определяет индекс цветопередачи и цветовую температуру.

Первая цифра числа указывает на цветопередачу, умноженную на 10. Чем больше цифра, тем точнее цветопередача. Последующие две цифры говорят о цветовой температуре, выраженной в кельвинах и деленной на 100. Для дневного света цветовая температура составляет 5-6,5 тысяч K, поэтому лампа с маркировкой 865 будет означать дневной свет с высокой цветопередачей.

Для жилья используют лампы с кодом 827, 830, 930, для внешнего освещения с кодом 880, для музеев с кодом 940. Подробнее о значении маркировки можно узнать в специальных таблицах.

Мощность традиционно обозначается буквой W. В источниках света общего назначения шкала мощности изменяется от 15 до 80 Вт. У ламп специального назначения мощность может быть менее 15 Вт (маломощные) и более 80 Вт (мощные).

Применение

Люминесцентные лампы с всевозможными оттенками белого цвета применяют для освещения помещений и улиц. С их помощью подсвечивают растения в оранжереях и теплицах, аквариумы, музейные экспонаты.

Наиболее распространенные трубки Т8 с цоколем G13 мощностью 18 и 36 Вт. Их применяют в учреждениях и на производстве. Они легко заменяют советские лампы типа ЛБ/ЛД-20 и ЛБ/ЛД-40.

Поскольку люминесцентные источники слабо нагреваются, их можно применять во всех типах светильников. Выбирая соответствующий цоколь, мощность и размер, их устанавливают в бра, подвесные люстры, ночники. Применяют на кухне, ванне, гаражах, рабочих кабинетах.


Выпускают люминесцентные лампы, излучающие ультрафиолетовый свет. Их устанавливают в лабораториях, исследовательских центрах, медицинских учреждениях – везде, где требуется этот тип излучения.

Люминофор может давать цветной свет (желтый, голубой, зеленый, красный и так далее). Такие источники применяют в дизайнерских целях для художественного оформления витрин, подсветки вывесок, фасадов зданий.

Чтобы люминесцентный прибор прослужил максимально долго, надо обеспечить ему стабильное напряжение и редкое включение/выключение. Поскольку в колбе люминесцентного источника света содержится ртуть, ее нельзя выбрасывать вместе с другим бытовым мусором. Люминесцентные лампы необходимо сдавать в специальные пункты приема. Это могут быть спасательные службы, магазины, продающие электротовары, или компании по утилизации опасного мусора.

Похожие темы:

Люминесцентные лампы

Линейные люминесцентные лампы — экономичные и доступные источники света.

Люминесцентные лампы многие считают такой же классикой освещения, как и лампы накаливания. С этим тяжело спорить, учитывая, что первая люминесцентная лампа была выпущена аж в 1938 году, а в СССР такие лампы были разработаны в 1951 году. А первая газоразрядная лампа — предок современных люминесцентных ламп — была изобретена в 1956 году.

По сравнению с лампами накаливания линейные люминесцентные лампы дневного света являются более экономичными (примерно в 5 раз) и имеют больший срок службы (в 5-10 раз).

Немного истории

Изобретателем люминесцентной лампы (лампы дневного света) считается Эдмунд Гермер. Он и его команда в 1926 году получили бело-цветной свет от газоразрядной лампы, колба которой внутри была покрыта флуоресцентным порошком. Позже корпорация General Electric купила патент у Гермера и в 1938 году довела лампы дневного света до широкого коммерческого использования. Свет первых ламп напоминал естественный уличный свет в пасмурный день (примерно 6400К): считается, что именно тогда и появилось название «лампа дневного света».

В Советском Союзе массовое производство люминесцентных ламп началось только в 1948 году, за что в 1951 году разработчики первой советской лампы дневного света стали лауреатами Сталинской премии второй степени. 

Советский ГОСТ 6825-64 определял только три типоразмера линейных люминесцентных ламп мощностью 20, 40 и 80 ватт (длиной 600, 1200 и 1500 мм соответственно). Колба имела большой диаметр 38 мм для более легкого зажигания при низких температурах.

Люминесцентные линейные лампы дневного света выпускаются многих видов: разной мощности, длины, с разными диаметрами колб, разными цоколями и разным светом в зависимости от назначения лампы. Более того, этот ассортимент будет еще больше, если учесть, что энергосберегающие лампы также представляют собой лампы дневного света со встроенными пусковыми устройствами.

Сегодня наиболее распространенными трубками линейных ламп дневного света являются Т8 (Ø 26 мм), Т5 (Ø 16 мм) и Т4 (Ø 12,5 мм). Лампы с трубкой Т8 имеют цоколь G13 (13 мм между штырьками), а Т4 и Т5 имеют цоколь G5 (5 мм между штырьками). Лампы дневного света Т8 в настоящее время выпускаются мощностью от 10 до 70 Вт, лампы Т5 — от 6 до 28 Вт, а лампы Т4 — от 6 до 24 Вт. Естественно, что мощность ламп напрямую влияет и на размеры (длину) люминесцентных ламп: соотношения размеров и мощностей стандартизировано. То есть лампа мощностью 18 Вт с трубкой T8 и цоколем G13 любого производителя имеет длину 590 мм. 

Выпускаются люминесцентные лампы с разными цветовыми температурами для разных целей, но наиболее распространены лампы цветности 4000К и 6500К. Подробнее о цветовых температурах и сферах их применения можно посмотреть в нашей статье Энергосберегающие лампы: слухи и мифы (слух №6).

Также люминесцентные лампы по индексу цветопередачи (обозначается Ra или CRI — colour rendering index), то есть возможности точно отображать цвета по сравнению с естественным светом. Так лампы со 100% цветопередачей (Ra=1) отображают все цвета также как и при солнечном дневном свете. Но наиболее распространенными (в силу достаточности и большей доступности) являются лампы с индексом цветопередачи 70 — 89%.

Ниже мы приводим описание и технические характеристики самых часто используемых ламп, как в промышленном и муниципальном (где они наиболее распространены), так и жилом секторе. Приведенные ниже значения светового потока и срока службы являются примерными и могут отличаться в зависимости от производителя.


Стандартные линейные люминесцентные лампы с трубкой Т8 и цоколем G13


Самый распространенный тип линейных люминесцентных ламп. Именно такие лампы мощностью 18 Вт («короткую») или 36 Вт («длинную») вспоминают в первую очередь, когда слышат словосочетание «люминесцентная лампа». И хотя ассортимент таких ламп состоит из моделей мощностью от 10 до 70 Вт, чаще всего используются именно лампы мощностью 18 и 36 Вт, которые взаимозаменяемы с советскими люминесцентными лампами ЛБ/ЛД-20 и ЛБ/ЛД-40 соответственно.

Линейные люминесцентные лампы с трубкой Т8 и цоколем G13 используются в основном в промышленности (склады и производственные цеха), а также в офисах и муниципальных государственных учреждениях (администрации, школы, детские сады).  

Средняя продолжительность работы составляет 10000 часов. Диаметр трубки Т8 составляет 26 мм. Работают, как с электромагнитными дросселями (ЭмПРА) в связке со стартерами, так и с электронными балластами (ЭПРА).

мощностьсветовой потокцветовая температураRa (CRI)длина с цоколем без штырьков
Osram L 18W/640
Philips TL-D 18W/33-640
(ЛБ-20)
18 Вт1200 лм4000 К (холодный белый)60-69%590 мм
Osram L 18W/765
Philips TL-D 18W/54-765
(ЛД-20)
18 Вт1050 лм6500 К (холодный дневной)70-79%590 мм
Osram L 36W/640
Philips TL-D 36W/33-640
(ЛБ-40)
36 Вт2850 лм4000 К (холодный белый)60-69%1200 мм
Osram L 36W/765
Philips TL-D 36W/54-765
(ЛД-40)
36 Вт2850 лм6500 К (холодный дневной)70-79%1200 мм
Osram L 15W/64015 Вт850 лм4000 К (холодный белый)60-69%438 мм
Osram L 15W/76515 Вт740 лм6500 К (холодный дневной)70-79%438 мм
Osram L 30W/64030 Вт2100 лм4000 К (холодный белый)60-69%895 мм
Osram L 30W/76530 Вт1900 лм6500 К (холодный дневной)70-79%895 мм

Osram L 58W/640
(вместо ЛБ-80)

58 Вт4600 лм4000 К (холодный белый)60-69%1500 мм
Osram L 58W/765
(вместо ЛД-80)
58 Вт4000 лм6500 К (холодный дневной)70-79%1500 мм
Osram L 70W/64070 Вт5250 лм4000 К (холодный белый)60-69%1764 мм

Стандартные линейные люминесцентные лампы с трубкой Т5 и цоколем G5

Люминесцентные лампы T5 (в отличие от Т8) наиболее распространены именно в жилом секторе. Они более узкие, и поэтому светильники с ними лучше подходят для подсветки ниш или кухонных столов под шкафами.

Ассортимент люминесцентных линейных ламп с трубкой Т5 состоит из моделей мощностью от 6 до 28 Вт (замена ламп накаливания от 30 до 140 Вт). В основном выпускаются лампы цветностью 4200К и 6400К.

Лампы Т5 имеют цоколь G5 (5 мм между штырьками). 

Средняя продолжительность работы составляет 6000 — 10000 часов (в зависимости от производителя и модели). Диаметр трубки Т5 составляет 16 мм. Используются с электронными балластами (ЭПРА).

мощностьсветовой потокцветовая температурадлина трубки без цоколяобщая длина со штырьками
Uniel EFL-T5-06/4200/G56 Вт380 лм4000 К
(холодный белый)
211 мм225 мм
Uniel EFL-T5-06/6400/G56 Вт350 лм6400 К
(дневной)
211 мм225 мм
Uniel EFL-T5-08/4200/G58 Вт600 лм4000 К
(холодный белый)
288 мм302 мм
Uniel EFL-T5-08/6400/G58 Вт580 лм6400 К
(дневной)
288 мм302 мм
Uniel EFL-T5-13/4200/G513 Вт960 лм4000 К (холодный белый)516 мм530 мм
Uniel EFL-T5-13/6400/G513 Вт940 лм6400 К
(дневной)
516 мм530 мм
Uniel EFL-T5-21/4200/G521 Вт1850 лм4000 К (холодный белый)849 мм864 мм
Uniel EFL-T5-21/6400/G521 Вт1660 лм6400 К
(дневной)
849 мм864 мм
Uniel EFL-T5-28/4200/G528 Вт2470 лм4000 К (холодный белый)1149 мм1161 мм
Uniel EFL-T5-28/6400/G528 Вт2350 лм6400 К
(дневной)
1149 мм1161 мм

Стандартные линейные люминесцентные лампы с трубкой Т4 и цоколем G5

Светильники для люминесцентных линейных ламп с трубкой Т4 получили меньшее распространение, чем светильники для ламп Т5. В основном такие люминесцентные лампы используются для местной подсветки — идеальный мебельный светильник!

Выпускаются линейные люминесцентные лампы с трубкой Т4 мощностью от 6 до 24 Вт (замена ламп накаливания от 30 до 120 Вт), с цветовой температурой света 4200К и 6400К.

Средняя продолжительность работы составляет 6000 — 8000 часов (в зависимости от мощности и производителя). Диаметр трубки составляет 12 мм. Работают с электронными балластами (ЭПРА).

мощностьсветовой потокцветовая температурадлина трубки без цоколяобщая длина со штырьками
Uniel EFL-T4-06/4200/G56 Вт380 лм4000 К
(холодный белый)
206 мм220 мм
Uniel EFL-T4-06/6400/G56 Вт350 лм6400 К
(холодный дневной)
206 мм220 мм
Uniel EFL-T4-08/4200/G58 Вт600 лм4000 К
(холодный белый)
326 мм340 мм
Uniel EFL-T4-08/6400/G58 Вт580 лм6500 К (холодный дневной)326 мм340 мм
Uniel EFL-T4-12/4200/G512 Вт940 лм4000 К (холодный белый)354 мм368 мм
Uniel EFL-T4-12/6400/G512 Вт920 лм6500 К (холодный дневной)354 мм368 мм
Uniel EFL-T4-16/4200/G516 Вт1210 лм4000 К (холодный белый)454 мм467 мм
Uniel EFL-T4-16/6400/G516 Вт1195 лм6500 К (холодный дневной)454 мм467 мм
Uniel EFL-T4-20/4200/G520 Вт1700 лм4000 К (холодный белый)553 мм567 мм
Uniel EFL-T4-20/6400/G520 Вт1680 лм6500 К (холодный дневной)553 мм567 мм
Uniel EFL-T4-24/4200/G524 Вт2020 лм4000 К (холодный белый)641 мм655 мм
Uniel EFL-T4-24/6400/G524 Вт2010 лм6500 К (холодный дневной)641 мм655 мм

Специальные люминесцентные лампы для растений и аквариумов Osram Fluora, Camelion Bio


Главной отличительной особенностью ламп для растений и аквариумов является акцент в красной и синей областях спектра. Применение Osram Fluora значительно улучшает протекание фотобиологических процессов в растениях: они при таком свете лучше растут и меньше болеют в условиях недостатка солнечного и тем более отсутствия дневного света!

Также компания Osram Fluora рекомендует использовать специальные лампы для растений и аквариумов в общественных зданиях, где мало естественного дневного света: в офисах, торговых центрах, магазинах и ресторанах.

Специальные линейные люминесцентные лампы Osram Fluora для аквариумов и растений выпускаются с трубкой Т8 (Ø 26 мм), цоколем G13 и мощностью от 15 до 58 Вт.

мощностьсветовой потокдлина с цоколем без штырьков

Osram Fluora L 18W/77

18 Вт550 лм590 мм

Osram Fluora L 36W/77

36 Вт1400 лм1200 мм

Osram Fluora L 15W/77

15 Вт400 лм438 мм
Osram Fluora L 30W/7730 Вт1000 лм895 мм
Osram Fluora L 58W/7758 Вт2250 лм1500 мм

Специальные люминесцентные лампы для освещения продуктов питания Osram Natura

Специальный люминофор ламп Osram Natura придает пищевым продуктам натуральный вид свежих и аппетитных продуктов! Рекомендуется использовать лампы в продуктовых магазинах, супермаркетах и рынках. Особенно актуален правильный свет для мясных магазинов и хлебобулочных отделов. 

Лампы Osram Natura благодаря специально подобранному световому спектру (цветность 76) придадут мясным, колбасным, булочным изделиям, овощам и фруктам более привлекательный и аппетитный вид.

Замену таких ламп рекомендуется проводить каждые 10000 часов. Диаметр трубки Т8 составляет 26 мм, цоколь G13.

мощностьсветовой потокRa (CRI)длина с цоколем без штырьков
Osram Natura L 18W/7618 Вт750 лм70-79%590 мм
Osram Natura L 36W/7636 Вт1800 лм70-79%1200 мм
Osram Natura L 15W/7615 Вт500 лм70-79%438 мм
Osram Natura L 30W/7630 Вт1300 лм70-79%895 мм
Osram Natura L 58W/7658 Вт2850 лм70-79%1500 мм

Люминесцентные лампы — характеристики и маркировка

 

        Линейные люминесцентные лампы широкого применения, имеющие колбы в виде трубок, изготавливают диаметрами: 38 мм (обозначение колбы Т12), 26 мм (обозначение колбы Т8) и 16 мм (обозначение колбы Т5). Лампы с колбами Т5 рассчитаны для работы с электронными ПРА. Компактные лампы с цоколями как у бытовых ламп накаливания имеют внутри лампы электронный ПРА, с другими цоколями могут быть рассчитаны для работы с внешними ПРА.

    К единому способу маркировки ламп их производители пока не пришли. Но чаще всего лампы имеют в своем обозначении записанные через дробь мощность лампы и цветовые характеристики. Например, на Рис. 1 показано обозначение лампы Osram.

 

 

Рис. 1. Лампа Osram, 80 Вт, Ra = 80 — 89, цветовая температура 3000 оК

 

    Первая цифра (8) в обозначении 830 указывает индекс цветопередачи Ra, две следующих цифры (30) цветовую температуру. Кроме числовой маркировки нанесена надпись – warm white (тепло – белая). На лампах с цветовой температурой 4000 оК стоит маркировка 840 cool white (холодная белая). Лампы с Ra 80 и более относятся к высококачественным лампам, предназначенным для освещения помещений с длительным пребыванием людей. Лампы с Ra меньше 80 преимущественно предназначены для освещения помещений с умеренными требованиями по цветопередаче и комфорту. Например, лампы с обозначением 765 (Ra = 70 – 79, цветовая температура 6500 оК) или 640 (Ra = 60 – 69, цветовая температура 4000 оК).

    Компактные люминесцентные лампы маркируют либо цифровым кодом, либо указанием оттенка белого цвета. Например, на лампе с цоколем Е27 (Рис. 2) нанесена маркировка Cool light – холодный свет. Эта лампа имеет цветовую температуру 4200оК.

 

 

Рис.2 Компактная люминесцентная лампа с цоколем Е27 и встроенным ЭПРА

 

    В соответствие с ГОСТ 6825-91 люминесцентные лампы отечественного производства обозначаются:

ЛД –лампа дневной цветности (соответствует цветовой температуре 5400 – 6500 оК),

ЛХБ – холодно – белая (цветовая температура лампы 4300 – 5000 оК),

ЛБ – белая (цветовая температура лампы 3300 – 4000 оК),

ЛТБ – тепло – белая (цветовая температура лампы 2700 – 3000 оК).

    Цветовые температуры для этих ламп указаны приблизительно.

 

Обратите внимание:

Широкий выбор различных ламп к светильникам представлен в современных интернет магазинах. Краткое описание наиболее интересных магазинов, а также некоторые замечания по покупке ламп и светильников, можно посмотреть на странице сайта Магазины светильников.

3 мая 2013 г.

К разделу  СВЕТИЛЬНИКИ 

К ОГЛАВЛЕНИЮ (Все статьи сайта)

как выбирать и какие плюсы


Люминесцентные лампы – это газоразрядные источники света. В них создается УФ излучение в процессе прохождения электрического заряда через пары ртути. В уловимое для человеческого глаза излучение оно преобразуется за счет специального покрытия на колбе – люминофора. Мощностью данных ламп меньше, чем накаливания, а световая отдача больше. За счет этого они в разы экономней.

Принцип работы и устройство

Лампочка состоит из таких элементов:

  1. Трубка или колба. Этот компонент бывает разным в зависимости от исполнения.
  2. Цоколь. Он может быть 1 или 2.
  3. Нити накаливания, что расположены внутри.
  4. На внутренней поверхности нанесен люминофор – важнейшая деталь.
  5. Внутри содержится в вакуумных условиях инертный газ, пары ртути, под стабильным давлением.
Устройство и принцип работы люминесцентной лампы

Когда лампочка включается, между электродами внутри возникает дуговой тлеющий разряд. Газ проводит ток и провоцирует появление УФ излучения. Люминофор поглощает его и воспроизводит заметный для человеческого зрения свет. В подобных источниках применены энергосберегающие технологии. Разряд внутри поддерживает термоэлектронная эмиссия заряженных частиц с поверхностью катода.

Важно! В зависимости от того какой люминофор нанесен могут быть разные оттенки свечения.

к содержанию ↑

Область применения

За счет незначительного энергопотребления такие лампы часто используются для общественных мест. В торговых центрах и офисах на потолках типа Армстронг монтируются именно ЛЛ линейного типа. Когда появились компактные изделия они стали очень востребованы в быту для освещения квартир и домов. ЛЛ заменили собой стандартные лампы накаливания.

Особенно часто их используют в местах, где есть критические требования к цветопередаче. Конкретней:

  • Больницы.
  • Школы, в том числе для освещения коридоров и классов.
  • Стоматологические клиники.
  • Ювелирные мастерские.
  • Парикмахерские.
  • Магазины.
  • Музеи.
  • Типографии.
  • Покрасочные цехи в автомастерских, текстильных цехах, графических студиях.
Люминесцентное освещение в подземном переходе

Их рационально использовать для основного освещения помещений большого размера. Качество освещения улучшается, а энергопотребление снижается на 50% как минимум. Часто используются в подсветке места работы, исторических строений, световой рекламе.

к содержанию ↑

Классификация

Разновидностей люминесцентных лам существует много, ведь они используются не только для освещения помещений, но и для специфических целей. К примеру, лечебных. Они отличаются по вариантам исполнения, что также влияет на сферу применения.

Варианты исполнения

Изначально такие лампы были исключительно линейными, но с развитием технологий появились и компактные. Оба вида имеют одинаковые свойства, негативные и положительные стороны. Данную группу можно назвать общие, так как, по сути, они отличаются формой колбы и в определенной мере конструкцией.

Линейные лампы

Это ртутная лампа прямого, кольцевого или U-образного исполнения. Такие имеют классификацию по:

  1. Длине.
  2. Диаметру колбы.

При этом чем больше по габаритам лампа, тем она мощнее. Для линейных ламп используется цоколь G13, а диаметр колбы: Т4, Т5, Т8, Т10, Т12. Цифры после «Т» означают диаметр стеклянного элемента, выраженный в дюймах. Указанные выше типоразмеры считаются стандартными.

Линейные лампы разных размеров

Основное отличие подобной конфигурации в том, что она имеет вваренные электроды по краям, которые направлены внутрь изделия. Снаружи установлены цоколи с контактными штырьками для подключения ее в цепь.

Линейные лампы преимущественно используют в офисах, торговых центрах, транспорте, других общественных местах. Все потому что они потребляют не больше 15% электроэнергии, если брать за 100% потребления энергию лампочкой накаливания.

Компактные

Компактные классифицируются по:

  • Форме и размеру колбы.
  • Размеру и типу цоколя.

В основном колба в них изогнутая, и «сложена» в виде спирали или в другую форму. За счет этого они и компактны. Использование в бытовых условиях очень удобное и практичное. Ведь можно найти изделие со стандартным цоколем (е27) и устанавливать в любой бытовой светильник без какой-либо его переделки. Кроме того, цоколи бывают: g-11, g23 и другие.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Как только КЛЛ появились, они практически вытеснили использование ламп накаливания в люстрах, бра, светильниках в различных помещениях, в том числе в детской. В первую очередь за счет своей энергоэффективности.

Компактные люминесцентные лампы

Есть ЛЛ с улучшенной светопередачей. Эта их особенность достигается за счет нанесения нескольких слоев люминофора. Как результат, они качественней ретранслируют цвета. Могут быть как линейного, так и компактного исполнения.

Специальные

Основное отличие их от стандартных люминесцентных ламп дневного света – это спектр излучения. Существуют такие специальные:

  • Лампы дневного света, отвечающие повышенным требованиям по цветопередаче. Используются для типографий, музеев, картинных галерей.
  • Источники света со спектральным излучением близким к солнечному. Часто используются в медицинских целях для проведения светотерапии.
  • Для растений (рассады в том числе) и аквариумов, обозначаются fluora. Для них характерен усиленный спектральный диапазон синего и красного. Он оказывает положительное влияние на фотобиологические процессы. Могут использоваться даже в саду или в собственной теплице.
Люминесцентная лампа для подсветки растений
  • Аквариумные с преобладанием синего спектра и ультрафиолета. Они помогают создать оптимальные условия для роста кораллов. Отдельные виды способны при таком освещении флуоресцировать.
  • Изделия для освещения помещений, в которых содержаться птицы. Их спектр излучения характеризуется присутствием ближнего ультрафиолета. Это способствует созданию оптимальных условий для птиц, очень приближенных к естественным, применять их стараются в домашних условиях в холодное время года, а на фабриках круглогодично.
  • Лампы с разной цветностью: зеленые, синие, фиолетовые, красные, желтые и др. Активно используются для создания световых эффектов, к примеру, в ночных клубах и других развлекательных заведениях. Достигается световой эффект за счет окрашивания колбы или покрытия ее специальным составом люминофора изнутри. Подобные цветные лампы розового оттенка активно используются для подсветки мясных витрин в магазинах. Они делают мясо привлекательным для глаз, а значит, покупатель с большей вероятностью его купит.
  • Лампы для соляриев. Еще одно направление среди специальных люминесцентных осветительных элементов.
  • УФ лампы из черного стекла, переносные. Используются в сфере лабораторных исследований.
  • Лампы для стерилизации и озонирования – ртутно-кварцевые и бактерицидные, гигиенические.

Важно! Разные типы ЛЛ специального назначения активно используются в механике, текстильном, пищевом производстве, криминалистике, сельскохозяйственной сфере.

к содержанию ↑

Маркировка

Разбираться в маркировке люминесцентных ламп просто необходимо, чтобы правильно выбирать источник освещения для своих потребностей. На металлических элементах или колбе могут быть нанесены буквы и цифры, что они значат понять несложно.

Маркировка ЛЛ разных производителей

Первое что удастся обнаружить это буква Л – она расшифровывается, что лампа люминесцентная. Далее, проставляется:

  • Б – означает белый свет или white.
  • Д – дневной.
  • У – универсальный.
  • ХБ – холодный белый или просто cool.
  • ТБ – теплый белый.
  • Е – естественно белый.
  • К, Ж, З, Г, С – соответственно красный, желтый, зеленый, голубой, синий.
  • УФ – ультрафиолетовый.

Следующие обозначение расскажет о диаметре колбы. Считается, что чем он больше, тем дольше будет служить лампа. Чаще всего встречаются изделия с диаметром – 18, 26 и 38 м. Перед цифрой, которая обозначает диаметр, стоит буква «Т».

Следующий важный параметр мощность. Отталкиваясь от этого показателя, удастся определить, какое по размерам помещение удастся осветить. Обозначается W (Ватт), цифра после это мощность. К примеру, 13 W, 18 W, обозначение может быть и таким 9 Вт, 28 Вт.

Следующий параметр в маркировке физическая характеристика цоколя. Варианты обозначения:

  1. FS – один.
  2. FD – двухцокольная или трубчатая.
  3. FB – так подписывается компактная.

Напряжение в сети обозначается в вольтах. Варианты нанесенной маркировки: 127 В или 220 В. И последнее обозначения, которое можно найти на колбе это ее форма. Варианты:

  • U – дуга, подковообразная.
  • 4U – четырехдуговая.
  • S – спиральная.
  • C – свеча.
  • G – шарообразная.
  • R – рефлекторная.
  • T – в виде таблетки.
Форма колбы указывается в маркировке

Важно! Последняя маркировка практически не используется для стандартных ламп дневного света.

Располагаться эти обозначения могут и в другом порядке.

к содержанию ↑

Люминофоры и спектр излучаемого света

Существует мнение, что излучаемый рассматриваемыми лампами свет неприятен для глаз, а предметы имеют искаженный цвет. Это происходит по нескольким причинам:

  • Синие и зеленые линии в спектре.
  • Неправильно подобранного типа ламп, в нем использован не тот, что требуется в конкретных условиях люминофор.

В ЛЛ, которые относятся к недорогим, используется галофосфатный люминофор, его спектр излучения преимущественно желтый и синий, красного и зеленого значительно меньше. Для глаза свет воспринимается как белый, но при отражении от предметов их цвет выглядит искаженным. Но у таких источников света существенное преимущество – они обеспечивают наивысшую светоотдачу.

Люминесцентные лампы с разным люминофором

В более дорогих лампах наноситься трехполосный и пятиполосный люминофор. Он обеспечивает более равномерное распределение излучения в части видимого спектра. Как результат, предметы, от которых он отбивается, выглядят более естественными.

Совет! Чтобы в домашних условиях оценить спектр лампы можно использовать обычные компакт-диски. На источник света следует посмотреть в отражении диска. В дифракционной линии удастся рассмотреть спектральные линии люминофора.

к содержанию ↑

Преимущества и недостатки

Основные достоинства подробно:

  1. Высокий КПД и большая светоотдача, если сравнивать с лампами накаливания, что позволяет экономить энергию.
  2. Разные цвета и оттенки – существенный плюс в современных условиях.
  3. Спектр излучения ближе к солнечному.
  4. Рассеивание света, поток идет по всей колбе, а не только по нити накала.
  5. Продолжительный срок службы – производитель гарантирует до 20 тыс. часов. Такой показатель удастся достичь только при условии достаточного качества электропитания и соблюдения количества включений/выключений. То есть, сколько она реально прослужит, зависит от правильности использования.
  6. Слабый нагрев, то есть они не будут перегревать плафон, то есть она отвечает нормам пожарной безопасности. Светиться при этом лучше лампы накала.
  7. Питание от сети 220В.
  8. Подходят для стандартных бытовых осветительных приборов, которые используются в спальне, гостиной, кухне. Установка компактных ламп не требует какой-либо переделки.
  9. Небольшой вес лампы, то есть и вся люстра не будет много весить.
Люминесцентные лампы очень экономны

Недостатки:

  • Необходимость специальной утилизации –главный минус.
  • Мигание, от чего устают глаза. Меньше мигать она будет, если используется балласт.
  • Необходимость подключения пускорегулирующего оборудования.
  • Лампы достаточно хрупкие.
  • Люминофор изнашивается, что приводит к изменению спектра.
  • Возможность использование при нормальной температуре. Работать она может только в диапазоне от -40 до + 50 градусов.
  • Чувствительность к повышенной влажности.
  • Задержка включения – необходимо время для разогрева. То есть они не сразу запускаются и дают тот свет, который способны, через пару минут он становиться ярче.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Одними из самых качественных считаются лампы от торговых брендов Philips (Филипс) и Osram (Осрам). Цены лампочек этих марок вполне доступны.

к содержанию ↑

Безопасность и утилизация

Когда люминесцентная лампа исправна (нет трещин и других повреждений на колбе) ее использование абсолютно безопасно для человека, животных, растений. Но с ними следует обращаться предельно аккуратно, ведь внутри содержатся пары ртути. Даже в тех небольших количествах, они способны принести вред человеку.

Люминесцентные лампы нельзя выбрасывать с обычным бытовым мусором после отработки срока эксплуатации. При попадании в почву способны загрязнять огромные площади. Если пары ртути проникнут в воду она будет медленно отравлять все живое. Функционируют пункты приема таких ламп, в которых бесплатно можно сдать опасный бытовой мусор подобного типа.

Контейнеры для утилизации люминесцентных ламп

Важно! Если лампа, новая или старая, имеет следы повреждения, трещины, пробои использовать ее нельзя ни при каких условиях. При покупке каждую лампу следует проверить не только на работоспособность, но и на целостность.

Обращение с довольно хрупкими лампами должно быть аккуратным. Ремонт их своим силами, в том числе разборка, запрещена. Еще один важный момент, люминофор, что находится внутри колбы, со временем утратит свойства, поэтому меняется спектр. Как раз по этой причине использовать дольше указанного срока на упаковке такую лампочку нежелательно, даже если она еще не перегорела.

Переработка рассматриваемых ламп в заводских условиях проводится при необходимых условиях безопасности. В таком случае они не вредят экологии. При этом применяются разные методы извлечения опасных паров ртути. Остатки ламп отправляются на вторичную переработку.

к содержанию ↑

Видео сравнения люминесцентных ламп и ламп накаливания

В видео можно ознакомиться с детальным описанием люминесцентных ламп их техническими особенностями.

Вывод

Люминесцентные лампы более практичное решение для освещения дома и общественных мест. Правда, с появлением светодиодных источников света их востребованность несколько снизилась.

Предыдущая

ЛюминесцентныеОсобенности контейнеров для хранения люминесцентных ламп

Следующая

ЛюминесцентныеКакую лампу Т8 выбрать: LED или люминесцентная + простая переделка светильника

устройство, принцип работы, виды, маркировка

Среди огромного разнообразия устройств искусственного освещения достаточно весомую нишу занимают люминесцентные лампы. Этот вид световых приборов был впервые представлен еще в 1938 году, бросив вызов единственным монополистам того времени, лампочкам накаливания. С того времени их конструктивные особенности претерпели значительные изменения и доработки за счет чего люминесцентные лампы перешли в разряд энергосберегающих. Но, чтобы разобраться во всех за и против, детально ознакомиться с особенностями их эксплуатации в быту и промышленности, мы детально изучим этот вид осветительных приборов.

Устройство и принцип работы

Конструктивно люминесцентные лампы представляют собой стеклянную колбу, внутренняя поверхность которой покрывается специальным составом – люминофором. Он состоит из галофосфата кальция и  других примесей, некоторые варианты содержат редкоземельные элементы – тербий, европий или церий, но такие комбинации являются довольно дорогими.

Из колбы на этапе изготовления откачивается весь воздух, а емкость заполняется смесью инертных газов, чаще всего аргона, и паров ртути. В зависимости от модели лампы химический состав, как инертных газов, так и люминофора будет отличаться. Внутри газовой смеси располагается вольфрамовая нить накала, которая покрывается эмитирующим покрытием.

Рис. 1. Устройство и принцип действия люминесцентной лампы

Принцип действия такой энергосберегающей лампы заключается в такой последовательности электрохимических процессов:

  • На контакты газоразрядной ртутной лампы подается напряжение питания, за счет чего в цепи нити накаливания начинает протекать электрический ток.
  • При протекании электрического тока с поверхности нити начинает распространяться тепловая энергия и частицы эмиттеры, которые активируют инертный газ и обуславливают выделение ультрафиолетового излучения.
  • Свечение газов имеет относительно низкий процент видимого спектра, так как большая часть приходится на ультрафиолетовые волны. Но при достижении ультрафиолетом стеклянной колбы газоразрядной лампы, происходит  активация и последующей свечение люминофора.

Спектр свечения люминесцентных лампочек может варьироваться в довольно широком диапазоне. Выбор оттенков свечения в осветительных устройствах осуществляется посредством изменения процентного соотношения магния и сурьмы в составе люминофора.

Также важным моментом является температурный показатель, поэтому величина подаваемого напряжения и протекающего электрического тока должны иметь постоянное значение для каждого диаметра колбы. Именно строгое соблюдение электрических характеристик по отношению к ее геометрическим параметрам в люминесцентной лампе позволяет выдавать нужный цвет и яркость свечения.

Разновидности

Все разнообразие люминесцентных ламп характеризуется достаточно большим спектром параметров. Но в рамках данной статьи мы рассмотрим наиболее отличительные из них.

По величине давления газа внутри колбы, на практике различают светильники высокого и низкого давления:

  • Высокого давления – такие люминесцентные приборы выдают плотный световой поток насыщенных цветовых оттенков. Применяются в достаточно мощных моделях с номиналом от 50 до 2000 Вт, характеризуются сроком службы от 6 тыс. до 15 тыс. часов.
  • Низкого давления – отличается относительно небольшой плотностью газа в емкости, применяется для освещения помещений в быту или на производстве.

По форме колбы энергосберегающей лампочки – колба может иметь классическую грушевидную  форму со стеклянной спиралью внутри, продолговатую вытянутую форму, вид спиралевидной трубки закрученной вокруг оси, кольцевидные и других форм.

Рис. 2. Разновидности колбы

По конструкции цоколя различают люминесцентные лампы со стандартным цоколем E с числовым обозначением, указывающим диаметр самого цоколя газоразрядного источника. G – штыревой, в котором число после буквенной маркировки показывает расстояние между контактами, а перед на количество пар контактов. Также можно встретить модели с  цоколем типа W и F, но они используются довольно редко.

Рис. 3. Разновидности цоколей

По цветовой температуре свечения различают люминесцентные приборы с горячим желтым и холодным синим спектром. Также существуют варианты нейтрального цвета свечения. Цветовые температуры подбираются в соответствии с поставленными задачами: теплые для жилья, холодные для производственных объектов.

Рис. 4. Цветовая температура

Маркировка

Система обозначения люминесцентных лампочек определяет их основные параметры Однако, в зависимости от страны производителя будут отличаться и стандарты в обозначении. Для сравнения рассмотрим оба варианта маркировки на примере отечественных и зарубежных производителей.

Отечественная

Отечественная маркировка включает в себя буквенно-цифровое обозначение, которое включает в себя четыре позиции для букв и одну для чисел. К примеру: ЛБЦК-60.

Первая буква в маркировке Л означает лампа. Вторая позиция более сложная, она может выражаться как одной, так и парой буквосочетаний, обозначает индексы цветопередачи, в ней возможны такие варианты:

  • Д – дневного спектра;
  • ХБ – холодное белое свечение;
  • Б – белого цвета;
  • ТБ – белый теплых оттенков;
  • ЕБ – белый естественного спектра;
  • УФ – ультрафиолетового спектра;
  • Г – голубого цвета;
  • С – синего оттенка;
  • К – красный спектр излучения;
  • Ж – желтого оттенка
  • З – зеленого цвета.

Третья позиция определяет качество цветопередачи, но в наличии есть только два варианта Ц – улучшенного качества или ЦЦ – особенно повышенного, которое часто применяется в декоративном освещении.

В четвертой позиции указывается конструкция светильника. Имеются пять основных позиций:

  • А – амальгамного типа;
  • Б – с быстрым пуском;
  • К – кольцевого вида;
  • Р – рефлекторные лампы
  • У – U образные.

Зарубежная

Люминесцентные лампы зарубежного образца имеют идентичный принцип маркировки. В начале указывается мощность изделия в ваттах, ее легко узнать по латинской букве W.

Тип свечения определяется цифровым кодом с буквенным пояснением на английском:

  • 530 – это теплый тон люминесцентных ламп, но относительно плохой цветопередачи;
  • 640/740 – не совсем холодный, но близкий к нему с посредственным уровнем цветопередачи;
  • 765 – голубого оттенка с посредственным уровнем передачи цветов;
  • 827 – близкий к лампе накаливания, но с хорошей передачей цветов;
  • 830 – близкий к галогенной лампочке, с хорошим уровнем передачи цвета;
  • 840 – белого оттенка с хорошим уровнем передачи цветов;
  • 865 – дневного спектра с хорошей цветопередачей;
  • 880 – дневной спектр с отличной степенью передачи света;
  • 930 – теплый тон с отличными параметрами цвета и низким уровнем светоотдачи;
  • 940 – холодный тон с отличной передачей цвета и средним уровнем светоотдачи.
  • 954/965 – люминесцентные устройства с непрерывным спектром.

Технические характеристики

Важными техническими характеристиками для люминесцентных ламп являются:

  • Мощность лампы – может варьироваться в пределах от 10 до 80 Вт для классических бытовых нужд, промышленные модели могут достигать 2000 Вт;
  • Номинальное напряжение – в большинстве случаев применяется напряжение 220В;
  • Температура цветового свечения – варьируется в пределах от 2700 до 6500°К;
  • Светоотдача – количество выделяемого светового потока в перерасчете на 1Вт потребленной электроэнергии для люминесцентных устройств составляет от 40 до 60Лм/Вт, но существуют и более эффективные модели;
  • Габаритные параметры – зависят от конкретной модели люминесцентной лампы;
  • Тип цоколя – E14 (миньон), E27 (стандартный типоразмер), G10 и  G13 штырькового образца и другие.

Особенности подключения к сети

В виду сложностей, связанных с ионизацией газового промежутка, в люминесцентных лампах может использоваться несколько вариантов схемы включения, упрощающих зажигание разряда. Наиболее популярными являются электрические схемы электромагнитного и электронного балласта, которые мы и рассмотрим далее.

Электромагнитный балласт

Является наиболее старым вариантом, применяемым в пуске люминесцентных ламп с холодными катодами.

Рис. 5. Схема подключения с электромагнитным балластом

Как видите, в этой схема лампа подключается через электромагнитный дроссель и стартер. В момент подачи напряжения стартер, состоящий из биметаллической пластины, представляет собой цепь с очень низким сопротивлением, поэтому ток в нем нарастает в значительной степени, но не доходит до величины КЗ благодаря дросселю. Этот процесс запускает электрический разряд в люминесцентной лампе, а при нагревании электроды стартера разомкнуться.

Электронный балласт

Такой способ подключения предусматривает использование специального автогенератора, собранного на трансформаторе и транзисторном блоке, способном выдавать напряжение повышенной частоты, что позволяет получить световой поток без мерцаний.

Рис. 6. Использование электронного балласта

Как видите, готовый блок электронного балласта для питания люминесцентных ламп, применяется в соответствии со схемой подключения, которая указывается прямо на корпусе изделия.

Причины выхода из строя

Достаточно часто потребители, столкнувшиеся с проблемой прекращения работы или ухудшением параметров свечения люминесцентных ламп, задаются вопросом поиска причин неисправности.

Наиболее частыми причинами выхода люминесцентных ламп со строя являются:

  • перегорание нити накала – характеризуется полным отсутствием свечения;
  • нарушение целостности контактов – также не дает лампе загореться;
  • разгерметизация колбы с последующим выходом инертного газа – характеризуется вспышками оранжевого цвета;
  • перегорание стартера, пробой его конденсатора – мерцание, неспособность долго запуститься, черное пятно возле контактов;
  • обрыв обмотки дросселя или пробой на корпус – не включается или дает попеременное включение/выключение в процессе работы люминесцентной лампы;
  • замыкание в патроне люминесцентной лампы или его контактах – характеризуется миганием, но без последующего пуска.

Плюсы и минусы

В связи с жесткой конкуренцией на рынке люминесцентные осветительные приборы принято сравнивать с параметрами работы ламп другого принципа действия.

К преимуществам люминесцентных устройств следует отнести:

  • Достаточно высокая эффективность, в сравнении с теми же лампами накаливания выдают на порядок больший световой поток на каждый ватт потребленной электроэнергии;
  • Имеет несколько вариантов цветового спектра, что делает обоснованным их применение для различных целей;
  • Срок эксплуатации до наработки на отказ в 10 – 15 раз превышает тот же показатель у ламп накаливания и галогенок;
  •  Достаточно большое разнообразие конструкций – компактные, большие, удлиненные и т.д.

Однако и недостатков у люминесцентных ламп существует немало:

  • Гораздо  более высокая стоимость;
  • Наличие ртути, которая при разрушении колбы попадает в окружающее пространство;
  • Даже уцелевшие отработанные лампы требуют специальной утилизации, которая также требует дополнительных затрат;
  • Стабильность работы во многом зависит от температуры и влажности окружающей среды;
  • Люминесцентные лампочки вызывают повышенную усталость глаз при длительном чтении или зрительном напряжении;
  • В сравнении со светодиодными светильниками, бояться механических повреждений;
  • Не поддаются классическим методам управления яркостью.

Область применения

Перечень сфер, в которых могут устанавливаться люминесцентные лампы, достаточно большой. Наиболее часто вы можете встретить их в бытовых помещениях или офисах как основное освещение. В магазинах или торговых центрах устанавливаются в качестве приборов подсветки витрин, стен и других элементов интерьера и могут легко заменить неоновую лампочку. Часто их можно встретить в подсветке коридоров и помещений большой площади удлиненными трубчатыми люминесцентными светильниками.

В промышленной сфере часто применяются как лампы для работы прожекторного освещения, которое охватывает большую площадь. Прожекторные люминесцентные приборы имеют отличную светопередачу, несмотря на удаленность по высоте от освещаемой поверхности.

Что такое люминесцентное освещение?

Люминесцентное освещение. Вы, наверное, уже имеете представление о том, что это такое. Может быть, вы хоть немного разбираетесь в том, как это работает.

Конечно, люминесцентное освещение опасно для глаз и размывает цвет лица.

Но флуоресцентное освещение — это гораздо больше, чем не очень идеальные побочные эффекты, включая некоторые приятные преимущества.

Вот что мы обсуждаем в этом посте:

Что такое люминесцентное освещение?

Флуоресцентное освещение — это универсальный тип освещения, с которым вы, скорее всего, столкнетесь в офисе, школе или продуктовом магазине.Он известен своей энергоэффективностью по сравнению с лампами накаливания и галогеновыми лампами и более низкой ценой по сравнению со светодиодами.

Существует несколько различных типов люминесцентного освещения, включая линейные люминесцентные лампы, люминесцентные изогнутые лампы, люминесцентные лампы с круговой линией и компактные люминесцентные лампы (компактные люминесцентные лампы).

В этой статье мы сосредоточимся на линейных люминесцентных лампах из-за их популярности. Люминесцентные лампы обычно используются в потолочных светильниках, таких как troffers, во всех типах коммерческих зданий.

Как работают люминесцентные лампы?

Флуоресцентное освещение зависит от химической реакции внутри стеклянной трубки для создания света. Эта химическая реакция включает взаимодействие газов и паров ртути, в результате чего образуется невидимый ультрафиолетовый свет. Этот невидимый ультрафиолетовый свет освещает люминофорный порошок, покрывающий внутреннюю часть стеклянной трубки, излучающий белый «флуоресцентный» свет.

Вот более подробная разбивка процесса:

Электричество сначала попадает в осветительную арматуру, как трос, и через балласт.Балласт, который регулирует напряжение, ток и т. Д. И необходим для работы люминесцентной лампы, подает электричество на контакты люминесцентной лампы на обоих концах.

Подробнее: Что такое балласт и как он работает?

Затем, после того, как электричество проходит через контакты, оно течет к электродам внутри герметичной стеклянной трубки, в которой поддерживается низкое давление. Электроны начинают перемещаться по трубке от одного катода к другому.

Внутри стеклянной трубки находятся инертные газы и ртуть, возбуждаемые электрическим током.Ртуть испаряется по мере прохождения электричества, и газы начинают реагировать друг с другом, создавая невидимый ультрафиолетовый свет, который мы фактически не видим невооруженным глазом.

Но мы, очевидно, замечаем люминесцентные лампы, излучающие свет, так что же именно мы видим?

Каждая люминесцентная лампа покрыта люминофорным порошком. Если воткнуть палец в тюбик и потереть его изнутри, это будет выглядеть так, как будто вы только что насладились порошкообразным пончиком.

Это люминофорное покрытие светится, когда оно возбуждено невидимым ультрафиолетовым светом, и это то, что мы видим нашими глазами — светящийся порошок люминофора, который создает «белый свет».Отсюда и термин «флуоресцентный» — «светящийся белый свет».

Из-за содержания ртути в люминесцентных лампах важно утилизировать лампы после того, как они перегорели. У нас есть служба утилизации, которая позволяет легко и быстро избавиться от старых перегоревших ламп из вашего шкафа и забыть о них. Мы также продаем коробки для вторсырья.

Зачем люминесцентным лампам балласт?

Основная цель балласта — принимать переменный ток, проходящий через провода в ваших стенах — буквально волнами, вверх и вниз — и превращать его в постоянный и прямой поток электричества.Это стабилизирует и поддерживает химическую реакцию, происходящую внутри колбы.

Чтобы правильно выбрать балласт для ваших ламп, вам необходимо ответить на эти три вопроса:

  1. Какому типу лампы требуется питание? (Например, это T8, T5? 4 фута? 2 фута? И т. Д.)
  2. Сколько ламп нужно мощности?
  3. Какое напряжение идет на светильник?

Балласты влияют на потребление энергии через так называемый балластный фактор.Подробнее о балластном факторе и его влиянии на потребление энергии читайте здесь.

Почему люминесцентные лампы становятся розовыми и оранжевыми?

Если вы посмотрите на большую комнату, освещенную в основном люминесцентными лампами, то с большой вероятностью вы увидите все виды разных цветов, исходящих с потолка. Почему?

Эта концепция называется «смещение цвета». Чем дольше горят флуоресцентные лампы, тем больше вероятность того, что химические свойства изменятся и вызовут несбалансированную реакцию, в результате чего флуоресценция станет менее белой и менее яркой, чем была раньше.

Если последовательность действительно важна для вашего проекта освещения, вы можете подумать о групповой замене этих лампочек. Заменяя все трубки партиями, вы можете устранить проблему несоответствия цветов и яркости в вашем помещении.

Еще одно соображение — это обновление светодиодов для ваших ламп. О вариантах светодиодных ламп T8 мы поговорим в этой статье.

В чем разница между линейными люминесцентными лампами и компактными люминесцентными лампами?

Чтобы уточнить, как в линейных, так и в компактных люминесцентных лампах используется одна и та же технология для создания искусственного света.Самая большая разница — это форм-фактор или размер и конфигурация ламп CFL.

Компактные люминесцентные лампы (КЛЛ) — это просто усовершенствование линейной люминесцентной технологии, потребляющее меньше энергии. Они также предназначены для ввинчивания в обычную розетку для лампы накаливания или для вставки в утопленную банку. Их часто называют «пружинными лампами» или «подключаемыми» КЛЛ в зависимости от назначения и формы.

Узнайте больше о компактных люминесцентных лампах в нашем посте «Что такое лампы CFL и где их следует использовать?»

Где вы используете линейное люминесцентное освещение?

Хотя люминесцентные лампы используются в самых разных областях, они работают не везде.Самая распространенная причина, по которой люди используют люминесцентные лампы, — это экономия энергии с минимальными первоначальными затратами.

Вот некоторые типичные области применения линейного люминесцентного освещения:

Торговые офисы

Обычно офисные помещения не слишком заботятся о декоративном и акцентном освещении. Главный приоритет — общее освещение, функциональное для офисной среды. Из-за этого линейные люминесцентные лампы являются основными лампами, используемыми в офисных помещениях в США.

Склады

Если вы не знакомы с T5 с высокой выходной мощностью, вам необходимо это знать.Эти лампы могут прослужить до 90 000 часов и производить больше света (люменов), чем более толстые линейные люминесцентные лампы, такие как T12s и T8s. Из-за этого они являются отличным выбором для складов — или действительно для любого многоярусного потолка, где требуется значительное количество света.

Больницы

Подобно офисным помещениям, в больницах также используются линейные люминесцентные лампы для экономии энергии и получения белого, чистого и эффективного источника света.

Розничные магазины

При создании уникального дизайна освещения для розничной торговли мы рекомендуем правило 20/80 — 20 процентов вашего освещения должно быть декоративным и уникальным (например, настенные бра, люстры, чаши с облаками).Причем 80 процентов его должно быть стандартным общим освещением.

В таких универмагах, как Macy’s, JC Penney, Kohl’s и Target, 80-процентное общее освещение является основной областью для линейных флуоресцентных ламп.

Плюсы и минусы линейного люминесцентного освещения

Линейно-люминесцентные профи

  • Энергоэффективность

    Переоборудовав лампы накаливания или галогенные на линейные люминесцентные лампы, вы можете рассчитывать на 40-процентную экономию на счетах за электроэнергию.

  • Разнообразие цветовых температур

    Если вам нужно действительно «прохладное» пространство, такое как коридор больницы или станция метро, ​​флуоресцентные лампы предлагают такую ​​прохладную цветовую температуру, как 6500 Кельвинов. Хотя не так много приложений, в которых требуется настолько холодный свет, диапазон цветов от теплого до холодного — это гибкость для флуоресцентных ламп.

  • Стоимость

    По сравнению со светодиодами линейное люминесцентное освещение, как правило, более доступно.Фактически, светодиоды привели к снижению цен на флуоресцентные лампы за последние несколько лет.

Линейные люминесцентные лампы

  • Изменение цвета или уменьшение светового потока

    Как мы упоминали выше, чем дольше горят флуоресцентные лампы, тем больше вероятность того, что химические свойства изменятся, что вызовет несбалансированную реакцию, что сделает флуоресценцию менее белой и менее яркой, чем была раньше. Светоотдача снижается, и со временем ваше освещение может выглядеть как лоскутное одеяло.

  • Резкий свет

    Флуоресцентные лампы не приятны для глаз! Если вы обнаружите, что ваши глаза часто налиты кровью или сухие, вы можете оценить источник света, под которым вы находитесь большую часть дня. Например, линейные люминесцентные лампы в параболических троферах в офисном помещении могут вызвать у вас подсознательное косоглазие из-за резкого света. Лучшим применением были бы линейные флуоресцентные лампы в центральном фильтре корзины, который смягчает свет, достигающий земли.

  • Период прогрева

    Для того, чтобы флуоресцентные лампы достигли своей полной яркости, вам, возможно, придется подождать 10-30 секунд для прогрева.

  • Воздействие на окружающую среду или затраты на переработку

    Хотя затраты на переработку перевешиваются за счет экономии энергии, создаваемой флуоресцентными лампами, существуют дополнительные расходы на обеспечение правильной утилизации люминесцентных ламп. Если вы не хотите вообще заниматься ртутью и переработкой, светодиоды могут быть для вас лучшим вариантом.

Есть еще вопросы о том, подходит ли флуоресцентное освещение для вашей области применения? Поговорите со специалистом по освещению, который расскажет о специфике вашего помещения.

Линейный люминесцентный | Типы лампочек

Какие они?

Линейная люминесцентная лампа или лампа представляет собой газоразрядную лампу. Линейные люминесцентные лампы бывают разной длины, диаметра, мощности и цветовой температуры. Они известны высокой энергоэффективностью, долгим сроком службы и относительно невысокой стоимостью.

Откуда они взялись?

Ранняя история линейных люминесцентных ламп отражает историю других газоразрядных ламп, которые использовались и разрабатывались с 1700-х годов.

В 1934 году группа ученых и инженеров General Electric построила прототип того, что стало линейным флуоресцентным светом, каким мы его знаем сегодня.

Современные линейные люминесцентные лампы стали коммерчески жизнеспособным световым решением в конце 1930-х годов, в 1938 году первые люминесцентные лампы были выставлены на продажу населению.

Еще один рубеж был преодолен в 1951 году; Впервые в США люминесцентные лампы производят больше света, чем лампы накаливания.

Как они работают?

Линейные люминесцентные лампы функционально идентичны компактным люминесцентным (КЛЛ) лампам.

Обе газоразрядные лампы используют электричество, излучаемое катодами, для возбуждения паров ртути, содержащихся в стеклянной оболочке, с использованием процесса, известного как неупругое рассеяние.

Люминофор и благородный газ, например аргон, также содержатся внутри стеклянной оболочки. Атомы ртути излучают ультрафиолетовый (УФ) свет, который, в свою очередь, заставляет люминофор в лампе флуоресцировать или светиться, производя видимый свет.

Эти лампы действительно зависят от внешнего источника питания и регулирования от балласта.

Где они используются?

Линейные люминесцентные лампы являются одними из самых популярных световых решений в мире благодаря их высокой эффективности, низкой стоимости и широкому спектру областей применения, для которых они могут использоваться. Они являются основным источником света в большинстве коммерческих помещений, а также используются во многих домашних условиях. Их можно использовать как в помещении, так и на открытом воздухе, а с помощью подходящего дополнительного оборудования их также можно затемнять и использовать в экстремальных холодных условиях, например, в морозильных камерах и вывесках.Короче говоря, линейные флуоресцентные лампы можно использовать практически везде.

Компактный люминесцентный | Типы лампочек

Какие они?

Компактная люминесцентная лампа или лампа — это тип люминесцентной лампы, обычно предназначенной для замены ламп накаливания или галогенных ламп. Есть два основных типа компактных люминесцентных ламп: вставные и вставные.

Лампы с винтовым креплением имеют самобалласт и, как правило, могут быть вставлены в имеющуюся винтовую розетку без какого-либо дополнительного оборудования, для вставных ламп требуется балласт и патрон, соответствующий их конкретной базовой конфигурации.Их также иногда называют интегрированными (винтовая основа) и неинтегрированными (вилка).

Оба бывают разной мощности, размеров, цветовых температур и базовых типов, и они известны прежде всего своей эффективностью, долгим сроком службы, низкой стоимостью и простотой модернизации.

Откуда они взялись?

Хотя компактные люминесцентные лампы считаются относительно новой технологией, этот тип лампы создавался более 100 лет. Круглые и U-образные лампы были созданы, чтобы уменьшить общая длина люминесцентных ламп и была предшественницей КЛЛ, как это известно сегодня.

Современный КЛЛ был изобретен Эдвардом Хаммером, инженером General Electric, но в то время не производился из-за высокой стоимости производства. В 1980 году Philips стала первым производителем, который начал массовое производство компактных люминесцентных ламп с ввинчивающимся цоколем.

За последние 30 лет технология продолжала совершенствоваться. Современные КЛЛ меньше по размеру, излучают больше света на ватт, быстрее нагреваются, имеют лучшее качество света и намного дешевле, чем те, что были в прошлые годы.

Как они работают?

Компактные люминесцентные лампы функционально идентичны линейным люминесцентным лампам.

Обе газоразрядные лампы используют электричество, излучаемое катодами, для возбуждения паров ртути, содержащихся в стеклянной оболочке, с использованием процесса, известного как неупругое рассеяние.

Люминофор и благородный газ, например аргон, также содержатся внутри стеклянной оболочки.

Атомы ртути излучают ультрафиолетовый (УФ) свет, который, в свою очередь, заставляет люминофор в лампе флуоресцировать или светиться, производя видимый свет.

Где они используются?

Компактные люминесцентные лампы постоянно совершенствуются и являются идеальной заменой для постоянно растущего числа приложений, как коммерческих, так и жилых.В частности, ввинчиваемые КЛЛ являются идеальной заменой из-за простоты модернизации. Можно просто снять старую лампу и вкрутить КЛЛ. Вставные КЛЛ требуют как специальной розетки, так и балласта, поэтому их сложнее модернизировать.

На этом этапе на самом деле легче обсудить, где КЛЛ не идеальны: они обычно не подходят для использования с устройствами управления, такими как диммеры, таймеры или фотодатчики (например, датчики движения или датчики дневного света). Они могут работать в этих приложениях, но номинальный срок службы, вероятно, сократится, и поэтому такой тип использования обычно не рекомендуется и не покрывается гарантиями производителя.Некоторые КЛЛ можно использовать с диммерами, не влияя на номинальный срок службы, но только если они специально разработаны для этой функции и указаны как лампы с регулируемой яркостью.

Другие полезные ресурсы

Люминесцентная лампа. Факты для детей

Традиционная люминесцентная лампа в форме трубки в простом приспособлении.

Люминесцентная лампа — это тип электрического света (лампы), в котором используется ультрафиолет, излучаемый парами ртути, для возбуждения люминофора, излучающего видимый свет. Есть два основных типа: традиционные флуоресцентные и компактные люминесцентные.Эта статья о традиционных люминесцентных лампах (с прямой трубкой).

Стоимость люминесцентной лампы часто намного выше, чем у лампы накаливания той же мощности, и свет люминесцентных ламп выглядит иначе, чем свет ламп накаливания. Люминесцентные лампы имеют более длительный срок службы и потребляют меньше энергии, чем лампы накаливания той же яркости. Люминесцентная лампа может сэкономить более 30 долларов США на расходах на электроэнергию в течение срока службы лампы по сравнению с лампой накаливания.

Как это работает

Электрический ток пропускается к парам ртути внутри трубки, заставляя их излучать ультрафиолетовый (УФ) свет. Люминофор на стенках трубки поглощает ультрафиолетовый свет. Это заставляет электрон подпрыгивать на орбиталь с более высокой энергией. Когда электрон возвращается на свою нормальную орбиталь, люминофор повторно излучает свою энергию в виде видимого света.

Балласт

Балласт предотвращает протекание слишком большого количества электричества через трубку.Он также запускает лампу с высоким напряжением на долю секунды при включении. Балласт расположен внутри светильника в традиционных светильниках с люминесцентными лампами. В компактных люминесцентных лампах балласт находится в основании или рядом с основанием лампы. Есть два типа балластов: магнитные и электронные. Магнитные балласты в большинстве своем вышли из употребления, так как они менее эффективны, чем электронные балласты, они вызывают мерцание лампы и не запускаются мгновенно. Электронные балласты когда-то были дороже магнитных балластов, но сейчас цена примерно такая же.

Срок службы

Средний номинальный срок службы люминесцентной лампы в 8–15 раз больше, чем у ламп накаливания. Люминесцентные лампы обычно имеют расчетный срок службы от 7000 до 15000 часов, тогда как лампы накаливания обычно производятся с расчетным сроком службы 750 или 1000 часов.

Срок службы любой лампы зависит от многих факторов, включая рабочее напряжение, производственные дефекты, воздействие скачков напряжения, механические удары, частоту включения и выключения, ориентацию лампы и рабочую температуру окружающей среды.Срок службы люминесцентной лампы значительно короче, если ее часто включать и выключать. В случае 5-минутного цикла включения / выключения срок службы люминесцентной лампы может быть сокращен до «близкого к сроку службы ламп накаливания». Программа U.S. Energy Star рекомендует оставлять люминесцентные лампы включенными, если вы выходите из комнаты менее чем на 15 минут, чтобы этой проблемы не возникло. Если свет необходимо часто включать и выключать, можно использовать люминесцентные лампы с холодным катодом. Люминесцентные лампы с холодным катодом рассчитаны на гораздо большее количество циклов включения / выключения, чем стандартные лампы.

Содержание и переработка ртути

Ртуть внутри трубки токсична и превращает эти лампы в опасные отходы. После того, как лампочки перестанут работать, их необходимо сдать в центр утилизации. При нормальном использовании ртуть не может улетучиться, хотя она улетучится, если лампа сломана. Если одна лампочка выходит из строя, это обычно не проблема. Рекомендуется открывать окна, чтобы проветрить комнату, и убирать разбитое стекло изолентой вместо пылесоса.

Альтернативы

Многие люди и предприятия не хотят использовать люминесцентные лампы из-за содержания в них ртути.Возможными альтернативами являются галогенные, светодиодные и традиционные лампы накаливания.

Светодиодные лампы

можно установить в люминесцентные лампы, но иногда электрику необходимо сначала перемонтировать светильник, чтобы удалить балласт.

Связанные страницы

Детские картинки

  • Лампы люминесцентные линейные для освещения пешеходного тоннеля

  • Патрон одного типа для двухштырьковых люминесцентных ламп T12 и T8

  • Крупный план катодов бактерицидной лампы (по существу аналогичная конструкция, в которой отсутствует люминесцентный люминофор, что позволяет видеть электроды)

  • В бактерицидной лампе используется ртутный тлеющий разряд низкого давления, идентичный таковому в люминесцентной лампе, но оболочка из плавленого кварца без покрытия позволяет пропускать ультрафиолетовое излучение.

  • ПРА разные для люминесцентных и газоразрядных ламп

  • ПРА 230 В для 18–20 Вт

  • Тепловизионное изображение спиральной люминесцентной лампы.

  • Люминесцентная лампа с холодным катодом от вывески аварийного выхода. Работая при гораздо более высоком напряжении, чем другие люминесцентные лампы, лампа производит тлеющий разряд с низким током, а не дугу, как неоновый свет. Без прямого подключения к сети ток ограничивается одним трансформатором, что исключает необходимость в балласте.

  • А предпусковой подогрев лампа люминесцентная «стартер» (автоматический пусковой выключатель)

  • Пускатели электронных люминесцентных ламп

  • Быстросменный «железный» (магнитный) балласт постоянно нагревает катоды на концах ламп. В этом балласте последовательно работают две лампы F40T12.

  • Базовая схема электронного балласта

  • Эта трубка, которая включалась и выключалась регулярно, больше не могла запускаться после того, как с катодов распылялось достаточное количество термоэмиссионной смеси.Испаренный материал прилипает к стеклу, окружающему электроды, в результате чего оно темнеет и становится черным.

  • Компактная люминесцентная лампа, срок службы которой подошел к концу из-за адсорбции ртути. Свет излучается только базовым аргоном.

  • Свет люминесцентной лампы, отраженный компакт-диском, показывает отдельные цветные полосы.

  • Спиральная люминесцентная лампа холодного белого цвета, отраженная от дифракционной решетки, выявляет различные спектральные линии, составляющие свет.

  • Проблема «эффекта удара», возникающая при съемке фотографий при стандартном флуоресцентном освещении.

  • Одна из первых ртутных ламп, изобретенных Питером Купером Хьюиттом в 1903 году. Она была похожа на люминесцентную лампу без люминесцентного покрытия на трубке и давала зеленоватый свет. Круглое устройство под лампой — балласт.

  • Крупный план нити накала ртутной газоразрядной лампы низкого давления показывает белое термоэмиссионное покрытие на центральной части катушки, действующей как горячий катод.покрытие разбрызгивается каждый раз при запуске лампы, что приводит к выходу лампы из строя.

Люминесцентная лампа — обзор

III Квантоворасщепляющие люминофоры (QSP) и безртутные люминесцентные лампы

Обычные люминесцентные лампы, которые обеспечивают энергоэффективное освещение общего назначения в коммерческих и жилых помещениях, используют ртуть в качестве активного вещества для генерации УФ-излучения. Однако растет озабоченность по поводу выщелачивания растворимой ртути из отработанных ламп на свалках твердых отходов, попадающих в запасы грунтовых вод.Люминесцентная лампа, в которой разряд ксенона низкого давления возбуждает подходящие люминофоры для генерации белого света, может рассматриваться как безртутная замена существующим люминесцентным лампам. Недавно эффективность разряда ксенонового газа составила почти 65% при оптимальных условиях эксплуатации. Однако проблемы с эффективностью лампы не позволяют нам рассматривать обычные люминофоры как материалы, генерирующие белый свет в такой люминесцентной лампе.

Общая эффективность преобразования люминесцентной лампы может быть схематически записана как η лампа ∼ η uv vis / ε uv ] Q p , где η uv — эффективность разряда для преобразования электроэнергии в УФ-энергию, Q p — квантовая эффективность люминофора, ε vis — средневзвешенная энергия спектра видимых фотонов, излучаемых люминофором (это фиксируется спектральная чувствительность человеческого глаза, которая достигает максимума около 555 нм), а ε uv — энергия фотона, испускаемого разрядом и поглощаемого люминофором.

Для обычных люминесцентных ламп на основе ртути эффективность составляет (очень приблизительно): 0,25 ∼ 0,65 [254 нм / 555 нм] 0,85. Обратите внимание, что эффективность разряда составляет около двух третей, и люминофор преобразует почти каждый падающий фотон в УФ-излучение. Если эффективность разряда составляет 65%, а люминофор почти идеален, чем объясняется относительно низкая общая эффективность преобразования, составляющая 25%? Ответ заключается в стоксовом сдвиге, обозначенном здесь отношением [ к / ε uv ], которое учитывает тот факт, что каждый УФ-фотон, падающий на люминофор, несет энергию около 5 эВ, в то время как каждый фотон, испускаемый люминофор несет чуть более 2 эВ.На этот единственный процесс приходится 55% потерь энергии в обычной люминесцентной лампе.

Если мы хотим воспроизвести эффективность преобразования энергии обычных люминесцентных ламп, но с разрядом Xe, который излучает на длине волны 147 нм, более высокие потери стоксова сдвига могут быть компенсированы более высокой квантовой эффективностью люминофора. Были некоторые демонстрации люминофоров, которые в избытке производят более одного видимого фотона на каждый падающий УФ-фотон. Мы называем такие материалы «квантово-расщепляющими люминофорами» (QSP).Например, люминофор YF 3 : Pr 3+ дает квантовую эффективность 1,40 ± 0,15 при комнатной температуре при возбуждении излучением 185 нм. Если этот люминофор также дает такую ​​же квантовую эффективность при возбуждении 147 нм, тогда требование преобразования энергии становится более разумным: 0,25 ∼ 0,65 [147 нм / 555 нм] 1,40. Можно сразу увидеть преимущества люминофора YF 3 : Pr 3+ в устройствах, в которых в качестве основного источника возбуждения используется вакуумное ультрафиолетовое излучение (ВУФ) разряда инертных газов.

Процесс квантового расщепления в люминофорах, активированных Pr 3+ , показан на рис. 11A. Падающие фотоны ВУФ-излучения поглощаются через разрешенный оптический переход Pr 3+ 4 f → 5 d . Возбуждение затухает до уровня 1 S 0 . Тогда вероятность перехода такова, что уровень 1 S 0 радиационно распадается на уровень 1 I 6 , что приводит к генерации первого фотона.Второй переход, который соединяет верхний уровень 3 P с несколькими уровнями основного состояния, дает второй фотон.

РИСУНОК 11. Схематическое изображение квантового расщепления в (A) материалах, активированных Pr 3+ и (B) материалах, активированных Gd 3+ , Eu 3+ ; –- & gt; указывает на безызлучательные переходы.

К сожалению, практическое использование люминофора YF 3 : Pr 3+ непросто по нескольким причинам.Во-первых, люминофор нестабилен в присутствии разряда инертных газов / ртути, который используется в обычных люминесцентных лампах. Неизвестно, возникает ли эта нестабильность из-за химического, фотохимического, плазменного или другого механизма. Во-вторых, крупномасштабное производство фторсодержащих материалов затруднено. В-третьих, излучение Pr 3+ , которое происходит в основном в темно-синем (около 405 нм), по существу теряется, потому что человеческий глаз практически нечувствителен к этой длине волны.

Вышеупомянутые проблемы с практической реализацией фторированных материалов побудили Шриваставу и его коллег продолжить разработку оптимизированных решеток-хозяев оксидов в качестве QSP.Были обнаружены три оксидных материала, в которых наблюдается квантовое расщепление Pr 3+ : SrAl 12 O 19 , LaMgB 5 O 10 и LaB 3 O 6 . Однако ни один из оксидных материалов не показал квантовую эффективность, превышающую единицу, и проблема темно-синего излучения все еще оставалась.

Недавно в литературе были описаны попытки создания QSP, основанные на трехвалентном ионе гадолиния. Падающие фотоны ВУФ-излучения поглощаются через оптический переход Gd 3 + 8 S 7/2 6 G J (рис.11Б). Процесс кросс-релаксации вызывает излучение намеренно добавленного активатора Eu 3+ (этап 1 на фиг. 11B). Во время этого процесса кросс-релаксации ион Gd 3+ релаксирует в нижнее состояние 6 P J . Энергия, мигрирующая по уровням 6 P J , захватывается вторым ионом Eu 3+ (этап 2 на фиг. 11B). Следовательно, два красных фотона могут быть произведены на один падающий фотон ВУФ-излучения. Действительно, внутренняя квантовая эффективность приближается к двум в Li (Y, Gd) F 4 : Eu 3+ .

Вышеупомянутое обсуждение показывает, что люминофор, который появился как слабое звено в цепи преобразования энергии, может быть улучшен путем разработки QSP. Ни один такой материал не был превращен в коммерчески жизнеспособный люминофор, хотя значительные усилия продолжаются в разработке таких люминофоров.

Недостатки люминесцентного освещения — энергоэффективное освещение

Люминесцентные лампы — это особый тип газовых светильников, которые излучают свет в результате химической реакции, в которой газы и пары ртути взаимодействуют с образованием ультрафиолетового света внутри стеклянной трубки.Ультрафиолетовый свет освещает люминофорное покрытие внутри стеклянной трубки, которое излучает белый «флуоресцентный» свет. Флуоресцентные лампы имеют множество преимуществ перед старыми осветительными приборами, такими как лампы накаливания. Они намного эффективнее, поэтому потребляют меньше энергии. Они также имеют более длительный срок службы — примерно в 13 раз дольше, — поэтому их не нужно менять так часто.

Благодаря широкой доступности люминесцентных ламп, их можно найти практически везде — в школах, больницах, продуктовых магазинах, офисных зданиях, торговых центрах и наших домах.Хотя в ближайшем будущем технология светодиодов (светоизлучающих диодов) должна заменить люминесцентные лампы в качестве «короля выбора зеленого освещения», многие руководители предприятий продолжают использовать люминесцентные лампы в своих зданиях. На данный момент люминесцентные осветительные приборы могут быть дешевле, чем их более эффективные светодиодные аналоги, но у люминесцентного освещения есть недостатки, которые необходимо учитывать.

Компактные люминесцентные лампы (КЛЛ) и люминесцентные лампы


Основное различие между ними — размер и применение.Большинство компактных люминесцентных ламп (КЛЛ) имеют особую форму, которая позволяет их вставлять в стандартные бытовые розетки. Еще одно отличие состоит в том, что для линейных люминесцентных ламп требуется независимый балласт, отдельный от лампы, тогда как в большинстве компактных люминесцентных ламп балласт встроен в цоколь.

И линейные, и компактные люминесцентные лампы излучают искусственный свет по той же технологии. В компактных люминесцентных лампах по-прежнему используются лампы, но, как следует из названия, они намного меньше, чем их аналоги с линейными лампами.Лампы CLF были разработаны для замены стандартных применений для ламп накаливания и представляют собой просто усовершенствования линейной люминесцентной технологии за счет увеличения срока службы и более эффективного освещения.

Использование флуоресцентного освещения

Раньше люминесцентным лампам требовался период «прогрева», чтобы испарить их внутренние газы в плазму. С тех пор было разработано несколько технологий почти мгновенного запуска, включая «быстрый запуск», «мгновенный запуск» и «быстрый запуск».”

Поскольку люминесцентные лампы нагреваются, для их работы требуется большее напряжение. Требуемое напряжение регулируется балластом — магнитным устройством, регулирующим напряжение, ток и т. Д., — который необходим для зажигания люминесцентной лампы. По мере того как люминесцентный свет стареет и со временем становится все менее и менее эффективным, ему требуется все больше и больше напряжения для получения того же количества света, пока напряжение в конечном итоге не превысит возможности балласта и свет не выйдет из строя.

Недостатки люминесцентного освещения

Флуоресцентное освещение существует уже более 100 лет и остается недорогим вариантом для модернизации старых осветительных приборов.Флуоресцентные лампы обычно являются высокоэффективным способом освещения большой площади, они более эффективны и служат дольше, чем лампы накаливания; однако показано, что использование исключительно флуоресцентного освещения оказывает отрицательное влияние на эргономику и здоровье.

1. Люминесцентные лампы содержат токсичные материалы.

Ртуть и фосфор внутри люминесцентных ламп опасны . Если люминесцентная лампа разбита, небольшое количество токсичной ртути может выделяться в виде газа, загрязняя окружающую среду.Остальное содержится в люминофоре на самом стекле, который часто считается более опасным, чем пролитая ртуть.

При чистке разрыва люминесцентной лампы EPA рекомендует проветривать место разрыва и использовать влажные бумажные полотенца для сбора битого стекла и других мелких частиц. Утилизированное стекло и использованные полотенца следует поместить в герметичный пластиковый пакет. Избегайте использования пылесосов, так как они могут привести к попаданию частиц в воздух.

2. Частое переключение приводит к преждевременному выходу из строя.

Люминесцентные лампы значительно стареют, если они установлены в месте, где они часто включаются и выключаются. В экстремальных условиях срок службы люминесцентной лампы может быть намного короче, чем у дешевой лампы накаливания. Как бы то ни было, срок службы люминесцентной лампы можно продлить, если оставить ее включенной в течение длительного времени.

Если вы используете флуоресцентные лампы в сочетании с элементами управления освещением, такими как датчики движения, которые часто срабатывают и по истечении времени ожидания, следует учитывать аспект раннего отказа.

3. Свет от люминесцентных ламп является всенаправленным.

Свет, исходящий от люминесцентных ламп, является всенаправленным. Когда люминесцентная лампа горит, она рассеивает свет во всех направлениях или на 360 градусов вокруг лампы. Это крайне неэффективно, потому что используется только около 60-70% света, излучаемого лампой, а остальная часть тратится впустую. Определенные области, как правило, становятся чрезмерно освещенными из-за растраченного света, особенно в офисных зданиях, и могут потребоваться дополнительные аксессуары в самом осветительном приборе, чтобы правильно направить выход лампы.

4. Люминесцентные лампы излучают ультрафиолетовый свет.

В исследовании 1993 года исследователи обнаружили, что воздействие ультрафиолета при сидении под флуоресцентными лампами в течение восьми часов эквивалентно одной минуте пребывания на солнце. Проблемы со здоровьем, связанные с светочувствительностью, могут усугубляться искусственным освещением у чувствительных людей. Исследователи предположили, что УФ-излучение, излучаемое этим типом освещения, привело к увеличению числа заболеваний глаз, в первую очередь катаракты. Другие медицинские работники предположили, что повреждение сетчатки, миопия или астигматизм также могут быть объяснены побочными эффектами флуоресцентного света.

Ультрафиолетовый свет также может повлиять на ценные произведения искусства, такие как акварель и текстиль. Произведения искусства должны быть защищены дополнительными стеклянными или прозрачными акриловыми листами, помещенными между источником света и картиной.

5. Старые флуоресцентные лампы терпят непродолжительный период прогрева.

Обычно приходится ждать где-то 10-30 секунд, чтобы старые флуоресцентные лампы достигли полной яркости. Многие новые модели теперь используют «быстрый» запуск или аналогичные технологии, подобные упомянутым выше.

6. Балласт или жужжание.

Магнитные балласты необходимы для работы люминесцентных ламп. Электромагнитные балласты с незначительным дефектом могут издавать слышимый гудящий или жужжащий шум. Однако шум можно устранить, используя лампы с высокочастотными электронными балластами.

7. Воздействие на окружающую среду и стоимость переработки.

Как упоминалось ранее, утилизация люминофора и, что более важно, токсичной ртути в люминесцентных лампах является экологической проблемой.Постановления, введенные правительством, требуют специальной утилизации люминесцентных ламп отдельно от обычных и бытовых отходов.

В большинстве случаев экономия энергии превышает затраты на переработку, но переработка остается дополнительными расходами для обеспечения правильной утилизации ламп. В некоторых случаях, если утилизация ламп обходится слишком дорого, людям больше не рекомендуется утилизировать их.

8. Чувствительность флуоресцентного света

В течение последних нескольких десятилетий исследование за исследованием показывали случайную связь между воздействием флуоресцентного света и различными негативными эффектами.Все эти проблемы связаны с качеством излучаемого света и основным состоянием людей. Из более чем 35 миллионов человек, страдающих мигренью, большинство из них, вероятно, перенесут общую светочувствительность. Девять из каждых десяти аутичных людей имеют чувствительность к окружающей среде, которая, как сообщается, часто ухудшается при флуоресцентном освещении. Доказано, что при некоторых типах эпилепсии искусственное освещение вызывает приступы.

Подобно другим симптомам светобоязни (или светочувствительности), флуоресцентное освещение может вызывать: головные боли / приступы мигрени, напряжение глаз и воспаление, трудности с чтением или фокусировкой, тошноту, чувство тревоги и депрессии, нарушение режима сна и многое другое.Свойства, связанные с флуоресцентным освещением, которые, как считается, влияют на уровень толерантности человека, включают: большое количество синего света, низкочастотное мерцание и общую яркость.

9. Сезонное аффективное расстройство

Сезонное аффективное расстройство, также известное как «Зимняя блюз», часто возникает у людей в зимние месяцы. Это связано с отсутствием полного спектра света, который мы обычно получаем от солнечного света. Во время унылого серого неба зимних месяцев большая часть светового спектра блокируется, и наши тела реагируют негативно.

Многие люди сообщают о подобных симптомах, когда они работают при флуоресцентном освещении и не выходят на улицу в течение дня. Без полного спектра света, который мы получаем от дневного света, некоторые функции организма не запускаются и не поддерживаются, что заставляет нас чувствовать себя подавленными на свалках.

3. Как работают люминесцентные лампы?

3.4. Физические характеристики ламп

Принципы работы

Люминесцентная лампа генерирует свет от столкновений с горячим газ («плазма») свободного ускоренного электроны с атомами– обычно ртуть — в какие электроны поднимаются на более высокие уровни энергии, а затем отступать при излучении на двух линиях УФ-излучения (254 нм и 185 нм).Таким образом созданное УФ-излучение затем преобразуется в видимый свет УФ возбуждение флуоресцентного покрытия на стеклянной оболочке фонарь. Химический состав этого покрытия подобран таким образом, чтобы излучать в желаемом спектре.

Строительство

Трубка люминесцентной лампы заполнена газом с низким содержанием пар ртути под давлением и благородные газы в целом давление около 0.3% от атмосферное давление. В самая обычная конструкция, пара эмиттеров накала, один на каждом конце трубки, нагревается током и используется для испускать электроны, которые возбуждают благородные газы и газообразную ртуть путем ударной ионизации. Ионизация может происходить только в исправных лампочках.Следовательно, вредные последствия для здоровья от этого процесса ионизации невозможно. Кроме того, лампы часто оснащаются двумя конверты, что значительно снижает количество УФ-излучения испускается.

Электрические аспекты эксплуатации

Для запуска лампы и поддерживать ток на достаточном уровне для постоянного света эмиссия.В частности, схема подает высокое напряжение на запускают лампу и регулируют ток через трубку. Возможны различные конструкции. в в простейшем случае используется только резистор, что относительно энергоэффективность. Для работы от переменный ток (AC) напряжения сети, использование индуктивного балласта является обычным явлением и было известен отказ до окончания срока службы лампы, вызывающий мерцание лампы.Различные схемы, разработанные для начать и запустить люминесцентные лампы выставляют различные свойства, то есть излучение акустического шума (гула), срок службы (лампы и балласта), энергоэффективность и мерцание интенсивности света. Сегодня в основном улучшенная схемотехника используется, особенно с компактными люминесцентными лампами, где Схема не может быть заменена перед люминесцентными лампами.Это уменьшило количество технических сбоев, вызывающих эффекты, как перечисленные выше.

ЭДС

Часть электромагнитный спектр который включает статические поля, а поля до 300 ГГц — вот что здесь упоминается как электромагнитные поля (ЭДС).Литература о том, какие виды и сильные стороны ЭМП. которые излучаются из КЛЛ редко. Однако есть несколько видов ЭДС, обнаруженных в близость этих ламп. Как и другие устройства, которые зависят на электричество для выполнения своих функций они излучают электрические и магнитные поля в низкочастотный диапазон ( частота распространения 50 Гц и, возможно, также гармоники из них, e.грамм. 150 Гц, 250 Гц и т. Д. В Европе). Кроме того, КЛЛ, в отличие от лампы накаливания, также излучают в высокочастотном диапазоне ЭДС (30-60 кГц). Эти частоты различаются между разными типами ламп.

Мерцание

Все лампы будут различать интенсивность света при удвоении мощности от сети. (линейная) частота, так как мощность, подаваемая на лампу, достигает пика дважды за цикл при 100 Гц или 120 Гц.Для лампы накаливания это мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла емкость нити. Если модуляция света интенсивности достаточно для восприятия человеческим глазом, тогда это определяется как мерцание. Модуляции на 120 Гц не видно, в большинстве случаев даже не при 50 Гц (Seitz et al.2006 г.). Флюоресцентные лампы включая КЛЛ, которые используют поэтому высокочастотные (кГц) электронные балласты называются «без мерцания».

Однако как лампы накаливания (Chau-Shing and Devaney, 2004), так и «немерцающие» люминесцентные источники света (Хазова и О’Хаган 2008) производят еле заметное остаточное мерцание.Дефектный лампы или схемы могут в некоторых случаях привести к мерцанию при более низкой частот, либо только в часть лампы или во время цикла запуска в несколько минут.

Световое излучение, УФ-излучение и синий свет

Имеются характерные различия между излучаемыми спектрами. люминесцентными лампами и лампы накаливания, потому что различных принципов работы.Лампы накаливания настраиваются по своей цветовой температуре за счет специальных покрытий из стекло и часто продаются с атрибутом «теплый» или «Холодные» или, точнее, по их цветовой температуре для профессиональные светотехнические приложения (фотостудии, магазины одежды и т. д.). В случае люминесцентных ламп спектральное излучение зависит от покрытия люминофора. Таким образом, люминесцентные лампы могут быть обогащены синим светом (длины волн 400-500 нм), чтобы лучше имитируют дневной свет по сравнению с лампами накаливания. Как и люминесцентные лампы, КЛЛ излучают больше синего цвета. свет, чем лампы накаливания.Есть на международном уровне признанные пределы воздействия излучения (200-3000 нм) испускается лампами и осветительными приборами, защищенными от фотобиологические опасности (Международная электротехническая Комиссия 2006 г.). Эти ограничения также включают излучение от КЛЛ.

УФ-содержание излучаемого спектра зависит как от люминофор и стеклянная колба люминесцентной лампы.УФ выброс лампы накаливания есть ограничивается температурой нити накала и поглощение стекла. Некоторый КЛЛ с одной оболочкой излучают УФ-В и следы УФ-С излучения на длине волны 254 нм, что не так для ламп накаливания (Khazova and O´Hagan 2008).Экспериментальный данные показывают, что КЛЛ производят больше УФ-излучение, чем вольфрамовая лампа. Кроме того, количество УФ-В излучение производится из КЛЛ с одной оболочкой, с того же расстояния 20 см, составляли примерно в десять раз выше, чем облучается вольфрамовой лампой (Мозли и Фергюсон, 2008 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *