Схема для сборки простого терморегулятора (термостата) в домашних условиях
Терморегуляторы широко используются в современных бытовых приборах, автомобилях, системах отопления и кондиционирования, на производстве, в холодильном оборудовании и при работе печей. Принцип действия любого терморегулятора основан на включении или выключении различных приборов после достижения определенных значений температуры.
Как сделать терморегулятор
Современные цифровые терморегуляторы управляются при помощи кнопок: сенсорных или обычных. Многие модели также оснащены цифровой панелью, на которой отображается заданная температура. Группа программируемых терморегуляторов является самой дорогостоящей. С помощью прибора можно предусмотреть изменение температуры по часам или задать необходимый режим на неделю вперед. Управлять прибором можно дистанционно: через смартфон или компьютер.
Для сложного технологического процесса, например, сталеплавильной печи, сделать терморегулятор своими руками – задача довольно непростая, которая требует серьезных знаний. Но собрать небольшое устройство для кулера или инкубатора под силу любому домашнему мастеру.
Механический терморегулятор
Для того, чтобы понять, как работает регулятор температуры, рассмотрим простое устройство, которое используется для открывания и закрывания заслонки шахтового котла и срабатывает при нагреве воздуха.
Для работы устройства были использованы 2 алюминиевые трубы, 2 рычага, пружина для возврата, цепочка, которая идет к котлу, и регулировочный узел в виде кран-буксы. Все комплектующие были смонтированы на котел.
Как известно, коэффициент линейного теплового расширения алюминия составляет 22х10-6 0С. При нагревании алюминиевой трубы длиной полтора метра, шириной 0,02 м и толщиной 0,01 м до 130 градусов Цельсия происходит удлинение на 4,29 мм. При нагреве трубы расширяются, за счет этого происходит смещение рычагов, и заслонка закрывается. При остывании трубы уменьшаются в длине, а рычаги открывают заслонку. Основной проблемой при использовании данной схемы является то, что точно определить порог срабатывания терморегулятора очень сложно. Сегодня предпочтение отдается устройствам на основе электронных элементов.
Механический терморегулятор
Схема работы простого терморегулятора
Обычно для поддержания заданной температуры используются схемы на основе реле. Основными элементами, входящими в данное оборудование, являются:
- температурный датчик;
- пороговая схема;
- исполнительное или индикаторное устройство.
В качестве датчика можно использовать полупроводниковые элементы, термисторы, термометры сопротивления, термопары и биметаллические термореле.
Схема терморегулятор реагирует на превышения параметра над заданным уровнем и включает исполнительное устройство. Самым простым вариантом такого прибора является элемент на биполярных транзисторах. Термореле выполнено на основе триггера Шмидта. В роли датчика температуры выступает терморезистор – элемент, сопротивление которого изменяется в зависимости от повышения или понижения градусов.
R1 – это потенциометр, который устанавливает начальное смещение на терморезисторе R2 и потенциометре R3. За счет регулировки происходит срабатывание исполнительного устройства и коммутации реле K1, когда сопротивление терморезистора изменяется. При этом рабочее напряжение реле должно соответствовать рабочему питанию оборудования. Чтобы защитить выходной транзистор от импульсов напряжения, параллельно подсоединен полупроводниковый диод. Величина нагрузки подключаемого элемента зависит от максимального тока электромагнитного реле.
Схема работы терморегулятора
Внимание! В интернете можно увидеть картинки с чертежами термостата для разного оборудования. Но довольно часто изображение и описание не соответствуют друг другу. Иногда на рисунках могут быть представлены просто другие устройства. Поэтому изготовление можно начинать только после тщательного изучения всей информации.
Перед началом работ следует определиться с мощностью будущего терморегулятора и температурным диапазоном, в котором предстоит ему работать. Для холодильника потребуются одни элементы, а для отопления –другие.
Терморегулятор на трех элементах
Одним из элементарных устройств, на примере которого можно собрать и понять принцип работы, является простой терморегулятор своими руками, предназначенный для вентилятора в ПК. Все работы производятся на макетной плате. Если же существуют проблемы с пальником, то можно взять беспаечную плату.
Схема терморегулятор в этом случае состоит всего лишь из трех элементов:
- силового транзистора MOSFET (N канальный), можно использовать IRFZ24N MOSFET 12 В и 10 А или IFR510 Power MOSFET;
- потенциометра 10 кОм;
- NTC термистора в 10 кОм, который будет выполнять роль сенсора температуры.
Термодатчик реагирует на повышение градусов, за счет чего срабатывает вся схема, и вентилятор включается.
Теперь переходим к настройке. Для этого включаем компьютер и регулируем потенциометр, задавая значение для выключенного вентилятора. В тот момент, когда температура приближается к критической, максимально уменьшаем сопротивление до того, как лопасти будут вращаться очень медленно. Лучше сделать настройку несколько раз, чтобы убедиться в эффективности работы оборудования.
Простой терморегулятор для ПК
Современная электронная промышленность предлагает элементы и микросхемы, значительно отличающиеся по виду и техническим характеристикам. У каждого сопротивления или реле есть несколько аналогов. Необязательно использовать только те элементы, которые указаны в схеме, можно брать и другие, совпадающие по параметрам с образцами.
Терморегуляторы для котлов отопления
При регулировке отопительных систем важно точно откалибровать прибор. Для этого потребуется измеритель напряжения и тока. Для создания работающей системы можно воспользоваться следующей схемой.
Схема терморегулятора для отопления
С помощью этой схемы можно создать наружное оборудование для контроля за твердотопливным котлом. Роль стабилитрона здесь выполняет микросхема К561ЛА7. Работа устройства основана на способности терморезистора уменьшать сопротивление при нагреве. Резистор подключается в сеть делителя напряжения электричества. Необходимую температуру можно задать с помощью переменного резистора R2. Напряжение поступает на инвертор 2И-НЕ. Полученный ток подается на конденсатор С1. К 2И-НЕ, который контролирует работу одного триггера, подключен конденсатор. Последний соединен со вторым триггером.
Контроль температуры идет по следующей схеме:
- при понижении градусов напряжение в реле растет;
- при достижении определенного значения вентилятор, который соединен с реле, выключается.
Напайку лучше производить на слепыше. В качестве элемента питания можно взять любое устройство, работающее в пределах 3-15 В.
Осторожно! Установка самодельных приборов любого назначения на системы отопления может привести к выходу из строя оборудования. Более того, использование подобных устройств может быть запрещено на уровне служб, осуществляющих подвод коммуникаций в вашем доме.
Цифровой терморегулятор
Для того чтобы создать полноценно функционирующий терморегулятор с точной калибровкой, без цифровых элементов не обойтись. Рассмотрим прибор для контроля температур в небольшом хранилище для овощей.
Основным элементом здесь является микроконтроллер PIC16F628A. Эта микросхема обеспечивает управление разными электронными устройствами. В микроконтроллере PIC16F628A собраны 2 аналоговых компаратора, внутренний генератор, 3 таймера, модули сравнения ССР и обмена передачи данных USART.
При работе терморегулятора значение существующей и заданной температуры подается на MT30361 – трехразрядный индикатор с общим катодом. Для того чтобы задать необходимую температуру, используются кнопки: SB1 – для уменьшения и SB2 – для увеличения. Если проводить настойку с одновременным нажатием кнопки SB3, то можно установить значения гистерезиса. Минимальным значением гистерезиса для этой схемы является 1 градус. Подробный чертеж можно увидеть на плане.
Терморегулятор с регулируемым гистерезисом
При создании любого из устройств важно не только правильно спаять саму схему, но и продумать, как лучше разместить оборудование. Необходимо, чтобы сама плата была защищена от влаги и пыли, иначе не избежать короткого замыкания и выхода из строя отдельных элементов. Также следует позаботиться об изоляции всех контактов.
Видео
Оцените статью:Терморегулятор своими руками — пошаговая инструкция, как собрать и подключить простой терморегулятор в домашних условиях
Контроль и регулировка температурного режима осуществляются с помощью специального устройства — терморегулятора. Такие приборы используются как на производстве, так и в быту. Они монтируются в холодильники, теплые полы, могут подключаться к приборам отопления, что позволяет создавать максимально комфортный микроклимат.
В продаже представлено множество моделей терморегуляторов, но практически все они имеют высокую стоимость. Такая покупка не всегда приемлема для бытовых моделей, поэтому многие решают собирать прибор самостоятельно.
Краткое содержимое статьи:
Принцип работы
Терморегулятор фиксирует и регулирует температуру. Прибор чаще всего используется на производстве, но в быту они монтируются в устройства, в которых сушатся овощи, в отопительные и водные системы, теплые полы и так далее. В основе работы устройства находится принцип измерения температуры.
Рекомендуем вашему вниманию — доставка полуторных и двуспальных евро семейных пледов и покрывал из флиса
Данные о физической величине передаются на блок управления. В зависимости от замера, осуществляется соответствующий сценарий.
Если это термореле, задействуется простая механическая схема управления. Она заключается в установлении определенного температурного порога, при котором и передается сигнал.
Дополнительные функциональные возможности требуют установки контроллера.
принцип работы, схема включения и выключения
Часто для работы какого-либо устройства или целой системы необходимо поддерживать определённый температурный режим. Это актуально при работе контуров отопления или охлаждения, построении устройств типа «инкубатор». Одним из простых приборов, позволяющих контролировать температуру, является термореле. Такое приспособление возможно приобрести в специализированных торговых точках, но можно изготовить такой регулятор температуры и своими руками.
Назначения и характеристики
Первый вид предполагает использование выносных или встроенных датчиков, а второй — использует свойства различных материалов изменять свои параметры при изменении характеристик электрической сети. То есть контроль происходит контактным или бесконтактным способом. Но несмотря на принципиальные различия, суть работы терморегуляторов одинаков. Регистрируя изменение температуры, устройство разрывает или подсоединяет подключённые к нему узлы аппаратуры или оборудования в автоматическом режиме.
Благодаря их применению, температура воздуха, воды, поверхностей различных приборов и радиоэлементов имеет стабильное значение.
Для каждой среды используются свои особенности размещения устройства. Его точность срабатывания зависит не только от качества исполнения самого регулятора, но и правильного размещения.
Выпускаются терморегуляторы разных видов. Классифицировать их можно по следующим признакам:
- По назначению. Разделяются на внутренние и наружные.
- Способу установки. Существуют независимые терморегуляторы, как способные располагаться на любой поверхности, так и размещаемые только внутри оборудования.
- Функциональностью. Терморегуляторы могут регистрировать только один сигнал или сразу несколько. При этом второго типа называются многоканальными. Они могут поддерживать значение температуры как на нескольких устройствах одновременно, используя независимые каналы, так и только на одном.
- Способу настройки. Управление режимами работы и настройка приспособления может быть механической, электронной или электромеханической.
- Гистерезису. В терморегуляторах под ним понимают значение температуры, при которой сигнал изменяется на противоположный знак, а также явление, когда происходит задержка переключения сигнала в зависимости от величины влияния. Именно он даёт возможность снизить частоту переключения, например, при повышении температуры в нагревателе. Но при этом следует понимать, что большая величина гистерезиса приводит к температурному скачку.
- Виду термодатчиков. Подключаемые к терморегуляторам датчики могут быть контактного и бесконтактного действия. Например, использующие в работе инфракрасное излучение или свойство биметаллической пластины.
Параметры приспособления
Как и любое оборудование, регуляторы температуры характеризуются набором параметров. От них в первую очередь зависит точность срабатывания устройства. Зависят эти характеристики не только от качества применяемых при построении схемы терморегулятора элементов, но и реализации системы, позволяющей избегать влияния посторонних факторов. К основным характеристикам относят:- Время переключения. Зависит от схемы реализации регулятора и способа установки датчика, определяющего его инерционность.
- Регулируемый диапазон. Устанавливает граничные значения температурного режима, в котором может происходить работа устройства.
- Напряжение питания. Это значение рабочего напряжения, необходимого для нормальной работы устройства.
- Активная нагрузка. Показывает, какой максимальной мощностью может управлять регулятор температуры.
- Класс защиты. Характеризует безопасность прибора. Обозначается согласно международной классификации по электрической безопасности.
- Система сигнализации. В регуляторе может использоваться светодиодный сигнализатор или жидкокристаллический экран. Ориентируясь на него, пользователь может сразу видеть, в каком режиме работает прибор контроля.
- Рабочая температура. Обозначает диапазон, в рамках которого обеспечивается правильная работа терморегулятора.
- Вид термодатчика. Являясь чувствительным элементом, он выступает в качестве индикатора температуры, отправляя данные на контроллер. Такие термодатчики на включение и выключение устройства бывают разных типов и конструкций, а также отличаются по способу передачи данных.
Кроме этого, к качественным характеристикам устройства относят: удобство использования, габариты, дополнительные возможности, общий вид.
Поэтому собирая терморегулятор своими руками, для получения законченного вида устройства желательно продумывать не только схему приспособления, но и корпус, в котором он будет располагаться.
Принцип работы
В общем виде терморегулятор можно представить в виде блок-схемы, состоящей из датчика температуры, блока обработки и регулирующего механизма. В основе работы механического теплового реле лежит способность биметаллической пластины изменять свою форму в зависимости от температуры. Для её изготовления используются два материала, жёстко скреплённые между собой с разным температурным коэффициентом расширения.
При нагреве такой пластины происходит её изгиб. Именно это свойство и используется при производстве тепловых реле. Во время деформирования пластинка замыкает или размыкает контактную группу, вследствие чего разрывается или восстанавливается электрический контакт. Такое реле может применяться в цепях как переменного, так и постоянного тока, а выбор граничной температуры в них обычно устанавливается с помощью механического регулятора.
Кроме этого, существуют твердотельные реле (электронные). В их конструкции уже нет движущихся и механических частей, а используется электронная схема, вычисляющая изменения температуры.
В качестве основных элементов таких приборов является термистор и микропроцессор. В первом происходит изменение электрических параметров при колебаниях температуры, а второй обрабатывает и в зависимости от запрограммированного алгоритма коммутирует контактные группы.
Схемотехника регуляторов
Из-за сложности настройки механического реле самостоятельное его изготовление практически невозможно, поэтому радиолюбители изготавливают твердотельные регуляторы. На сегодняшний день известно большое количество схем термореле разного класса. Так что подобрать подходящую для возможного повторения не составит сложности.
Но перед тем как приступить к самостоятельному изготовлению терморегулятора, необходимо подготовить ряд инструментов и материалов. Для этого, кроме электрической схемы и необходимых согласно ей радиоэлементов, понадобится:
- Паяльник или в случае использования сложных микроконтроллеров паяльная станция.
- Односторонний фольгированный стеклотекстолит. Если электрическая схема содержит большое количество радиоэлементов и относится к средней или высокой группе сложности, то изготовить её навесным монтажом не представляется возможным. Поэтому используется стеклотекстолит, на котором удобным методом, например, лазурно-утюжным или фотолитографией, наносится печатная схема будущего термореле.
- Мультиметр. Он необходим для настройки работы устройства и проверки правильности установки радиоэлементов.
- Мини-дрель. С помощью неё выполняют отверстия, в которые устанавливаются радиоэлементы.
- Рабочие материалы. К ним относятся: флюс, припой, спиртовой раствор, изолента или термоусадочные трубочки.
Последовательность действий при изготовлении сводится к следующему. На первом этапе выбирается схема и изучается её описание, доступность радиоэлементов. При этом не стоит забывать, что почти для каждой радиодетали существует аналог. Затем, изготавливается печатная схема, а по ней уже плата. На плату запаиваются радиоэлементы, коммутационные гнёзда и провода. Как только всё готово, производится тестовый запуск и в случае необходимости подстройка работы.
Простые устройства
Простейшее устройство, реагирующее на изменение температуры, можно собрать из нескольких сопротивлений и интегрального усилителя. Использующиеся резисторы представляют собой два полуплеча, образующие собой измерительную и опорную часть схемы. В качестве R2 используется термистор, то есть резистор, сопротивление которого меняется в зависимости от воздействующей на него температуры.
Интегральный усилитель LM393 работает в режиме компаратора, то есть сравнивает два сигнала, снимаемые с R1-R2 и R3-R4. Как только уровень сигнала на двух входах микросхемы сравняется, LM393 переключает нагрузку к питающей сети. В качестве нагрузки можно использовать вентилятор. Как только вентилятор охладит контролируемое устройство, уровень сигнала на втором и третьем входе компаратора снова начнёт различаться. Устройство снова переключит свои выходы, и питание прекратит поступать в нагрузку.
Несложную схему можно собрать и на тиристоре. В качестве её нагрузки можно использовать нагреватель, температуру которого и будет регулировать самодельный терморегулятор.
Эта схема может использоваться в инкубаторе или аквариуме.
В основе схемы также лежит способность компаратора сравнивать уровни напряжения на своих входах и в зависимости от этого открывать свои выходы. При одинаковом сигнале ток через транзистор VT1 не течёт, а значит, на управляющем выводе тиристора VS1 находится низкий уровень, и он закрыт. Появившееся напряжение на сопротивлении R8 приводит к его открытию. Запитывается схема через диод VD2 и R10. Для стабилизации питания используется стабилитрон VD1. Перечень и номиналы элементов приведены в таблице:
Обозначение | Наименование | Аналог |
---|---|---|
R1 | 10 кОм | |
R2 | 22 кОм | |
R3 | 100 кОм | |
R4 =R6 | 6,8 кОм | |
R5 | 1 кОм | |
R8 | 470 Ом | |
R9 | 5,1 кОм | |
R10 | 27 кОм | |
С1 | 0,33 мкФ | |
VT1 | КТ117 | 2N6027 |
VD1 | КС212Ж | BZX30C12 |
VD2 | КД105 | 1N4004 |
VS1 | КУ208Г | TAG307— 800 |
Термореле на микроконтроллере
Собрав такой термостат, его можно использовать совместно с отопительной системой, например, совместно с котлом. В основе конструкции используется микросхема DS1621, которая совмещает в себе термометр и термостат. Её цифровой ввод-вывод обеспечивает точность ±0,5 °C.
При использовании DS1621 в качестве термостата в её внутреннюю энергонезависимую память (EEPROM) помещаются данные о температуре, которую необходимо поддерживать. А также контрольные точки, по достижении которых температура повышается или понижается. Разница между ними образует гистерезис, при этом на третьем выводе микросхемы формируется логическая единица или ноль.
Данные в микросхему заносятся с помощью микроконтроллера, выполненного на ATTINY2313. Устройство может поддерживать температуру в диапазоне от 10 до 40 градусов. Управление термоэлементом котла осуществляется через тиристор. С помощью кнопки S1 осуществляется включение и выключение термометра. А кнопками S2 и S3 устанавливается температура. Светодиод HL1 сигнализирует о работоспособности прибора. Во время нагревания термоэлемента котла он мигает. В качестве трансформатора используется TAIWAN 110—230V 6−0−6V 150TA.
При программировании в Features необходимо выбрать: int. RC Osc. 4 MHz; Start-up time: 14 CK + 0 ms; [CKSEL=0010 SUT=00] и Brown-out detection disabled; [B0DLEVEL=111] поставить галочку на Serial program downloading (SPI) enabled; [SPIEN=0]. А также отметить фьюзы: SUT1, SPIEN, SUTO, CKSEL3, CKSEL2, CKSELO. Правильно собранное устройство работает сразу и в наладке не нуждается.
Простая и надёжная схема терморегулятора для инкубатора
ТЕРМОРЕГУЛЯТОР СВОИМИ РУКАМИ
С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.
Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.
Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.
Простая, потому что кучу транзисторов заменила одна микросхема.
Надёжная, потому что в схеме используются некоторые моменты:
- Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
- Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
- При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
- Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.
На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.
На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.
Третий элемент DD1.3 — сумматор.
Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.
Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.
Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.
Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.
Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт. Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.
Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.
Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.
Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.
Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать R3 можно по таблице ниже.
Терморезистор | R3 |
1 kОм | 2,7 кОм |
2 кОм | 4,3 кОм |
3,6 кОм | 7,5 кОм |
10 кОм | 10 кОм |
15 кОм | 15 кОм |
Следует учитывать: чем больше сопротивление терморезистора или больше сопротивление R1 — R5, тем меньше диапазон регулирования переменными резисторами.
Можно использовать терморезисторы как с отрицательным, так и с положительным ТКС. С отрицательным ТКС, как сейчас на схеме, а с положительным терморезистор следует установить в низ делителя (например, в разрыв между R3 и R4).
Схема терморегулятора построена на логической микросхеме, а между уровнями логической 0 и 1 есть неопределенное состояние (см. рис), поэтому в данной схеме есть определенный гистерезис (запаздывание между включением и отключением).
Гистерезис очень сильно зависит от типа применяемого терморезистора.
Если Вам ненужно быстрое реагирование схемы на температуру, используйте терморезистор в металлическом корпусе. Типа MMT-4. Гистерезис в данном случае 2,5 — 3 гр.
Если нужна быстрая реакция схемы на температуру, то используйте терморезисторы в неметаллическом корпусе. Гистерезис 0,1 — 0,5 гр. Лампочки включаются и отключаются в несколько раз чаще.
Таблица напряжений по постоянному току микросхемы К561ЛА7
(измеряется цифровым мультиметром в рабочей схеме)
№ вывода | Нагреватель выкл / включен |
1, 2 | 4,3 / 5,5 |
3 | 0,2 / 8,9 |
4 | 3,8 / 8,9 |
5, 6 | 4,1 / 0 |
7 | 0 |
8 | 7 / 8,9 |
9 | 0,2 / 8,9 |
10 | ~ |
12, 13 | 0 |
14 | 9 / 7,5 |
Фото собранной платы
Примечание: маркировка некоторых деталей согласно схемы изменилась.
Фото печатной платы
Благодаря использованию резистора (R13, а не конденсатора) для понижения напряжения, стабилизации и фильтрации питающего микросхему напряжения, а также других «фишек» данная схема терморегулятора используется в инкубаторе более 10 лет и не разу не подвела!
А. Зотов. Волгоградская обл.
P.S. Если Вы решили сделать вышеизложенный терморегулятор, но у вас нет платы или некоторых эл. компонентов, то Вы можете приобрести у нас НАБОР ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ ТЕРМОРЕГУЛЯТОРА ДЛЯ ИНКУБАТОРА.
Фото готовой платы, собранной из набора
Вы можете купить готовый цифровой модуль терморегулятора со встроенным цифровым термометром в нашем магазине.
Наш «Магазин Мастера«
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
- Умножитель частоты с 9МГц до 27МГц
- Самодельный металлодетектор Motion
- Симисторный регулятор мощности
Для постройки радиолюбительских ВЧ конструкций бывает необходимость умножить частоту генератора.
Ниже представлена схема утроителя частоты на трех транзисторах для диапазона 27Мгц.
Подробнее…
Motion (динамический) — это значит, что для обнаружения металлического объекта катушка должна
Подробнее…
Простой регулятор мощности для паяльника (лампы) на MAC97A
Простой регулятор мощности до 100Вт можно сделать всего из нескольких деталей. Его можно приспособить для регулирования температуры жала паяльника, яркости настольной лампы, скорости вентилятора и т.п. Регулятор на тиристоре получается по размерам сильно большой и конструктивно имеет недочеты и большую схему. Регулятор мощности на импортном малогабаритном симисторе mac97a (600В; 0,6А) можно коммутировать и более мощные нагрузки, простая схема, плавная регулировка, маленькие габариты.
Подробнее…
Популярность: 145 682 просм.
схема и пошаговая инструкция по изготовлению самодельного устройства
Многие из полезных вещей, которые помогут увеличить комфорт в нашей жизни, можно без особого труда собрать своими руками. Это же касается и термостата (его еще называют терморегулятором).Данный прибор позволяет включать или выключать нужное оборудование по охлаждению или нагреванию, осуществляя регулировку, когда происходит определенные изменения температуры там, где он установлен.
К примеру, он может в случае сильных холодов самостоятельно включить расположенный в подвале обогреватель. Поэтому стоит рассмотреть, как можно самостоятельно сделать подобное устройство.
Как работает
Схема работы терморегулятора на примере теплого пола. (Для увеличения нажмите)
Принцип функционирования термостата достаточно прост, поэтому многие радиолюбители для оттачивания своего мастерства делают самодельные аппараты.
При этом можно использовать множество различных схем, хотя наиболее популярной является микросхема-компаратор.
Данный элемент имеет несколько входов, но всего один выход. Так, на первый выход поступает так называемое «Эталонное напряжение», имеющее значение установленной температуры. На второй же поступает напряжение уже непосредственно от термодатчика.
После этого, компаратор сравнивает эти оба значения. В случае, если напряжение с термодатчика имеет определенное отклонение от «эталонного», на выход посылается сигнал, который должен будет включить реле. После этого, подается напряжение на соответствующий нагревающий или охлаждающий аппарат.
Процесс изготовления
Важно помнить, что в цепи сила тока не должна быть больше 5 мА, именно поэтому, чтобы подключить термореле, используется транзистор большой мощнос
Итак, рассмотрим процесс самостоятельного изготовления простого терморегулятора на 12 В, имеющего датчик температуры воздуха.
Все должно происходить следующим образом:
- Сначала необходимо подготовить корпус. Лучше всего в этом качестве использовать старый электрический счетчик, такой, как «Гранит-1»;
- На базе этого же счетчика более оптимально собирать и схему. Для этого, к входу компаратора (он обычно помечен «+») нужно подключить потенциометр, который дает возможность задавать температуру. К знаку «-», обозначающему инверсный вход, нужно присоединить термодатчик LM335. В этом случае, когда напряжение на «плюсе» будет больше, чем на «минусе», на выход компаратора будет отправлено значение 1 (то есть высокое). После этого регулятор отправит питание на реле, которое в свою очередь включит уже, например, котел отопления. Когда напряжение, поступающее на «минус» будет больше, чем на «плюсе», на выходе компаратора снова будет 0, после чего отключится и реле;
- Для обеспечения перепада температур, иными словами для работы терморегулятора, допустим при 22 включение, а при 25 отключение, нужно, используя терморезистор, создать между «плюсом» компаратора и его выходом, обратную связь;
- Чтобы обеспечить питание, рекомендуется делать трансформатор из катушки. Её можно взять, к примеру, из старого электросчетчика (он должен быть индуктивного типа). Дело в том, что на катушке можно сделать вторичную обмотку. Для получения желанного напряжения в 12 В, будет достаточно намотать 540 витков. При этом, чтобы они уместились, диаметр провода должен составлять не более 0.4 мм.
[advice]Совет мастера: чтобы включить нагреватель, лучше всего применять клеммник счетчика.[/advice]
Мощность нагревателя и установка терморегулятора
В зависимости от уровня выдерживаемой мощности контактами используемого реле, будет зависеть и мощность самого нагревателя.В случаях, когда значение составляет приблизительно 30 А (это тот уровень, на который рассчитаны автомобильные реле), возможно применение обогревателя мощностью 6.6 кВт (исходя из расчета 30х220).
Но прежде, желательно убедится в том, что вся проводка, а также автомат смогут выдержать нужную нагрузку.
[warning]Стоит отметить: любители самоделок могут смастерить электронный терморегулятор своими руками на основе электромагнитного реле с мощными контактами, выдерживающими ток до 30 ампер. Такое самодельное устройство может использоваться для различных бытовых нужд.[/warning]
Установку терморегулятора необходимо осуществлять практически в самой нижней части стены комнаты, так как именно там скапливается холодный воздух. Также важным моментом является отсутствие тепловых помех, которые могут воздействовать на прибор и тем самым сбивать его с толку.
К примеру, он не будет функционировать должным образом, если будет установлен на сквозняке или рядом с каким-то электроприбором, интенсивно излучающим тепло.
Настройка
Для измерения температуры лучше использовать терморезистор, у которого при изменении температуры меняется электрическое сопротивление
Нужно отметить, что указанный в нашей статье вариант терморегулятора, созданного из датчика LM335, нет необходимости настраивать.
Достаточно лишь знать точное напряжение, которое будет подаваться на «плюс» компаратора. Узнать его можно с помощью вольтметра.
Нужные в конкретных случаях значения можно высчитать используя для этого формулу, такую как: V = (273 + T) x 0.01. В этом случае Т будет обозначать нужную температуру, указываемую в Цельсии. Поэтому для температуры в 20 градусов, значение будет равняться 2,93 В.
Во всех остальных случаях напряжение будет необходимо проверять уже непосредственно опытным путем. Чтобы это сделать, используется цифровой термометр такой, как ТМ-902С. Чтобы обеспечить максимальную точность настройки, датчики обоих устройств (имеется ввиду термометра и терморегулятора) желательно закрепить друг к другу, после чего можно проводить замеры.
Смотрите видео, в котором популярно разъясняется, как сделать терморегулятор своими руками:
РадиоКот :: Терморегулятор на термопаре К-типа
РадиоКот >Схемы >Цифровые устройства >Бытовая техника >Терморегулятор на термопаре К-типа
Всем доброго времени суток!
Представляю вашему вниманию разработанную мной схему терморегулятора на термопаре К-типа.
«Мозгом» данного устройства является микроконтроллер Atmega8 (я использовал корпус TQFP32). Данные выводятся на семисегментный трехразрядный индикатор с общим катодом(цвет свечения на ваш вкус). Ток на катоды индикатора идет через транзисторы(я использовал MMBT3904, но так же подойдут КТ315 или любые другие маломощные биполярные транзисторы обратной проводимости).
Прибор питается от напряжения 5В которое обеспечивает стабилизатор напряжения 7805, нужно взять в корпусе ТО220 и рекомендуется установить на радиатор.
Диоды для диодного моста я взял 1N4007, но также можно использовать любые другие выпрямительные диоды или же готовый диодный мост. Управление осуществляется кнопками S1(Т-), S2(Т+). Сигнал с термопары усиляется операционным усилителем LM358. В устройстве реализована компенсация холодного спая термопары и калибровка 0 операционного усилителя. Термопару можно использовать от мультиметра, но лучше взять ее в защитном кожухе так как ее спокойно можно будет погружать в те вещества, которые вы будете плавить.
Резисторы любой мощности.
«Экзотические» номиналы резисторов в блоке усиления можно получить следующим образом:
- 53,6=27+27
- 3,954k=3,9k+51
- 2,74k=2,7k+39
Диод D5 обязательно должен быть прикреплен как можно ближе к месту крепления контактов термопары к плате и он должен быть 1N4148 или отечественный аналог КД522.
Управление нагрузкой осуществляется симистором. Гальваническая развязка обеспечена за счет использования оптопары. Симистор обязательно нужно установить на радиатор. Если у вас отсутствует воздушное охлаждение, он должен быть достаточно большим, при наличии принудительного охлаждения хватит даже радиатора из компьютерного блока питания.
Максимальная нагрузка которую можно подключать к устройству ограничивается только симистором, который вы поставите. Силовые провода желательно использовать потолще ввиду того, что по ним будет идти большой ток.
Светодиод LED1 индицирует идет ли нагрев.
Минимальная температура которую можно установить – 50оС; максимальная – 800оС.
Принцип работы устройства очень простой. Если текущее значение температуры нагревателя измеренное прибором меньше установленного, то на порте B2 микроконтроллера появляется логическая единица, симистор открывается и ток на ТЭН проходит. Иначе, если текущее значение температуры нагревателя измеренное прибором больше или равно установленному, то на порте B2 микроконтроллера появляется логический ноль, симистор закрывается и ток на ТЭН не проходит.
Правильно собранное устройство нуждается только в калибровке.
Корпус было решено использовать от компьютерного блока питания.
Один из сетевых проводов и выход симистора выведены сзади корпуса наружу и через мощный клемник к ним подключается ТЭН. Также на задней части корпуса выходят провода термопары. Так как провода термопары в моем случае экранированные, на экране находится минус.
Спереди для улучшения внешнего вида изготовил фальш-панель из куска ПВХ и оракала. Также здесь размещены индикатор, кнопки управления, светодиод индицирующий нагрев и выключатель устройства, который отключает только питание от платы и к силовой части отношения не имеет.
Калибровка
Включите устройство. Опустите термопару в талую воду со льдом и вращая переменный резистор P1 установите на индикаторе 0оС, или же если у вас есть градусник, можете измерить им комнатную температуру и вращая переменный резистор Р1 установите на индикаторе такую же температуру, какую показал «эталонный» градусник. Затем закипятите воду, опустите термопару туда и вращая переменный резистор Р2 установите на индикаторе 100оС. Можете произвести такую операцию несколько раз, пока прибор не покажет нужную температуру без подстройки. Можете так же поверить как он покажет температуру тела.
Использование
Сразу после включения на индикаторе появится надпись приветствия НІ(с англ. – привет).
Затем устройство покажет установленную температуру (при первом включении там будет случайное число) и терморегулятор перейдет в рабочий режим. Где будет показывать текущую температуру, также светодиод будет индицировать идет ли нагрев (светодиод светит – идет, не светит – не идет).
Для установки заданной температуры нагрева нужно зажать обе кнопки и держать до появления надписи «INS» (instalation).
Затем на индикаторе ненадолго появится значение текущей установленной температуры и вы сможете кнопками установить нужную вам температуру. Когда вы это сделали, просто отпустите кнопки и ничего не делайте. Через некоторое время (примерно 5 сек.) на индикаторе появится надпись «SAV»(save). И устройство перейдет в рабочий режим.
Что ж надеюсь, все вышесказанное было для вас полезным и это устройство у вас заработает сразу. Всего вам хорошего и удачи в работе.
Архив с нужными файлами прилагается.
Файлы:
Termoregulyator
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
Эти статьи вам тоже могут пригодиться: