Posted on

Динамическое отопление — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 марта 2013; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 марта 2013; проверки требуют 4 правки.

Динамическое отопление — система отопления, включающая топку, нагреватель и холодильник, дающая возможность передавать помещению больше тепла, чем топка в отдельности, так как помещению также передаётся тепло из окружающей среды[1]. Технологические трудности и необходимость значительных начальных вложений капитала задерживают широкое распространение этого способа отопления[2]. Возможно, наиболее доступным вариантом динамического отопления является тепловой насос воздух-воздух или сплит-система. Возможно, что по мере дальнейшей централизации отопления динамическое отопление найдёт широкое применение.

[3] Но, например, в Швеции, богатой стране с развитой технологией и дефицитом топлива, динамическое отопление уже находит заметное применение. [4].

При динамическом отоплении часть теплоты, полученной в топке, поступает в обогреваемое помещение. Остальная часть затрачивается на работу, производимую тепловой машиной (двигателем). Нагревателем в двигателе является топка, а холодильником — отапливаемое помещение. Производимая двигателем работа используется для приведения в действие холодильной машины (теплового насоса), включаемой между окружающей средой и помещением: холодильная машина забирает тепло от окружающей среды и передаёт его помещению. Так помещение получает теплоту и от горячей топки, и от холодной окружающей среды. Общее количество теплоты может превзойти теплоту, полученную при типичной для большинства отопительных систем передаче всего тепла от топки в помещение. Динамическое отопление может быть реализовано на основе абсорбционной холодильной машины, что значительно упрощает конструкцию.

схема динамического отопления

Пусть T1 , T2, T3 — температуры (в Кельвинах) топки, отапливаемого помещения и окружающей среды соответственно.

1) От источника тепла поступает количество тепла Q1 тепловой машине. Из него Q2 отдаётся помещению, играющему для этой машины роль холодильника. Совершённая машиной работа A=Q1-Q2 идёт на включение холодильной машины. Эта работа затрачивается холодильной машиной для получения тепла Q3 из окружающей среды и передачи тепла Q2‘ в помещение. Для этого над холодильной машиной тепловая машина совершает работу Q2‘-Q3. Отсюда по закону сохранения энергии Q2‘-Q3 = Q1-Q2.

2) Можно, рассматривая двигатель и холодильную машину как одну систему, записать, что она:

  1. получила Q1 при температуре T1 от топки
  2. получила Q3 при температуре T3 из окружающей среды;
  3. получила — q = — Q2 — Q2‘ из помещения.

По соотношению Клаузиуса, если процессы квазистатические, то сумма отношений полученных количеств теплоты к температурам, при которых они получены, равна 0:

Q1T1−qT2+Q3T3=0{\displaystyle {Q_{1} \over T_{1}}-{q \over T_{2}}+{Q_{3} \over T_{3}}=0}

Пользуясь соотношением Q2‘-Q3 = Q1-Q2 из пункта 1 рассуждений, можно записать выражение без Q3:

Q1T1−qT2+q−Q1T3=0{\displaystyle {Q_{1} \over T_{1}}-{q \over T_{2}}+{{q-Q_{1}} \over T_{3}}=0}

Отсюда переданное помещению количество тепла:

q=1T3−1T11T3−1T2Q1=T1−T3T2−T3∗T2T1Q1{\displaystyle q={{{1 \over T_{3}}-{1 \over T_{1}}} \over {{1 \over T_{3}}-{1 \over T_{2}}}}Q_{1}={{T_{1}-T_{3}} \over {T_{2}-T_{3}}}*{{T_{2}} \over {T_{1}}}Q_{1}}.

Так как T1>T2>T3{\displaystyle T_{1}>T_{2}>T_{3}}, то отсюда следует, что q > Q1. Например, при T1 = 500 К, T2=300 К и T3=250 К отношение q/Q1{\displaystyle q/Q_{1}} равно 3; при сжигании в топке топлива, дающего «обычно» 1 Дж тепла, при динамическом отоплении можно получить приближённо 3 Дж тепла.

  1. Сивухин Д. В. Общий курс физики. — М.: Наука, 1975. — Т. II. Термодинамика и молекулярная физика. — 519 с.
  2. ↑ Белонучкин В. Е., Заикин Д. А., Ципенюк Ю. М. Основы физики. Курс общей физики. В 2 т. Т. 2. Квантовая и статистическая физика / Под ред. Ю. М. Ципенюка. — М.: Физмалит, 2001.
  3. Сивухин Д. В. Общий курс физики. — Издание 5-е, исправленное. — М.: Физматлит, 2005. — Т. II. Термодинамика и молекулярная физика. — 544 с. — ISBN 5-9221-0601-5.
  4. ↑ Белонучкин В. Е., Заикин Д. А., Ципенюк Ю. М. Основы физики. Курс общей физики. Т. 2. Квантовая и статистическая физика, — М.: Физмалит, 2007.

Отопительный котёл — Википедия

Котёл отопительный (схема). из английской Википедии

Котёл отопительный — это устройство на основе закрытого сосуда, в котором теплоноситель (чаще всего вода или пар (паровой котёл)) нагревается до заданной температуры и служит для обеспечения потребителей теплом и (или) горячей водой.

Основные технические параметры котлов[править | править код]

По виду используемого топлива котлы отопления делятся на:

Котлы водогрейные гранульные[править | править код]

Котлы водогрейные (жаротрубные), гранульные (твердотопливные) работают исключительно на древесных топливных гранулах (пеллетах). В топочной камере гранульного котла снимается примерно 30 % мощности, а в конвективной примерно 70 % мощности. Выпускаются также и адаптированные для сжигания гранул универсальные водогрейные котлы (котлы «утилизаторы») с КПД менее 80 %.

Котлы водогрейные (жаротрубные), работают на обычных дровах, мусоре, листьях и прочих твердых органических отходах. Применяются для сжигания прессованной соломы. Диапазон мощностей существующих котлов от 30 КВт до 2 МВт, но КПД невысокий в связи с тем, что в сжигается топливо с различными параметрами.

Газовые котлы отопления работают на природном газе или, при конструктивных возможностях, на сжиженном газе.

Газовые котлы — самый распространенный тип котлов как в России, так и во всем мире. Примерно половина всех продаваемых котлов — газовые котлы. В этом нет ничего странного, ведь газ — это самое удобное топливо для отопительных котлов.

По месту монтажа различают два вида котлов — настенные газовые котлы и напольные.

Все напольные газовые котлы можно разделить на две основные группы: с атмосферными и с наддувными (иногда их называют сменными, вентиляторными, навесными) горелками. Атмосферные горелки — проще по конструкции и дешевле, работают тише. Котлы с наддувными горелками обладают большим КПД и стоят при этом значительно дороже. Котлы для работы с наддувными горелками позволяют установить горелку, работающую как на газе, так и на жидком топливе.

Настенные газовые котлы — это, как правило, довольно компактные и, соответственно, малые по мощности (до 30 кВт), но с довольно высоким КПД газовые котлы. Настенные котлы отопления также бывают с естественной тягой, в связи с наличием открытой камеры сгорания, а также котлы с закрытой камерой, то есть с принудительным отводом продуктов сгорания.

Напольные и настенные газовые котлы принято различать на следующие основные виды:

  • Одноконтурные газовые котлы;
  • Двухконтурные газовые котлы;

Одноконтурные газовые котлы используют только для отопления помещений. Двухконтурные котлы, кроме этого, также для отопления и организации горячего водоснабжения.

Двухконтурный газовый котел выполняет две функции, нагрев проточной воды и нагрев системы отопления. Для обеспечения горения газа нужен воздух, в газовом котле с закрытой камерой горения воздух подается с улицы по коаксиальной трубе. Это безопасно, не сжигается кислород с помещения и увеличивает КПД котла, воздух с улицы нагревается с помощью выходящих дымовых газов, что обеспечивает минимальные потери тепла на данный процесс. Двухконтурный газовый котел — это конструктивно модульное устройство, которое включает в себя группу безопасности и управления, циркуляционный насос, расширительный бак, теплообменник, газовую горелку, вентилятор для дымовых газов.

Недавно появился новый тип газовых котлов — конденсационные котлы. Своим названием это оборудование обязано способности отбирать из продуктов сгорания <скрытую> теплоту, получаемую конденсацией содержащихся в них водяных паров. Использование этой, обычно уходящей вместе с дымовыми газами, теплоты позволяет котлу достигать среднего за отопительный период условного КПД 107—109 %.

Электродные котлы[править | править код]

Процесс нагрева теплоносителя в электроводонагревателе электродного типа происходит за счет омического нагрева, то есть процесс нагрева теплоносителя идет напрямую, без «посредника» (например, ТЭНа). При этом явления электролиза не наблюдается, так как катод и анод постоянно меняются местами с частотой электрической сети.

Достоинства электродных котлов:

  • Отсутствие воды в котле во включённом состоянии (сухой ход) не приводит к каким либо последствиям и выходу его из строя в виду отсутствия нагрева воды.
  • Отложение накипи на электродах котла всего лишь снижает его мощность и не приводит к разрушению электродов.
  • Электродные котлы обычно более компактные, чем ТЭНовые.
  • Практически бесшумны.

Недостатки электродных котлов:

  • Электрический ток пропускается непосредственно через теплоноситель, что значительно повышает риск поражения током, а вследствие огромных токов утечки делает невозможным применение совместно с таким котлом УЗО (устройство защитного отключения).
  • Требуется тщательная водоподготовка теплоносителя по электропроводности.
  • Мощность электрокотла не постоянна и сильно зависит от температуры теплоносителя в системе, причём с ростом температуры теплоносителя — растёт его электропроводность и потребляемая мощность, таким образом при первоначальном пуске системы в холодное время года — мощности котла для прогрева может не хватить. Увеличение электропроводности теплоносителя до необходимого уровня при низких температурах может привести к тому, что после прогрева системы она может возрасти на столько, что приведёт к значительной перегрузке и аварии в питающей электросети, а также выходу из строя управляющей котлом силовой аппаратуы.
  • Этот же эффект (повышение электропроводности теплоносителя с ростом температуры) иногда приводит к электродуговому пробою межэлектродного расстояния (фактически КЗ) с огромным броском тока в питающей сети и как следствие — множественным выходом из строя различной аппаратуры, включенной в эту сеть.
  • Непригодны для использования обычных тосолов, антифризов и неочищенной воды в качестве теплоносителя.
  • При использовании для горячего водоснабжения понадобится еще один контур.
  • Требуют квалифицированного монтажа и специфических знаний по электропроводности воды для выполнения пусконаладки.
  • Незамерзающий теплоноситель для электродных котлов дорог, так как в его состав входят присадки с низким содержанием солей.

ТЭНовые котлы[править | править код]

Работа этих котлов основана на передаче тепловой энергии от электрического ТЭНа теплоносителю (вода).

Достоинства ТЭНовых котлов:

  • Тэны в котле не имеют электрической связи с теплоносителем, в связи с этим он гораздо более электробезопасен, практически отсутствуют токи утечки, что позволяет совместно с котлом устанавливать УЗО (устройство защитного отключения).
  • Мощность всегда постоянна и не зависит от используемого теплоносителя и его температуры. Она может меняться только в пределах изменения напряжения в питающей электросети.
  • Можно осуществлять ступенчатое (при наличии нескольких ТЭНов) или плавное регулирование мощности, что позволяет минимизировать броски напряжения в питающей сети при включении и выключении котла.
  • Котлы могут работать на обычном тосоле, антифризе, воде.
  • Выход из строя одного ТЭНа обычно не влечет за собой остановки всего котла.
  • Могут быть использованы для горячего водоснабжения по одноконтурной схеме.
  • Котлы могут работать на перегретой воде, при этом температура перегретой воды определяется только давлением, на которое рассчитан корпус котла.
  • Обслуживание ТЭНовых котлов не требует специфических знаний по электропроводности воды.

Недостатки ТЭНовых котлов:

  • ТЭН (Трубчатый ЭлектроНагреватель) имеет ограниченный ресурс и может перегореть, поэтому при выборе котла следует обращать внимание на возможность замены ТЭНов.
  • Отложение накипи на ТЭНах значительно ухудшает их охлаждение и приводит к преждевременному выходу их из строя.
  • В случае работы без воды (сухой ход) мгновенно происходит выход из строя ТЭНов, в отличие от электродного котла.
  • Цена на ТЭНовые котлы выше, чем на электродные.

Индукционные котлы[править | править код]

Принцип индукционного нагрева основан на явлении электромагнитной индукции — создание индуцированного тока переменным магнитным полем. Установка индукционного нагрева имеет конструкцию сходную с трансформатором, состоящем из двух контуров. Первичный контур — магнитная система, вторичный контур — теплообменное устройство или ТВЭЛ (тепловыделяющий элемент). Под воздействием переменного магнитного поля, создаваемого магнитной системой, в металле теплообменного устройства индуцируются токи, вызывающие его нагрев. Тепло от нагретых поверхностей теплообменного устройства передается нагреваемой среде.

Достоинства индукционных котлов:

  • Принципиальное отсутствие нагревательных элементов, что исключает возможность выхода из строя самого котла.
  • Полное отсутствие разъёмных соединений в конструкции, что исключает вероятность возникновения течи.
  • Значительное снижение склонности к образованию накипи.
  • Высокая электробезопасность.
  • Возможность изготовления котла практически на любые температуры и давления, что особенно важно для технологических применений.
  • Возможность работы практически с любыми теплоносителями.

Недостатки индукционных котлов:

  • Высокая стоимость, сравнительно с ТЭНовыми и электродными (из-за ВЧ преобразователя)
  • Большие габариты и огромный вес.
  • Затруднённая плавная регулировка мощности.

Комбинированные котлы могут работать более чем на одном виде энергоносителя (обычно на двух). Это даёт дополнительную энергонезависимость. Например, в случае прекращения подачи газа такой котёл может работать на твёрдом топливе.

  • Сканави А. Н. Отопление. Учебник для вузов. — М.: АСВ, 2008. С. 576. ISBN 978-5-93093-161-7
  • Отопление. Часть 1. Под редакцией канд.техн.наук И. Г. Староверова и инж. Ю. И. Шиллера. — М.: Стройиздат, 1990. С. 344.
  • Щёкин Р. В., Кореневский С. М., Бем Г. Е. и др. Отопление и теплоснабжение. — Киев: Будівельник, 1976. С. 416.
  • Справочник проектировщика. Проектирование тепловых сетей. Под редакцией Николаева А. А.. — М.: Издательство литературы по строительству, 1965. С. 360.
  • Ионин А. А. Газоснабжение. 4-е издание, переработанное и дополненное. — М.: Стройиздат, 1989. С. 439.
  • Стырикович М. А., Катковская К. Я., Серов Е. П. Котельные агрегаты. — М.: Государственное энергетическое издательство, 1959. С. 487.
  • Щеголев М. М. Топливо, топки и котельные установки. — М.: Государственное издательство литературы по архитектуре и строительству, 1953. С. 544.
  • Скафтымов Н. А. Основы газоснабжения. — Л.: Недра, 1975. С. 343.
  • Киселёв Н. А. Котельные установки. 2-издание, переработанное и дополненное. — М.: Высшая школа, 1979. С. 270.
  • Козин В. Е., Левина Т. А., Марков А. П. и др. Теплоснабжение. — М.: Высшая школа, 1980. С. 408.
  • Журавлёв Б. А. Справочник мастера-сантехника. 5-издание, переработанное и дополненное. — М.: Стройиздат, 1981. С. 432.

Отопление Википедия

Отопле́ние — искусственный обогрев помещений с целью возмещения в них теплопотерь и поддержания на заданном уровне температуры, отвечающей условиям теплового комфорта и/или требованиям технологического процесса[1]. Под отоплением понимают также устройства и системы (калориферы, теплый пол, ИК-обогрев и пр.), выполняющие эту функцию[2].

Характеристики отопления[ | ]

В зависимости от преобладающего способа теплопередачи отопление помещений может быть конвективным и лучистым.

Конвективное отопление[ | ]

Вид отопления, при котором тепло передается благодаря перемешиванию объемов горячего и холодного воздуха. К недостаткам конвективного отопления относится большой перепад температур в помещении (высокая температура воздуха наверху и низкая внизу) и невозможность вентиляции помещения без потерь тепловой энергии

Лучистое отопление[ | ]

Вид отопления, когда тепло передается в основном излучением и в меньшей степени — конвекцией. Приборы для отопления размещаются непосредственно под или над обогреваемой зоной (вмонтированы в пол или потолок, также могут крепиться на стены или под потолком)[3][4].

Виды отопления[ | ]

По источнику тепла
По теплоносителю
По топливу
  • Жидкотопливное;
  • Твердотопливное;
  • Газовое

Системы отопления[ | ]

Система отопления — это совокупность технических элементов, предназначенных для компенсации температурных потерь через внешние ограждающие конструкции (стены, пол, крыша), методом получения, переноса и передачи во все обогреваемые помещения необходимого количества теплоты, достаточного для поддержания температуры на заданном уровне согласно нормам ДБН.

Основные конструктивные элементы системы отопления:

  • Районная котельная (при индивидуальном теплоснабжении котел отопления) — место где вырабатывается теплота;
  • Тепловые магистрали (теплотрассы) — элементы для транспортировки теплоты от источника теплоты к потребителям (объектам инфрастр

Система отопления Википедия

Отопле́ние — искусственный обогрев помещений с целью возмещения в них теплопотерь и поддержания на заданном уровне температуры, отвечающей условиям теплового комфорта и/или требованиям технологического процесса[1]. Под отоплением понимают также устройства и системы (калориферы, теплый пол, ИК-обогрев и пр.), выполняющие эту функцию[2].

Характеристики отопления[ | ]

В зависимости от преобладающего способа теплопередачи отопление помещений может быть конвективным и лучистым.

Конвективное отопление[ | ]

Вид отопления, при котором тепло передается благодаря перемешиванию объемов горячего и холодного воздуха. К недостаткам конвективного отопления относится большой перепад температур в помещении (высокая температура воздуха наверху и низкая внизу) и невозможность вентиляции помещения без потерь тепловой энергии

Лучистое отопление[ | ]

Вид отопления, когда тепло передается в основном излучением и в меньшей степени — конвекцией. Приборы для отопления размещаются непосредственно под или над обогреваемой зоной (вмонтированы в пол или потолок, также могут крепиться на стены или под потолком)[3][4].

Виды отопления[ | ]

По источнику тепла
По теплоносителю
По топливу
  • Жидкотопливное;
  • Твердотопливное;
  • Газовое

Системы отопления[ | ]

Система отопления — это совокупность технических элементов, предназначенных для компенсации температурных потерь через внешние ограждающие конструкции (стены, пол, крыша), методом получения, переноса и передачи во все обогреваемые помещения необходимого количества теплоты, достаточного для поддержания температуры на заданном уровне согласно нормам ДБН.

Основные конструктивные элементы системы отопления:

  • Районная котельная (при индивидуальном теплоснабжении котел отопления) — место где вырабатывается теплота;
  • Тепловые магистрали (теплотрассы) — элементы для транспортировки теплоты от источника теплоты к потребителям (о

Обсуждение:Водяное отопление — Википедия

Материал из Википедии — свободной энциклопедии

Статью надо расширить. Многое устарело.[править код]

Статья применима только к территории бывшего СССР, что видно из ссылок на техническую литературу. Мир живёт иначе. Про эту систему лучше отдельный абзац. 1. Понятие отопительный сезон — чисто советское, например в Финляндии можно включить любую батарею на выбор когда угодно. (Следствие пункта 4.) 2. Термостат — обязательный элемент на каждом радиаторе водяного отопления (по экономическим соображениям). 3. Пользователь сам выбирает комфортную температуру в помещении (следует из 2.) 4. Горячая вода из центральной системы (более 100о) не попадает в батареи пользователей — отдаёт тепло через теплообменник (например жилого кооператива), там же нагревается питьевая горячая вода. Kovako-1 18:02, 18 февраля 2012 (UTC)

О термостатах мы знаем, вопрос в другом: почему двухтрубная система экономиченее, чем однотрубная? Я так понял, что по первой ссылке — описание термостата для двухтрубной системы, по второй — описание принципа работы термостата. К сожалению, я не владею финским, а Google Translator выдаёт довольно трудночитаемый перевод, потому прошу перевести хотя бы участок текста, где говорится о том, что двухтрубная система экономичней, и почему.Tucvbif?* 18:30, 18 февраля 2012 (UTC)
А зачем тогда это всё придумано? Система оптимизируется на минимум энергетических затрат. Наверное, вас смущает, что вода в двухтрубной системе ходит по кругу и летом и зимой, когда радиатор отключен термостатом. Надо принять во внимание, во-первых, голая труба рассеивает очень мало тепла в помещении, а вне помещения она в теплоизоляции, во-вторых, температура воды в этом контуре задаётся в зависимости от времени суток и температуры наружного воздуха. Про это интересно сказано во второй ссылке, — когда радиатор на ощупь холодный (температура руки +35), он может быть +30О, что теплее воздуха в комнате, и обогрев всё-таки происходит.
Однотрубная система вообще не может быть регулируемой — кто-то мерзнет, кто-то парится. Конечно, она экономична — если нефть чуть дороже воды, можно позволить топить улицу, — а как ещё жильцам избавиться от духоты в «отопительный сезон». Kovako-1 21:07, 19 февраля 2012 (UTC)
Однотрубная система отлично регулируется, читайте статью внимательнее. Tucvbif?* 19:35, 20 февраля 2012 (UTC)
Для большей части России это всё же неизвестно — дома старые, заржавевший кран лучше не трогать, открывают окно. Вот, кстати, продают в России Danfoss. Регулируется всё же не на отлично — градус на входе будет разный, а это очень важно когда теплоноситель всего +30о. И не поменять радиатор, без отключения всей цепочки. Пытался найти сравнение энергорасходов, но не нашёл вовсе упоминания об однотрудной системе. Kovako-1 16:07, 21 февраля 2012 (UTC)

Добавил небольшой абзац касательно влажности воздуха. Может быть позже перепишу в более читабельный вариант. —Аскар 09:05, 8 января 2013 (UTC)

Тепловая сеть — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 июня 2014; проверки требуют 10 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 июня 2014; проверки требуют 10 правок.

Теплова́я сеть — совокупность устройств (включая центральные тепловые пункты, насосные станции), предназначенных для передачи тепловой энергии, теплоносителя от источников тепловой энергии до теплопотребляющих установок[1].

Согласно документу «Концепция развития теплоснабжения в России, включая коммунальную энергетику, на среднесрочную перспективу. Официальная информация Минэнерго РФ» от 2000 года, в России «суммарная протяженность тепловых сетей в двухтрубном исчислении составляет около 183 300 км», «средний процент износа [теплосетей] оценивается в 60-70 %. По экспертной оценке 15 % тепловых сетей требуют безотлагательной замены… Для приведения системы транспорта теплоносителя в надежное состояние необходимо капитально отремонтировать или построить заново 150 тыс. км теплотрасс в двухтрубном исчислении». [2]

В докладе «Теплоснабжение Российской Федерации. Пути выхода из кризиса. 1. Реформа системы теплоснабжения и теплопотребления РФ». М., 2001 отмечается:

Общая ситуация с тепловыми сетями в последние годы резко ухудшилась. Сокращение финансирования привело к уменьшению объемов перекладок трубопроводов. Руководство предприятий теплоснабжения, стремясь не допустить увеличения аварийности, пыталось сохранить объемы перекладок, снижая требования к качеству и всячески удешевляя строительные работы.

Переложенные сети имели очень низкий ресурс и через 5-7 лет требовали новой перекладки. В итоге, количество аварийных сетей к 2000 году начало расти в геометрической прогрессии, а количество аварий стало удваиваться через каждые 2 года, в среднем увеличившись за последние 6 лет в 10 раз. Как следствие в разы увеличилась и мощность аварийных служб…

Реальные тепловые потери составляют от 20 до 50 % выработки тепла зимой и от 30 до 70 % летом, это подтверждается резким уменьшением необходимой выработки тепла при переходе на индивидуальные источники и замерами тепловых потерь на реальных тепловых сетях. Утечки теплоносителя превышают нормы, принятые в развитых странах, в миллионы раз. [3]

Наибольшее количество повреждений приходится на дефекты трубопроводов. Их доля достигает 79% в общей массе повреждений[4]. Наиболее частой причиной повреждений теплопроводов является коррозия стенки трубы. Количество повреждений, связанных с разрывом продольных и поперечных сварных швов труб, значительно меньше (не более четверти), чем коррозионных. Основными причинами разрывов сварных швов являются заводские дефекты при изготовлении труб и дефекты сварки труб при строительстве. При этом ошибочно рассматривать наружную или внутреннюю коррозию в качестве первопричины появления дефекта: наружную и внутреннюю коррозию следует рассматривать лишь как следствие факторов, вызывающих ее в подавляющем большинстве случаев: увлажнение теплоизоляции и стенки трубы и неправильный режим водоподготовки соответственно.

Сравнение опыта теплоснабжения в СНГ со странами Скандинавии. Александр Ланецкий. Forbes 2015

Программное обеспечение для проектирования и анализа тепловых сетей населенных пунктов.

  1. ↑ Федеральный закон от 27 июля 2010 г. № 190-ФЗ «О теплоснабжении»
  2. ↑ Царь-Холод идет в Россию
  3. ↑ Теплосети
  4. Чичерин С. В. Новый алгоритм анализа величин давления при проведении ежегодных гидравлических испытаний трубопроводов тепловых сетей на плотность и прочность // Вестник ИрГТУ. — 2017. — Т. 21, № 1. — С. 178–185.

Гипокауст — Википедия

Материал из Википедии — свободной энциклопедии

Гипокауст под римской виллой

Гипокауст (лат. hypocaustum, от др.-греч. ὑπο- — приставка со значением под- и καυστός — горячий, раскалённый, подогретый) — наиболее распространённый тип классической античной, в особенности древнеримской, отопительной системы, предназначенной для обогрева одноэтажных зданий. Представлял из себя открытое пространство под полом, которое обеспечивало доступ горячего воздуха в комнаты над ним из печи или камина[1].

Как правило, затраты на установку гипокауста окупали себя в общественных банях, которые возводились за счёт государства. Провести гипокауст в частных домах (виллах) могли позволить обычно только состоятельные римляне (политики, торговцы, крупные военачальники). Но даже в этом случае гипокаустом зимой отапливалась не вся вилла, а только определённая её часть.

Точно установить техническую и хронологическую эволюцию гипокауста затруднительно. Возник он, по-видимому, в Древней Греции, но в Древнем Риме его усовершенствовал известный торговец и гидроинженер Сергий Ората в I веке до н. э. По мере территориальной экспансии Рима гипокауст стал применяться повсеместно в империи, но наибольшее распространение получил в довольно холодных северных провинциях, а также горных регионах Иберии, Балкан, Альп и Апеннин. Остатки гипокаустов археологи находят при раскопках древнеримских вилл: Вилла Армира (соврем. Болгария), Вьё-ля-Ромэн (соврем. Франция), Вилла Биньор (Великобритания) и других.

Устройство гипокауста

Гипокауст представлял собой печь, обычно расположенную за пределами отапливаемого помещения, которая имела систему каналов и труб, проводивших тёплый воздух под пол и в стены здания.[2] С упадком Римской империи, гипокауст быстро вышел из употребления в периферийных северных провинциях. К примеру, в Британии романо-британская культура, знавшая гипокауст, быстро пришла в упадок под натиском германцев и англосаксов, вытеснивших романизированное кельтское население на периферию острова. Неудивительно, что британские дома не знали центральной системы отопления в период между концом V века и концом XIX века. В более южных романизированных регионах Средиземноморья гипокауст сохранялся довольно долго. В Испании в средние века гипокауст претерпел некоторые изменения и продолжал использоваться под названием глория до начала XX века. До начала XII века его также использовали северо-африканские мусульманские государства Магриба, постепенно модернизируя и заменяя его на более современные отопительные средства соответствующих эпох.

  • Ондоль — традиционная система обогрева домов в Корее.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *