Роль анаэробных бактерий в производстве биогаза из отходов. Справка
В дальнейшем оказалось, что спорообразующие анаэробы – не какие-нибудь редко встречающиеся диковинки, а очень широко распространенные по всей поверхности Земли организмы. Последующие исследования многих микробиологов показали, что самые различные природные среды, в том числе полностью лишенные молекулярного кислорода, населены множеством микроскопических организмов, принимающих самое активное участие в круговороте веществ на Земле.
Глубокое изучение обмена веществ анаэробов позволило использовать их в промышленности как продуцентов ряда ценных для народного хозяйства соединений.
В настоящее время промышленность и жилые массивы производят большое количество отходов, которые необходимо утилизировать и переработать. Из органических отходов можно получить биогаз. В анаэробных условиях бактерии разлагают органический субстрат, а биогаз является промежуточным продуктом их обмена веществ.
В мире в настоящее время используется или разрабатывается около 60 разновидностей технологий получения биогаза. Наиболее распространённый метод – анаэробное сбраживание в метатанках (резервуары для биологической переработки), без доступа воздуха, или анаэробных колоннах. Часть энергии, получаемой в результате утилизации биогаза, направляется на поддержание процесса.
Бактерии перерабатывают биомассу в биогаз при температуре свыше 25°С. В странах с жарким климатом нет необходимости подогревать метатанк.
Процесс основан на разложении (гниении) под воздействием бактерий, принадлежащих к двум большим семействам асидогенов и метаногенов, предварительно сортированного ТБО (органические отходы, густая грязь) в металлических емкостях без доступа воздуха при средней температуре около + 55°C. Этот газ подается под давлением в очистительную систему, а потом выделяется в два компонента – метан и углекислый газ.
Биогаз состоит из 55-75% метана и 25-45% углекислого газа, включая небольшие примеси сероводорода. Период образования качественного биогаза составляет от 7 до 15 дней.
Процесс разложения происходит в четыре этапа, в каждом из которых участие принимают разные группы бактерий.
На первом этапе аэробные бактерии перестраивают высокомолекулярные органические субстанции (белок, углеводы, жиры, целлюлозу) с помощью энзимов на низкомолекулярные соединения, такие как моносахариды, аминокислоты, жирные кислоты и воду. Этот процесс называется гидролиз.
Далее расщеплением занимаются кислотообразующие бактерии. В этом процессе частично принимают участие анаэробные бактерии, употребляющие остатки кислорода и образующие тем самым необходимые для метановых бактерий анаэробные условия. На этом этапе вырабатываются: кислоты (уксусная, муравьиная, масляная, пропионовая, капроновая и молочная), спирты и кетоны (метанол, этанол, пропанол, бутанол, глицерин и ацетон), газы (двуокись углерода, углерод, сероводород и аммиак). Этот этап называют этапом окисления.
После этого кислотообразующие бактерии создают из органических кислот исходные продукты для образования метана: уксусную кислоту, двуокись углерода и водород.
На последнем этапе образуется метан, двуокись углерода и вода. 90% всего метана вырабатывается на этом этапе, 70% происходит из уксусной кислоты. Таким образом, образование уксусной кислоты (то есть третий этап расщепления) является фактором, определяющим скорость образования метана.
Получение биогаза экономически оправдано при переработке постоянного потока отходов, например на животноводческих фермах.
Россия ежегодно накапливает до 300 млн тонн в сухом эквиваленте органических отходов: 250 млн тонн в сельскохозяйственном производстве, 50 млн тонн в виде бытового мусора. Эти отходы являются сырьем для производства биогаза. Потенциальный объем ежегодно получаемого биогаза может составить 90 млрд куб. м.
Биогаз собирают, предотвращая загрязнение атмосферы, и используют в качестве топлива для производства: электроэнергии, тепла или пара, или в качестве автомобильного топлива. С учетом российских условий метан, выработанный из биогаза, или биогаз в основном его виде могут использоваться в виде топлива для малых котельных, автотранспорта и выработки электроэнергии.
Выделенный метан из биогаза является сырьем для получения многих ценных продуктов химической промышленности – метанола, формальдегида, ацетилена, сероуглерода, хлороформа, синильной кислоты, сажи.
Оставшийся высококачественный компост и обогащенное азотом удобрение продаётся предприятиям сельского хозяйства и частным лицам.
Данная технология считается полностью безотходным производством, где каждый компонент имеет свое применение.
Материал подготовлен на основе информации открытых источников
Анаэробная инфекция — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 января 2019; проверки требуют 6 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 января 2019; проверки требуют 6 правок.Анаэробный этиологический агент делят на три вида[1]:
- Классическая клостридиальная
- Неклостридиальные
- Гнилостная
Анаэробная инфекция часто встречается при огнестрельных, загрязнённых, размозжённых ранах, а также при ранениях полых органов брюшной полости (напр. толстой кишки).
Анаэробная клостридиальная инфекция[править | править код]
Этиология[править | править код]
Классический клостридиальный этиологический агент — спорообразующий облигатный анаэроб — может длительно сохранять жизнеспособность в споровой форме при наличии кислорода, развивается только в анаэробных условиях. Продукты метаболизма микроорганизмов такого рода быстро формируют из аэробной анаэробную среду, приемлемую для прорастания спор в вегетативные формы. Риск заражения клостридиальной микрофлорой повышается на загрязненных почвах с низкой аэрацией, илистых или заболоченных почвах.
Возбудители:
К анаэробной инфекции не относят , ботулизм и пищевые токсикоинфекции Clostridium difficile, несмотря на то, что они вызываются клостридиями.
Клиническая картина[править | править код]
Лечение[править | править код]
Профилактика[править | править код]
Анаэробная неклостридиальная инфекция[править | править код]
Неклостридиальные инфекционные агенты погибают в течение 1-2 часов контакта с кислородом и его активными формами.
Этиология[править | править код]
Возбудители:
- Грамположительные:
- Грамотрицательные:
Клиническая картина[править | править код]
Анаэробная неклостридиальная инфекция клинически протекает в форме флегмоны. Обычно это обширные поражения подкожной жировой клетчатки (целлюлит), мышц (миозит) и мышечных футляров (фасцит). Особенностью процесса можно назвать разлитой характер, его прогрессирование несмотря на проводимые радикальные лечебные мероприятия.
К общей симптоматике относится слабость, субфебрилитет, иногда анемия, значительная общая интоксикация.
Наиболее распространнеными возбудителями гнилостной инфекции являются кишечная палочка, вульгарный протеи, стрептококковая флора, находящиеся в ране в ассоциации с другими микроорганизмами.
Лечение[править | править код]
Компонентами лечения являются:
- Срочная радикальная хирургическая обработка, с иссечением некротизированных тканей
- Антибактериальная терапия
- Детоксикационная терапия (с применением средств экстракорпоральной детоксикации)
- Иммунотерапия (переливание плазмы, препаратов иммуноглобуллинов и др.)
- К необязательным компонентам лечения можно отнести оксигенобаротерапию (Meyers. R с соавт., 1982) и озонотерапию, использование препаратов оксигенированного перфторана в сочетании с ультразвуком.
Прогноз[править | править код]
Прогноз во многом зависит от локализации инфекции, тяжести протекания инфекционного процесса, своевременности и адекватности лечения, общего состояния организма, однако, в целом остаётся серьёзным. По разным данным, летальность составляет от 25 до 70% [2].
- Степанов Н.Г 100 вопросов по анаэробной инфекции мягких тканей. Избранные разделы пиологии. — Нижний Новгород. ГИПП «Нижполиграф», 199. 48 с ISBN 5-7628-0185-3 ББК 55.14
| |||||||
|
Что такое анаэробные бактерии? Как правильно применять- Виды +Фото и Видео
Частные дома редко имеют подключение к центральной системе канализации. В своем большинстве владельцы обустраивают свою систему хранения стоков, на многих участках есть выгребная яма. Раньше производить утилизацию отходов жизнедеятельности, прибегая к помощи ассенизаторов, приходилось довольно часто. Сейчас этот вопрос решается при помощи аэробный и анаэробных бактерий.
Применение живых бактерии для канализационных накопителей и выгребных ям помогает избавиться от неприятного запаха и ускорить разложение отходов.
Содержание статьи:
Как работают биодобавки
Бактерии – это живые микроорганизмы
Бактерии доставляются в септик или выгребную яму. В теплой жидкой среде они быстро размножаются, образуя колонию. Выводят бактерии из почвенных организмов селекционным путем. Они помогают разложению органических отходов и некоторых неорганических (для неорганики добавляются ферменты).
Выпускаются в таблетках, капсулах, в жидком виде. Таблетки или капсулы можно смыть в унитаз, в выгребную яму препарат добавляется в жидком виде. Бактерии разводятся в теплой воде.
Виды микроогранизмов
- Анаэробные
- Аэробные
- Биоактиваторы
Анаэробные бактерии для септиков
Как работают?
Организмы данного вида применяются для закрытых септиков, для продуктивной работы и полноценного существования им не требуется кислород.
Анаэробы не выводились искусственно, они существуют в природе.
Микроорганизмы прекрасно размножаются, создают колонии в болотах, влажном грунте, в илистых местах, глубоко в почве. Определенные виды перерабатывают останки животных и погибших растений, образуя перегной.
Бактерии производят очищение воды, разделяют минеральные вещества и газы, что и требуется для септиков.
Анаэробы перерабатывают сточные воды, ускоряют процесс разложения, очищают воду. При работе бактерий происходит выделение метана и повышение температуры содержимого септика. По причине выделяемого газа рекомендуют использовать микроорганизмы для резервуаров закрытого типа.
После продуктивной работы анаэробных организмов, часть веществ опускается на дно и образует перегной, другая часть поднимается наверх.
Внимание!
При контакте с кислородом анаэробы гибнут.
При отрицательных температурах работоспособность понижается, часть микроорганизмов погибает. Септики рекомендуют утеплять.
Для активной жизнедеятельности анаэробам требуются
- Бескислородная изолированная среда
- От +9 до + 37 градусов по Цельсию
- pH 6-8 единиц
- откачка твердых осадков
Распад органических веществ в септиках делится на два этапа
Происходит кислое брожение. Сопровождает процесс сильно неприятный запах. Брожение происходит очень медленно. Бактерии создают первичный ил, куски ила поднимаются наверх с газовыми пузырьками. Постепенно метан заполняет всю свободную площадь септика и вытесняет кислород. Так создается оптимальная среда для анаэробов.
Как только среда создана, начинается второй этап.
Щелочной распад – метановое брожение. Неприятный запах практически пропадает, ил приобретает черный цвет. Бактерии помогают разделить отходы жизнедеятельности на газ, жидкость и твердый осадок.
Плюсы
- Требуется малое количество бактерий
- Высокий уровень расщепления органических веществ
- Отсутствует аэрация
- Образующийся метан можно использовать
Минусы
- При увеличении колонии образуется слишком много метана
- Результат очистки 65-70%
- Твердый осадок необходимо удалять
- Осадок не пригоден для использования.
Ведущие производители
Водограй – основное преимущество малый твердый осадок
Атмосбто – препарат не требует предварительного запуска
Санэкс – главное достоинство перерабатывает неорганические вещества и жиры
Доктор Робик – в составе 6 штаммов бактерий, перерабатывает все виды органики, неорганику частично.
В течении первого месяца рекомендуется раз в неделю добавлять бактерии, чтобы повысить численность колонии.
Аэробные бактерии
Эти микроорганизмы продуктивно работают при наличии кислорода.
Ил что образуют аэробы можно применять в качестве удобрения. Бактерии при расщеплении органики выделяют углекислый газ. Отсутствие неприятного запаха гарантировано.
В случае использования аэробов для закрытого септика, устанавливается компрессор для подачи кислорода.
Биоактиваторы
Биоактиваторы содержат до десятков различных микроорганизмов.
Стоит учесть, что препарат есть универсальный и узкого направления.
Универсальный биоактиватор можно применять для любых видов септиков и выгребных ям.
Внимание!
При применении любых бактерий в канализацию запрещено утилизировать антибиотики и другие медицинские препараты, хлор и агрессивные химические вещества, это приведет к гибели микроорганизмов.
Как выбрать бактерии?
- Учитывать предназначение
- Для самодельных однокамерных септиков хорошо подходят аэробные бактерии или универсальные биоактиваторы
- Многокамерные септики с компрессором – аэробные бактерии.
- Для профилактики применять биоактиваторы
- Закрытые септики без компрессора – анаэробные и биоактиваторы
- Если септик долгое время не эксплуатировался, требуются специальные активаторы для запуска системы. Живые бактерии не подойдут.
Внимательно читайте рекомендации производителя на упаковке.
Анаэробная инфекция: возбудители, формы, диагностика, лечение
Анаэробная инфекция – патология, возбудителями которой являются бактерии, способные расти и размножаться при полном отсутствии кислорода или его низком напряжении. Их токсины обладают высокой проникающей способностью и считаются крайне агрессивными. К данной группе инфекционных заболеваний относятся тяжелые формы патологий, характеризующиеся поражением жизненно важных органов и высоким уровнем смертности. У больных обычно преобладают проявления интоксикационного синдрома над местными клиническими признаками. Данная патология отличается преимущественным поражением соединительнотканных и мышечных волокон.
Анаэробная инфекция отличается высокой скоростью развития патологического процесса, тяжелым интоксикационным синдромом, гнилостным зловонным экссудатом, газообразованием в ране, быстрым некротическим поражением тканей, слабовыраженными воспалительными признаками. Анаэробная раневая инфекция является осложнением травм – ранений полых органов, ожогов, обморожений, огнестрельных, загрязненных, размозженных ран.
Анаэробная инфекция по происхождению бывает внебольничной и внутрибольничной; по этиологии – травматической, спонтанной, ятрогенной; по распространенности – местной, региональной, генерализованной; по локализации — с поражением ЦНС, мягких тканей, кожного покрова, костей и суставов, крови, внутренних органов; по течению – молниеносной, острой и подострой. По видовому составу возбудителя она подразделяется на монобактериальную, полибактериальную и смешанную.
Анаэробная инфекция в хирургии развивается в течение 30 дней после оперативного вмешательства. Эта патология относится к внутрибольничным и существенно увеличивает время нахождения пациента в стационаре. Анаэробная инфекция привлекает внимание врачей различных специальностей благодаря тому, что она отличается тяжелым течением, высокой смертностью и инвалидизацией пациентов.
Причины
Возбудителями анаэробной инфекции являются обитатели нормальной микрофлоры различных биоценозов тела человека: кожного покрова, ЖКТ, мочеполовой системы. Эти бактерии по своим вирулентным свойствам являются условно-патогенными. Под воздействием негативных экзогенных и эндогенных факторов начинается их бесконтрольное размножение, бактерии становятся патогенными и вызывают развитие заболеваний.
Факторы, вызывающие нарушения в составе нормальной микрофлоры:
- Недоношенность, внутриутробное инфицирование,
- Микробные патологии органов и тканей,
- Длительная антибиотико-, химио- и гормонотерапия,
- Облучение, прием иммунодепрессантов,
- Длительное пребывание в стационаре различного профиля,
- Длительное нахождение человека в замкнутом пространстве.
Анаэробные микроорганизмы обитают во внешней среде: в почве, на дне водоемов. Их основная характеристика – отсутствие толерантности к кислороду ввиду недостаточности ферментных систем.
Все анаэробные микробы делятся на две большие группы:
- Облигатные бактерии растут и размножаются при полном отсутствии кислорода. К ним относятся спорообразующие бактерии — клостридии и неспорообразующая микрофлора – фузобактериальная, пептострептококковая, бактероидная. Спорообразование — родовой признак клостридий, обуславливающий их резистентность к негативному воздействию внешней среды. Возбудители газовой анаэробной инфекции в аэробных условиях существует в споровой форме. В анаэробных условиях споры прорастают, бактерии начинаются активно развиваться и размножаться.
- Факультативные микроорганизмы выживают в присутствии кислорода — эшерихия, шигелла, иерсиния, кокковая флора.
Факторы патогенности анаэробов:
- Ферменты усиливают вирулентные свойства анаэробов, разрушают мышечные и соединительнотканные волокна. Они вызывают тяжелые расстройства микроциркуляции, повышают проницаемость сосудов, разрушают эритроциты, способствуют микротромбообразованию и развитию васкулитов с генерализацией процесса. Ферменты, продуцируемые бактероидами, оказывают цитотоксическое действие, что приводит к разрушению тканей и распространению инфекции.
- Экзотоксины и эндотоксины повреждают сосудистую стенку, вызывают гемолиз эритроцитов и запускают процесс тромбообразования. Они оказывают нефротропное, нейротропное, дерматонекротизирующее, кардиотропное действие, нарушают целостность мембран эпителиоцитов, что приводит их к гибели. Клостридии выделяют токсин, под воздействием которого в тканях образуется экссудат, мышцы набухают и отмирают, становятся бледными и содержат много газа.
- Адгезины способствуют прикреплению бактерий к эндотелию и его повреждению.
- Капсула анаэробов усиливает вирулентные свойства микробов.
Экзогенная анаэробная инфекция протекает в форме клостридиального энтерита, посттравматического целлюлита и мионекроза. Эти патологии развиваются после проникновения возбудителя из внешней среды в результате травмы, укуса насекомых, криминального аборта. Эндогенная инфекция развивается в следствии миграции анаэробов внутри организма: из мест своего постоянного обитания в посторонние локусы. Этому способствуют операции, травматические повреждения, лечебно-диагностические манипуляции, инъекции.
Условия и факторы, провоцирующие развитие анаэробной инфекции:
- Загрязнение раны почвой, экскрементами,
- Создание анаэробной атмосферы некротизированными тканями в глубине раны,
- Посторонние тела в ране,
- Нарушение целостности кожи и слизистой,
- Проникновение бактерий в кровеносное русло,
- Ишемия и некроз тканей,
- Окклюзионные заболевания сосудов,
- Шок,
- Системные заболевания,
- Эндокринопатии,
- Онкология,
- Большая кровопотеря,
- Кахексия,
- Нервно-психическое перенапряжение,
- Длительная гормонотерапия и химиотерапия,
- Иммунодефицит,
- Нерациональная антибиотикотерапия.
Симптоматика
Морфологические формы клостридиальной инфекции:
- Целлюлит — воспалительное заболевание подкожно-жировой клетчатки, проявляющееся резким отеком, образованием пузырей в эпидермисе с серозным экссудатом и требующее проведения антибактериальной терапии. Острое воспаление характеризуется диффузным поражением подкожной клетчатки серозного характера. Под воздействием неблагоприятных факторов нарушается микроциркуляция в клетчатке, происходит разрастание соединительнотканных волокон, из которых со временем образуется каркас для целлюл. В этих ячейках скапливается вода, жир и продукты обмена веществ. Они не выводятся из организма и блокируют кровоток и лимфоток. На гиперемированной коже появляется болезненный и горячий на ощупь инфильтрат. Если взять кожу в складку, появятся отеки и бугорки. Внутритканевое давление повышается, отток жидкости от пораженных тканей прекращается. Клинически данный процесс проявляется подкожными узелками, впадинками и отеками. К видимым симптомам в дальнейшем присоединяется болезненность, посинение и похолодание кожи. В запущенных случаях происходит разрушение клетчатки с распространением патологического процесса на фасции и мышцы.
- Миозит и мионекроз — локальное воспаление мышц без отека кожи и подкожной клетчатки. У больных в ране возникает острая, распирающая боль. Это самый ранний и характерный местный симптом патологии. Кожный покров над очагом поражения приобретает бронзовый цвет. Образуется газ и гнойный экссудат с неприятным запахом.
- Фасцит — воспаление мышечных футляров, являющееся осложнением ран, ссадин, операций. Клостридиальная инфекция приводит к развитию некротической формы, проявляющейся отмиранием поверхностных фасций тела.
- Смешанные формы проявляются поражением кожного покрова, подкожно-жировой клетчатки и мышечного слоя. У больных воспаляются мышцы таза и нижних конечностей. К этой форме относится газовая флегмона, некротический фасциоцеллюлит или фасциомиозит.
Неклостридиальная анаэробная инфекция вызывает гнойное воспаление внутренних органов, головного мозга, часто с абсцедированием мягких тканей и развитием сепсиса.
Анаэробная инфекция начинается внезапно. У больных преобладают симптомы общей интоксикации над местным воспалением. Их самочувствие резкое ухудшается до появления локальных симптомов, раны приобретают черную окраску.
Инкубационный период длится около трех суток. Больных лихорадит и знобит, у них возникает выраженная слабость и разбитость, диспепсия, заторможенность, сонливость, апатичность, падает кровяное давление, учащается сердцебиение, синеет носогубный треугольник. Постепенно заторможенность сменяется возбуждением, неспокойствием, спутанностью сознания. У них учащается дыхание и пульс. Состояние ЖКТ также изменяется: язык у больных сухой, обложен, они испытывают жажду и сухость во рту. Кожа лица бледнеет, приобретает землистый оттенок, глаза западают. Возникает так называемое «маска Гиппократа» – «fades Hippocratica». Пациенты становятся заторможенными или резко возбужденными, апатичными, депрессивными. Они перестают ориентироваться в пространстве и собственных чувствах.
Местные симптомы патологии:
- Сильная, нестерпимая, нарастающая боль распирающего характера, не снимаемая анальгетиками.
- Отек тканей конечности быстро прогрессирует и проявляется ощущениями полноты и распирания конечности.
- Газ в пораженных тканях можно обнаружить с помощью пальпации, перкуссии и прочих диагностических методик. Эмфизема, крепитация мягких тканей, тимпанит, легкий треск, коробочный звук — признаки газовой гангрены.
- Дистальные отделы нижних конечностей становятся малоподвижными и практически нечувствительными.
- Гнойно-некротическое воспаление развивается бурно и даже злокачественно. При отсутствии лечения мягкие ткани быстро разрушаются, что делает прогноз патологии неблагоприятным.
Диагностика
Диагностические мероприятия при анаэробной инфекции:
- Микроскопия мазков-отпечатков из ран или раневого отделяемого позволяет определить длинные полиморфные грамположительные «грубые» палочки и обилие кокковой микрофлоры. Бактериоды — полиморфные, мелкие грамотрицательные палочки с биполярной окраской, подвижные и неподвижные, не образуют спор, строгие анаэробы.
- В микробиологической лаборатории проводят бактериологическое исследование отделяемого раны, кусочков пораженных тканей, крови, мочи, ликвора. Биоматериал доставляют в лабораторию, где его засевают на специальные питательные среды. Чашки с посевами помещают в анаэростат, а затем в термостат и инкубируют при температуре +37 С. В жидких питательных средах микробы растут с бурным газообразованием и закислением среды. На кровяном агаре колонии окружены зоной гемолиза, на воздухе приобретают зеленоватую окраску. Микробиологи подсчитывают количество морфологически различных колоний и после выделения чистой культуры изучают биохимические свойства. Если в мазке имеются грам+ кокки, проверяют наличие каталазы. При выделении пузырьков газа проба считается положительной. На среде Вильсо-Блер клостридии растут в виде черных колоний в глубине среды шаровидной или чечевицеобразной формы. Подсчитывают их общее количество и подтверждают принадлежность к клостридиям. При обнаружении в мазке микроорганизмов с характерными морфологическими признаками делают заключение. Бактериоды растут на питательных средах в виде мелких, плоских, непрозрачных, серовато-белых с зазубренными краями колоний. Их первичные колонии не пересеваются, поскольку даже кратковременная экспозиция с кислородом приводит к их гибели. При росте бактериодов на питательных средах обращает на себя внимание отвратительный запах.
- Экспресс-диагностика – изучение патологического материала в ультрафиолетовом свете.
- При подозрении на бактериемию кровь засевают на питательные среды (Тиогликолевую, Сабуро) и инкубируют 10 суток, периодически высевая биоматериал на кровяной агар.
- Иммуноферментный анализ и ПЦР помогают установить диагноз за относительно короткие сроки.
Лечение
Лечение анаэробной инфекции комплексное, включающее хирургическую обработку раны, консервативную и физиотерапию.
Во время хирургической обработки рану широко рассекают, нежизнеспособные и размозженные ткани иссекают, удаляют инородные тела, а затем образовавшуюся полость обрабатывают и дренируют. Раны рыхло тампонируют марлевыми тампонами с раствором перманганата калия или перекиси водорода. Операцию выполняют под общей анестезией. При декомпрессии отечных, глубоко расположенных тканей проводят широкую фасциотомию. Если анаэробная хирургическая инфекция является развивается на фоне перелома конечности, ее иммобилизуют гипсовой лонгетой. Обширное разрушение тканей может привести к ампутации или экзартикуляции конечности.
Консервативная терапия:
- Дезинтоксикационное лечение — внутривенное введение коллоидных и кристаллоидных растворов: «Реополиглюкина», «Гемодеза», физраствора, глюкозы.
- Антибактериальная терапия — назначение препаратов из группы защищенных пенициллинов, аминогликозидов, цефалоспоринов, фторхинолонов. Лечение подобными препаратами проводят до получения результатов анализа на чувствительность возбудителей к антибиотикам.
- При необходимости пациенту внутривенно капельно и внутримышечно вводится антитоксическая противогангренозная сыворотка.
- Иммунотерапия – переливание плазмы, иммуноглобуллинов.
- Обезболивающие средства, анаболические гормоны, антикоагулянты, витамины.
Физиотерапевтическое лечение заключается в обработке ран ультразвуком и лазером, проведении озонотерапии, гипербарической оксигенации, экстракорпоральной гемокоррекции.
В настоящее время специфическая профилактика анаэробной инфекции не разработана. Прогноз патологии зависит от формы инфекционного процесса, состояния макроорганизма, своевременности и правильности диагностики и лечения. Прогноз осторожный, но чаще всего благоприятный. При отсутствии лечения исход заболевания неутешительный.
Мнения, советы и обсуждение:
Анаэробные организмы — это… Что такое Анаэробные организмы?
Аэробные и анаэробные бактерии предварительно идентифицируются в жидкой питательной среде по градиенту концентрации O2:1. Облигатные аэробные (нуждающиеся в кислороде) бактерии в основном собираются в верхней части пробирки, чтобы поглощать максимальное количество кислорода. (Исключение: микобактерии — рост пленкой на поверхности из-за восколипидной мембраны.)
2. Облигатные анаэробные бактерии собираются в нижней части, чтобы избежать кислорода (либо не дают роста).
3. Факультативные бактерии собираются в основном в верхнем (окислительное фосфорилирование является наиболее выгодным, чем гликолиз), однако они могут быть найдены на всем протяжении среды, так как от O2 не зависят.
4. Микроаэрофилы собираются в верхней части пробирки, но их оптимум — малая концентрация кислорода.
5. Аэротолерантные анаэробы не реагируют на концентрации кислорода и равномерно распределяются по пробирке.
Анаэробы — организмы, получающие энергию при отсутствии доступа кислорода путем субстратного фосфорилирования, конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ в присутствии конечного акцептора протонов организмами, осуществляющими окислительное фосфорилирование.
Анаэробы — обширная группа организмов, как микро-, так и макроуровня:
Помимо этого анаэробное окисление глюкозы играет важную роль в работе поперечно-полосатой мускулатуры животных и человека (особенно в состоянии тканевой гипоксии).
Термин «анаэробы» ввел Луи Пастер, открывший в 1861 году бактерии маслянокислого брожения. Анаэробное дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов при использовании в качестве конечного акцептора протонов не кислорода, а других веществ (например, нитратов) и относится к процессам энергетического обмена (катаболизм, диссимиляция), которые характеризуются окислением углеводов, липидов и аминокислот до низкомолекулярных соединений.
Степень аэробности среды
Интерполяция руководства к системам BD Gaspak, описывающая условия среды генерируемые пакетом[1]Для измерения потенциала среды М. Кларк предложил использовать величину pH20 — отрицательный логарифм парциального давления газообразного водорода. Диапазон [0-42,6] характеризует все степени насыщения водного раствора водородом и кислородом. Аэробы растут при более высоком потенциале [14-20], факультативные анаэробы [0-20], а облигатные — при наиболее низком [0-10].[2]
Классификация анаэробов
Согласно устоявшейся в микробиологии классификации, различают:
- Факультативные анаэробы
- Капнеистические анаэробы и микроаэрофилы
- Аэротолерантные анаэробы
- Умеренно-строгие анаэробы
- Облигатные анаэробы
Если организм способен переключаться с одного метаболического пути на другой (например, с анаэробного дыхания на аэробное и обратно), то его условно относят к факультативным анаэробам[3].
До 1991 года в микробиологии выделяли класс капнеистических анаэробов, требовавших пониженной концентрации кислорода и повышенной концентрации углекислоты (Бруцеллы бычьего типа — B. abortus)[2]
Умеренно-строгий анаэробный организм выживает в среде с молекулярным O2, однако не размножается. Микроаэрофилы способны выживать и размножаться в среде с низким парциальным давлением O2.
Если организм не способен «переключиться» с анаэробного типа дыхания на аэробный, но не гибнет в присутствии молекулярного кислорода, то он относится к группе аэротолерантных анаэробов. Например, молочнокислые и многие маслянокислые бактерии
Облигатные анаэробы в присутствии молекулярного кислорода O2 гибнут — например, представители рода бактерий и архей: Bacteroides, Fusobacterium, Butyrivibrio, Methanobacterium). Такие анаэробы постоянно живут в лишенной кислорода среде. К облигатным анаэробам относятся некоторые бактерии, дрожжи, жгутиковые и инфузории.
Токсичность кислорода и его форм для анаэробных организмов
Среда с содержанием кислорода является агрессивной по отношению к органическим формам жизни. Это связано с образованием активных форм кислорода в процессе жизнедеятельности или под действием различных форм ионизирующего излучения, значительно более токсичных, чем молекулярный кислород O2. Фактор, определяющий жизнеспособность организма в среде кислорода[4] — наличие у него функциональной антиоксидантной системы, способной к элиминации:супероксид-аниона(O2−),перекиси водорода(H2O2), синглетного кислорода(O.), а также молекулярного кислорода (O2) из внутренней среды организма. Наиболее часто подобная защита обеспечивается одним или несколькими ферментами:
- супероксиддисмутаза, элиминирующая супероксид-анион(O2−) без энергетической выгоды для организма
- каталаза, элиминирующая перекись водорода(H2O2) без энергетической выгоды для организма
- цитохром— фермент, отвечающий за перенос электронов от NAD•H к O2. Этот процесс обеспечивает существенную энергетическую выгоду организму.
Аэробные организмы содержат чаще всего три цитохрома, факультативные анаэробы — один или два, облигатные анаэробы не содержат цитохромов.
Анаэробные микроорганизмы могут активно воздействовать на среду[2] , создавая подходящий окислительно-восстановительный потенциал среды (напр. Cl.perfringens). Некоторые засеянные культуры анаэробных микроорганизмов, прежде чем начать размножаться, снижают pH20 с величины [20-25] до [1-5], ограждая себя восстановительным барьером, другие — аэротолерантные — в процессе жизнедеятельности продуцируют перекись водорода, повышая pH20[5].
Дополнительная антиоксидантная защита может обеспечиваться синтезом или накоплением низкомолекулярных антиоксидантов: витамина С, А, E, лимонной и других кислот.
Получение энергии путем субстратного фосфорилирования. Брожение. Гниение.
Схема гликолиза с образованием молочной кислоты- Также анаэробные организмы могут получать энергию путем катаболизма аминокислот и их соединений (пептидов, белков). Такие процессы именуют гниением, а микрофлору в энергетическом обмене которой преобладают процессы катаболизма аминокислот называют гнилостной.
- Анаэробные микроорганизмы расщепляют гексозы (например, глюкозу) разными путями:
- Гликолиз (Путь Эмдена-Мейергофа) после которого продукт подвергается брожению
- окислительный пентозофосфатный путь (другие названия: Фосфогликонатный путь, иначе гексозомонофосфатный(ГКМ), иначе путь Варбурга — Диккенса — Хореккера)
- Путь Энтнера — Дудорова (особенно значимый, когда субстратами служат глюконовая, маннановая, гексуроновые кислоты или их производные)
В качестве примера организма, сбраживающего сахара по пути Энтнера — Дудорова, можно привести облигатно анаэробную бактерию Zymomonas mobilis. Однако ее изучение позволяет предполагать, что Z. mobilis — вторичный анаэроб, произошедший от цитохромсодержащих аэробов. Путь Энтнера — Дудорова обнаружен и у некоторых клостридиев, что еще раз подчеркивает неоднородность эубактерий, объединенных в эту таксономическую группу.[6].
При этом характерным только для анаэробов является гликолиз, который в зависимости от конечных продуктов реакции разделяют на несколько типов брожению:
В результате расщепления глюкозы расходуется 2 молекулы, а синтезируется 4 молекулы АТФ. Таким образом общий выход АТФ составляет 2 молекулы АТФ и 2 молекулы НАД·Н2. Полученный в ходе реакции пируват утилизируется клеткой по-разному в зависимости от того, какому типу брожения она следует.
Антагонизм брожения и гниения
В процессе эволюции сформировался и закрепился биологический антагонизм бродильной и гнилостной микрофлоры:
Расщепление микроорганизмами углеводов сопровождается значительным снижением pH среды, в то время как расщепление белков и аминокислот — повышением (защелачиванием). Приспособление каждого из организмов к определенной реакции среды играет важнейшую роль в природе и жизни человека, например, благодаря бродильным процессам предотвращается загнивание силоса, заквашенных овощей, молочных продуктов.
Культивирование анаэробных организмов
Выделение чистой культуры анаэробов схематичноКультивирование анаэробных организмов в основном является задачей микробиологии.
Сложнее дело обстоит с культивированием анаэробных многоклеточных организмов, поскольку для их культивирования часто необходима специфическая микрофлора, а также определённые концентрации метаболитов. Применяется, например, при исследовании паразитов человеческого организма.
Для культивирования анаэробов применяют особые методы, сущность которых заключается в удалении воздуха или замены его специализированной газовой смесью (или инертными газами) в герметизированных термостатах — анаэростатах[7].
Другим способом выращивания анаэробов(чаще всего микроорганизмов) на питательных средах — добавление содержащих редуцирующие вещества (глюкозу, муравьинокислый натрий и др.), уменьшающие окислительно-восстановительный потенциал.
Общие питательные среды для анаэробных организмов
Для общей среды Вильсона — Блера базой является агар-агар с добавлением глюкозы, сульфита натрия и двуххлористого железа. Клостридии образуют на этой среде колонии чёрного цвета за счет восстановления сульфита до сульфид — аниона, который соединяясь с катионами железа (II) дает соль чёрного цвета. Как правило, черные на этой среде образования колонии, появляются в глубине агарового столбика.[8]
Среда Китта — Тароцци состоит из мясопептонного бульона, 0,5% глюкозы и кусочков печени или мясного фарша для поглощения кислорода из среды. Перед посевом среду прогревают на кипящей водяной бане в течение 20 — 30 минут для удаления воздуха из среды. После посева питательную среду сразу заливают слоем парафина или вазелинового масла для изоляции от доступа кислорода.
Общие методы культивирования для анаэробных организмов
GasPak — система химическим путем обеспечивает постоянство газовой смеси, приемлемой для роста большинства анаэробных микроорганизмов. В герметичном контейнере, в результате реакции воды с таблетками боргидрида натрия и бикарбоната натрия образуется водород и диоксид углерода. Водород затем реагирует с кислородом газовой смеси на палладиевом катализаторе с образованием воды, уже вторично вступающей в реакцию гидролиза боргидрида.
Данный метод был предложен Брюером и Олгаером в 1965 году. Разработчики представили одноразовый пакет, генерирующий водород, который был позднее усовершенствован ими до саше, генерирующих двуокись углерода и содержащих внутренний катализатор[9][10].
Метод Цейсслера применяется для выделения чистых культур спорообразующих анаэробов. Для этого производят посев на среду Китт-Тароцци, прогревают 20 мин при 80 °C (для уничтожения вегетативной формы), заливают среду вазелиновым маслом и инкубируют 24 ч в термостате. Затем производят посев на сахарно-кровяной агар для получения чистых культур. После 24-часового культивирования интересующие колонии изучаются — их пересеивают на среду Китт-Тароцци (с последующим контролем чистоты выделенной культуры).
Метод ФортнераМетод Фортнера — посевы производят на чашку Петри с утолщенным слоем среды, разделённым пополам узкой канавкой, вырезанной в агаре. Одну половину засевают культуру аэробных бактерий, на другую — анаэробных. Края чашки заливают парафином и инкубируют в термостате. Первоначально наблюдают рост аэробной микрофлоры, а затем (после поглощения кислорода) — рост аэробной резко прекращается и начинается рост анаэробной.
Метод Вейнберга используется для получения чистых культур облигатных анаэробов. Культуры, выращенные на среде Китта-Тароцци, переносят в сахарный бульон. Затем одноразовой пастеровской пипеткой материал переносят в узкие пробирки (трубки Виньяля) с сахарным мясо-пептонным агаром, погружая пипетку до дна пробирки. Засеянные пробирки быстро охлаждают, что позволяет фиксировать бактериальный материал в толще затвердевшего агара. Пробирки инкубируют в термостате, а затем изучают выросшие колонии. При обнаружении интересующей колонии на её месте делают распил, материал быстро отбирают и засеивают на среду Китта-Тароцци (с последующим контролем чистоты выделенной культуры).
Метод ПеретцаМетод Перетца — в расплавленный и охлаждённый сахарный агар-агар вносят культуру бактерий и заливают под стекло, помещённое на пробковых палочках(или фрагментах спичек) в чашку Петри. Метод наименее надежен из всех, но достаточно прост в применении.
Дифференциально — диагностические питательные среды
- Среды Гисса («пестрый ряд»)
- Среда Ресселя (Рассела)
- Среда Эндо
- Среда Плоскирева или бактоагар «Ж»
- Висмут-сульфитный агар
Среды Гисса: К 1 % пептонной воде добавляют 0,5 % раствор определенного углевода (глюкоза, лактоза, мальтоза, маннит, сахароза и др.) и кислотно-щелочной индикатор Андреде, разливают по пробиркам, в которые помещают поплавок для улавливания газообразных продуктов, образующихся при разложении углеводородов.
Среда Ресселя (Рассела) применяется для изучения биохимических свойств энтеробактерий(шигелл, сальмонелл). Содержит питательный агар-агар, лактозу, глюкозу и индикатор (бромтимоловый синий). Цвет среды травянисто-зелёный. Обычно готовят в пробирках по 5 мл со скошенной поверхностью. Посев осуществляют уколом в глубину столбика и штрихом по скошенной поверхности.
Среда Эндо
Среда Плоскирева (бактоагар Ж) — дифференциально-диагностическая и селективная среда, поскольку подавляет рост многих микроорганизмов, и способствует росту патогенных бактерий (возбудителей брюшного тифа, паратифов, дизентерии). Лактозоотрицательные бактерии образуют на этой среде бесцветные колонии, а лактозоположительные — красные. В составе среды — агар, лактоза, бриллиантовый зелёный, соли желчных кислот, минеральные соли, индикатор (нейтральный красный).
Висмут-сульфитный агар предназначен для выделения сальмонелл в чистом виде из инфицированного материала. Содержит триптический гидролизат, глюкозу, факторы роста сальмонелл, бриллиантовый зелёный и агар. Дифференциальные свойства среды основаны на способности сальмонелл продуцировать сероводород, на их устойчивости к присутствию сульфида, бриллиантового зелёного и лимоннокислого висмута. Маркируются колонии в чёрный цвет сернистого висмута (методика схожа со средой Вильсона — Блера).
Метаболизм анаэробных организмов
Метаболизм анаэробных организмов имеет несколько различных подгрупп:
Анаэробный энергетический обмен в тканях человека и животных[12]
Анаэробное и аэробное энергообразование в тканях человекаНекоторые ткани животных и человека отличаются повышенной устойчивостью к гипоксии (особенно мышечная ткань). В обычных условиях синтез АТФ идет аэробным путем, а при напряженной мышечной деятельности, когда доставка кислорода к мышцам затруднена, в состоянии гипоксии, а также при воспалительных реакциях в тканях доминируют анаэробные механизмы регенерации АТФ. В скелетных мышцах выявлены 3 вида анаэробных и только один аэробный путь регенерации АТФ.
3 вида анаэробного пути синтеза АТФК анаэробным относятся:
- Креатинфосфатазный (фосфогеный или алактатный) механизм — перефосфорилирование между креатинфосфатом и АДФ
- Миокиназный — синтез (иначе ресинтез) АТФ при реакции трансфосфорилирования 2 молекул АДФ(аденилатциклаза)
- Гликолитический — анаэробное расщепление глюкозы крови или запаса гликогена, заканчивающийся образованием молочной кислоты (иначе именуется «лактатным»).
Необходимо отметить, что прямым следствием гликолиза является критическое снижение рН тканей — ацидоз. Это ведет к снижению эффективного транспорта кислорода гемоглобином, и формирует положительную обратную связь.
Каждый механизм имеет свое время удержания максимальной мощности и оптимум энергообеспечения тканей. Наибольшая мощность и наименьшее время удержания:
- креатинфосфаткиназный механизм (3600 Дж/(кг·мин), при времени 6—12 сек)
- лактатный (2510 Дж/(кг·мин), при времени 30—60 сек)
- аэробный (600 Дж/(кг·мин), при времени около 600 секунд).
Примечания
- ↑ Газогенерирующие контейнерные системы GasPak: Инструкция МК. — OOO «МК, официальный дистрибьютер Becton Dickinson International», 2010. — С. 7.
- ↑ 1 2 3 К. Д. Пяткин. Микробиология с вирусологией и иммунологией. — М:»Медицина», 1971. — С. 56.
- ↑ Л. Б. Борисов. Медицинская микробиология, вирусология и иммунология. — МИА, 2005. — С. 154-156. — ISBN 5-89481-278-X
- ↑ Д. Г. Кнорре. Биологическая химия:Учеб. для хим., биол. и мед.спец.вузов. — 3. — М.:Высшая школа, 2000. — С. 134. — ISBN 5-06-003720-7
- ↑ D. A. Eschenbach, P. R. Davick, B. L. Williams. Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. — J Clin Microbiol. 1989 February; 27(2): 251–256.
- ↑ М. В. Гусев, Л. А. Минеева. Микробиология. — М:МГУ, 1992. — С. 56.
- ↑ А. А. Воробьев. Атлас по медицинской микробиологии, вирусологии и иммунологии. — МИА, 2003. — С. 44. — ISBN 5-89481-136-8
- ↑ Л. Б. Борисов. Руководство к лабораторным занятиям по медицинской микробиологии, вирусологии и иммунологии. — Медицина, 1992. — С. 31-44. — ISBN 5-2225-00897-6
- ↑ J. H. Brewer, D. L. Allgeier. Disposable hydrogen generator. — Science 147:1033-1034. — 1966.
- ↑ J. H. Brewer, D. L. Allgeier. Safe self-contained carbon dioxide-hydrogen anaerobic system. — Appl. Microbiol.16:848-850. — 1966.
- ↑ G. F. Smirnova. Metabolism peculiarities of bacteria restoring chlorates and perchlorates. — Microbiol Z. 2010 Jul-Aug;72(4):22-8.
- ↑ Филиппович Ю. Б., Коничев А. С., Севастьянова Г. А. Биохимические основы жизнедеятельности организма человека. — Владос, 2005. — С. 302. — ISBN 5-691-00505-7
См. также
Ссылки
Анаэробная инфекция — причины, симптомы, диагностика и лечение
Анаэробная инфекция – инфекционный процесс, вызываемый спорообразующими или неспорообразующими микроорганизмами в условиях, благоприятных для их жизнедеятельности. Характерными клиническими признаками анаэробной инфекции служат преобладание симптомов эндогенной интоксикации над местными проявлениями, гнилостный характер экссудата, газообразующие процессы в ране, быстро прогрессирующий некроз тканей. Анаэробная инфекция распознается на основании клинической картины, подтвержденной результатами микробиологической диагностики, газожидкостной хроматографии, масс-спектрометрии, иммуноэлектрофореза, ПЦР, ИФА и др. Лечение анаэробной инфекции предполагает радикальную хирургическую обработку гнойного очага, интенсивную дезинтоксикационную и антибактериальную терапию.
Общие сведения
Анаэробная инфекция – патологический процесс, возбудителями которого выступают анаэробные бактерии, развивающиеся в условиях аноксии (отсутствия кислорода) или гипоксии (низкого напряжения кислорода). Анаэробная инфекция представляет собой тяжелую форму инфекционного процесса, сопровождающуюся поражением жизненно важных органов и высоким процентом летальности. В клинической практике с анаэробной инфекцией приходится сталкиваться специалистам в области хирургии, травматологии, педиатрии, нейрохиругии, отоларингологии, стоматологии, пульмонологии, гинекологии и других медицинских направлений. Анаэробная инфекция может возникнуть у пациентов любого возраста. Доля заболеваний, вызываемых анаэробной инфекцией, точно не известна; из гнойных очагов в мягких тканях, костях или суставах анаэробы высеваются примерно в 30% случаев; анаэробная бактериемия подтверждается в 2-5% случаев.
Анаэробная инфекция
Причины анаэробной инфекции
Анаэробы входят в состав нормальной микрофлоры кожи, слизистых оболочек, желудочно-кишечного тракта, органов мочеполовой системы и по своим вирулентным свойствам являются условно-патогенными. При определенных условиях они становятся возбудителями эндогенной анаэробной инфекции. Экзогенные анаэробы присутствуют в почве и разлагающихся органических массах и вызывают патологический процесс при попадании в рану извне. Анаэробные микроорганизмы делятся на облигатные и факультативные: развитие и размножение облигатных анаэробов осуществляется в бескислородной среде; факультативные анаэробы способны выживать как в отсутствии, так и в присутствии кислорода. К факультативным анаэробными бактериями принадлежат кишечная палочка, шигеллы, иерсинии, стрептококки, стафилококки и др.
Облигатные возбудители анаэробной инфекции делятся на две группы: спорообразующие (клостридии) и неспорообразующие (неклостридиальные) анаэробы (фузобактерии, бактероиды, вейллонеллы, пропионибактерии, пептострептококки и др.). Спорообразующие анаэробы являются возбудителями клостридиозов экзогенного происхождения (столбняка, газовой гангрены, ботулизма, пищевых токсикоинфекций и др.). Неклостридиальные анаэробы в большинстве случаев вызывают гнойно-воспалительные процессы эндогенной природы (абсцессы внутренних органов, перитонит, пневмонию, флегмоны челюстно-лицевой области, отит, сепсис и др.).
Основными факторами патогенности анаэробных микроорганизмов служат их количество в патологическом очаге, биологические свойства возбудителей, наличие бактерий-ассоциантов. В патогенезе анаэробной инфекции ведущая роль принадлежит продуцируемым микроорганизмами ферментам, эндо- и экзотоксинам, неспецифическим факторам метаболизма. Так, ферменты (гепариназа, гиалуронидаза, коллагеназа, дезоксирибонуклеаза) способны усиливать вирулентность анаэробов, деструкцию мышечной и соединительной тканей. Эндо- и экзотоксины вызывают повреждение эндотелия сосудов, внутрисосудистый гемолиз и тромбоз. Кроме этого, некоторые клостридиальные токисины обладают нефротропным, нейротропным, кардиотропным действием. Также токсическое влияние на организм оказывают и неспецифические факторы метаболизма анаэробов — индол, жирные кислоты, сероводород, аммиак.
Условиями, благоприятствующими развитию анаэробной инфекции, являются повреждение анатомических барьеров с проникновением анаэробов в ткани и кровеносное русло, а также снижение окислительно-восстановительного потенциала тканей (ишемия, кровотечение, некроз). Попадание анаэробов в ткани может происходить при оперативных вмешательствах, инвазивных манипуляциях (пункциях, биопсии, экстракции зуба и др.), перфорации внутренних органов, открытых травмах, ранениях, ожогах, укусах животных, синдроме длительного сдавления, криминальных абортах и т. д. Факторами, способствующими возникновению анаэробной инфекции, выступают массивное загрязнение ран землей, наличие инородных тел в ране, гиповолемический и травматический шок, сопутствующие заболевания (коллагенозы, сахарный диабет, опухоли), иммунодефицит. Кроме этого, большое значение имеет нерациональная антибиотикотерапия, направленная на подавление сопутствующей аэробной микрофлоры.
В зависимости от локализации различают анаэробную инфекцию:
- центральной нервной системы (абсцесс мозга, менингит, субдуральная эмпиема и др.)
- головы и шеи (пародонтальный абсцесс, ангина Людвига, средний отит, синусит, флегмона шеи и т. д.)
- дыхательных путей и плевры (аспирационная пневмония, абсцесс легкого, эмпиема плевры и пр.)
- женской половой системы (сальпингит, аднексит, эндометрит, пельвиоперитонит)
- брюшной полости (абсцесс брюшной полости, перитонит)
- кожи и мягких тканей (клостридиальный целлюлит, газовая гангрена, некротизирующий фасциит, абсцессы и др.)
- костей и суставов (остеомиелит, гнойный артрит)
- бактериемию.
Симптомы анаэробной инфекции
Независимо от вида возбудителя и локализации очага анаэробной инфекции, различным клиническим формам свойственны некоторые общие черты. В большинстве случаев анаэробная инфекция имеет острое начало и характеризуется сочетанием местных и общих симптомов. Инкубационный период может составлять от нескольких часов до нескольких суток (в среднем около 3-х дней).
Типичным признаком анаэробной инфекции служит преобладание симптомов общей интоксикации над местными воспалительными явлениями. Резкое ухудшение общего состояния больного обычно наступает еще до возникновения локальных симптомов. Проявлением тяжелого эндотоксикоза служит высокая лихорадка с ознобами, выраженная слабость, тошнота, головная боль, заторможенность. Характерны артериальная гипотония, тахипноэ, тахикардия, гемолитическая анемия, иктеричность кожи и склер, акроцианоз.
При раневой анаэробной инфекции ранним местным симптомом выступает сильная, нарастающая боль распирающего характера, эмфизема и крепитация мягких тканей, обусловленные газообразующими процессами в ране. К числу постоянных признаков относится зловонный ихорозный запах экссудата, связанный с выделением азота, водорода и метана при анаэробном окислении белкового субстрата. Экссудат имеет жидкую консистенцию, серозно-геморрагический, гнойно-геморрагический или гнойный характер, неоднородную окраску с вкраплениями жира и наличием пузырьков газа. На гнилостный характер воспаления также указывает внешний вид раны, содержащей ткани серо-зеленого или серо-коричневого цвета, иногда струпы черного цвета.
Течение анаэробной инфекции может быть молниеносным (в течение 1 суток с момента операции или травмы), острым (в течение 3-4 суток), подострым (более 4 суток). Анаэробная инфекция часто сопровождается развитием полиорганной недостаточности (почечной, печеночной, сердечно-легочной), инфекционно-токсического шока, тяжелого сепсиса, являющихся причиной летального исхода.
Диагностика
Для своевременной диагностики анаэробной инфекции большое значение имеет правильная оценка клинических симптомов, позволяющая своевременно оказать необходимую медицинскую помощь. В зависимости от локализации инфекционного очага диагностикой и лечением анаэробной инфекции могут заниматься клиницисты различных специальностей – общие хирурги, травматологи, нейрохирурги, гинекологи, отоларингологи, челюстно-лицевые и торакальные хирурги.
Методы экспресс-диагностики анаэробной инфекции включают бактериоскопию раневого отделяемого с окраской мазка по Грамму и газожидкостную хроматографию. В верификации возбудителя ведущая роль принадлежит бактериологическому посеву отделяемого раны или содержимого абсцесса, анализу плевральной жидкости, посеву крови на аэробные и анаэробные бактерии, иммуноферментному анализу, ПЦР. В биохимических показателях крови при анаэробной инфекции обнаруживается снижение концентрации белков, увеличение уровня креатинина, мочевины, билирубина, активности трансаминаз и щелочной фосфатазы. Наряду с клиническими и лабораторными исследования, выполняется рентгенография, при которой обнаруживается скопление газа в пораженных тканях или полостях.
Анаэробную инфекцию необходимо дифференцировать от рожистого воспаления мягких тканей, полиморфной экссудативной эритемы, тромбоза глубоких вен, пневмоторакса, пневмоперитонеума, перфорации полых органов брюшной полости.
Лечение анаэробной инфекции
Комплексный подход к лечению анаэробной инфекции предполагает проведение радикальной хирургической обработки гнойного очага, интенсивной дезинтоксикационной и антибактериальной терапии. Хирургический этап должен быть выполнен как можно раньше – от этого зависит жизнь больного. Как правило, он заключается в широком рассечении очага поражения с удалением некротизированных тканей, декомпрессии окружающих тканей, открытом дренировании с промыванием полостей и ран растворами антисептиков. Особенности течения анаэробной инфекции нередко требуют проведения повторных некрэктомий, раскрытия гнойных карманов, обработки ран ультразвуком и лазером, озонотерапии и т. д. При обширной деструкции тканей может быть показана ампутация или экзартикуляция конечности.
Важнейшими составляющими лечения анаэробной инфекции являются интенсивная инфузионная терапия и антибиотикотерапия препаратами широкого спектра действия, высокотропными к анаэробам. В рамках комплексного лечения анаэробной инфекции находят свое применение гипербарическая оксигенация, УФОК, экстракорпоральная гемокоррекция (гемосорбция, плазмаферез и др.). При необходимости пациенту вводится антитоксическая противогангренозная сыворотка.
Прогноз и профилактика
Исход анаэробной инфекции во многом зависит от клинической формы патологического процесса, преморбидного фона, своевременности установления диагноза и начала лечения. Уровень летальности при некоторых формах анаэробной инфекции превышает 20%. Профилактика анаэробной инфекции заключается в своевременной и адекватной ПХО ран, удалении инородных тел мягких тканей, соблюдении требований асептики и антисептики при проведении операций. При обширных раневых повреждениях и высоком риске развития анаэробной инфекции необходимо проведение специфической иммунизации и противомикробной профилактики.
АНАЭРОБЫ — Большая Медицинская Энциклопедия
Анаэробы (греческий отрицательная приставка an-, aēr — воздух и bios — жизнь) — бактерии, не требующие для своего существования и размножения свободного кислорода.
В 1861 году Пастер впервые доказал, что некоторые дрожжи и бактерии могут существовать и размножаться только при отсутствии воздуха (см. Анаэробиоз). Они были названы Пастером анаэробами.
Бактерии удовлетворяют свои потребности в энергии за счет сопряженных окислительно-восстановительных реакций, в ходе которых водород переносится от донатора к акцептору. У анаэробов акцепторами водорода являются промежуточные продукты расщепления углеводов и белков, а у аэробов акцептором водорода может быть кислород. Эти реакции протекают ступенчато от системы более высокого окислительно-восстановительного потенциала к системе с более низким потенциалом. Перенос водорода от донатора к акцептору осуществляется четырьмя дегидрогеназами, причем в трех случаях в этом переносе в качестве акцепторов водорода участвуют пиридиннуклеотиды и только в случае сукцинатдегидрогеназы водород непосредственно переносится на флавопротеид (ФАД). По отношению к кислороду анаэробы разделяются на две группы: факультативные и облигатные.
Факультативные анаэробы размножаются как в аэробных, так и в анаэробных условиях, в последнем случае в качестве акцептора водорода используют легко восстанавливающиеся элементы и соединения. Например, многие анаэробные бактерии растут без кислорода, используя в качестве конечного акцептора электронов нитраты (нитратное дыхание). В этом случае, как показано Назоном (A. Nason, 1962) у E. coli, перенос электронов осуществляется нитратредуктазой. У Cl. aceticum в качестве акцептора электрона служит углекислота. В анаэробных условиях метаболизм факультативных анаэробов протекает по типу брожения, и субстрат полностью не окисляется. В присутствии кислорода происходит полное окисление субстрата, в результате чего высвобождается большое количество энергии и рост бактерий становится более интенсивным.
Облигатные анаэробы не способны усваивать кислород, в присутствии его они погибают. У одних облигатных анаэробов, включая представителей рода Clostridium, отсутствуют цитохромы, цитохромоксидазы, то есть не происходит перенос водорода к кислороду. У других же анаэробов цитохромоксидазы, которые переносят на молекулу кислорода два водородных иона, имеются,но это приводит к образованию перекиси водорода, токсичной для бактерий.Расщепление последней в клетке с выделением воды осуществляется двумя ферментами — каталазой и пероксидазой. В их отсутствие концентрация перекиси водорода достигает уровня, убивающего клетку. Поэтому облигатные анаэробы можно культивировать только в среде, лишенной кислорода.
Некоторые анаэробы, не имеющие ката лазы и цитохромов, могут в присутствии донаторов электронов — флавопротеинов — катализировать восстановление перекиси водорода до воды, в связи с этим перекись водорода у них не накапливается и не наступает гибель в присутствии кислорода.
Анаэробы играют большую роль в круговороте веществ, участвуя в разложении органических остатков растительного и животного происхождения без доступа воздуха или при затрудненном притоке его. При участии анаэробов происходят процессы гниения в глубоких слоях почвы, в болотах, в иле, в навозных кучах. Анаэробы присутствуют в кишечнике человека и животных, участвуя в разложении растительной клетчатки. В среде, хорошо доступной для воздуха, анаэробы принимают участие в разложении различных веществ совместно с аэробами, так как последние поглощают кислород.
- Анаэробы рода Clostridium
-
Рис. 1. Колонии столбнячной палочки (на агаре с мартеновским бульоном) с неровной, выпуклой зернистой поверхностью с отростками (× 10)
-
Рис. 2. Морфология барабанных палочек Cl. tetani (окраска по Граму; × 1900)
-
Рис. 3. Зона гемолиза вокруг колонии Cl. botulmum А на агаре с кровью (× 8)
-
Рис. 4. Клетки Cl. Botulinum А (окраска по Граму; × 1900)
-
Рис. 5. Морфология колонии Cl. brfulmff В на печеночном агаре (× 10)
-
Рис. 6. Морфология палочек Cl. botulinum В (окраска по Граму; × 1900)
-
Рис. 7. Колонии Cl. botulinum C на агаре с бульоном Хоттингера (× 5)
-
Рис. 8 Морфология палочек и ракеток Cl. botulinum C (окраска фуксином; × 1900)
-
Рис. 9. Колонии Cl. botulinum E на агаре с бульоном Хоттингера (× 5)
-
Рис. 10. Морфология ракеток Cl. botulinum E (окраска по Граму; × 1900)
-
Рис. 11. Колонии Cl. botulinum F на агаре с бульоном Хоттингера, выделенных из помета водоплавающих птиц с птичьего базара Баренцева моря (× 1900)
-
Рис. 12 Морфология палочек и ракеток Cl. botulinum F, выделенных из помета водоплавающих птиц (окраска по Граму; × 1900)
-
Рис. 13. Морфология клеток Cl. perfringens А из колоний на кровяном агаре (окраска фуксином; × 1900)
-
Рис 14. Колонии Cl. perfringens B на агаре с бульоном Хоттингера (× 10)
-
Рис. 15. Морфология спор и палочек Cl. perfringens В в песке (окраска фуксином; × 1900)
-
Рис. 16. Колонии Cl. perfringens D на агаре с бульоном Хоттингера (× 10)
-
Рис. 17. Морфология палочек Cl. perfrinlgens D (окраска по Граму; × 1900)
-
Рис. 18. Капсула у Cl. perfringens А окрашивает клетку микроба в виде светлой полоски. Мазок из печени морской свинки, погибшей от анаэробной инфекции (окраска фуксином; × 1000)
-
Рис. 19. Колонии Cl. perfringens A на кровяном агаре окружены зоной гемолиза (натуральная величина)
-
Рис. 20. Колонии Cl. oedematiens A на печеночном агаре (× 32)
-
Рис. 21. морфология палочек Cl. oedematiens А со жгутиками (окраска по М. А. Морозову; × 1000)
-
Рис. 22. Колонии Cl. septicum на печеночном агаре через сутки после посева (× 32)
-
Рис. 23. Морфология клеток Cl. septicum (окраска фуксином; × 1900)
-
Рис. 24. Cl. septicum в виде длинных нитей в печени морской свинки, погибшей от анаэробной инфекции (окраска по Граму; × 1800)
-
Рис. 25. Колонии Cl. sordelli на агаре (× 10)
-
Рис. 26. Морфология клеток Cl. sordellii (окраска фуксином; × 1900)
-
Рис. 27. Колония Cl. histolyticum на кровяном агаре (× 64)
-
Рис. 28. Морфология Cl. histolyticum окраска фуксином; × 1900)
По Берги (D. H. Bergey, 1957), факультативными или облигатными анаэробами являются 93 вида спорогенных бактерий рода Clostridium, из которых более 10 видов патогенны для человека и животных. Эти бактерии (рис. 1—28) вызывают у людей следующие заболевания: Cl. tetani — столбняк (см.), Cl. botulinum — ботулизм (см.), Cl. perfringens, Cl. oedematiens, Cl. septicum, Cl. histolyticum, Cl. sordellii, Cl. fallax, Cl. chauvoei, Cl. sporogenes — анаэробную инфекцию (см.).
К облигатным или факультативным анаэробам принадлежат и многие неспорогенные бактерии, грибки, а также трепонемы.
По классификации Берги (1957), к анаэробам относятся девять родов: Bacteroides, Fusobacterium, Sphaerophorus, Corynebacterium, Peptostreptococcus, Peptococcus, Actinomyces, Dialister, Lactobacillus bilidus, всего 92 вида микроорганизмов.
Морфология неспорогенных анаэробов (Прево, Тюрпен, Кайзер). Рис. 1. Bacteroides. Рис. 2. Fusobacterium. Рис. 3. Sphaerophorus. Рис. 4. Corynebacterium. Рис. 5. Peptostreptococcus. Рис. 6. Peptococcus. Рис. 7. Actinomyses. Рис. 8. Dilalister Рис. 9. Lactobacillus bifermentansПо классификации Прево (A R Prevot, 1955, 1967), неспорогенные анаэробы (цветные табл., рис. 1—9) разделяются на 21 род, содержащий ИЗ видов, из которых более 33 видов патогенны для человека и животных. Особенно много патогенных видов анаэробов для человека среди родов Bacteroides, Sphaerophorus, Corynebacterium, Streptococcus, Staphylococcus, Actinomyces и другие. Неспорогенные анаэробы вызывают у человека гнойный плеврит, абсцесс легкого, послеродовой сепсис, послеабортный сепсис, инфицирование огнестрельных ран, перитонит, септицемию, абсцесс почек, мозга, печени, хронический колит и другие заболевания,
Многие виды неспорогенных анаэробов являются облигатными анаэробами. Выделение их из организма человека и животных весьма затруднено; при первых же пересевах на специальные среды они погибают от кислорода. Поэтому Хангейт (R. E. Hungate, 1950) предложил облигатных анаэробов пересевать и культивировать на восстановленных средах в атмосфере азота.
Для выращивания анаэробов предлагалось много различных способов, обеспечивающих удаление кислорода из среды культивирования. Широко применяют аппараты, которые после удаления воздуха заполняют азотом (см. Анаэростат). Для поглощения кислорода при выращивании анаэробов предложены химические средства (например, смесь пирогалловой кислоты с раствором NaOH или КОН).
Простой способ ограничения доступа воздуха в среду для анаэробов — использование высокого слоя среды. Жидкую среду наливают в высокие сосуды (бутыли, высокие пробирки, флаконы), покрывают до стерилизации или после нее жидким вазелином, стерилизуют, перед посевом кипятят 20—30 минут для удаления воздуха, быстро охлаждают и вносят посевной материал на дно сосуда. Для создания условий роста анаэробов в среду вносят восстанавливающие вещества: глюкозу, аскорбиновую кислоту, муравьинокислый натрий, кусочки свежих тканей, вещества, содержащие SH-группу (тиогликолевую кислоту, цистеин, глутатион и другие), кусочки паренхиматозных органов животных, растительные ткани, культуры убитых дрожжей. Эти вещества должны вводиться в количествах, не угнетающих рост анаэробов.
Для выделения чистой культуры анаэробов применяют метод Виньяля—Вейона. Пробирки (пипетки) длиной 20—30 см, диаметром 6—7 мм заполняют на 15—20 см прозрачным 1—1,5% агаром. Перед посевом агар расплавляют, остужают до t° 40—50°, необломанную пастеровскую пипетку погружают в посевной материал, а затем вносят его поочередно в 5—7 пробирок (пипеток), агар быстро охлаждают. В глубине агара вырастают отдельные колонии анаэробов в виде хлопьев, которые извлекают тонкой пипеткой либо разрезают пробирку (пипетку) и также достают отдельные колонии пастеровской пипеткой. Можно немного подогреть пробирку с агаром и перенести столбик в чашку Петри. Отдельные колонии пересевают на жидкие среды. Чистую культуру анаэробов получают по методу Л. Г. Перетца, для чего запаянную пастеровскую пипетку предварительно погружают в посевной материал, а затем вносят поочередно в три пробирки, содержащие остуженный агар. К агару добавляют 2—4 капли 10% гипосульфита натрия на 10% растворе углекислой соды или 0,1 мл 8% раствора аскорбиновой кислоты на 10% растворе углекислой соды. Каждую пробирку выливают в стерильную чашку Петри, на дне которой лежит стекло размером 6×6 см на спичках или кусочках стекла. Агар с посеянным анаэробом затекает под стекло, где вырастают отдельные колонии. Эти колонии можно пересеять на жидкую среду.
См. также Бактерии.
Виблиогр.: Матвеев К. И. Ботулизм М., 1959, библиогр.; он же, Эпидемиология и профилактика столбняка, М., 1960; Матвеев К. И. и Волгин Ю. Б. Анаэробная инфекция, Многотомн. руководство по микр., клин, и эпид. инфекц бол., под ред. Н. Н. Жукова-Вережникова, т. 7, с. 565, М., 1966; Мельников В. Н. и Мельников Н. И. Анаэробные инфекции, М., 1973, библиогр.; Bergey’s manual of determinative bacteriology, ed. by R. S. Breed а. о Baltimore, 1957; Prévot A. R. Biologic des maladies dues aux anaérobies, P., 1955; Prévot A. R., Тurpin A. et Kaiser P. Les bactéries anaérobies, P., 1967.
К. И. Матвеев.