Термоэлектрический генератор — конвертируем тепло в электричество термогенератором
Я расскажу как получить электричество из тепла и как построить своими руками термоэлектрогенератор средних размеров, который можно использовать в походах и на открытой природе, а также просто так, для зарядки электронных устройств, посредством зарядки перезаряжаемых батарей от любого источника огня. При использовании ракетной печи или походной печки и газа для более быстрого сгорания, сгенерируется больше энергии.
Термоэлектрический генератор идеально подходит для выживания в случае стихийных бедствий, поскольку позволяет производить электроэнергию из легкодоступного источника — огня. Солнечную энергию можно получить только днем, а сбор лунного света неэффективен и требует создания дорогой линзы, энергию ветра возможно получить не в любой день. Огонь — это мощный и опасный источник энергии, поэтому будьте осторожны при использовании устройства и остерегайтесь горячей части радиатора и т.д.
Шаг 1: Необходимые детали
- 1х Элемент Пельтье (термоэлектрический преобразователь)
- Алюминиевый радиатор среднего размера (я достал свой из старого ПК)
- Толстый электрический кабель двух цветов (опционально)
- Входные и выходные разъемы/гнезда, предварительно купленные или изготовленные (для ввода и вывода энергии) (опционально)
- Проектный корпус, частично теплозащищенный, если возможно. Используйте изоляционный материал, металл, фольгу и т.д. (опционально)
- Термопаста (опционально), алюминиевая фольга (желательно)
- Резак для резки тонких металлов
- Ножницы по металлу
- Разные отвертки (для закручивания винтов корпуса и входов/выходов)
- Разные винты и болты (для крепления металлических пластин и радиатора)
- Паяльник и припой (опционально) для надежного крепления
- Аккумуляторная батарея низкой или средней мощности (для подзарядки)
- Термоусадочные трубки для защиты проводов от тепла (необходимо)
- 1х блокирующий диод, чтобы предотвратить обратную зарядку.
- 2 алюминиевые банки (металлическая пластина)
- Толстая медная проволока
- Цифровой мультиметр
Все, что отмечено как опциональное, не обязательно к сборке термогенератора, но будет полезным, например корпус для аккумулятора и блокирующий диод.
Шаг 2: Конструирование
Построить корпус и тепловой генератор электричества довольно просто.
Во-первых, отрежьте от алюминиевых банок дно и крышку и разрежьте получившиеся куски пополам. Сложите 4 куска вместе и, прижав, вырежьте отверстия в углах для гаек. Прижмите листы гайками. Основа для устройства готова.
Если имеется термопаста, намажьте её на радиатор и основу, используя старую кредитку. Вам нужен квадрат размером с элемент Пельтье для выработки электричества. Поместите элемент Пельтье холодной стороной к радиатору, а горячей к алюминию. Проверить стороны можно подключив модуль к двум батареям 1.5v и потрогав каждую из сторон.
Нужно положить модуль между радиатором и алюминиевыми листами и немного вдавить в термопасту. Теперь, используя плоскогубцы, нужно обернуть медную проволоку вокруг выпирающих частей радиатора и под болтами на алюминиевой основе. Это соединит радиатор, основу и элемент Пельтье друг с другом. Основной блок сделан.
Шаг 3: Тестирование теплогенератора
Я использовал для теста термоэлектрического генераторного модуля одну маленькую свечку внутри оловянной банки, покрытой изоляционной лентой и подставку из металлического корпуса компьютерного вентилятора. В зависимости от количества тепла, мощность будет медленно подниматься и продолжать расти до заданного напряжения.
Также на эффективность влияет охлаждение радиатора, в холодный день радиатор будет остывать быстрее. К устройству могут быть подключены топливная или ракетная печь, этим можно заряжать аккумуляторы или электронные устройства.
На самом деле эта вещь не подходит для повседневного использования, поскольку элемент Пельтье рано или поздно сломается и сделает устройство неэффективным. В любом случае, оно может использоваться для получения электроэнергии в походе, при экстренных случаях и т.д.
Смотрите видео для тестов и показаний напряжения и скорости его подъема. Тест дома с питанием от свечки. Второй тест с маленькой печкой, в котором видно, что если непрерывно подавать топливо, то за 3-4 минуты можно зарядить батарею или две.
ФайлыШаг 4: Улучшения
Возможные следующие модернизации устройства:
- Добавьте еще одну ячейку Пельтье чтобы удвоить выход напряжения.
- Подключите Joule Thief или несколько для небольшого увеличения напряжения.
- Используйте более качественные теплопроводные материалы, больший радиатор и более толстую алюминиевую или медную плиту в качестве основы.
- Можно качественнее закрепить ячейку Пельтье при помощи медной проволоки или термопасты, что улучшит перенос тепла.
- Используйте ракетную печь вместо открытых источников огня. Жар ракетных печей локализован, что будет эффективнее заряжать устройства.
- Используйте несколько связанных друг с другом устройств, соединив их последовательно над источником огня, чтобы увеличить выход напряжения.
- Можно улучшить термоизоляцию на проводах, фольге и изоляционной ленте (ракетные печи, как правило, немного плавят провода)
- Сделать запас компонентов и деталей (если что-то сломается или прогорит, всегда можно будет починить устройство)
принцип работы, применение, как сделать
Согласно мировой статистике, от общего числа выработанной электроэнергии, на ТЭС приходится более 60%. Как известно, для работы тепловых электростанций необходимо органическое топливо, запасы которого не бесконечны. Помимо того, положенный в основу техпроцесс не является экологически чистым. Но низкая стоимость оргтоплива и высокий КПД ТЭС, позволяет получать «дешевое» электричество, что оправдывает применение данной технологии. Выход из сложившейся ситуации – альтернативные источники энергии, к таковым относятся термоэлектрические генераторы (далее ТЭГ), о них и пойдет речь в этой статье.
Что такое термоэлектрический генератор?
Так принято называть устройство, позволяющее преобразовать тепловую энергию в электрическую. Следует уточнить, что термин «Тепловая» не совсем точен, поскольку тепло, это способ передачи, а не отдельный вид энергии. Под данным определением подразумевается общая кинетическая энергия молекул, атомов и других структурных элементов, из которых состоит вещество.
Несмотря на то, что на ТЭС сжигается топливо для получения электричества, ее нельзя отнести к ТЭГ. На таких станциях тепловая энергия вначале преобразуется в кинетическую, а она уже в электрическую. То есть, топливо сжигается для получения из воды пара, который вращает турбину электрического генератора.
Схема работы ТЭСИсходя из выше изложенного, следует уточнить, что ТЕГ должен генерировать электроэнергию без промежуточных преобразований.
Принцип работы
Термопара из опыта ЗеебекаВ основе ТЭГ лежит термоэлектрическое явление, описанное в начале 20-х годов XIX века немецким ученым-физиком Томасом Иоганном Зеебеком. Он обнаружил появление ЭДС в цепи замкнутого типа, состоящей из проводника и сурьмы, при условии создания разности температур в местах, где эти материалы контактируют. Изображение устройства, при помощи которого был зафиксирован данный эффект, представлено ниже.
Обозначения:
- 1 – медный проводник.
- 2 – проводник из сурьмы.
- 3 – стрелка компаса.
- А и В – места контакта двух проводников.
При нагревании одного из контактов стрелка отклонялась, что свидетельствовало о наличии магнитного поля, вызванного ЭДС. При нагреве другого контакта, направление ЭДС менялось на противоположное. Соответственно, при разрыве цепи, можно зафиксировать разность потенциалов на ее концах.
Через 12 лет, после публикации Зеебеком результатов своих опытов, французским физиком Жаном Пельтье был обнаружен обратный эффект. Если через цепь термопары пропускать ток, то в местах контакта этих веществ возникает разность температур. Мы не будем приводить описание опыта Пельтье, а также данные по современным одноименным элементам, эту информацию можно найти на нашем сайте.
По сути, оба эти эффекта обратные стороны одного термоэлектрического явления, позволяющего напрямую получать электричество из тепловой энергии. Но, до открытия полупроводников, термоэлектрический эффект не находил практического применения, ввиду неприемлемо низкого КПД. Поднять его до 5% удалось только в середине пошлого века. К сожалению, даже у современных полупроводниковых элементов, этот показатель остается на уровне 8%-12%, что не позволяет рассматривать генераторы данного типа в качестве серьезных конкурентов ТЭС.
Перспективы
В настоящее время продолжаются опыты по подбору оптимальных термопар, что позволит увеличить КПД. Проблема заключается в том, что под данные исследования затруднительно подвести теоретическую базу, поэтому приходится полагаться только на результаты экспериментов. Учитывая, что на эффект влияет процентное соотношение и состав сплавов материала для термопар, говорить о ближайших перспективах неблагодарное занятие.
Велика вероятность, что в ближайшее время для повышения добротности термоэлементов, разработчики перейдут на другой уровень изготовления сплава для термопар, с использованием нано-технологий, ям квантования и т.д.
Вполне возможно, что будет разработан совершенно иной принцип с использованием нетрадиционных материалов. В качестве примера можно привести эксперименты, проводимые в Калифорнийском университете, где для замены термопары использовалась искусственная синтезированная молекула, которая соединяла два золотых микро проводника.
Молекула вместо термопарыПервые опыты показали возможность реализации идеи, насколько она перспективна, покажет время.
Сфера применения и виды термоэлектрических генераторов
В виду низкого КПД для ТЭГ остается два варианта применения:
- В местах, где недоступны другие источники электроэнергии.
- В процессах, где имеется избыток тепла.
Приведем несколько примеров таких устройств.
Энергопечи
Данные, устройства, совмещающие в себе следующие функции:
- Варочной поверхности.
- Обогревателя.
- Источника электроэнергии.
Это прекрасный образец, объединяющий все оба варианта применения.
Индигирка – три в одномУ представленной на рисунке энергопечи следующие параметры:
- Вес – чуть больше 50 килограмм (без учета топлива).
- Размеры: 65х43х54 см (с разобранным дымоходом).
- Оптимальная загрузка оргтоплива – 30 литров. Допускается использование лиственной древесины, торфа, бурового (не каменного!) угля.
- Средняя тепловая мощность устройства около 4,5 кВт.
- Мощность электронагрузки от 45-50 Вт.
- Стабилизированное постоянное напряжение на выходе – 12 В.
Как видите, эти параметры вполне приемлемы для условий, где нет электричества, отопления и газа. Что касается небольшой электрической мощности, то ее вполне достаточно для зарядки мобильных устройств или питания других гаджетов, через адаптер от автомобильного прикуривателя.
Радиоизотопные ТЭГ
В качестве источника тепла для ТЭГ может выступать тепловая энергия, выделяющаяся в процессе распада нестабильных элементов. Такие источники называют радиоизотопными. Основное их преимущество заключается в том, что не требуется постоянная загрузка топлива. Недостаток – необходимость установки защиты от ионизирующего излучения, невозможность перезаправки топлива и необходимость утилизации.
Срок эксплуатации таких источников напрямую зависит от периода полураспада вещества, используемого в качестве топлива. К последнему предъявляется следующий ряд требований:
- Высокий коэффициент объемной активности, то есть небольшое количество вещества должно обеспечивать нужный уровень выделения энергии.
- Поддержка необходимого уровня мощности в течение длительного времени. На этот параметр отвечает, как было отмечено выше, влияет период полураспада, например у стронция-90 он 29 лет, следовательно, источник через это время потеряет половину своей мощности.
- Ионизирующее излучение должно быть удобным для утилизации, то есть в нем должны преобладать α-частицы.
- Необходимый уровень безопасности. То есть ионизирующее излучение не должно нанести вред экологии (в случае эксплуатации на земле) и питающемуся от такого источника оборудованию.
Таким критериям отвечают изотопы кюрия-244, плутония-238 и упоминавшийся выше стронций-90.
Сфера применения РИТЕГ
Несмотря на серьезные требования к таким источникам, сфера их применения довольно разнообразна, они используются как в космосе, так и на земле. Ниже на фото, изображен РИТЕГ, работавший на космическом аппарате Кассини. В качестве топлива использовался изотоп плутония-238. Период полураспада этого элемента чуть больше 87 лет. Под конец 20-ти летней мисси источник вырабатывал 650 Вт электроэнергии.
Радиоизотопное «сердце» КассиниКассини была приведена в качестве примера, а на счет массовости можно констатировать, что, практически, все КА для электропитания оборудования используют РИТЕГ. К сожалению, характеристики радиоизотопных источников энергии космических аппаратов, как правило, не публикуются.
На земле ситуация приблизительно такая же. Технология РИТЕГ как бы известна, но ее детали относятся к закрытой информации. Достоверно известно, что такие установки применяются в качестве источника питания навигационного оборудования в местности, где по техническим причинам невозможно получать электроэнергию другим способом. То есть, речь идет о труднодоступных регионах.
К сожалению, такие источники не самая подходящая альтернатива ТЭС с экологической точки зрения.
РИТЕГ поднятый с 14-митровой глубины возле СахалинаКак сделать термоэлектрический генератор своими руками?
В завершении расскажем, как сделать ТЕГ, которым можно пользоваться в турпоходе, на охоте или рыбалке. Естественно, мощность таких устройств будет уступать радиоизотопным генераторам энергии, но ввиду труднодоступности плутония, и его неприятным свойством наносить вред человеческому организму придется довольствоваться малым.
Нам понадобится термоэлектрический элемент, например, ТЕС1 12710. Желательно использовать несколько элементов, подключенных параллельно, для увеличения мощности. К сожалению, тут есть очень серьезный нюанс, потребуется подобрать элементы со сходными параметрами, что у китайской продукции практически не реально, а использовать брендовую дорого, проще купить готовый генератор. Если использовать один модуль Пельте, то его мощности едва хватит для зарядки телефона или другого гаджета. Нам также понадобится металлический корпус, например, отслужившего блока питания ПК и радиатор от процессора.
Основные моменты сборки:
Наносим на корпус термопасту в месте, где будет крепиться термоэлектрический элемент, прислоняем его и фиксируем радиатором. В результате у нас получается конструкция, как на нижнем рисунке.
Туристический ТЭГВ качестве топлива лучше всего использовать «сухой спирт».
Теперь необходимо подключить к нашему источнику стабилизатор напряжения (схему можно найти на нашем сайте или в других тематических источниках).
Конструкция готова, можно приступать к проверке.
Термоэлектрический генератор своими руками — 155 фото и видео мастер-класс по созданию теплового насоса
Большинство начинающих электриков интересуется о возможности создания не затратного и автономного источника электроэнергии. Зачастую, например, выехав на пикник, рыбалку либо просто отдохнуть на свежем воздухе, критически не хватает электричества для зарядки какого-либо прибора или освещения в темное время суток.
В таких случаях может помочь самостоятельно сделанный термоэлектрический генератор, для дома такой прибор не подойдет, если только в крайних случаях.
При помощи его можно вырабатывать электрического напряжение до пяти вольт, этого будет достаточно для зарядки гаджетов и подключения лампочки.
Для визуального ознакомления с ТЭГ нужно лишь посмотреть в любых источниках фото термоэлектрического генератора.
Краткое содержимое статьи:
Что такое ТЭГ
Данное устройство, дает возможность выработать электроэнергию из энергии тепла.
Нужно пояснить, что выражение «Тепловая энергия» не совсем правильное, так как тепло, это метод отдачи, не являющийся отдельным типом энергии. Этим определением обозначают общую кинетику структурных элементов:
- молекул;
- атомов;
- иных частиц, которые входят в состав вещества.
Термогенератор, получаем электричество из тепла
Для того, чтобы получить электричество непосредственно от газовой горелки или другого источника тепла, применяется термогенератор. Так же, как и у термопары, его принцип действия основан на эффекте Зеебека, открытом в 1821 году. Упомянутый эффект состоит в том, что в замкнутой цепи из двух разнородных проводников появляется ЭДС, если места спаев проводников находятся при разных температурах. Например, один спай находится в сосуде с кипящей водой, а другой в чашке с тающим льдом.
Эффект возникает от того, что энергия свободных электронов зависит от температуры. При этом электроны начинают перемещаться от проводника, где они имеют более высокую энергию в проводник, где энергия зарядов меньше. Если один из спаев нагрет больше другого, то разность энергий зарядов на нем, больше, чем на холодном. Поэтому, если цепь замкнута, в ней возникает ток, именно та самая термоэдс.
Приблизительно величину термоэдс можно определить по простой формуле:
E = α * (T1 – T2). Здесь α — коэффициент термоэдс, который зависит только от металлов, из которых составлена термопара или термоэлемент. Его значение обычно выражается в микровольтах на градус. Разность температур спаев в этой формуле (T1 – T2): T1 – температура горячего спая, а T2, соответственно, холодного.
Приведенную формулу достаточно наглядно иллюстрирует рис. 1.
Рис. 1. Принцип работы термопары
Рисунок этот классический, его можно найти в любом учебнике физики. На рисунке показано кольцо, составленное из двух проводников А и Б. Места соединения проводников называются спаями. Как показано на рисунке, в горячем спае T1 термоэдс имеет направление из металла Б в металл А. А в холодном спае Т2 из металла А в металл Б. Указанное на рисунке направление термоэдс справедливо для случая, когда термоэдс металла А положительна по отношению к металлу Б.
Как определить термоэдс металла
Термоэдс металла определяется по отношению к платине. Для этого термопара, одним из электродов которой является платина (Pt), а другим испытуемый металл, нагревается до 100 градусов Цельсия. Полученное значение в милливольтах для некоторых металлов, показано ниже. Причем следует обратить внимание на то, что изменяется не только величина термоэдс, но и ее знак по отношению к платине.
Платина в этом случае играет такую же роль, как 0 градусов на температурной шкале, а вся шкала величин термоэдс выглядит следующим образом:
- Сурьма +4,7
- Железо +1,6
- Кадмий +0,9
- Цинк +0,75
- Медь +0,74
- Золото +0,73
- Серебро +0,71
- Олово +0,41
- Алюминий +0,38
- Ртуть 0
- Платина 0
После платины идут металлы с отрицательным значением термоэдс:
- Кобальт -1,54
- Никель -1,64
- Константан (сплав меди и никеля) -3,4
- Висмут -6,5
Пользуясь этой шкалой очень просто определить значение термоэдс развиваемое термопарой, составленной из различных металлов. Для этого достаточно подсчитать алгебраическую разность значений металлов, из которых изготовлены термоэлектроды. Например, для пары сурьма – висмут это значение будет +4,7 – ( — 6,5) = 11,2 мВ. Если в качестве электродов использовать пару железо – алюминий, то это значение составит всего +1.6 – (+0,38) = 1,22 мВ, что меньше почти в десять раз, чем у первой пары.
Если холодный спай поддерживать в условиях постоянной температуры, например 0 градусов, то термоэдс горячего спая будет пропорциональна изменению температуры, что и используется в термопарах.
Как создавались термогенераторы
Уже в середине 19 века делались многочисленные попытки для создания термогенераторов – устройств для получения электрической энергии, то есть для питания различных потребителей. В качестве таких источников предполагалось использовать батареи из последовательно соединенных термоэлементов. Конструкция такой батареи показана на рис. 2.
Рис. 2. Термобатарея, схематическое устройство
Первую термоэлектрическую батарею создали в середине 19 века физики Эрстед и Фурье. В качестве термоэлектродов использовались висмут и сурьма, как раз та самая пара из чистых металлов, у которой максимальная термоэдс. Горячие спаи нагревались газовыми горелками, а холодные помещались в сосуд со льдом. В процессе опытов с термоэлектричеством позднее были изобретены термобатареи, пригодные для использования в некоторых технологических процессах и даже для освещения. В качестве примера можно привести батарею Кламона, разработанную в 1874 году, мощности которой вполне хватало для практических целей: например для гальванического золочения, а также применения в типографии и мастерских гелиогравюры. Примерно в то же время исследованием термобатарей занимался и ученый Ноэ, его термобатареи в свое время также были распространены достаточно широко.
Но все эти опыты, хотя и удачные, были обречены на провал, поскольку термобатареи, созданные на основе термоэлементов из чистых металлов, имели весьма низкий КПД, что сдерживало их практическое применение. Чисто металлические пары имеют КПД лишь несколько десятых долей процента. Намного большим КПД обладают полупроводниковые материалы: некоторые окислы, сульфиды и интерметаллические соединения.
Полупроводниковые термоэлементы
Подлинную революцию в создании термоэлементов произвели труды академика А.И. Иоффе. В начале 30 – х годов XX столетия он выдвинул идею, что с помощью полупроводников возможно превращение тепловой энергии, в том числе и солнечной, в электрическую. Благодаря проведенным исследованиям уже в 1940 году был создан полупроводниковый фотоэлемент для преобразования световой солнечной энергии в электрическую. Первым практическим применением полупроводниковых термоэлементов следует считать, по-видимому, «партизанский котелок», позволявший обеспечить питанием некоторые портативные партизанские радиостанции.
Основой термогенератора служили элементы из константана и SbZn. Температура холодных спаев стабилизировалась кипящей водой, в то время как горячие спаи нагревались пламенем костра, при этом обеспечивалась разница температур не менее 250…300 градусов. КПД такого устройства был не более 1,5…2,0 %, но мощности для питания радиостанций вполне хватало. Конечно, в те военные времена конструкция «котелка» была государственным секретом, и даже сейчас на многих форумах в интернете обсуждается его устройство.
Бытовой термогенератор
Уже в послевоенные пятидесятые годы советская промышленность начала выпускать термогенератор ТГК – 3. Основное его назначение состояло в питании батарейных радиоприемников в не электрифицированной сельской местности. Мощность генератора составляла 3 Вт, что позволяло питать батарейные приемники, такие как «Тула», «Искра», «Таллин Б-2», «Родина – 47», «Родина – 52» и некоторые другие.
Внешний вид термогенератора ТГК-3 показан на рис. 3.
Рис. 3. Термогенератор ТГК-3
Конструкция термогенератора
Как уже было сказано, термогенератор предназначался для использования в сельской местности, где для освещения использовались керосиновые лампы «молния». Такая лампа, оснащенная термогенератором, становилась не только источником света, но и электричества. При этом дополнительных затрат топлива не требовалось, ведь в электричество превращалась именно та часть керосина, которая просто улетала в трубу. К тому же, такой генератор был всегда готов к работе, конструкция его была такова, что ломаться в нем просто нечему. Генератор мог просто лежать без дела, работать без нагрузки, не боялся коротких замыканий. Срок службы генератора, по сравнению с гальваническими батареями, казался просто вечным.
Роль вытяжной трубы у керосиновой лампы «молния» играет удлиненная цилиндрическая часть стекла. При использовании лампы совместно с термогенератором стекло делалось укороченным, и в него вставлялся металлический теплопередатчик 1, как показано на рис. 4.
Рис. 4. Керосиновая лампа с термоэлектрическим генератором
Внешняя часть теплопередатчика имеет форму многогранной призмы, на которой установлены термобатареи. Чтобы увеличить эффективность теплоотдачи теплопередатчик внутри имел несколько продольных каналов. Проходя по этим каналам горячие газы уходили в вытяжную трубу 3, попутно нагревая термобатарею, точнее, ее горячие спаи. Для охлаждения холодных спаев использовался радиатор воздушного охлаждения. Он представляет собой металлические ребра, прикрепленные к внешним поверхностям блоков термобатарей.
Термогенератор – ТГК3 состоял из двух независимых секций. Одна из них вырабатывала напряжение 2В при токе нагрузки до 2А. Эта секция использовалась для получения анодного напряжения ламп с помощью вибропреобразователя. Другая секция при напряжении 1,2В и токе нагрузки 0,5А использовалась для питания нитей накала ламп.
Нетрудно подсчитать, что термогенератор имел мощность не превышающую 5 Ватт, но для приемника ее вполне хватало, что позволяло скрашивать долгие зимние вечера. Сейчас, конечно, это кажется просто смешным, но в те далекие времена такое устройство было, несомненно, чудом техники.
Видео
Смотрите также по теме:
Ветрогенератор. Как выбрать, смонтировать и избежать разочарования?
Безлопастной ветрогенератор. Устройство и принцип работы.
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
Простая тепловая электростанция своими руками
Как с помощью свечки зарядить сотовый телефон? Очень просто — для этого можно собрать простейшую тепловую электростанцию всего из нескольких очень доступных элементов.Вещица эта довольно крутая, её можно взять с собой в поход или на рыбалку и в любой ситуации иметь возможность зарядить мобильное устройство, будь-то телефон или планшет.
В отличии от Power Bank этот генератор не имеет ограничения и может работать постоянно. В качестве источника тепла можно использовать не только свечу, но и щепки дров или бумагу.
Детали тепловой электростанции
Изготовление теплогенератора своими руками
Первое что нужно сделать это найти консервную банку. Отрезать у неё дно и по всей боковой поверхности просверлить множественные мелкие отверстия. Большие отверстия делать не стоит, иначе в ветреную погоду огонь будет тухнуть от сильного ветра.
Затем, ножницами по металлу вырезаем окно для свечки внизу банки.
Обязательно после отрезки зачищаем острые края напильником или надфилем.
Вот само сердце теплового генератора — элемент Пельтье. Он будет вырабатывать ток при разности температуры его поверхностей. То есть, одну сторону мы будем нагревать свечкой, а вторую будем охлаждать радиатором от компьютера.
Чтобы обеспечить надежную передачу тепла элементу Пельтье, нанесем на его стороны теплопроводящую мазь.
Мажем тонким слоем одну сторону.
Прикладываем к банке.
Мажем вторую сторону
Чтобы в периоде эксплуатации провода не поплавились о раскаленную банку, необходимо одеть стекловолоконные отрезки трубки — кембрики.
И уже сверху устанавливаем радиатор от процессора компьютера. Кулера с верху не будет, все будет охлаждаться естественно. Тем более на природе небольшой ветерок сделает свое дело.
Элемент Пельтье вырабатывает не большое напряжение, около вольта, но зато сила тока у него имеет достаточное значение для наших целей. Поэтому для того, чтобы обменять значения на нужные нам мы будем использовать повышающий преобразователь, который повысит и стабилизирует выходное напряжение до 5 В.
Припаиваем вывода элемента ко входу преобразователя.
На выходе преобразователя уже стоит USB розетка для подключения, поэтому больше ничего паять не нужно.
Проверка теплового генератора
Зажигаем свечку.
Вставляем в наш реактор)).
Пробуем зарядить мобильный телефон. Через несколько секунд напряжение достигло уровня.
И зарядка телефона началась.
Тепловая электростанция отлично справляется со своим делом — выработка электричества.
При желании можно добавить и вентилятор, подключив его к выходу преобразователя. Пяти вольт хватит, чтобы раскрутить и двенадцати вольтовый кулер.
Для надежности банку с радиатором можно скрепить между собой тонкой проволокой или же тонкими длинными болтами, предварительно просверлив отверстия и там и там.
Заключение
Вот у нас часто отключают свет дома. И когда это происходит, я достаю тепловой генератор. Он дает электричество и свет от свечи, убивая сразу двух зайцев. Ну а если света недостаточно к USB можно подключить и мини LED лампу. Радует ещё то, что данное устройство всегда готово к работе, а по сему, неожиданных неприятностей быть не может.
Смотрите видео
Термоэлектрический генератор своими руками: видео, фото, инструкция
Многих электриков интересует один очень популярный вопрос – как автономно и бесплатно получить небольшое количество электроэнергии. Очень часто, к примеру, при выезде на природу или походе катастрофически не хватает розетки для подзарядки телефона либо включения светильника. В этом случае Вам поможет самодельный термоэлектрический модуль, собранный на базе элемента Пельтье. С помощью такого устройства можно генерировать ток, напряжением до 5 Вольт, чего вполне хватит для зарядки девайса и подключения лампы в экстренной ситуации. Далее мы расскажем, как сделать термоэлектрический генератор своими руками, предоставив простой мастер-класс в картинках и с видео примерами!
Кратко о принципе действия
Чтобы в дальнейшем Вы понимали, для чего нужны те или иные запчасти при сборке самодельного термоэлектрического генератора, сначала поговорим об устройстве элемента Пельтье и о том, как он работает. Данный модуль состоит из последовательно соединенных полупроводников – pn переходов, находящихся между керамическими пластинами, как показано на картинке ниже.
Когда через такую цепь проходит электрический ток, происходит так называемый эффект Пельтье — одна сторона модуля нагревается, а вторая – охлаждается. Для чего это нам нужно? Все очень просто, данный эффект работает и в обратном направлении: если одну сторону пластины нагреть, а второю охладить, то можно получить электроэнергию небольшого напряжения и силы тока. Огромное преимущество данного метода в том, что можно использовать любой источник тепла, будь то костер, или горячая кружка с кипятком, остывающая плита и так далее. Для охлаждения можно применять воздух или для более мощных вариантов – обыкновенную воду, которая обязательно найдется даже в условиях похода. Далее переходим к мастер-классам, которые наглядно покажут из чего и как сделать термоэлектрический генератор своими руками.
Мастер-класс по сборке
У нас есть очень подробная и в то же время простая инструкция по сборке самодельного генератора электроэнергии на базе мини-печи и элемента Пельтье. Она пригодится каждому путешественнику в походе. Для начала Вам необходимо подготовить следующие материалы:
- Непосредственно сам элемент Пельтье с параметрами: максимальный ток 10 А, напряжение 15 Вольт, размеры 40*40*3,4 мм. Маркировка – TEC 1-12710.
- Старый нерабочий блок питания от компьютера (с него нужен только металлический корпус).
- Стабилизатор напряжения, со следующими техническими характеристиками: входное напряжение 1-5 Вольт, на выходе – 5 Вольт. В данной инструкции по сборке термоэлектрического генератора используется модуль с USB выходом, что упростит и сделает безопасным процесс подзарядки современного телефона либо планшета. Эту деталь можно приобрести в магазине радиокомпонентов или в интернете.
- Радиатор. Можно взять от процессора сразу с кулером (вентилятором), как показано на фото.
- Термопаста, продается в компьютерном магазине.
Подготовив все материалы, можно переходить к изготовлению устройства своими руками. Итак, чтобы Вам было понятнее, как самому сделать генератор, предоставляем пошаговый мастер-класс с картинками и подробным объяснением:
- Разберите старый блок питания и оставьте только корпус. Он будет использоваться, как место розжига огня (так называемая печь). Будьте внимательны, даже на старых блоках питания в высоковольтной части на конденсаторах может остаться опасное для жизни напряжение. Поэтому перед работой оденьте диэлектрические перчатки, убедитесь в отсутствии потенциала на конденсаторе, для уверенности замкните его контакты, и будьте предельно осторожны во время разборки!
- На радиатор нанесите термопасту тонким, однородным слоем и прислоните элемент Пельтье. Устанавливать нужно маркировкой к радиатору, это будет холодная сторона. Если Вы перепутаете стороны местами, в дальнейшем нужно будет поменять полярность проводов, чтобы термоэлектрический генератор работал правильно и не испортил преобразователь. Вместо термопасты вы можете использовать специальный теплопроводный клей, это будет даже лучше: не придется дополнительно крепить радиатор к корпусу.
- К обратной стороне модуля прислоните корпус блока питания, как показано на фото ниже.
- Прикрепите радиатор к корпусу с помощью металлической проволоки.
- К выводам элемента припаяйте стабилизатор напряжения с выходом USB. Кстати, для этого можно сделать паяльник сделать своими руками.
- Аккуратно поместите 5-вольтовый преобразователь в радиаторе и переходите к испытаниям самодельного термоэлектрического генератора. Не забудьте заизолировать преобразователь с помощью изоленты.
Работает термоэлектрический генератор следующим образом: внутрь печи Вы засыпаете дрова, мелкие щепки, поджигаете их и ждете несколько минут, пока одна из сторон термоэлемента не нагреется. Параллельно можно вскипятить воду на решетке. Для подзарядки телефона нужно, чтобы разница между температурами разных сторон была около 100оС. Если охлаждающая часть (радиатор) будет нагреваться, его нужно будет остужать – аккуратно поливать водой, поставить на него кружку с жидкостью, льдом и т.д. Лучше крепить радиатор так, чтобы его ребра были расположены вертикально, это улучшает отдачу тепла воздуху.
А вот и видео, на котором наглядно показывается, как работает самодельный электрогенератор на дровах:
Генерация электричества из огня
Также можно установить на холодную сторону устройства вентилятор от компьютера, что несколько изменит его конструкцию. Давайте рассмотрим этот вариант по подробнее:
В этом случае кулер будет затрачивать небольшую долю мощности генераторной установки, но в итоге система будет работать с более высоким КПД. Помимо телефонной зарядки модуль Пельтье можно использовать в качестве источника электроэнергии для фонарика, что не менее полезный вариант применения генератора. Еще одна особенность данной конструкции — это способность регулировать высоту над огнем. Для этого автор использует деталь от CD-ROMа (на одном из фото хорошо видно, как самому можно изготовить конструкцию).
Если сделать термоэлектрический генератор своими руками по такой методике, на выходе у Вас может быть до 8 Вольт напряжения, поэтому для подзарядки телефона, нужно подключить понижающий преобразователь, который сделает на выходе стабильные 5 В.
Ну и последний вариант самодельного источника электроэнергии для дома может быть представлен такой схемой: элемент между двух алюминиевых «кирпичиков», медная трубка (водяное охлаждение) и конфорка. Как результат – эффективный генератор, позволяющий получить бесплатное электричество в домашних условиях! Например, при остывании конфорки, когда ей никто не пользуется. Или очень часто люди используют печь для обогрева, так вот часть этой энергии может пойти на зарядку вашего гаджета.
Оригинальная идея — горячая вода, как источник тепла
Второй эксперимент с водой
Вот мы и предоставили три простых варианта самодельного аппарата, который можно собрать из подручных средств. Теперь Вы знаете как сделать термоэлектрический генератор своими руками, на чем основан принцип работы элемента Пельтье и для чего его можно использовать!
Будет интересным к прочтению:
tPOD1 — эффективный преобразователь тепловой энергии в электричество / Habr
То, что тепловую энергию можно преобразовывать в электричество, известно очень давно. Существует и целый спектр портативных устройств, которые совершают подобные преобразования без большого числа промежуточных этапов. Но вскоре может появиться устройство, которое окажется практически идеальным преобразователем тепловой энергии в электрическую для охотников, туристов, путешественников и жителей отдаленных регионов. tPOD1 достаточно эффективен — тепла, выделяемого одной маленькой свечкой (знаете, такие мини-свечки в металлической крышечке, они еще по воде могут плавать) хватит для обеспечения энергией светодиодной лампы (на 25 светодиодов) вплоть до четырех часов.
Этот проект разработан компанией Tellurex, которая в настоящее время собирает средства на реализацию своей идеи в промышленном масштабе на Kickstarter. Всего для начала массового производства tPOD1 нужно 85 тысяч долларов США. 40 тысяч долларов США уже собрано.
Разработчики считают, что их устройство может быть полезным, в первую очередь, для жителей удаленных регионов Африки. Та же мобильная связь добралась и туда, однако иногда жителям приходится проходить несколько километров в день, только для того, чтобы зарядить свой телефон где-нибудь в более цивилизованном районе. А теперь заряжать телефон можно будет буквально «из костра». Вероятно, жители смогут и просто класть tPOD1 куда-нибудь на темный камень, нагревающийся на солнце до 70 градусов (и даже выше).
Правда, стоимость девайса чрезмерно велика для африканца — выложить придется 69-79 долларов США. Так что пока tPOD1, вероятно, станет раскупаться только туристами, рыбаками и прочими категориями граждан, регулярно совершающих путешествия.
На видео, размещенном ниже, показан принцип действия устройства. Там вначале девочка вещает, но с 20-й секунды начинается сама презентация.
Via mashable