Измерение мощности в электрических цепях постоянного и переменного токов: способы и формулы
Очень часто при проектировании электрических схем радиолюбители сталкиваются с проблемой измерения мощности, которую потребляют радиокомпоненты. Специалисты в метрологической сфере рекомендуют два метода, позволяющих вычислить и грамотно рассчитать ее значение. В этом случае нужно разобрать подробнее физический смысл величины, а также ее составляющих, от которых она зависит.
Общие сведения
При проектировании устройств нужно уметь правильно рассчитывать мощность электроэнергии электрооборудованием. Это необходимо, прежде всего, для долговечной работы устройства. Если изделие работает на износ, то оно способно выйти из строя сразу или в течение некоторого времени.
Такой вариант считается недопустимым, поскольку существуют виды техники, которые должны работать без отказов (аппарат искусственного дыхания, контроль уровня метана в шахте и так далее), так как от этого зависит человеческая жизнь. К основным характеристикам электрической энергии относятся следующие: мощность, сила тока, напряжение (разность потенциалов) и электропроводимость (сопротивление) материалов.
Мощность потребителя
Мощность не следует путать с электрической энергией. Единицей измерения первой является ватт (Вт), название которой произошло от фамилии известного физика Джеймса Уатта. Физическим смыслом 1 Вт является расход электрической энергии за единицу времени, равной 1 секунде (1 Вт = расход 1 джоуля за 1 секунду). Существуют производные единицы измерения: милливатт (1 мВт = 0,001 Вт), киловатт (1 кВт = 1000 Вт), мегаватт (1 МВт = 1000 кВт = 1000000 Вт), гигаватт (1 ГВт = 1000 МВт = 1000000 кВт = 1000000000 Вт) и так далее. Для измерения электрической энергии применяются специальные счетчики, а ее единицей измерения является Вт*ч.
Ватт можно связать с некоторыми физическими величинами: 1 Вт = 1 Дж/с = (1 кг * sqr (м)) / (c * sqr ©) = 1 Н * м / с = 746 л. с. Последнее числовое значение называется электрической лошадиной силой. Ваттметр — измеритель электрической мощности. Однако ее величину можно определить и другим способом. Для этого следует разобрать физические величины, от которых она зависит.
Сила тока
Количество электрического заряда, который проходит через токопроводящий материал за единицу времени, называется силой электрического тока. Сокращенно величину называют силой тока или током. Она обозначается литерами «I» или «i» и имеет направление (векторная величина). Измеряется ток в амперах (А). Существуют также производные единицы, образованные при помощи приставок: 1 мА = 0,001 А, 1 кА = 1000 А и так далее. Измерить его значение можно амперметром. Для этого его нужно подключать последовательно в электрическую цепь.
Физическим смыслом тока в 1 А является прохождение электрического заряда в 1 Кл (кулон) за 1 секунду через площадь поперечного сечения S. В 1 кулоне содержится примерно 6,241*10^(18) электронов.
Ток в научной интерпретации классифицируется на постоянный и переменный. Первый вид не изменяет своего направления за единицу времени, но его амплитудные значения могут изменяться. Направление и амплитуда переменного тока изменяется по определенному закону (синусоидальный и несинусоидальный). Основным параметром считается его частота. Определяется тип переменного тока с помощью осциллографа.
Электрическое напряжение
Из курса физики известно, что каждое вещество состоит из атомов, которые обладают нейтральным зарядом. Они состоят из субатомных частиц. К ним относятся следующие: протоны, электроны и нейтроны. Первые имеют положительный заряд, вторые — отрицательный, а третьи — не заряжены вообще.
Суммарный заряд протонов компенсирует заряд всех электронов. Однако под действием внешних сил это равенство нарушается, и электрон «вырывается» из атома, который уже обладает положительным зарядом. Он притягивает электрон с соседнего атома, и процесс повторяется до тех пор, пока энергия не будет минимальной (меньше энергии «вырывания» электрона).
При межатомном взаимодействии образуется электромагнитное поле с отрицательной или положительной составляющими. Разность между двумя точками противоположных по знаку составляющих называется электрическим напряжением. Работа электромагнитного поля по перемещению точечного электрического заряда из точки А в точку В называется разностью потенциалов. Физический смысл напряжения (U): разность потенциалов в 1 В между двумя точечными зарядами в 1 Кл, на перемещение которых тратится энергия электромагнитного поля, равная 1 Дж.
Единицей измерения является вольт (В). Определить значение разности потенциалов можно с помощью вольтметра, который подключается параллельно. Производными единицами измерения считаются следующие: 1 мВ = 0,001 В, 1 кВ = 1000 В, 1 МВ = 1000 кВ = 1000000 В и так далее.
Сопротивление электрической цепи
Электропроводимость материала зависит от нескольких факторов: электронной конфигурации, типа вещества, геометрических параметров и температуры. Сведения об электронной конфигурации вещества можно получить из периодической таблицы Д. И. Менделеева. Согласно этой информации вещества бывают:
- Проводниками.
- Полупроводниками.
- Диэлектриками.
К первой группе следует отнести все металлы, электролиты (растворы, проводящие ток) и ионизированные газы. Носителями электрического заряда в металлах являются электроны. В растворах их роль выполняют ионы, которые бывают положительными (анионы) и отрицательными (катионы). Свободными носителями заряженных частиц в газах считаются свободные электроны и положительно заряженные ионы.
Полупроводники проводят электричество только при определенных условиях. Например, при воздействии на него внешних сил. Под их действием кулоновские связи электрона с ядром уменьшаются. При этом отрицательно заряженная частица «вырывается». На ее месте образуется «дырка», обладающая положительным зарядом. Она притягивает соседний электрон, вырывая его с атома. В результате этого осуществляется движение электронов и дырок. Изоляторы или диэлектрики вообще не проводят электричество. К ним относятся материалы без свободных носителей заряда, а также инертные газы.
В проводниках при повышении температурных показателей происходит рост величины сопротивления. При этом происходит разрушение и искажение кристаллической решетки. Заряженные частицы сталкиваются (взаимодействуют) с атомами и другими частицами материала. В результате их движение замедляется, но потом снова возобновляется под действием электромагнитного поля. Процесс этого «взаимодействия» называется электрической проводимостью вещества. Однако в полупроводниках при повышении температуры эта величина уменьшается. К геометрии материалов следует отнести следующие: длину и площадь поперечного сечения.
Сопротивление измеряется в Омах (Ом) при помощи омметра, который подсоединяется параллельно к участку цепи или радиодетали. Существуют производные единицы измерения: 1 кОм = 1000 Ом, 1 МОм = 1000 кОм = 1000000 Ом.
Методы измерения
Мощность можно определить двумя способами: косвенным и прямым. В первом случае это делается при помощи амперметра и вольтметра, а также осциллографа. Измеряются значения напряжения и тока, а затем по формулам вычисляется мощность. Этот способ имеет один недостаток: величина мощности получается с некоторой погрешностью.
При использовании прямого метода используется специальный прибор-измеритель. Он называется ваттметром и показывает мгновенное значение мощности. У каждого из способов есть свои достоинства и недостатки. Какой из методов наиболее оптимален, определяет сам радиолюбитель. Если проектируется какое-либо изделие, которое отличается надежностью, то следует применять прямой метод. В других случаях рекомендуется воспользоваться косвенным методом.
Косвенный способ
Мощность в цепях постоянного и переменного токов определяется различными способами. Для каждого случая существуют свои законы и формулы. Однако мощность можно не рассчитывать, поскольку она указана на электрооборудовании. Расчет применяется только при проектировании устройств.
Для цепей постоянного тока нужно воспользоваться формулой: P = U * I. Ее можно вывести из закона Ома для участка или полной цепи. Если рассматривается полная цепь, то формула принимает другой вид с учетом ЭДС (е): P = e * I. Основные соотношения для расчета:
- Для участка электрической цепи: P = I * I * R = U * U / R.
- Для полной цепи, в которой подключен электродвигатель или выполняется зарядка аккумулятора (потребление): P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
- В цепи присутствует генератор или гальванический элемент (отдача): P = I * (e + (I * Rвн)).
Эти соотношения невозможно применять для цепей переменного тока, поскольку он подчиняется другим физическим законам. При измерении мощности в цепях переменного тока следует учитывать ее составляющие (активная, реактивная и полная). Если в цепи присутствует только резистор, то мощность считается активной. При наличии емкости или индуктивности — реактивной. Полная — сумма активной и реактивной составляющих.
Для вычисления первого типа физической величины применяется формула такого вида: Ра = I * U * cos (a). Значения тока и напряжения являются среднеквадратичными, а cos (a) — косинус угла между ними. Для определения реактивной мощности нужно воспользоваться следующей формулой: Qр = I * U * sin (a). Если нагрузка в цепи является индуктивной, то значение будет больше 0. В противном случае — меньше 0. Полная мощность Р определяется по следующему соотношению: P = Pa + Qp.
Прямое определение величины
Для определения значения мощности в цепях переменного и постоянного тока применяются ваттметры. В них используются электродинамические или ферроидальные механизмы. Приборы с электродинамическим механизмом выпускаются в виде переносных приборов. Они обладают высоким классом точности. Измерители мощности рекомендуется применять при выполнении точных расчетов для цепей постоянного и переменного тока с частотой до 5 кГц.
Ферродинамические приборы изготавливаются в виде электронных узлов, которые вставляются в измерительные стенды или щитовые. Основное их назначение — контроль приблизительных параметров потребления мощности электрооборудованием. Они обладают низким классом точности и применяются для измерения значений мощности переменного тока. При постоянном токе погрешность увеличивается, поскольку это обусловлено искажением петли гистерезиса ферромагнитных сердечников.
По диапазону частот приборы можно разделить на две группы: низкочастотные и радиочастотные. Ваттметры низких частот применяются в сетях промышленного питания переменного тока. Радиочастотный тип рекомендуется применять для точных измерений при проектировании различной техники. Они делятся на две категории по мощности:
- Проходящие.
- Поглощающие.
Первый вид подключается в разрыв линии, а второй — в ее конец в качестве нагрузки согласования. Кроме того, приборы для измерения мощности бывают аналоговыми и цифровыми.
При измерении мощности на высоких частотах применяются электронные и термоэлектронные ваттметры. Главным узлом считается микроконтроллер и преобразователь активной мощности. Последний преобразовывает переменный ток в постоянный. После этого происходит перемножение в микроконтроллере силы тока и напряжения. Результатом является сигнал на выходе, который зависит от I и U.
Ваттметр состоит из двух катушек. Первая из них подключается последовательно в цепь нагрузки, а другая (подвижная с резистором) — параллельно. В цифровых моделях роль катушек выполняют датчики тока и напряжения. Прибор имеет две пары зажимов. Одна пара применяется для последовательной цепи, а другая — для параллельной. Для правильного включения ваттметра выполняется обозначение * одной из двух пар зажимов.
Загрузка…Таким образом, для измерения мощности электрического тока применяются два метода. Первый из них является косвенным, а второй — прямым. Последний рекомендуется применять при проектировании сложной техники.
Измерение переменного тока.
Приборы для измерения переменного тока могут быть различными.
Для измерения тока промышленной частоты (50 – 100 Гц) используют в основном приборы непосредственной оценки на основе электромагнитной и электродинамической систем, а также термоэлектрической систем.
В маломощных цепях высоких частот ток измеряется выпрямительными, термоэлектрическими, электронными цифровыми и аналоговыми вольтметрами на резисторе с известным сопротивлением. Амперметр должен иметь минимальные значения входного сопротивления, индуктивностей и емкостей.
Приборы электромагнитной системы. Принцип действия этих приборов основан на явлении втягивания стальной пластины, соединенной со стрелкой, магнитным полем катушки. Отклонение подвижной части измерительного механизма зависит от квадрата измеряемого тока и может быть использовано для измерения как постоянного, так и переменного тока с частотой не выше 5 кГц. Подбором формы сердечника удается получить практически равномерную шкалу. Амперметры магнитоэлектрической системы выпускаются в качестве щитовых приборов классов точности 0,5, 1,0, 2,5 на частотах до 1500 Гц, и 0,5, 1,0 – до 2400 Гц. Для расширения пределов измерения тока электромагнитным амперметром применяются не шунты, а секционные катушки или трансформаторы. Достоинства – простота конструкции, дешевизна и надежность. Недостатки – малая точность и чувствительность. Электромагнитные амперметры применяют для непосредственного измерения токов до 200 А, катушка измерительного механизма включается последовательно в цепь измеряемого тока. Предел измерения определяется числом витков катушки. Чем выше предел, тем меньше витков из более толстого провода.
Электродинамические приборы. Принцип действия основан на взаимодействии двух магнитных потоков, создаваемых токами, протекающими по двум катушкам, одна из которых подвижна. В результате взаимодействия магнитных полей катушек и противодействующих пружин, подвижная катушка поворачивается на некоторый угол, пропорциональный токам в катушках. Измеряется этими приборами действующее (среднеквадратическое ) значение тока. Схемы включения обмоток катушек различны. При последовательном включении измеряются малые токи (менее 0,5 А), шкала прибора квадратична. При параллельном включении обмоток измеряются большие токи, шкала тоже квадратичная. Электродинамические амперметры выпускаются различных классов точности до 0,1. Применяются в основном на промышленных частотах. Для расширения пределов применяют переключение катушек измерительного механизма с последовательного на параллельное и трансформаторы тока.
Выпрямительные приборы.
Они широко применяются для измерения тока в звуковом диапазоне частот. Принцип действия основан на выпрямительных свойствах диода. Постоянная составляющая выпрямленного диодом тока измеряется прибором магнитоэлектрической системы. Обычно используются выпрямители однополупериодные и двухполупериодные. Выпрямительные приборы измеряют среднее значение переменного тока, а не среднеквадратическое. Шкалу прибора градуируют в среднеквадратических значениях, поэтому показания пересчитывают через коэффициент формы. Выпрямительные приборы для измерения токов широко применяют как составные элементы комбинированных приборов :тестеров, авометров, используемых для измерения токов, напряжений, сопротивлений. При использовании соответствующих диодов выпрямительные приборы могут применяться в диапазоне СВЧ. Германиевые и кремниевые диоды обеспечивают частотный диапазон до 100 МГц. Основные достоинства выпрямительных приборов – высокая чувствительность, малое собственное потребление и возможность измерения в широком диапазоне частот. Недостаток – невысокая точность. Основные источники погрешностей – изменение параметров диодов со временем. Класс точности выпрямительных приборов 1,5 и 2,5, пределы измерений по току от 2 мА до 600 А, по напряжению от 0,3 до 600 В.
Термоэлектрические приборы.
Они используются для измерения токов высокой частоты. Прибор состоит из термопреобразователя, термоэлемента и измерительного прибора.
Измерительный прибор И выполнен по магнитоэлектрической системе. Простейший термопреобразователь имеет подогреватель 2 и термопару 1 из двух разнородных проводников, спаянных между собой. Если через подогреватель термоэлемента пропускать измеряемый ток, то вследствие нагрева спая в цепи термопары и прибора И будет протекать термоток постоянного напряжения. Прибор измеряет действующее значение переменного тока. Шкала термоэлектрических приборов близка к квадратичной. Чувствительность зависит от материала термопары. Достоинства термоэлектрических приборов – высокая чувствительность, большой диапазон измерения токов, широкий диапазон частот, возможность измерения токов произвольной формы. Недостатки – неравномерность шкалы, которая в начальной части получается сжатой. Кроме того показания зависят от температуры. Общий частотный диапазон термоэлектрических приборов лежит в пределах от 45 Гц до 300 МГц, номинальные токи – от 1 мА до 50 А, классы точности – от 1,0 до 2,5.
Измерение напряжения
Измерение постоянного напряжения
Приборы непосредственной оценки.
При использовании метода непосредственной оценки вольтметр подключается параллельно тому участку цепи, на котором надо измерить напряжение. Относительная погрешность измерения напряжения равна , т.е. чем больше внутреннее сопротивление вольтметра, тем меньше погрешность измерения.
Измерение постоянного напряжения может быть выполнено любыми измерителями напряжений постоянного тока (магнитоэлектрическими, электродинамическими, электромагнитными, электростатическими, аналоговыми и цифровыми вольтметрами.) Выбор вольтметра обусловлен мощностью объекта измерений и необходимой точностью. Диапазон измеряемых напряжений лежит в пределах от долей микровольт до десятков киловольт.
Если необходимая точность может быть обеспечена приборами электромеханической группы, то следует предпочесть этот простой метод непосредственной оценки. При измерении напряжений с более высокой точностью следует использовать приборы, основанные на методе сравнения. При любом методе измерения могут быть использованы аналоговый и цифровой отсчеты.
Приборы непосредственной оценки.
Магнитоэлектрические приборы используются при проверке режимов радиосхем и используются при измерении напряжений в приборах других систем. Кроме того они используются в качестве индикаторов. Вольтметры магнитоэлектрической системы имеют равномерную шкалу, высокую точность, большую чувствительность, но низкое входное сопротивление.
Электростатические вольтметры имеют достоинство малое потребление, независимость от температуры окружающей среды, высокое входное сопротивление, а недостатки – неравномерная шкала и опасность пробоя между пластинами.
Наиболее широко для измерения постоянного напряжения применяют электронные вольтметры. Они могут быть аналоговыми и цифровыми.
Аналоговые электронные вольтметры постоянного тока.
В отличие от вольтметров электромеханической группы электронные вольтметры постоянного тока имеют высокое входное сопротивление и малое потребление тока от измерительной цепи. На рисунке М2-6 представлена структурная схема аналогового электронного вольтметра.
Рисунок М2-6. Структурная схема аналогового электронного вольтметра постоянного напряжения.
Основными элементами являются входное устройство, усилитель постоянного тока и измерительный прибор магнитоэлектрической системы. Входное устройство содержит входные зажимы, делитель напряжения, предварительный усилитель. Высокоомный делитель на резисторах служит для расширения пределов измерения. Усилитель постоянного тока служит для повышения чувствительности вольтметра и является усилителем мощности измеряемого напряжения до значения, необходимого для создания достаточного вращающего момента у измерительного прибора.
К усилителям постоянного напряжения предъявляются такие требования, как высокая линейность характеристики, постоянство коэффициента усиления. Основные технические характеристики вольтметров постоянного тока приведены в таблице М2-3.
Таблица М2-3. Основные технические характеристики вольтметров постоянного тока.
Тип, наименование прибора | Диапазон измеряемых напряжений, В | Основная погрешность измерения, % |
В2–34, вольтметр постоянного тока, дифференциальный , цифровой | 0,01 мВ – 1000В, поддиапазоны: 1 10 100,1000 | 0,005 |
В2 – 36, вольтметр постоянного тока, цифровой | 0,005 | |
В2-38, нановольтметр цифровой постоянного тока | 0,05 |
Измерение постоянного напряжения цифровыми приборами.
Цифровые вольтметры все шире применяются для измерения напряжений и токов. Упрощенная структурная схема цифрового вольтметра представлена на рис.М2-7.
Рисунок М2-7. Структурная схема цифрового вольтметра
Входное устройство содержит делитель напряжения. Аналого-цифровой преобразователь (АЦП) преобразует аналоговый сигнал в цифровую форму и представляет его цифровым кодом. Цифровое отсчетное устройство регистрирует измеряемую величину.
По типу АЦП цифровые вольтметры делятся на кодоимпульсные и времяимпульсные. Поскольку АЦП преобразует сигнал постоянного тока в цифровой код, цифровые вольтметры считают приборами постоянного напряжения. Для измерения переменного напряжения на выходе вольтметра ставится преобразователь.
По виду измеряемой величины цифровые приборы делятся на приборы:
для измерения постоянного напряжения;
для измерения переменного напряжения;
мультиметры (универсальные вольтметры для измерения напряжения, сопротивления, тока)
Цифровые вольтметры обычно имеют высокое входное сопротивление более 100 Мом, диапазоны измерений 100мВ, 1 В, 10В, 100 В, 1000В. Порог чувствительности на диапазоне 1 00 мВ может быть 10 мкВ.
Измерение электрической мощности
Довольно часто возникает необходимость измерять мощность, потребляемую из сети, или же генерируемую в сеть. Это необходимо для учета потребляемой или генерируемой энергии, а также для обеспечения нормальной работы энергосистемы (избежание перегрузок). Измерять мощность можно несколькими способами – прямым и косвенным. При прямом измерении применяют ваттметр, а при косвенном амперметр и вольтметр.
Измерение мощности в цепи постоянного тока
Из-за отсутствия реактивной и активной составляющей в цепях постоянного тока для измерения мощности ваттметр применяют очень редко. Как правило, величину потребляемой или отдаваемой энергии измеряют косвенным методом, с помощью последовательно включенного амперметра измеряют ток I в цепи, а с помощью параллельно подключенного вольтметра измеряют напряжение U нагрузки. После чего применив простую формулу P=UI и получают значение мощности.
Чтоб уменьшить погрешность измерений из-за влияний внутренних сопротивлений устройств, приборы могут подключать по различным схемам, а именно при относительно малом сопротивлении нагрузки R применяют такую схему включения:
А при большом значении R такую схему:
Измерение мощности в однофазных цепях переменного тока
Главным отличием цепей переменного тока от сетей постоянного тока, пожалуй, заключается в том, что в переменном напряжении существует несколько мощностей – полная, активная и реактивная. Полную измеряют зачастую тем же косвенным методом с помощью амперметра и вольтметра и значение ее равно S=UI.
Замер же активной P=UIcosφ и реактивной Q=UIsinφ производится прямым методом, с помощью ваттметра. Для измерения ваттметр в цепь подключают по следующей схеме:
Где токовую обмотку необходимо подключить последовательно с нагрузкой Rн, и, соответственно, обмотку напряжения параллельно нагрузке.
Замер реактивной мощности в однофазных сетях не производится. Такие опыты зачастую ставятся только в лабораториях, где ваттметры включают по специальным схемам.
Измерение мощности в трехфазных цепях переменного тока
Как и в однофазных сетях, так же и в трехфазных полную энергию сети можно измерять косвенным методом, то есть с помощью вольтметра и амперметра по схемам показанным выше. Если нагрузка трехфазной цепи будет симметричной, то можно применить такую формулу:
Uл – напряжение линейное, I- фазный ток.
Если же фазная нагрузка не симметрична, то производят суммирование мощностей каждой из фаз:
При измерении активной энергии в четырехпроводной цепи при использовании трех ваттметров, как показано ниже:
Общей энергией потребляемой из сети будет сумма показаний ваттметров:
Не меньшее распространение получил и метод измерения двумя ваттметрами (применим только для трехпроводных цепей):
Сумму их показаний можно выразить следующим выражением:
При симметричной нагрузке применима такая же формула как и для полной энергии:
Где φ – сдвиг между током и напряжением (угол фазового сдвига).
Измерение реактивной составляющей производят по той же схеме (смотри рисунок в)) и в этом случае она будет равна разности алгебраической между показателями приборов:
Если сеть не симметрична, то для измерения реактивной составляющей применяют два или три ваттметра, которые подключают по различным схемам.
Процесс измерения активной и реактивной мощности
Счетчиками индукционными или электронными производят измерения активной мощности цепи переменного напряжения. Они подключаются по тем же схемам что и ваттметры. Учет реактивной энергии в однофазных потребителей в нашей стране не ведется. Ее учет производят в трехфазных цепях крупных промышленных предприятий, потребляющих большие объемы электроэнергии. Счетчики активной энергии имеют маркировку СА, реактивной СР. Также широкое применение получают электронные счетчики электроэнергии.
32. Измерение тока, напряжения, мощности и электрической энергии в цепях постоянного и переменного тока.
В цепи постоянного тока:
Сопротивление (Закон Ома):
при последовательном соединении:
при параллельном соединении:
напряжение: U=I*R, ток: I=U/R, сопротивление: R=U/I, мощность: P=I*U, P=R*,P=/R.
Электрическая энергия: W=U*I*t, W=I^2*R*t
Для измерения напряжения используется ВОЛЬТМЕТР(включается параллельно сопротивлению или участку цепи., для измерения тока АМПЕРМЕТР(включается последовательно с нагрузкой) и для измерения сопротивления ОММЕТР(подключается параллельно измеряемому сопротивлению.). Универсальный измерительный прибор ТЕСТЕР или МУЛЬТИМЕТР.
В цепи параллельного тока:
Ток(измеряется с помощью трансформатора): =Sin(t +), здесьo — максимальное значение силы тока, а j — угол сдвига фаз между ко- лебаниями E и I.
Напряжение: U= UoSin(t +)=R* Sin(t +)
Мощность: Р = UэфэфCos, где— угол сдвига фаз междуи U. (эф) 2 =о^2 /2; (Uэф) 2 = Uо^2 /2.
Электрическая энергия: W*p = UIcost= P*t
где P=UIcosφ — активная мощность изделия; t — продолжительность работы.
Измеряют индукционными или электронными электрическими счетчиками.
33. Назначение, устройство и принцип действия трансформатора. Структурная схема однофазного трансформатора.
Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения той же частоты. Tрансформатор состоит из ферромагнитного сердечника, в который встраиваются две катушки с изолированными обмотками, содержащими количество витков W1 и W2. Действие трансформатора основано на электромагнитной индукции. Под действием мгновенного напряжения U1 в первичной обмотке возникает мгновенный ток i1 равный току холостого хода i0. Под действием магнитодвижущей силы (МДС) i0w1 в сердечнике возбуждается магнитный поток Ф, направление которого определяется по правилу буравчика. Магнитный поток индуктирует мгновенные ЭДС e1= —w1*dФ/dt и e2= —w2*dФ/dt в первичной и вторичной обмотках трансформатора.
34. Условное обозначение трансформаторов в радиосхемах и распределительных электросетях. Уравнение электрического состояния трансформатора.
Отношение эдс пропорционально отношению количества витков обмоток
Коэффициент трансформации: ,характеризует основное назначение трансформатора — преобразование одного напряжения в другое, большее или меньшее.
35. Автотрансформаторы, электрическая схема, преимущества и недостатки.
Автотрансформатор имеет одну (первичную) обмотку, и часть этой обмотки служит как вторичная.
электрическая схема автотрансформатора
Преимущества:
Экономия меди
Меньшие потери энергии
Меньшее изменение напряжения при изменении нагрузки
Имеет меньшие массу и размер
Недостатки:
Гальваническая связь между первичной и вторичной обмотками
При высоких коэффициентах трансформации – низкий КПД
Требуют более высокую степень изоляции
36. Многообмоточные, однофазные и трехфазные трансформаторы.
Многообмоточный трансформатор имеет одну первичную и несколько вторичных обмоток, рассчитанных на разные напряжения.
Однофазный трансформатор
Однофазный трансформатор предназначен для создания переменного напряжения нужной величины для нагрузки, не нуждающейся в трехфазном электропитании. В результате прохождения электрического тока по проводнику в первичной обмотке, на вторичную наводится электродвижущая сила (ЭДС).
Трехфазный трансформатор.
Электрическая энергия в промышленных масштабах не может передаваться в виде однофазного переменного тока. С этой целью успешно применяется трехфазный ток, а для его передачи используются трехфазные трансформаторы. Одним из способов трансформации трехфазного тока служит применение трех однофазных трансформаторов.
Соединение первичных и вторичных обмоток в этих устройствах осуществляется в одну из трехфазных систем – звезду или треугольник.
Под действием тока первичной обмотки во всех стержнях происходит появление магнитного потока. Следует учитывать принадлежность каждой такой обмотки к одной из фаз, входящих в трехфазную систему. Поэтому токи, протекающие по этим обмоткам, а также приложенные напряжения, относятся к трехфазным. Поэтому сформированные магнитные потоки тоже являются трехфазными.
Переменный ток — Википедия
СинусоидальныйПереме́нный ток — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным[1].
Хотя переменный ток часто переводят на английский как alternating current, эти термины не эквивалентны. Термин alternating current (AC) в узком смысле означает синусоидальный ток, в широком смысле — периодический знакопеременный ток (то есть периодический двунаправленный ток). Условное обозначение на электроприборах: ∼{\displaystyle \thicksim } или ≈{\displaystyle \thickapprox } (знак синусоиды), или латинскими буквами AC{\displaystyle AC}.
Так как переменный ток в общем случае меняется в электрической цепи не только по величине, но и по направлению, то одно из направлений переменного тока в цепи считают условно положительным, а другое, противоположное первому, условно отрицательным. В соответствии с этим и величину мгновенного значения переменного тока в первом случае считают положительной, а во втором случае — отрицательной.
Переменный ток — величина алгебраическая, знак его определяется тем, в каком направлении в рассматриваемый момент времени протекает ток в цепи — в положительном или отрицательном.
Величина переменного тока, соответствующая данному моменту времени, называется мгновенным значением переменного тока.
Максимальное мгновенное значение переменного тока, которое он достигает в процессе своего изменения, называется амплитудой тока Im{\displaystyle I_{m}}.
- График зависимости переменного тока от времени называется развёрнутой диаграммой переменного тока.
На рисунке приведена развёрнутая диаграмма переменного тока, изменяющегося с течением времени по величине и направлению. На горизонтальной оси 0t{\displaystyle 0t} отложены в определённом масштабе отрезки времени, а по вертикальной оси — величины тока, вверх — от начальной точки 0{\displaystyle 0} — положительные, вниз — отрицательные. Часть развёрнутой диаграммы тока, расположенная выше оси времени 0t{\displaystyle 0t}, характеризует изменение положительных величин во времени, а часть, расположенная ниже оси времени 0t{\displaystyle 0t}, — изменение отрицательных величин.
В начальный момент времени t=0{\displaystyle t=0} ток равен нулю (i=0){\displaystyle (i=0)}. Затем он с течением времени растёт в положительном направлении, в момент времени t=T4{\displaystyle t={\frac {T}{4}}} достигает максимального значения, после чего убывает по величине и в момент времени t=T2{\displaystyle t={\frac {T}{2}}} становится равным нулю. Затем, пройдя через нулевое значение, ток меняет свой знак на противоположный, то есть становится отрицательным, затем растёт по абсолютной величине, затем достигает максимума при t=34T{\displaystyle t={\frac {3}{4}}T}, после чего убывает и при t=T{\displaystyle t=T} становится равным нулю.
Развёрнутая диаграмма периодического переменного токаПериодическим переменным током называется такой электрический ток, который через равные промежутки времени повторяет полный цикл своих изменений, возвращаясь к своей исходной величине.
На представленной диаграмме мы видим, что через равные промежутки времени T{\displaystyle T} график тока воспроизводится полностью без каких-либо изменений.
Время T{\displaystyle T}, в течение которого переменный периодический ток совершает полный цикл своих изменений, возвращаясь к своей исходной величине, называется периодом переменного тока.
Величина, обратная периоду, называется частотой переменного тока:
- f=1T{\displaystyle f={\frac {1}{T}}}, где
- f{\displaystyle f} — частота переменного тока;
- T{\displaystyle T} — период переменного тока.
Если выразить время T{\displaystyle T} в секундах (sec), то будем иметь:
- f=1T[1sec]{\displaystyle f={\frac {1}{T}}\left[{\frac {1}{sec}}\right]}, то есть размерность частоты переменного тока выражается в 1/с.
Частота переменного тока численно равна числу периодов в секунду.
За единицу измерения частоты переменного тока принят 1 герц (1 гц, 1 Гц, 1 Hz).
Герц — единица Международной системы единиц (СИ), названа в честь Генриха Герца. Через основные единицы СИ герц выражается следующим образом: 1 Гц = 1 с−1. Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.
Частота переменного тока равна одному герцу, если период тока равен одной секунде (один полный цикл за одну секунду).
Стандарты частоты[править | править код]
В большинстве стран в электротехнике применяются частоты 50 или 60 Гц (60 Гц — этот вариант принят в США и Канаде). В некоторых странах, например, в Японии, используются оба стандарта (см. Промышленная частота переменного тока).
Частота 16 ⅔ Гц до сих пор используется в некоторых европейских железнодорожных сетях (Австрия, Германия, Норвегия, Швеция и Швейцария), частота 25 Гц — на старых железнодорожных линиях США. (См. Электрификация железных дорог переменным током пониженной частоты).
В авиации и военной технике для снижения массы устройств или с целью повышения частоты вращения электродвигателей переменного тока применяется частота 400 Гц.
- Число оборотов ротора n[1min]{\displaystyle n\left[{\frac {1}{min}}\right]} синхронного электродвигателя определяется по формуле:
n=60fp{\displaystyle n={\frac {60f}{p}}}, где
f{\displaystyle f} — частота переменного тока;
p{\displaystyle p} — число пар полюсов.
- Так как минимальное число пар полюсов равно единице, тогда синхронный электродвигатель, работающий на переменном токе частотой 50 герц разовьёт 3 000 оборотов в минуту, а электродвигатель, работающий на переменном токе частотой 400 герц, разовьёт 24 000 оборотов в минуту. Частота вращения ротора асинхронного электродвигателя меньше, чем частота питающего его тока и зависит от нагрузки. Скольжение — разность между частотой вращения вращающегося магнитного поля и частотой вращения ротора.
В технике связи применяются частоты более высокие, и в частности в радиотехнике — порядка миллионов и миллиардов герц.
Синусоидальным током называется периодический переменный ток, который с течением времени изменяется по гармоническому закону синуса.
Синусоидальный ток — элементарный, то есть его невозможно разложить на другие более простые переменные токи[2].
Переменный синусоидальный ток выражается формулой:
i=Imsinωt{\displaystyle i=I_{m}\sin \omega t}, где
Im{\displaystyle I_{m}} — амплитуда синусоидального тока;
ωt{\displaystyle \omega t} — некоторый угол, называемый фазой синусоидального тока.
Фаза синусоидального тока ωt{\displaystyle \omega t} изменяется пропорционально времени t{\displaystyle t}.
Множитель ω{\displaystyle \omega }, входящий в выражение фазы ωt{\displaystyle \omega t} — величина постоянная, называемая угловой частотой переменного тока (круговой частотой переменного тока).
Угловая частота ω{\displaystyle \omega } синусоидального тока зависит от частоты f{\displaystyle f} этого тока и определяется формулой:
ω=2πf=2πT{\displaystyle \omega =2\pi f={\frac {2\pi }{T}}}, где
ω{\displaystyle \omega } — угловая (круговая) частота синусоидального тока;
f{\displaystyle f} — частота синусоидального тока;
T{\displaystyle T} — период синусоидального тока;
2π{\displaystyle 2\pi } — центральный угол окружности, выраженный в радианах.
Исходя из формулы ω=2πf=2πT{\displaystyle \omega =2\pi f={\frac {2\pi }{T}}}, можно определить размерность угловой (круговой) частоты:
[ω]=[2πT]=[1sec]{\displaystyle \left[\omega \right]=\left[{2\pi \over T}\right]=\left[{1 \over sec}\right]}, где
sec{\displaystyle sec} — время в секундах,
2π{\displaystyle 2\pi } — угол в радианах, является безразмерной величиной.
Фаза ωt{\displaystyle \omega t} синусоидального тока измеряется радианами.
- 1 радиан = 57,29° = 57°17′, угол 90° = π2{\displaystyle \pi \over 2} радиан, угол 180° = π{\displaystyle \pi } радиан, угол 270° = 3π2{\displaystyle 3\pi \over 2} радиан, угол 360° = 2π{\displaystyle 2\pi } радиан,
где π=3,14{\displaystyle \pi =3,14} радиан; π{\displaystyle \pi } — число «Пи», ° — угловой градус и ′ — угловая минута.
Формула i=Imsinωt{\displaystyle i=I_{m}\sin \omega t} описывает случай, когда наблюдение за изменением переменного синусоидального тока начинается с момента времени t=0{\displaystyle t=0}. Если начальный момент времени не равен нулю, тогда формула для определения мгновенного значения переменного синусоидального тока принимает следующий вид:
i=Imsin(ωt+ψ){\displaystyle i=I_{m}\sin(\omega t+\psi )}, где
(ωt+ψ){\displaystyle (\omega t+\psi )} — фаза переменного синусоидального тока;
ψ{\displaystyle \psi } — угол, называемый начальной фазой переменного синусоидального тока.
Если в формуле i=Imsin(ωt+ψ){\displaystyle i=I_{m}\sin(\omega t+\psi )} принять t=0{\displaystyle t=0}, то будем иметь
ωt=0{\displaystyle \omega t=0}, ωt+ψ=ψ{\displaystyle \omega t+\psi =\psi } и it=0=Imsinψ{\displaystyle i_{t=0}=I_{m}\sin \psi }.
Начальная фаза — это фаза синусоидального тока в момент времени t=0{\displaystyle t=0}.
Начальная фаза переменного синусоидального тока может быть положительной (ψ>0){\displaystyle (\psi >0)} или отрицательной (ψ<0){\displaystyle (\psi <0)} величиной. При ψ>0{\displaystyle \psi >0} мгновенное значение синусоидального тока в момент времени t=0{\displaystyle t=0} положительно, при ψ<0{\displaystyle \psi <0} — отрицательно.
Если начальная фаза ψ=π2{\displaystyle \psi ={\frac {\pi }{2}}}, то ток определяется по формуле i=Imsin(ωt+π2){\displaystyle i=I_{m}\sin(\omega t+{\frac {\pi }{2}})}. Мгновенное значение его в момент времени t=0{\displaystyle t=0} равно
it=0=Imsinπ2=Im{\displaystyle i_{t=0}=I_{m}\sin {\frac {\pi }{2}}=I_{m}}, то есть равно положительной амплитуде тока.
Если начальная фаза ψ=−π2{\displaystyle \psi =-{\frac {\pi }{2}}}, то ток определяется по формуле i=Imsin(ωt−π2){\displaystyle i=I_{m}\sin(\omega t-{\frac {\pi }{2}})}. Мгновенное значение его в момент времени t=0{\displaystyle t=0} равно
it=0=Imsin(−π2)=−Im{\displaystyle i_{t=0}=I_{m}\sin(-{\frac {\pi }{2}})=-I_{m}}, то есть равно отрицательной амплитуде тока.
Два синусоидальных тока совпадают по фазе друг с другом
Синусоидальные токи сдвинуты по фазе на угол π2{\displaystyle {\frac {\pi }{2}}}Два переменных синусоидальных тока совпадают по фазе, если они имеют одинаковые фазы и, следовательно, одновременно достигают своих нулевых и максимальных значений одинакового знака.
На левой иллюстрации представлены развёрнутые диаграммы токов i1{\displaystyle i_{1}} и i2{\displaystyle i_{2}}. Токи i1=I1msinωt{\displaystyle i_{1}=I_{1m}\sin \omega t} и i2=I2msinωt{\displaystyle i_{2}=I_{2m}\sin \omega t} совпадают по фазе.
Два переменных синусоидальных тока сдвинуты по фазе относительно друг друга, если они имеют различные фазы.
На правой иллюстрации токи i1=I1msin(ωt+π2){\displaystyle i_{1}=I_{1m}\sin(\omega t+{\frac {\pi }{2}})} и i2=I2msinωt{\displaystyle i_{2}=I_{2m}\sin {\omega t}} сдвинуты по фазе на угол π2{\displaystyle {\frac {\pi }{2}}}, так как
(ωt+π2)−ωt=π2{\displaystyle (\omega t+{\frac {\pi }{2}})-{\omega t}={\frac {\pi }{2}}}.
Ток i1{\displaystyle i_{1}} опережает по фазе ток i2{\displaystyle i_{2}} на угол π2{\displaystyle {\frac {\pi }{2}}}, или, иначе, ток i2{\displaystyle i_{2}} отстаёт по фазе относительно тока i1{\displaystyle i_{1}} на угол π2{\displaystyle {\frac {\pi }{2}}}.