Блок питания 12В своими руками. Самодельный блок питания: схема
Изготовить блок питания 12В своими руками несложно, но для этого вам потребуется изучить немного теории. В частности, из каких узлов состоит блок, за что отвечает каждый элемент изделия, основные параметры каждого. Также важно знать, какие трансформаторы необходимо использовать. Если нет подходящего, то можно перемотать вторичную обмотку самостоятельно для получения нужного напряжения на выходе. Нелишним будет узнать о методах травления печатных плат, а также про изготовление корпуса блока питания.
Компоненты блока питания
Основной элемент любого блока питания – это понижающий трансформатор. При его помощи происходит снижение напряжения в сети (220 Вольт) до 12 В. В конструкциях, рассмотренных ниже, можно использовать как самодельные трансформаторы с перемотанной вторичной обмоткой, так и готовые изделия, без модернизации. Нужно только учитывать все особенности и проводить правильный расчет сечения провода и количества витков.
Второй элемент по важности – это выпрямитель. Изготовляется он из одного, двух либо четырех полупроводниковых диодов. Все зависит от типа схемы, по которой собирается самодельный блок питания. Например, для реализации удвоения напряжения нужно использовать два полупроводника. Для выпрямления без увеличения достаточно одного, но лучше применить мостовую схему (все пульсации тока сглаживаются). После выпрямителя обязательно наличие электролитического конденсатора. Желательна установка стабилитрона с подходящими параметрами, он позволяет на выходе сделать стабильное напряжение.
Что такое трансформатор
Трансформаторы, используемые для выпрямителей, имеют следующие компоненты:
- Сердечник (магнитопровод, изготовленный из металла либо ферромагнетика).
- Сетевую обмоту (первичная). Запитывается от 220 Вольт.
- Вторичную обмотку (понижающую). Служит для подключения выпрямителя.
Теперь обо всех элементах более подробно. Сердечник может иметь любую форму, но наиболее распространены Ш-образные и U-образные. Реже встречаются тороидальные, но у них специфика иная, чаще применяются в инверторах (преобразователях напряжения, например, из 12 в 220 Вольт), нежели в обычных выпрямительных устройствах. Блок питания 12В 2А целесообразнее делать с использованием трансформатора, имеющего Ш-образный или U-образный сердечник.
Обмотки могут располагаться как друг на друге (сначала первичная, а после вторичная), на одном каркасе, так и на двух катушках. В качестве примера можно привести трансформатор с U-образным сердечником, на котором имеются две катушки. На каждой из них произведена намотка половины первичной и вторичной обмоток. При подключении трансформатора требуется соединять выводы последовательно.
Как произвести расчет трансформатора
Допустим, вы решили намотать вторичную обмотку трансформатора самостоятельно. Для этого вам надо будет узнать величину главного параметра – напряжения, которое можно будет снять с одного витка. Это самый простой способ, которым можно воспользоваться при изготовлении трансформатора. Намного сложнее вычислить все параметры, если требуется намотка не только вторичной, но и первичной обмотки. Необходимо для этого знать сечение магнитопровода, его проницаемость и свойства. Если рассчитывать блок питания 12В 5А самому, то этот вариант получается более точным, нежели подстраиваться под готовые параметры.
Первичную обмотку наматывать сложнее, чем вторичную, так как в ней может быть несколько тысяч витков тонкого провода. Можно упростить задачу и самодельный блок питания изготовить при помощи специального станка.
Чтобы рассчитать вторичную обмотку, нужно намотать 10 витков тем проводом, который планируете использовать. Соберите трансформатор и, соблюдая технику безопасности, подключите его первичную обмотку к сети. Проведите замер напряжения на выводах вторичной обмотки, полученное значение разделите на 10. Теперь число 12 разделите на полученное значение. И получаете количество витков, необходимое для вырабатывания 12 Вольт. Можно добавить немного, чтобы компенсировать падение напряжения (достаточно увеличить на 10%).
Диоды для блока питания
Выбор полупроводниковых диодов, используемых в выпрямителе блока питания, напрямую зависит от того, какие значения параметров трансформатора необходимо получить. Чем больше сила тока на вторичной обмотке, тем мощнее диоды необходимо использовать. Предпочтение стоит отдавать тем деталям, которые изготовлены на основе кремния. Но не стоит брать высокочастотные, так как они не предназначены для использования в выпрямительных устройствах. Их основное предназначение – детектирование высокочастотного сигнала в радиоприемных и передающих устройствах.
Идеальное решение для маломощных блоков питания – это применение диодных сборок, блок питания 12В 5А с их помощью можно разместить в гораздо меньшем корпусе. Диодные сборки — это набор из четырех полупроводниковых диодов. Используются они исключительно для выпрямления переменного тока. Работать с ними гораздо удобней, не нужно делать много соединений, достаточно на два вывода подать напряжение от вторичной обмотки трансформатора, а с оставшихся снять постоянное.
Стабилизация напряжения
После изготовления трансформатора обязательно проведите замер напряжения на выводах его вторичной обмотки. Если оно превышает значение 12 Вольт, то необходимо провести стабилизацию. Даже самый простой блок питания 12В плохо будет работать без этого. Следует учесть, что в питающей сети величина напряжения непостоянна. Подключите вольтметр к розетке и проведите замеры в разное время. Так, например, днем оно может подскочить до 240 Вольт, а вечером опуститься даже до 180. Все зависит от нагрузки на линию электропередач.
Если у вас в первичной обмотке трансформатора изменяется напряжение, то оно будет нестабильно и во вторичной. Чтобы компенсировать это, нужно применить устройства, называемые стабилизаторами напряжения. В нашем случае можно использовать стабилитроны с подходящей величиной параметров (тока и напряжения). Стабилитронов множество, подберите необходимые элементы до того, как делать 12В блок питания.
Существуют и более «продвинутые» элементы (типа КР142ЕН12), которые представляют собой комплект из нескольких стабилитронов и пассивных элементов. Их характеристики намного лучше. Также встречаются и зарубежные аналоги подобных устройств. Необходимо познакомиться с этими элементами до того, как сделать 12В блок питания вы решите самостоятельно.
Особенности импульсных блоков питания
Блоки питания такого типа нашли широкое применение в персональных компьютерах. У них на выходе имеется два значения напряжения: 12 Вольт — для питания приводов дисководов, 5 Вольт — для функционирования микропроцессоров и иных устройств. Отличие от простых блоков питания состоит в том, что на выходе сигнал не постоянный, а импульсный – по форме похож на прямоугольники. В первый период времени сигнал появляется, во второй он равен нулю.
Также имеются отличия и в схеме устройства. Для нормального функционирования самодельный импульсный блок питания нуждается в выпрямлении сетевого напряжения без предварительного понижения его значения (на входе отсутствует трансформатор). Использовать импульсные блоки питания можно как самостоятельные устройства, так и их модернизированные аналоги – аккумуляторные батареи. В итоге можно получить простейший бесперебойник, причем его мощность будет зависеть от параметров блока питания и типа используемых батарей.
Как получить бесперебойное питание?
Блок питания достаточно подключить параллельно аккумуляторной батарее, чтобы при выключении электричества все устройства продолжили работать в нормальном режиме. При подключенной сети блок питания производит зарядку батареи, принцип схож с работой электроснабжения автомобиля. А когда бесперебойный блок питания 12В отключаете от сети, происходит подача напряжения на всю аппаратуру от аккумулятора.
Но бывают случаи, когда необходимо на выходе получить сетевое напряжение 220 Вольт, например, для питания персональных компьютеров. В этом случае потребуется внедрение в схему инвертора – устройства, которое преобразует постоянное напряжение 12 Вольт в переменное 220. Схема оказывается сложнее, нежели у простого блока питания, но собрать его можно.
Фильтрация и отсечение переменной составляющей
Важное место в выпрямительной технике занимают фильтры. Взгляните на блок питания 12В, схема которого наиболее распространена. Она состоит из диодного моста, конденсатора, сопротивления. Фильтры отсекают все лишние гармоники, оставляя на выходе блока питания постоянное напряжение. Например, простейший фильтр – это электролитический конденсатор с большой емкостью. Если взглянуть на его работу при постоянном и переменном напряжениях, то становится ясен его принцип функционирования.
В первом случае он имеет определенное сопротивление и в схеме замещения он может быть заменен на постоянный резистор. Актуально это для проведения расчетов по теоремам Кирхгофа.
Во втором случае (при протекании переменного тока) конденсатор становится проводником. Другими словами, его можно заменить перемычкой, у которой нет сопротивления. Она соединит оба выхода. При более подробном изучении можно увидеть, что переменная составляющая уйдет, ведь выходы замыкаются во время протекании тока. Останется только постоянное напряжение. Кроме того, для быстрого разряда конденсаторов собираемый блок питания 12В своими руками необходимо на выходе укомплектовать резистором с большим сопротивлением (3-5 МОм).
Изготовление корпуса
Для изготовления корпуса блока питания идеально подойдут алюминиевые уголки и пластины. Сначала необходимо сделать своеобразный скелет конструкции, который впоследствии можно обшить листами из алюминия подходящей формы. Для уменьшения веса блока питания можно в качестве обшивки использовать более тонкий металл. Изготовить блок питания 12В своими руками из таких подручных материалов несложно.
Идеально подойдет корпус от микроволновой печи. Во-первых, металл достаточно тонкий и легкий. Во-вторых, если сделать все аккуратно, то лакокрасочное покрытие не повредится, поэтому внешний вид останется привлекательным. В-третьих, размер обшивки микроволновой печи довольно большой, что позволяет сделать практически любой корпус.
Изготовление печатной платы
Подготовьте фольгированный текстолит, для этого обработайте металлический слой раствором соляной кислоты. Если такового нет, то можно использовать электролит, заливаемый в аккумуляторные батареи автомобилей. Эта процедура позволит обезжирить поверхность. Работайте в резиновых перчатках, чтобы исключить попадание растворов на кожу, ведь можно получить сильнейший ожог. После этого промойте водой с добавлением соды (можно мыла, чтобы нейтрализовать кислоту). И можно наносить рисунок печатной платы.
Сделать рисунок можно как с помощью специальной программы для компьютеров, так и вручную. Если вы изготовляете обычный блок питания 12В 2А, а не импульсный, то количество элементов минимально. Тогда при нанесении рисунка можно обойтись без программ для моделирования, достаточно нанести его на поверхность фольги перманентным маркером. Желательно сделать два-три слоя, дав предыдущему высохнуть. Неплохие результаты может дать применение лака (например, для ногтей). Правда, рисунок может выйти неровным из-за кисти.
Как протравить плату
Подготовленную и просушенную плату поместите в раствор хлорного железа. Насыщенность его должна быть такой, чтобы медь как можно быстрее разъедалась. Если процесс идет медленно, то рекомендуется увеличить концентрацию хлорного железа в воде. Если и это не помогает, то попробуйте нагреть раствор. Для этого наберите в емкость воду, установите в нее банку с раствором (не забывайте о том, что его желательно хранить в пластиковой или стеклянной таре) и нагревайте на медленном огне. Теплая вода будет нагревать раствор хлорного железа.
Если у вас много времени либо нет хлорного железа, то воспользуйтесь смесью из соли и медного купороса. Плата подготавливается аналогичным образом, после чего помещается в раствор. Недостаток способа – плата блока питания травится очень медленно, потребуются почти сутки для полного исчезновения всей меди с поверхности текстолита. Но за неимением лучшего, можно использовать и такой вариант.
Монтаж компонентов
После процедуры травления вам потребуется ополоснуть плату, очистить от защитного слоя дорожки, обезжирить их. Наметьте расположение всех элементов, просверлите отверстия для них. Больше 1,2-мм сверло не стоит применять. Установите все элементы и припаяйте их к дорожкам. После этого необходимо все дорожки покрыть слоем олова, т. е. произвести их лужение. Изготовленный блок питания 12В своими руками с лужением монтажных дорожек прослужит вам намного дольше.
РадиоКот :: Блок питания
РадиоКот >Обучалка >Аналоговая техника >Собираем первые устройства >Блок питания
Да, да, я уже понял, что тебе не терпится — ты уже начитался теории, прочитал, что такое электрический ток, что такое сопротивление, узнал кто такой товарищ Ом и еще много чего. И теперь ты хочешь резонно спросить — «И чего? Толк то в этом во всем какой? Куда это все приложить то можно?». А возможно ты ничего этого и не читал, потому как это страшно скучно, но приложить руки к чему-то электронному все-таки хочется. Спешу тебя обрадовать — сейчас мы как раз и займемся тем, что приложим все это как следует и спаяем первую реальную конструкцию, которая очень тебе пригодится в дальнейшем.
Делать мы будем блок питания для питания различных электронных устройств, которые мы соберем в дальнейшем. Ведь если мы сначала соберем, например, радиоприемник — он все равно работать не будет, пока мы не дадим ему питания. Так что, перефразируя известную пословицу — «блок питания — всему голова».
Итак, приступим. Прежде всего зададимся начальными параметрами — напряжением, которое будет выдавать наш блок питания и максимальный ток, который он способен будет отдать в нагрузку. То бишь, насколько мощную нагрузку можно будет к нему подключить — сможем ли мы подключить к нему только один радиоприемник или же сможем подключить десять? Не спрашивайте меня зачем включать десять радиоприемников одновременно — не знаю, я просто для примера сказал.
Для начала, давайте подумаем над выходным напряжением. Предположим, что у нас есть два радиоприемника, один из которых работает от 9 вольт, а второй от 12 вольт. Не будем же мы делать два разных блока питания для этих устройств. Отсюда вывод — нужно сделать выходное напряжение регулируемым, чтобы его можно было настраивать на разные значения и питать самые разнообразные устройства.
Наш блок питания будет иметь диапазон регулировки выходного напряжения от 1,5 до 14 вольт — вполне достаточно на первое время. Ну а ток нагрузки мы с вами примем равным 1 амперу.
Схема нашего блока питания:
Проще не бывает, не правда ли? Итак, какие же детальки нам понадобятся, чтобы спаять эту схемку? Прежде всего, нам потребуется трансформатор с напряжением на вторичной обмотке 13-16 вольт и током нагрузки не менее 1 ампера. Он обозначен на схеме как Т1. Также нам понадобится диодный мостик VD1 — КЦ405Б или любой другой с максимальным током 1 ампер. Идем дальше — С1 — электролитический конденсатор, которым мы будет фильтровать и сглаживать выпрямленное диодным мостом напряжение, его параметры указаны на схеме. D1 — стабилитрон — он заведует стабилизацией напряжения — ведь мы же не хотим, чтобы напряжение на выходе блока питания колебалось вместе с сетевым напряжением. Стабилитрон мы возьмем Д814Д или любой другой с напряжением стабилизации 14 вольт. Еще нам понадобятся постоянный резистор R1 и переменный резистор R2, которым мы будем регулировать выходное напряжение. А так же два транзистора — КТ315 с любой буковкой в названии и КТ817 тоже с любой буковкой. Для удобства, я загнал все нужные элементы в табличку, которую можно распечатать и вместе с этим листочком отправится в магазин на закупку.
Обозначение на схеме |
Номинал |
Примечание |
Т1 |
Любой с напряжением вторичной обмотки 12-13 вольт и током 1 ампер |
|
VD1 |
КЦ405Б |
Диодный мост. Максимальный выпрямленный ток не менее 1 ампера |
С1 |
2000 мкФх25 вольт |
Электролитический конденсатор |
R1 |
470 Ом |
Постоянный резистор, мощность 0,125-0,25 Вт |
R2 |
10 кОм |
Переменный резистор |
R3 |
1 кОм |
Постоянный резистор, мощность 0,125-0,25 Вт |
D1 |
Д814Д |
Стабилитрон. Напряжение стабилизации 14В |
VT1 |
КТ315 |
Транзистор. С любым буквенным индексом |
VT2 |
КТ817 |
Транзистор. С любым буквенным индексом |
Паять все это можно как на плате, так и навесным монтажем — благо элементов в схеме совсем немного. Транзистор VT2 необходимо обязательно установить на радиатор. Оптимальную площадь радиатора можно выбрать экспериментально, но она должна быть не меньше 50 кв. см. При правильном монтаже схема совершенно не нуждается в настройке и начинает работать сразу. Подключаем тестер или вольтметр к выходу блока питания и устанавливаем резистором R2 необходимое нам напряжение.
Вот в общем то и все. Вопросы есть? Ну например — «А почему резистор R1 — 100 Ом?» или, «почему два транзистора — неужели нельзя обойтись одним?». Нет? Ну ладно, как хотите, но если все таки появятся, прочтите следующую часть этой статьи, где рассказывается о том, как рассчитывался этот блок питания и как рассчитать свой собственный.
—Часть 2—>>
Как вам эта статья? | Заработало ли это устройство у вас? |
Блок питания 12В своими руками: схема и описание
Всем нам известно, что блоки питания сегодня являются неотъемлемой частью большого количества электрических приборов и осветительных систем. Без них наша жизнь нереальна, тем более экономия электроэнергии способствует эксплуатации этих приборов. В основном блоки питания имеют выходное напряжение от 12 до 36 вольт. В этой статье хотелось бы разобраться с одним вопросом, можно ли сделать блок питания на 12В своими руками? В принципе, никаких проблем, ведь этот прибор на самом деле имеет несложную конструкцию.
Из чего можно собрать блок питания
Итак, какие детали и приборы необходимо, чтобы собрать самодельный блок питания? В основе конструкции всего лишь три составляющие:
- Трансформатор.
- Конденсатор.
- Диоды, из которых своими руками придется собрать диодный мост.
В качестве трансформатора придется использовать обычный понижающий прибор, который будет уменьшать вольтаж с 220 В до 12 В. Такие приборы сегодня продаются в магазинах, можно использовать старый агрегат, можно переделать, к примеру, трансформатор с понижением до 36 вольт на прибор с понижением до 12 вольт. В общем, варианты есть, используйте любой.
Что касается конденсатора, то оптимальный вариант для самодельного блока – это конденсатор емкостью 470 мкФ с напряжением 25В. Почему именно с таким вольтажом? Все дело в том, что на выходе из напряжение будет выше запланированного, то есть, больше 12 вольт. И это нормально, потому что при нагрузке напряжение упадет до 12В.
Собираем диодный мостик
А вот теперь очень важный момент, который касается вопроса, как сделать блок питания 12В своими руками. Во-первых, начнем с того, что диод – это двуполярный элемент, как, в принципе, и конденсатор. То есть, у него два выхода: один минус, другой плюс. Так вот плюс на диоде обозначен полоской, а, значит, без полоски это минус. Последовательность соединения диодов:
- Сначала соединяются между собой два элемента по схеме плюс-минус.
- Точно также соединяются между собой и два других диода.
- После чего две парные конструкции необходимо соединить между собой по схеме плюс с плюсом и минус с минусом. Здесь главное не ошибиться.
В конце у вас должна получиться замкнутая конструкция, которая носит название диодный мостик. У нее четыре соединительных точек: две «плюс-минус», одна «плюс-плюс» и еще одна «минус-минус». Соединять элементы можно на любом плате необходимого устройства. Основное здесь требование – это качественный контакт между диодами.
Во-вторых, диодный мост – это, по сути, обычный выпрямитель, который выпрямляет переменный ток, исходящий с вторичной обмотки трансформатора.
Полная сборка прибора
Все готово, можно переходить к сборке конечного продукта нашей идеи. Сначала надо подключить выводы трансформатора к диодному мосту. Их подключают к точкам соединения «плюс-минус», остальные точки остаются свободными.
Теперь необходимо подключить конденсатор. Обратите внимание, что на нем также есть отметки, которые определяют, полярность прибора. Только на нем все наоборот, чем на диодах. То есть, на конденсаторе обычно помечается минусовой контакт, который подсоединяется к точке диодного моста «минус-минус», а противоположный полюс (положительный) присоединяется к точке «минус-минус».
Остается только подключить два питающих провода. Для этого лучше всего выбрать цветные провода, хотя это необязательно. Можно использовать одноцветные, но при условии, что их придется каким-нибудь образом обозначить, к примеру, на одном из них сделать узелок или обмотать конец провода изолентой.
Итак, делается подключение питающих проводов. Один из них подключим к точке «плюс-плюс» на диодном мосте, другой к точке «минус-минус». Все, понижающий блок питания на 12 вольт готов, можно его тестировать. В холостом режиме он обычно показывает напряжение в пределах 16 вольт. Но как только на него подадут нагрузку, напряжение снизится до 12 вольт. Если есть необходимость выставить точное напряжение, то придется к самодельному прибору подключить стабилизатор. Как видите, сделать блок питания своими руками не очень сложно.
Конечно, это простейшая схема, блоки питания могут быть с различными параметрами, где основных два:
- Выдерживаемая нагрузка, измеряемая в амперах.
- Выходное напряжение.
Как дополнение, может быть использована функция, которая разграничивает модели блока питания на регулируемый (импульсный) и нерегулируемый (стабилизированный). Первые обозначены возможностью изменять выходное напряжение в пределах от 3 до 12 вольт. То есть, чем сложнее конструкции, тем больше возможностей у агрегатов в целом.
И последнее. Самодельные блоки питания – это не совсем безопасные аппараты. Так что при их тестировании рекомендуется отойти на некоторое расстояние и только после этого проводить включение в сеть 220 вольт. Если вы что-то неточно рассчитали, к примеру, неправильно подобрали конденсатор, то есть большая вероятность, что этот элемент просто взорвется. В него залит электролит, который при взрыве разбрызгается на приличное расстояние. К тому же не стоит производить замены или пайку при включенном блоке питания. На трансформаторе собирается большое напряжение, так что не стоит играть с огнем. Все переделки надо проводить только на выключенном приборе.
СТАБИЛИЗИРОВАННЫЙ БЛОК ПИТАНИЯ
Вашему вниманию предлагается проверенная конструкция универсального блока питания. Данный простой источник питания, выполнен на мощных составных транзисторах. Основное преимущество схемы в том, что БП пригоден не только для питания различных электронных схем, но и для зарядки различных, в том числе и мощных свинцовых аккумуляторов. Схема стабилизированного блока питания:
Форум по блокам питания
Обсудить статью СТАБИЛИЗИРОВАННЫЙ БЛОК ПИТАНИЯ
Блок питания собственной конструкции на 12 В 15 А
Нужен мощный БП на ток более 10 Ампер? Вот одна из самых простых схем источников питания, которую можно собрать предварительно протестировав и отрегулировав. Исходные предположения проекта: несложный блок питания предназначенный для питания нагрузки 55 Вт в течение многих часов каждый день.
Схема принципиальная блока 12 В 15 А
Многие имели дело с блоками питания на стабилизаторах LM317, поэтому было бы достаточно сделать стабилизирующую часть на микросхеме LM338. Не стоит брать мощные транзисторы, потому что по цене это будет дороже, чем готовые стабилизаторы, да и заметное усложнение электроники.
В качестве трансформатора использовался тороид 220 В / 12 В 150 Вт (он будет питать 2 отдельных источника питания с разной силой тока).
Стоит сразу 3 стабилизатора LM338, соединенных параллельно. Просматривая даташит производителей LM338 стало понятно, что 3 штуки дадут запас надежности даже в случае сильного нагрева воздуха в корпусе.
При первых тестах использовали диодный мост BR1010, но были в ужасе от его быстрого нагрева до высокой температуры, поэтому пришлось брать KBPC 2510 и установка большего радиатора. В качестве вспомогательных конденсаторов 2x 10000 мкФ, 10 мкФ и 1 мкФ для фильтрации нежелательных помех. Контрольные резисторы LM338 имеют сопротивление 240 Ом и 1,9 кОм.
Обратите внимание, что тороиды могут иметь первоначальное высокое потребление энергии от сети (бросок тока при включении) и, таким образом, может перегорать предохранитель, в несколько раз превышающий номинальное потребление тока, поэтому советуем использовать устройство плавного пуска для тороидальных трансформаторов.
Данные номиналов деталей
- C1, C2 = 10000 мкФ / 35 В
- C3 = 10 мкФ / 25 В
- C4 = 1 мкФ / 25 В
- U1, U2, U3 = LM338
- R1 = 240 Ом
- R2 = 1,9 кОм
На фото показана тестовая конструкция, собранная навесным монтажом чтобы проверить работает ли она вообще. Использовалась универсальная монтажная плата — это самый простой и быстрый способ сборки печатной платы без травления.
Хотя 3 элемента в корпусе TO220, 2 резистора и конденсатора, это можно успешно сделать вообще без такой большой универсальной платы. Отсутствие выравнивающих резисторов на выходах стабилизатора может быстро повредить их. Помните, что электронные компоненты не идеальны и имеют свои допуски. На практике это означает что один из стабилизаторов будет давать немного более высокое напряжение, которое примет на себя большую часть нагрузки. Выравнивающие резисторы (0,1 Ом 5 Вт) на выходе будут частично компенсировать это явление.
Что касается эффективности LM338, то в спецификации четко описывается коэффициент полезного действия 5 А, пиковое значение составляет даже 12 А. Поэтому такая схема обладает такой реальной эффективностью по мощности.
И не берите трансформаторы на слишком большие напряжения. После фильтрации если будет около 24 В, конечно возникнут большие потери, преобразованные в тепло под нагрузкой. Напряжение должно быть в пределах 14-16 В. Лучше всего чтобы разница напряжений до и после стабилизации составляла около 4-5 В.
Как сделать блок питания, выбор схемы. — Радиомастер инфо
Как известно, блок питания едва ли не самое распространенное электронное устройство. Простой блок питания сделать под силу даже начинающим. Но какую схему выбрать? Их столько, что многие теряются. В данной статье коротко рассказано об основных четырех типах схем и даны рекомендации их использования.
Перед тем, ка вы решили изготовить или подобрать готовый блок питания необходимо ответить на следующие вопросы:
- Какое напряжение должен выдавать блок питания? Это можно определить по характеристикам того устройства, которое будет подключаться к блоку питания.
- Какой ток должен обеспечивать блок питания? Это так же указано на устройстве, которое будет подключено. Если указана потребляемая мощность, то ток можно определить, разделив мощность на напряжение.
Учитывая сказанное, перейдем к рассмотрению основных типов схем.
- Бестрансформаторный блок питания с гасящим конденсатором.
Применяется при небольших токах, десятки миллиампер, редко сотни миллиампер. На практике используется для зарядки аккумуляторов небольших фонарей, питания светодиодов и т.д. Схема такого блока питания:
Величина емкости С1 при активной нагрузке определяется по формуле:
С1 – емкость, Ф
Iэфф – эффективное значение тока нагрузки, А
Uc — напряжение сети, В
Uн – напряжение на нагрузке, В
f -частота сети, 50 Гц
π — число 3,14
Если нагрузка не всегда подключена, или ее ток меняется, то схема должна содержать стабилитрон, который не позволит напряжению на конденсаторе С2 и нагрузке превысить допустимое значение:
Величина емкости С1 рассчитывается с учетом максимального тока стабилитрона и тока нагрузки.
В этой формуле: 3,5 — коэффициент, Iстmin — минимальный ток стабилитрона, Iнmax — ток нагрузки максимальный, Ucmin — напряжение сети минимальное, Uвых — напряжение выхода блока питания.
Тип емкости С1 К73-17 или подобные, рабочее напряжение не ниже 400 В. Можно С1 зашунтировать резистором несколько сотен кОм, для разряда конденсатора в выключенном состоянии.
Подробнее о расчетах таких схем рассказано в журнале Радио №5 за 1997 год (стр. 48-50).
Понятно, что при отключенной нагрузке блок питания будет потреблять мощность на работу стабилитрона, соизмеримую с мощностью нагрузки. КПД поэтому низкий. Это одна из причин использования таких схем только для малых токов. Работая с такими блоками питания важно помнить, что их детали имеют гальваническую связь с сетью и опасность поражения током велика.
- Второй тип схем, трансформаторные блоки питания. Вот основная схема.
По такой схеме можно делать блоки питания практически на любые напряжения и токи. На практике они представлены от маломощных, например, блок питания антенного усилителя собранный в сетевой вилке, до сварочника, вес которого десятки килограмм.
Приблизительный расчет трансформатора можно посмотреть здесь, более подробный и точный здесь.
Если токи нагрузки большие, емкость фильтра С1 нужна большая, тысячи микрофарад. В этом случае после диодного моста нужно ставить сопротивление, несколько Ом, чтобы в момент включения, когда С1 разряжен, бросок зарядного тока не вывел из строя диодный мост.
Если токи несколько ампер, то на диодах будет рассеиваться большая мощность. Для ее снижения применяют диоды Шоттки, на них падает меньшее напряжение (до 0,5 В), в отличие от кремниевых диодов на которых при больших токах может падать больше 1 В.
Чтобы еще снизить потери, применяют двухполупериодный выпрямитель с двумя диодами и двумя обмотками. Вот его схема:
В данном случае вторичных обмотки две. Они соединены последовательно. Мотаются проводом в половину тоньше, чем для схемы с четырьмя диодами. Так, что количество меди то же самое. Потери ниже вдвое, так как диода два. Допустим на каждом падает 1 В, при токе 10 А, это мощность потерь 10 Вт на каждом диоде. Если диода два вместо четырех, в тепло идет не 40 Вт, а 20. Польза очевидна.
Вышеприведенные схемы имеют существенный недостаток. Напряжение на выходе меняется при изменении напряжения сети. Как известно, допустимые изменения напряжения сети ±5%, от 220 В это составит (209-231) В, предельные изменения ±10%, (198-242) В. В процентном отношении так же будет изменяться и выходное напряжение.
Для устранения этого недостатка применяют стабилизаторы, от простейших на стабилитроне, иногда с транзистором, до стабилизаторов на микросхемах.
Например:
Здесь 7812 (LM7812 или аналог) распространенная микросхема стабилизатор на 12 В. Основные правила применения таких микросхем:
— напряжение на входе от 14 В до 35 В, (при минимальном напряжении сети не менее 14 В при максимальном не более 35 В)
— максимальный ток, при длительной работе 1,5 А
— мощность, рассеиваемая без теплоотвода 1,5 Вт, с теплоотводом до 15 Вт (в некоторых справочниках пишут даже 9 Вт).
Главная ошибка, которую допускают при применении таких микросхем заключается в том, что в основном смотрят на ток и забывают про мощность. Например, от микросхемы хотят запитать нагрузку на напряжение 12 В потребляющую ток 1 А. Кажется, что это можно сделать без проблем, ведь максимальный ток этой микросхемы 1,5 А.
Но, допустим, в сети максимальное напряжение 242 В и на входе микросхемы 35 В. Эта микросхема компенсационного типа, т.е. все лишнее напряжение 35 – 12 = 23 В упадет на микросхеме. При этом мощность, которая будет рассеиваться на микросхеме будет равна 23В х 1А= 23Вт. А допустимая мощность, с радиатором, всего 15 Вт. Микросхема перегреется и сгорит. Для такого случая ее допустимый ток 15 Вт : 23 В = 0,65 А, и это с радиатором.
- Импульсные стабилизаторы в трансформаторных блоках питания.
Эти стабилизаторы имеют значительно меньшие потери, чем выше рассмотренные. В них регулирующий элемент работает в ключевом режиме. У него два состояния полностью открыт или полностью закрыт. Падение напряжения на нем при этом минимально и рассеиваемая мощность также. Величина выходного напряжения пропорциональна длительности выходных импульсов.
Uвых = tоткр/T × Uвх
Где:
Uвых — напряжение на выходе стабилизатора
tоткр – время открытого состояния ключа
Т — период импульсов
Uвх – входное напряжение стабилизатора
Схема, поясняющая принцип работы:
Как видим, здесь присутствует индуктивность L, в которой накапливается энергия и импульсный диод VD. Именно с помощью этих двух элементов, ну и конечно конденсатора С, установленного за индуктивностью, импульсы после ключа VT превращаются в постоянное напряжение.
Пример такой схемы на транзисторах:
И на микросхеме:
- Импульсные блоки питания.
Это самые эффективные и малогабаритные блоки. У них нет большого понижающего трансформатора, даже при больших токах и мощностях. Пример наиболее мощного импульсного блока питания — сварочный инвертор, который при сварочных токах 250 А весит всего несколько килограмм.
Принцип работы.
Напряжение сети 220 В поступает на диодный мост и затем на фильтр (конденсатор). Напряжение приобретает значение 310 В (при напряжении сети 220 В). Это напряжение питает выходной трансформаторный каскад и генератор. Вся схема работает на частотах до 100 кГц и даже выше. На таких частотах трансформаторы делают из феррита и их габариты в десятки раз меньше, чем у трансформаторов, работающих на частоте сети 50 Гц. Как правило, сама схема импульсного блока питания является стабилизатором и напряжение на выходе не зависит от изменения напряжения сети. Современные импульсные блоки питания, как правило работают при изменении напряжения сети от 110 В до 240 В.
Пример схемы импульсного блока питания, поясняющий принцип работы, на наиболее распространенной микросхеме UC3842.
Напряжение сети 220В через плату фильтра (ППФ) поступает на сетевой выпрямитель (СВ), конденсатор фильтра (Сф) и через обмотку трансформатора на ключ VT. Через сопротивление R3 уменьшенное напряжение поступает на вывод 7 для запуска микросхемы. После начала работы на вывод 7 дополнительно, через диод VD1, с обмотки трансформатора поступает питание в установившемся режиме.
Внутри микросхемы мы видим генератор (ГЕН), ШИМ (широтно-импульсный модулятор) для управления мощным ключом, выполненном на полевом транзисторе VT. На вывод 3 поступает сигнал обратной связи.
Практическая схема импульсного блока питания на микросхеме UC3842:
Пример изготовления схемы блока питания для ноутбука можно посмотреть здесь.
Есть микросхемы импульсных блоков питания, совмещенные с мощным выходным ключом. Но их принцип работы аналогичен рассмотренному.
Вывод.
Если нужны токи десятки миллиампер блок питания можно сделать по схеме первого типа.
Дешевый блок питания, габариты которого не так важны можно собрать по схеме второго типа. Компенсационные стабилизаторы целесообразно применять на токах до 1 А.
Так же недорогой блок питания, даже со стабилизатором выходного напряжения, на токи до 3 А можно собрать по схеме третьего типа.
Ну а если нужен малогабаритный блок питания, с защитой от перегрузок, на токи больше 3 А, с малым уровнем пульсаций, устойчивый к изменениям напряжения сети — конечно нужно собирать по схеме четвертого типа.
Материал статьи продублирован на видео:
характеристика, схемы, как сделать своими руками
Трансформаторный блок питания на 12В используется для преобразования сетевого напряжения до уровня необходимого для работы определенного устройства. Сегодня в данной разновидности блоков питания устанавливаются системы предохранения от резких скачков напряжения, коротких замыканий и для нормализации высокочастотных помех. Конструкция обладает надежностью при сравнительной простоте и низкой стоимости. Блок питания с трансформаторным типа можно самостоятельно сконструировать и собрать в домашних условиях.
Устройство и принцип работы
От обычного блока питания трансформаторный отличается наличием понижающего устройства, который позволяет снизить подаваемое в сети напряжение с 220В до 12В. Также в этих устройствах используется выпрямитель, который изготавливают из 1, 2 или 4 диодов полупроводникового типа – в зависимости от разновидности схемы.
В блоках питания этой категории используются трансформаторы в которых используется три основных компонента:
- Сердечник специального сплава металлов или из ферромагнетика;
- Сетевая первичная обмотка которая питается от 220В;
- Вторичную обмотку применяют с понижающим действием – к ней подключается выпрямитель.
В остальном данный блок совпадает по принципу работы, строению и устройству с обычным блоком питания. Благодаря этому есть возможность подключать устройства различных категорий.
Применяемый выпрямитель определяется схематическим устройством, которое зависит от того, до каких значений нужно довести уровень напряжения. Например, в случае удвоения напряжения, используется два полупроводника. После проводника необходимо в устройстве конструкции использовать электролитический конденсатор.
Общая структура
Структурная схема блока питания с трансформаторным действием имеет следующий тип:
При этом в некоторых зарядных устройствах трансформаторного типа не используются последние два элемента. По сути основными являются трансформатор и выпрямитель, именно они отвечают за снижение напряжения, но фильтр и стабилизатор обеспечивают дополнительную защиту и регулировку значений в подаваемом на устройство напряжении.
На рынке электроники сегодня наиболее популярными являются однополярные трансформаторные блоки питания. Схема данного устройства выглядит следующим образом:
О конструкции самого трансформатора и принципах его работы поговорим далее. Двухполюсный блок питания данной категории имеет следующую схему:
В отличии от первой схемы, в этой применяется трансформатор с одинаковыми парными вторичными обмотками, которые последовательно соединяются.
Трансформатор
Один из основных элементов конструкции трансформатора – сердечник. В блоках питания он может быть Ш-образный либо U-образный, в редких случаях применяются тороидальные сердечники. На них располагаются трансформаторные обмотки из двух слоев: вторичная поверх первичной.
Конструкция
При сборке конструкции используется специальная формула, которая позволяет вычислить необходимые габариты трансформатора:
(1/N)~F*S*B
В этой формуле используются следующие значения:
- N – число витков на 1 вольт;
- F – уровень частоты в переменном напряжении;
- S – сечение магнитопровода;
- B – индукция магнитного поля в магнитопроводе.
Таким образом можно вычислить конструктивные особенности трансформатора. В трансформаторных блоках питания применяются тороидальные, стержневые и броневые виды обмоток.
Их внешний вид представлен на картинке ниже:
Для расчета вторичной обмотки можно использовать следующий прием. Наматывается 10 витков, собирается трансформатор и с соблюдением техники безопасности, стандартным методом первичная обмотка подключается к электросети. Затем производятся замеры уровня напряжения на выводе из вторичной обмотки. Полученные значения делятся на 10, после этого 12 делится на 10. Так определяется число витков необходимое для выработки напряжения в 12В.
Принцип работы
Трансформатор на этой разновидности блока питания позволяет преобразовывать напряжение в 220В получаемое из обычной электросети до необходимого уровня напряжения для определенного устройства.
Генератором электромагнитных полей выступает проводник через который проходит переменный ток, а благодаря тому, что на трансформаторе он смотан в катушку его действие производится более плотно. Согласно закону электромагнитной индукции переменное поле наводится во вторичной обмотке.
Выбор напряжения
Необходимое напряжение определяется устройством, для питания которого будет использоваться блок питания. Можно использовать напряжение в 12В, 3.3В, 5В и 9В. Это самые популярные значения напряжения на выходе, при этом оно может иметь и другие значения. Все зависит от конструкции трансформатора, количества обмоток и размер сечения, используемого магнитопровода.
12В
Блок питания с напряжением на выходе в 12В широко используются в быту с конца прошлого столетия. Их применяют для питания котлов отопления, светодиодных лент, игровых устройств, сварочных аппаратов, телевизионных приставок и различных бытовых приборов.
3.3 В
Блоки с напряжением этого уровня используются преимущественно в персональных компьютерах, но могут использоваться и для подзарядки других устройств, например, в сварочных аппаратах.
5В
Данный вид трансформаторных блоков питания также используется для обеспечения питания компьютеров и серверов.
9В
Эта разновидность блоков для питания устройств широко применяется для работы со строительной техникой и различных бытовых устройств. Например, им подпитывается дрель, болгарка или перфоратор.
Выпрямитель
В трансформаторном блоке питания используется обычно мостовой выпрямитель с одним, двумя или четырьмя диодами.
Используем мостовую схему выпрямления
Использование мостового выпрямителя показано на данной схеме:
Как работает
Принцип работы у выпрямителя мостового типа следующий: во время течения в полупериоде, электрический ток идет через два диода, которые включены в прямом направлении. Это позволяет конденсатору получать напряжение с пульсацией в два раза большей частотой от питания.
Выше представлена схема как использовать выпрямитель мостового типа в конструкции. Чтобы понять, как работает выпрямитель с постоянным и переменным напряжением мостового типа можно использовать для ознакомления данную схему:
Треугольники на схеме – это диоды, которые позволяют работать мостовому выпрямителю.
Как спаять
Для спайки мостового выпрямителя следует использовать следующую схему:
Фильтр
В блоках трансформаторного типа фильтрация и отсечение переменных, составляющих являются обязательными. С этой целью в данных устройствах используются электролитические конденсаторы с большой емкостью.
Назначение
Электролитический конденсатор, выполняющий роль фильтра в этих устройствах используется как при работе блока с постоянным, так и переменным напряжением. Но в некоторых случаях выбор конденсатора может быть другим.
Выбор конденсатора
Для трансформаторных блоков питания подбирается конденсатор согласно уровню напряжения, с которым он работает. При постоянном напряжении вместо электролитного конденсатора можно использовать постоянный резистор, а при переменном напряжении обычной перемычкой, так как конденсатор становится проводником.
Как правильно подключать
Чтобы при самостоятельной сборке трансформаторного блока питания на 12В конденсаторы правильно работали, на выходе устройство укомплектовывается резистором с сопротивлением от 3 до 5 Мом.
Стабилизатор напряжения или тока
Источник питания стандартного типа собирается с использованием электролитического конденсатора с емкостью не более 10000 мкФ, двухполупериодного выпрямителя мостового типа из диодов с обратным напряжением в 50 вольт и прямым током 3А, а также с предохранителем 0,5А. В роли интегрального стабилизатора напряжения на 12В используется конденсатор 7912, либо 7812.
Стабилитрон
Для постоянства напряжения при выходе из блока питания рекомендуется использовать стабилитрон.
Интегральный стабилизатор напряжения
Без использования стабилизатора напряжения блок питания не сможет правильно функционировать. В роли этих компонентов используются конденсаторы серий LM 78xx и LM 79xx. Стабилитроны подбираются по подходящей величине параметров тока и напряжения, на рынке их большое множество, но самым продвинутым считается элемент типа КР142ЕН12.
Чем больше емкость конденсатора, тем лучше уровень сигнала на выходе, он имеет правильную форму и стремится к прямой линии.
Серия LM 78xx
Данные регуляторы напряжения имеют выходной ток до 1А, и выходное напряжение: 5, 6, 8, 9, 12, 15, 18, 24. Кроме того в этих конденсаторах есть тепловая защита от перегрузок и защита от коротких замыканий.
Серия LM 79xx
Эти регуляторы напряжения имеют значения схожие с серией 78xx. В них также реализована тепловая защита от больших перегрузок и защита от замыканий.
Вспомогательные узлы
В конструкции можно реализовать вспомогательные узлы, например, индикаторы или переключатели напряжения. Главное не переусердствовать и делать устройство согласно всем нормам и рекомендациям.
Индикаторные светодиоды
В конструкции можно продумать светодиодные индикаторы, которые применяются в заводских блоках и подзарядных устройствах. Светодиоды служат сигнализатором о том, что полезная работа трансформатора производится и напряжение соответствует требуемому значению.
Амперметр и вольтметр
Для произведения расчетов и подбора элементов, а также для правильной сборки блока питания необходимо использовать амперметр и вольтметр.
Схема самодельного источника питания
Схемы как собрать самодельный блок питания трансформаторного типа представлены были выше, но для удобства предлагаем для ознакомления еще одну схему, с понятными обозначениями.
На данной схеме изображен понижающий трансформатор с двумя обмотками и диодный мост для выпрямления.
Это простая схема, которая позволяет собрать самодельный источник питания с трансформатором любому начинающему электрику.
Как паять
Для сборки используется печатная плата из фольгированного диэлектрика. Сначала рисуется схема, затем на заготовку платы наносится рисунок и производится протравка. После этого засверливаются отверстия для крепления каждого элемента схемы блока.
Правила выбора комплектующих
Чтобы сделать своими руками блок питания с трансформатором необходимо правильно подобрать комплектующие. В данной статье мы разобрались как подсчитать значения необходимых элементов устройства, какие трансформаторы, выпрямители и фильтры можно использовать в блока питания этой разновидности. Для удобства предлагаю таблицу ниже, она поможет при выборе комплектующих:
В данной таблице приведены оптимальные значения и соотношения мощности устройства и технических характеристик всех компонентов, используемых в конструкции. Емкость конденсаторов должна обеспечивать заданную пульсацию в расчете 1мкФ на 1Вт в показателях мощности на выходе. Электролитический конденсатор должен выбираться для напряжения от 350В.