Как сделать блок питания 12В своими руками
Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:
- Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
- Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
- Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.
Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.
Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.
Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.
Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.
Компоновка прибора
Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.
Корпус блока питанияКорпус блока питанияНа трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.
Низковольтная обмоткаМонтажная платаДальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.
Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.
Схема диодного мостаОстальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.
Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.
Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.
Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.
Проблемы простого блока питания с нагрузкой
Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.
Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:
- Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
- Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
- Использовать более мощные блоки питания или блоки питания с большим запасом мощности.
Блок питания со стабилизатором на микросхеме
На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812. Блок питания со стабилизатором на микросхемеЭто уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.
Блок питания повышенной мощности
Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.
Транзисторы Дарлингтона типа TIP2955Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).
На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.
Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.
Мощный импульсный блок питания на 12 В своими руками
Доброго времени суток дорогие друзья, в этой статье хочу поделиться с вами своим опытом по созданию импульсных источников питания. Речь пойдет о том как собрать своими руками импульсный источник питания на микросхеме IR2153.Микросхема IR2153 представляет собой высоковольтный драйвер затвора, на ней строят много различных схем, блоки питания, зарядные устройства и т. д. Напряжение питания варьируется от 10 до 20 вольт, рабочий ток 5 мА и рабочую температуру до 125 градусов Цельсия.
Начинающие радиолюбители побаиваются собрать свой первый импульсный блок питания, очень часто прибегают к трансформаторным блокам. Я в свое время тоже опасался, но все таки собрался и решил попробовать, тем более что деталей было достаточно для его сборки. Теперь поговорим не много о схеме. Это стандартный полумостовой источник питания с IR2153 на борту.
Детали
Диодный мост на входе 1n4007 или готовая диодная сборка рассчитанная на ток не менее 1 А и обратным напряжением 1000 В.
Резистор R1 не менее двух ватт можно и 5 Ватт 24 кОм, резистор R2 R3 R4 мощностью 0,25 Ватт.
Конденсатор электролитический по высокой стороне 400 вольт 47 мкф.
Выходной 35 вольт 470 – 1000 мкФ. Конденсаторы фильтра пленочные рассчитанные на напряжение не менее 250 В 0,1 — 0,33 мкФ. Конденсатор С5 – 1 нФ. Керамический, конденсатор С6 керамический 220 нФ, С7 пленочный 220 нФ 400 В. Транзистор VT1 VT2 N IRF840, трансформатор от старого блока питания компьютера, диодный мост на выходе полноценный из четырех ультрабыстрых диодах HER308 либо другие аналогичные.
Печатная плата изготовлена на куске фольгированного одностороннего стеклотекстолита методом ЛУТ. Для удобства подключения питания и подключения выходного напряжения на плате стоят винтовые клемники.
Схема импульсного блока питания на 12 В
Преимущество этой схемы в том, что эта схема очень популярная в своем роде и ее повторяют многие радиолюбители в качестве своего первого импульсного источника питания и КПД а разы больше не говоря уже и размерах. Схема питается от сетевого напряжения 220 вольт по входу стоит фильтр который состоит из дросселя и двух пленочных конденсаторов рассчитанных на напряжение не менее 250 – 300 Вольт емкостью от 0,1 до 0,33 мкФ их можно взять из компьютерного блока питания.
В моем случае фильтра нет, но поставить желательно. Далее напряжение поступает на диодный мост рассчитанный на обратное напряжение не менее 400 Вольт и током не менее 1 Ампера. Можно и поставить готовую диодную сборку. Дальше по схеме стоит сглаживающий конденсатор с рабочим напряжением 400 В, поскольку амплитудное значение сетевого напряжение составляет в районе 300 В. Емкость данного конденсатора подбирается следующим образом, 1 мкФ на 1 Ватт мощности, так как я не собираюсь выкачивать из этого блока большие токи, то в моем случае стоит конденсатор на 47 мкФ, хотя из такой схемы можно и выкачивать сотни ватт. Питание микросхемы берется с переменки, здесь организован источник питания резистор R1 который обеспечивает гашение тока, желательно ставить помощнее не менее двух ватт так как осуществляется его нагрев, затем напряжение выпрямляется всего одним диодом и поступает на сглаживающий конденсатор а затем на микросхему. 1 вывод микросхемы плюс питания и 4 вывод это минус питания.
Можно и собрать отдельный источник питания для нее и подать согласно полярности 15 В. В нашем случае микросхема работает на частоте 47 – 48 кГц для такой частоты организована RC цепочка состоящая из резистора R2 15 ком и пленочного или керамического конденсатора на 1 нФ. При таком раскладе деталей микросхема будет работать правильно и вырабатывать прямоугольные импульсы на своих выходах которые поступают на затворы мощных полевых ключей через резисторы R3 R4 номиналы их могут отклоняться в пределах от 10 до 40 Ом. Транзисторы необходимо ставить N канальные, в моем случае стоят IRF840 с рабочим напряжением сток исток 500 В и максимальным током стока при температуре 25 градусов 8 А и максимальной рассеиваемой мощностью 125 Ватт. Далее по схеме стоит импульсный трансформатор, после него идет полноценный выпрямитель из четырех диодов марки HER308, обычные диоды тут не подойдут так как они не смогут работать на высоких частотах, поэтому ставим ультрабыстрые диоды и после моста напряжение уже поступает на выходной конденсатор 35 Вольт 1000 мкФ, можно и 470 мкФ особо больших емкостей в импульсных блоках питания не требуется.
Вернемся к трансформатору, его можно найти на платах компьютерных блоков питания, определить тут его не сложно на фото видно самый большой вот он то нам и нужен. Чтобы перемотать такой трансформатор необходимо прослабить клей, которым склеены половинки феррита, для этого берем паяльник или паяльный фен и потихоньку прогреваем трансформатор, можно опустить в кипяток на несколько минут и аккуратно разъединяем половинки сердечника. Сматываем все базовые обмотки, наматывать будем свои. Из расчета того что мне на выходе нужно получить напряжение в районе 12-14 Вольт, первичная обмотка трансформатора содержит 47 витков проводом 0,6 мм в две жилы, делаем изоляцию между намоткой обычным скотчем, вторичная обмотка содержит 4 витка того же провода в 7 жил. ВАЖНО производить намотку в одну сторону, каждый слой изолировать скотчем, отмечая начало и конец обмоток иначе ни чего работать не будет, а если и будет тогда блок не сможет отдать всю мощность.
Проверка блока
Ну а теперь давайте протестируем наш блок питания так как мой вариант полностью исправен то я сразу подключаю в сеть без страховочной лампы.
Проверим выходное напряжение как видим оно в районе 12 – 13 В не много гуляет от перепадов напряжения в сети.
В качестве нагрузки автомобильная лампа на 12 В мощностью 50 Ватт ток соответственно протекает 4 А. Если такой блок дополнить регулировкой тока и напряжения, поставить входной электролит большей емкости, то можно смело собирать зарядное устройство для авто и лабораторный блок питания.
Перед запуском блока питания необходимо проверить весь монтаж и включаем в сеть через страховочную лампу накаливания 100 Ватт, если Лампа горит в полный накал значит ищите ошибки при монтаже сопли не смытый флюс либо не исправен какой то компонент и т д. При правильной сборке лампа должна слегка вспыхнуть и погаснуть, это нам говорит, что Конденсатор по входу зарядился и ошибок в монтаже нет. Поэтому перед установкой компонентов на плату их необходимо проверять даже если они новые. Еще один не мало важный момент после запуска напряжение на микросхеме между 1 и 4 выводом должно быть не менее 15 В. Если это не так подбирать нужно номинал резистора R2.
Смотрите видео
Как сделать мощный блок питания на 12 вольт. Блок питания для ленты светодиодов
Современная электроника часто комплектуется внешними источниками питания на 5В, 12В, 19В. После того как прибор выходит из строя, они часто валяются в кладовке или тумбочке.
- 5V — это напряжение зарядных устройств для телефонов и USB;
- 12V — используется в компьютерах, некоторых планшетах, ТВ, сетевых маршрутизаторах.
- 19V — в ноутбуках, мониторах, моноблоках.
Мы будем рассматривать, каким образом можно адаптировать любой . Будут только простые и бюджетные варианты доступные каждому. Зарядники на 5В не подходят. Но из таких зарядников я делаю ночники, на корпус приклеивается от 3 или 6 диодов. Ночью светит не ярко, в самый раз.
Источники питания на 12V
Источники питания на 12В от электроники обычно бывают от 6 до 36 Ватт. 10 Ватт хватает для подсветки рабочей поверхности . Такие блоки делятся на 2 основных вида:
- старые на трансформаторах, отличаются большим весом;
- современные импульсные, еще называют электронный трансформатор, отличаются малым весом и большой мощностью при малых габаритах.
Использовать на трансформаторах не рекомендую. При я сперва подключил трансформаторный БП от роутера, мощность которого была в 2 раза больше мощности ленты. Сам выпрямитель стал сильно греться. Поставил диодный мост выпрямителя на самодельный радиатор для охлаждения, все равно греется сильно, долго он так не протянет. Времени не было разбираться в тонкостях, поэтому спросил у специалиста. Он кое-как нашел причину, светодиоды имеют особенную вольт-амперную характеристику (сокращенно ВАХ), что приводит к сильному нагреву. Он подарил мне от телевизора на 12В и 2 Ампера, то есть мощность равна 24W. Теперь все работает без проблем и не греется.
БП на 19V
БП ноутбучного типа на 19В, 90W
Напряжение в 19В широко используется в настольной компьютерной технике, чаще всего в ноутбуках, моноблоках, мониторах, сканерах. В эту категорию можно отнести БП от принтеров, они мощные, бывает 16В, 20В, 24В, 32В.
У меня давно валяется отличный на 90W и 19V от ноутбука Asus. Такой мощности хватит, чтобы запитать светодиодную ленту на 6000 Люмен, а этого хватит, чтобы сделать диодное освещение комнаты 20 квадратов. Но БП не 12 вольт, и потребуется доработка. Внутрь корпуса мы не полезем, перепаивать схему под 12 вольт сложно, долго и надо быть электронщиком. Сделаем проще, подключим небольшой понижатель со стабилизатором. Существует два типа.
Тип №1
Стабилизатор на 7812
Стабилизатор на микросхеме типа КРЕН 7812 (), выглядит почти как транзистор, при установке на радиатор охлаждения выдерживает ток 1 Ампер. Этот вариант устаревший и громоздкий. Для использования всей мощности ноутбучного БП потребуется 5-6 таких (или 1 большая) и большой алюминиевый радиатор для охлаждения.
Тип №2
Современный импульсный стабилизатор, миниатюрен, не греется, простой как 3 рубля. В русских магазинах за него просят 600-900 р, цена сильно завышенная. У китайцев на 3 ампера стоит 50 р., 5-7А продается за 100-150 р., поэтому рекомендую заказать пару штук на Aliexpress.
Рекомендую использовать импульсный, КПД у него выше 80-90%, проще и дешевле. Только не покупайте источник тока на LM2596, вам нужен источник напряжения. Чтобы найти в китайском интерне-магазине используйте запросы:
- LM2596 power supply;
- 12v switching regulator;
- voltage regulator 12v 7a;
Характеристики импульсных стабилизаторов
Специалист на видео инструкции расскажет основные технические характеристики современных импульсных стабилизаторов, схемотехнику и рекомендации по их правильному использованию. Чтобы вы своими руками не спалили его во время экспериментов.
Простые схемы своими руками
Если вышеописанные БП вам не подходят, то блок питания для светодиодной ленты 12в можно спаять по схеме своими руками. Для самодельного потребуется много времени и немало деталей, не буду рассматривать полные схемы для подключения к сети 220B. при современном развитии электроники их проще купить у китайцев. Есть схемы для сборки своими руками еще на TL594 и других новых элементах. Но мне больше нравится описанный ниже, легко повторяется за 10 минут.
Рассмотрим оптимальный и современный на LM2596. Потребуется установить всего 4 радиоэлемента. Аналоги, схожие по функционалу, это ST1S10, L5973D, ST1S14.
Существует несколько модификаций микросхемы:
- фиксированное 12 V, LM2596-12, указано в конце маркировки;
- регулируемый вариант LM2596ADJ;
- цена в России одной 170 р.. В Китае весь собранный блок на LM2596 стоит 35р. включая доставку.
Характеристики
Видео, как доработать своими руками
Коллега подобно расскажет, как подключить и настроить стабилизатор к блоку питания от ноутбука на 19V.
Готовые модули из Китая
Вариант с регулятором на выходе от 3 до 37В
В первой схеме будем использовать LM2596ADJ с регулируемым вольтажом на выходе. Выпускаться она может в разных корпусах, но самый оптимальный как на картинке. Плюсом такой конструкции будет возможность регулировать яркость led ленты без диммера.
Схема с фиксированным 12B
Стабилизатор на микросхеме LM2596-12, отсутствует переменный резистор для регулировки, на выходе ровно 12B. Схема проще на одну детальку.
Питание и драйвер в одном модуле
Универсальный вариант, регулируется сила тока и напряжение. Можно запитать не только диодную ленту, но и светодиоды. то есть может выступать в качестве драйвера и электронного трансформатора.
На видео ролике вам покажут как пользоваться и настраивать самостоятельно универсальный вариант модуля с драйвером, регулируемой силой тока.
Где купить дешево?
Бывает, что у вас дома не оказалось БП подходящего от бытовых приборов, но точно есть у других, тоже валяется без дела. Сперва спросите у знакомых или соседей, наверняка что то есть. За пару сотен или жидкую валюту вы можете сними договорится.
Большой ассортимент вы найдете на Авито и на местных форумах. Многие избавляются от ненужного хлама и продают БП за символическую цену, потому что выбрасывать жалко, а реальную стоимость не знают. Таким образом, я часто покупаю хорошие приборы, тем более торг никто не отменял. Недавно мне удалось купить фирменный ACER от моноблока на 190W за 400 р. Он герметичен и высокого качества, так как компьютерная электроника требует очень стабильного и качественного питания в отличие от диодной ленты.
Лента со светодиодами – светотехническое приспособление, предназначенное для подсветки-декора в доме, кафе, на рекламных щитах. LED-устройство сделано из пластика, на который прикрепляют светодиоды. Напряжение блоков питания для светодиодной ленты составляет 12В или 24В. Иногда используют трансформатор, предназначенный для компьютера. БП производят со встроенной защитой-автоматом, которая спасает от перегрузки сети и короткого замыкания.
Виды блоков питания
Источник, который позволяет отрегулировать сетевое напряжение для подсветки светодиодами, подразделяют на несколько типов:
- Компактный БП. Это устройство имеет маленькие размеры, немного весит, поэтому зачастую его используют для декора в жилых помещениях. Производится в водонепроницаемом корпусе. Основным минусом компактного трансформатора является невысокая мощность.
- Блок в герметичной коробке из алюминия. Представляет собой крупногабаритное устройство с большой массой. Его мощность может составлять больше 100 Ватт. Учитывая размеры БП, его часто применяют для декора на улице (устойчив к воздействию влаги, температурных перепадов).
- Открытый проводник. Может иметь разную мощность. Этот трансформатор выигрывает низкой стоимостью. Минусы: БП открытого типа очень громоздкий, тяжелый.
Блоки питания для светодиодной ленты бывают трансформаторными и импульсными:
- Трансформаторный БП снижает напряжение до 12 В со стандартных 220 В. При помощи специального фильтра осуществляется сглаживание пульсирующего напряжения. Главным преимуществом этого трансформатора считаются его элементарная конструкция и развязка от электрической сети переменного тока. Минусы: крупный размер, не справляется с перепадами напряжения.
- Импульсный блок тоже работает на трансформаторе. Отличается тем, что функционирует на высокой частоте, характеризуется небольшими габаритами и массой. БП этого типа подключается к электросети 220 Вольт, как и трансформаторное устройство. Недостатки: очень плохо переносит работу «вхолостую», перегрузы. Плюс его схема тяжело поддается ремонту.
Как подобрать блок питания для светодиодной ленты
Если для конструкции со светодиодами выбрать неправильный трансформатор, то это может привести к повреждению светотехники и даже стать причиной пожара. Зачастую можно отыскать котроллеры, производящие стабильные показатели напряжения, которые нельзя изменить. Это не влияет на параметры яркости светодиодов, а напротив, делает проще работу проводника. Мини-трансформатор должен быть настроен на показатели выбранной светодиодной ленты – во избежание проблем с напряжением.
Очень важно приобрести или сделать самостоятельно такой проводник, который будет совпадать со всеми условиями определенной схемы и грамотно использоваться. Как выбрать блок питания для светодиодной ленты? Для грамотного выбора нужно рассчитать:
- рабочее напряжение;
- входящую и выдаваемую мощность.
Как рассчитать мощность
При расчете мощности необходимо учитывать длину светодиодного устройства. Для выбора устройства с нужными показателями нужна информация о потреблении одного метра ленты. Рассмотрим на примере, как выполнить расчет мощности блока питания. Вы выбрали источник освещения типа SMD 5050 с 30 диодами, его длина составляет 5 м. Расчет:
- Показатели мощности для одного метра ленты умножаются на длину светотехники (5х7,2 = 36).
- Получается, что 5 метров будут «съедать» 36 Ватт.
- Следует помнить о том, что мощность трансформатора нужно выбирать с запасом. В приведенном примере лучше купить БП на 40 Ватт.
Как подключить
Подключить блок просто. Если декоративная подсветка будет устанавливаться в процессе возведения здания, то лучше подвести электропроводку максимально близко к месту, где будет размещена лента. Установите там розетку. Когда такая возможность отсутствует, стоит заранее приобрести кабель необходимой длины. БП должен быть оборудован штепселем, который будет подключаться к сети (если такого нет, то его изготавливают собственноручно).
Схема монтажа
Этапы подсоединения:
- Берем кабель нужной длины. Жила сечения – минимум 1,5 мм.
- С одной стороны кабеля устанавливаются провода, которые зачищают от изоляции на 3 мм, с другой – вилка для включения в электросеть.
- Провод коричневого цвета подключается к фазе (гнездо L), синий – к нулю (гнездо N).
- Концы кабеля надо закрепить при помощи винтов.
- Подключают проводник. Если планируется подсоединение нескольких лент сразу, то у него должна быть хорошая мощность.
Как сделать блок питания 12 вольт своими руками
Любой желающий самостоятельно сделает проводник, который пригодится для работы устройства со светодиодами. Чтобы сконструировать БП на 20 звеньев понадобятся:
- Блок на 12 Вольт, способный передавать электрический ток на 1 Ампер.
- Микросхема 7812 для радиатора.
- Диодный мост с наличием конденсатора.
- Подготовленные устройства соединяют по классической схеме. Осталось только подключить самодельный проводник. Детали БП при желании помещают в корпус от стандартного маленького трансформатора.
Видео: подключение светодиодной ленты к блокам питания
Подсоединить БП может каждый желающий. Главное – точно придерживаться инструкции. Благодаря видеоролику вы поймете, как правильно запитать светотехнику, какие действия выполняют для корректной и безопасной работы освещения. На видео подробно показан процесс подключения блока для светодиодной ленты. Видеоинструкция доступно разъяснит особенности каждого этапа работ.
Если вам нужен источник постоянного питания с напряжением 12 вольт, а его нет под рукой, то его можно и купить. Если брать дешёвый блок питания, то его качество будет оставлять желать лучшего. Обычно такие недорогие БП хороши только с виду. Когда их открываешь, то оказывается, что его характеристики (указанные на корпусе) по току завышены. В реальности он не способен обеспечить в полной мере ту мощность, что заявлена производителем (как правило). Можно купить и более дорогостоящий блок питания на 12 вольт, но собрать своими руками по частям выйдет гораздо дешевле, а по качеству ничуть не хуже.
Итак, как сделать хороший и простой блок питания на 12 вольт своими руками, что для этого нам понадобится? Нужен понижающий силовой трансформатор, выпрямительный диодный мост и фильтрующий конденсатор электролит. Трансформатор будет понижать сетевое напряжение (220 В) до нужного, а именно до 10 вольт. Почему до 10, а не 12. Потому, что есть такой эффект — переменное напряжение после диодного моста (имеющего конденсатор достаточной емкости) станет процентов примерно на 18 больше, чем без конденсатора. Это стоит учитывать при сборке любого блока питания.
Трансформатор нужен той мощности, которая вам нужна. То есть, изначально вы должны знать, какой именно максимальный ток должен выдавать данный блок питания. Зная ток и выходное напряжение можно найти электрическую мощность. Нужно просто ток (к примеру 3 ампера) перемножить на напряжение выхода (в нашем случае это 12 вольт). Стоит ещё добавить небольшой запас по мощности процентов 25. В итоге получим, что нужен трансформатор мощностью около 50 Вт.
С размерами (мощностью) трансформатора определились. Исходя из этого вторичная обмотка транса должна иметь нужное сечение, чтобы обеспечить нужную силу тока. Для 3 ампер (максимальное значение) на выходе нашего самодельного блока питания сечение вторичной обмотки трансформатора должно быть около 1,3 мм. Если на магнитопроводе достаточно места, то можно намотать провод большего диаметра (это только увеличит максимальную силу тока источника питания).
Итак, наш трансформатор на выходе вторичной обмотки будет выдавать переменное напряжение величиной 10 вольт. Это напряжение имеет форму синусоиды, которая меняет свои полюса с частотой 50 герц. Нам же нужен постоянный ток, который не имел этого периодического изменения полюсов. Для этого используется выпрямительный диодный мост. Его задача сводится к тому, что он все полупериоды делает однополюсными, хотя и скачкообразными (плавно возрастающими и убывающими). Диодный мост можно купить готовым, хотя его можно спаять и самому из 4х одинаковых диодов, которые должны быть также рассчитаны на нужный выходной ток. Для нашего самодельного блока питания с 3 амперами нужно взять диоды, рассчитанные на ток в 6 А (берём с учётом запаса).
Поскольку после диодов напряжение имеет скачкообразный вид, его нужно отфильтровать. Это делается обычным электролитическим конденсатором, соответствующей емкости. Значит достаем еще и конденсатор, рассчитанный на напряжение 25 вольт, с емкостью 2200 мкф (чем больше, тем лучше фильтрация, но при этом и размеры конденсатора будут увеличиваться). Вот и всё, теперь эти элементы нужно просто спаять между собой (трансформатор, выпрямительный диодный мост и конденсатор электролит).
Блок питания 1,5в, 3,3в, 5в, 12в, 24в, самому собрать из подручных деталей мощный блок. Схемы блоков питания. Сборка простого блока питания.
Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
Блок питания 12в
Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник …
Шаг 1: Какие детали необходимы для сборки блока питания …
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок ….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты ….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие …
Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.
Блок питания 12в 30а
Схема блока питания 12в 30А.
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.
Блок питания 3 — 24в
Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.
Схема блока питания на 1,5 в
Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.
Схема регулируемого блока питания от 1,5 до 12,5 в
Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.
Схема блока питания с фиксированным выходным напряжением
Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.
Схема блока питания мощностью 20 Ватт с защитой
Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения …
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.
Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.
Самодельный блок питания на 3.3v
Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.
Трансформаторный блок питания на КТ808
У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.
При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта
Блок питания на 1000в, 2000в, 3000в
Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.
В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А ) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.
Еще по теме
Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Трансформаторный блок питания
Ремонт и доработка китайского блока питания для питания адаптера.
Доработка блока питания
Схемы блоков питания
Схемы. Самодельный блок питания на 1,5 вольта, 3 вольта, 5 вольт, 9 вольт, 12 вольт, 24 вольта. Стабилизатор 7812, 7805
Схема мощного блока питания на 12 В 50 А
Вы спросите — а зачем вообще нужен блок питания на ток 50 ампер? Хотя если ищите именно этот БП, то значит у вас есть уже какие-то планы на такую мощность. В нашем случае он нужен был для питания мощного усилителя радиостанции, а также для индукционного нагревателя.
Схема стабилизированного источника питания 50 Ампер
Основные элементы, которые использованы для его постройки:
- трансформатор 1000VA, имеющий две обмотки на 15 В проводом 2.2 мм,
- диодный мост — 4 диода 50 А из блока питания компьютера,
- конденсаторы фильтра 32 x 4700uF / 25V,
- силовые транзисторы 4x IRFP150,
- микросхема управления LM723.
Испытания готового БП на нагрузке
Результаты измерений на искусственной нагрузке вышли следующие:
НАПРЯЖЕНИЕ — ТОК
- 13,75V 25А
- 13,75V 30A
- 13,75V 35A
- 13,64V 40A
- 13,61V 45A
- 13,50V 50A
Рекомендации по изготовлению блока
Каждый уравнительный резистор (на истоках транзисторов) для таких токов представляет собой нихромовый провод длинной около 2 см. Все транзисторы сидят на общем радиаторе. Электролитические конденсаторы собраны в батарею.
Мостовой выпрямитель собран на диоде MBR4060 (оба вывода соединены между собой параллельно для увеличения предельного тока). Общий плавкий предохранитель имеет номинал 50 А.
Дополнительный небольшой трансформатор на 26 В питает микросхему стабилизатора, чтоб на неё не влияли форс-мажорные ситуации с КЗ и перегрузами.
В блоке питания есть тиристорная защита, которая замыкает выходное напряжение накоротко, защищая тем самым дорогостоящее подключенное оборудование. Индикация осуществляется стрелочным вольтамперметром, но можно и готовый цифровой индикаторный блок.
Имеет смысл поставить два мощных диода на выходе между землей и плюсом, а другие параллельно выходным транзисторам (если конечно не используются со встроенными защитными, типа IRFP460 и иже с ними). Рисунки печатной платы можете скачать тут.
САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА 12В
Всем радиолюбителям привет, в этой статье хочу представить вам блок питания с регулировкой напряжения от 0 до 12 вольт. На нем очень легко выставить нужное напряжение, даже в милливольтах. Схема не содержит никаких покупных деталей — всё это можно вытащить из старой техники, как импортной, так и советской.
Принципиальная схема БП (уменьшенная)
Корпус изготовлен из дерева, в середине прикручен трансформатор на 12 вольт, конденсатор на 1000 мкФ х 25 вольт и плата, которая регулирует напряжение.Форум по схемам простейших БП
Форум по обсуждению материала САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА 12В
|
Еще один блок питания, 12 Вольт 30 Ампер и 360 Ватт. Внутренний обзор, схема и тестирование работы блока питания 12 Вольт
На самом деле данный обзор является лишь промежуточным шагом к тестам более мощных блоков питания, которые уже в пути ко мне. Но я подумал, что данный вариант также нельзя оставлять без внимания, потому и заказал его для обзора.Буквально несколько слов об упаковке.
Обычная белая коробка, из опознавательных знаков только номер артикула, все.
При сравнении с блоком питания из предыдущего обзора выяснилось, что обозреваемый просто немного длиннее. Обусловлено это тем, что обозреваемый БП имеет активное охлаждение, потому при практически том же объеме корпуса мы имеем мощность в полтора раза больше.
Размеры корпуса составляют — 214х112х50мм.
Все контакты выведены на один клеммник. Назначение контактов выбито штамповкой на корпусе блока питания, такой вариант немного надежнее чем наклейка, но хуже заметен.
Крышка закрывается с заметным усилием и прочно фиксируется в закрытом состоянии. При открывании обеспечивается полный доступ к контактам. Иногда у БП встречается ситуация, когда крышка не открывается полностью, потому теперь я этот момент проверяю обязательно.
1. На корпусе блока питания присутствует наклейка с указанием базовых параметров, мощности, напряжения и тока.
2. Также присутствует переключатель входного напряжения 115/230 Вольт, который в наших сетях является лишним и не всегда безопасным.
3. Блок питания выпущен почти год назад.
4. Около клеммника присутствует светодиод индикации работы и подстроечный резистор для изменения выходного напряжения.
Сверху располагается вентилятор. Как я писал в предыдущем обзоре, мощность 240-300 Ватт является максимальной для блоков питания с пассивным охлаждением. Конечно есть безвентиляторные БП и на большую мощность, но встречаются они гораздо реже и стоят весьма дорого, потому введение активного охлаждения преследует цель сэкономить и сделать блок питания дешевле.
Крышка фиксируется шестью небольшими винтами, но при этом и сама по себе сидит плотно, корпус алюминиевый и также как у других БП выполняет роль радиатора.
В качестве сравнения приведу фото рядом с БП мощностью 240 Ватт. Видно что в основном они одинаковы, и по сути 360 Ватт Бп отличается от своего младшего собрата только наличием вентилятора и некоторыми небольшими коррективами связанными с большей выходной мощностью.
Например силовой трансформатор у них имеет одинаковый размер, а вот выходной дроссель у обозреваемого заметно больше.
Общая черта обоих БП — весьма свободный монтаж и если у БП с пассивным охлаждением это оправданно, то при наличии активного охлаждения размер корпуса можно было смело уменьшить.
Перед дальнейшей разборкой проверка работоспособности.
Исходно на выходе напряжение немного завышено относительно заявленных 12 Вольт, хотя по большому счету это не имеет никакого значения, меня больше интересует диапазон перестройки и он составляет 10-14.6 Вольта.
В конце выставляю 12 Вольт и перехожу к дальнейшему осмотру.
Как ни странно, но емкость входных конденсаторов совпадает с указанной на их корпусе 🙂
Емкость каждого из конденсаторов 470мкФ, суммарная около 230-235мкФ, что заметно меньше рекомендуемых 350-400 которые необходимы блоку питания мощностью 360 Ватт. По хорошему должны быть конденсаторы с емкостью хотя бы 680мкФ каждый.
Выходные конденсаторы имеют суммарную емкость в 10140мкФ, что также не очень много для заявленных 30 Ампер, но часто такую емкость имеют конденсаторы и у фирменных БП.
Транзисторы и выходные диоды прижаты к корпусу через теплораспределительную пластину, в качестве изоляции выступает только теплопроводящая резина.
Обычно в более дорогих БП применяется колпачок из более толстой резины, который полностью закрывает компонент и если для выходных диодов он особо не нужен, то вот для высоковольтных транзисторов явно не помешал бы. Собственно по этому я советую в целях безопасности заземлять корпус БП.
Теплораспределительные пластины прижаты к алюминиевому корпусу, но термопаста между ними и корпусом отсутствует.
После случая с одним из блоков питания я теперь всегда проверяю качество прижима силовых элементов. Здесь с этим проблем нет, впрочем обычно проблем со сдвоенными элементами и не бывает, чаще сложности когда мощный элемент один и прижат Г-образной скобой.
Вентилятор самый обычный, с подшипниками скольжения, но почему-то на напряжение 14 Вольт.
Размер 60мм.
Разбираем дальше.
Плата держится на трех винтах и элементах крепления силовых компонентов. Снизу корпуса присутствует защитная изолирующая пленка.
Фильтр довольно стандартен для подобных БП. Входной диодный мост имеет маркировку KBU808 и рассчитан на ток до 8 Ампер и напряжение до 800 Вольт.
Радиатор отсутствует, хотя при такой мощности уже желателен.
1. На входе установлен термистор диаметром 15мм и сопротивлением 5 Ом.
2. Параллельно сети присутствует помехоподавляющий конденсатор класса Х2.
3. Помехоподавляющие конденсаторы имеющие непосредственную связь с сетью установлены класса Y2
4. Между общим проводом выхода и корпусом БП установлен обычный высоковольтный конденсатор, но в этом месте его достаточно так как при отсутствии заземления он подключен последовательно с конденсаторами класса Y2, показанными выше.
ШИМ контроллер KA7500, аналог классической TL494. Схема более чем стандартна, производители просто штампуют одинаковые БП, которые отличаются только номиналами некоторых компонентов и характеристиками трансформатора и выходного дросселя.
Выходные транзисторы инвертора также классика недорогих БП — MJE13009.
1. Как я писал выше, входные конденсаторы имеют емкость 470мкФ и что интересно, если конденсаторы имеют изначально непонятное название, то чаще емкость указана реальная, а если подделка, например Rubicong, то чаще занижена. Вот такое вот наблюдение. 🙂
2. Магнитопровод выходного трансформатора имеет размеры 40х45х13мм, обмотка пропитана лаком, правда весьма поверхностно.
3. Рядом с трансформатором присутствует разъем для подключения вентилятора. Обычно в описании подобных БП указывают автоматическую регулировку оборотов, на самом деле ее здесь нет. Хотя вентилятор меняет обороты в небольших пределах в зависимости от выходной мощности, просто это скорее побочный эффект. При включении вентилятор работает очень тихо, а на полную мощность выходит при токе около 2.5 Ампера что составляет меньше 10% от максимальной.
4. На выходе пара диодных сборок MBR30100 по 30 Ампер 100 Вольт каждая.
1. Размеры выходного дросселя заметно больше чем у 240 Ватт версии, намотан в три провода на двух кольцах 35/20/11.
2. Как и ожидалось после предварительной проверки, выходные конденсаторы имеют емкость 3300мкФ, так как они новые, то в сумме показали не 9900, а 10140мкФ, напряжение 25 Вольт. Производитель, известный всем noname.
3. Токовые шунты для схемы защиты от КЗ и перегрузки. Обычно ставят одну такую «проволочку» на 10 Ампер тока, соответственно здесь БП 30 Ампер и три такие проволочки, но мест 7, потому предположу что есть похожий вариант но с током в 60 Ампер и меньшим напряжением.
4. А вот и небольшое отличие, компоненты отвечающие за блокировку при пониженном выходном напряжении перенесли ближе к выходу, хотя при этом сохранили даже позиционные месте согласно схеме. Т.е. R31 в схеме БП 36 Вольт соответствует R31 в схеме БП 12 Вольт, хотя находятся в разных местах на плате.
При беглом взгляде я бы оценил качество пайки на твердую четверку, все чисто, аккуратно.
Пайка довольно качественная, на плате в узких местах сделаны защитные прорезы.
Но «ложка дегтя» все таки нашлась. Некоторые элементы имеют непропай. Место особенно несущественно, важен сам факт.
В данном случае плохая пайка была обнаружена на одном из выводов предохранителя и конденсатора цепи защиты от снижения напряжения на выходе.
Исправить дело нескольких минут, но как говорится — «ложки нашлись, а осадочек остался».
Так как схему подобного БП я уже чертил, то в данном случае просто внес коррективы в уже существующую схему.
Кроме того я выделил цветом элементы, которые изменены.
1. Красным — элементы которые меняются в зависимости от изменения выходного напряжения и тока
2. Синим — изменение номиналов этих элементов при неизменной выходной мощности мне непонятно. И если с входными конденсаторами отчасти понятно, они были указаны как 680мкФ, но реально показывали 470, то зачем увеличили в полтора раза емкость С10?
В схеме есть ошибка, С10 имеет емкость 3.3мкФ, а не 330нФ.
С осмотром закончили, переходим к тестам, для этого я использовал привычный «тестовый стенд», правда дополненный Ваттметром.
1. Электронная нагрузка
2. Мультиметр
3. Осциллограф
4. Тепловизор
5. Термометр
6. Ваттметр, обзора нет.
7. Ручка и бумажка.
На холостом ходу пульсации практически отсутствуют.
Небольшое уточнение к тесту. На дисплее электронной нагрузки вы увидите значения токов заметно ниже чем я буду писать. Дело в том, что нагрузка аппаратно умеет нагружать большими токами, но программно ограничена на уровне в 16 Ампер. В связи с этим пришлось сделать «финт ушами», т.е. откалибровать нагрузку на двукратный ток, в итоге 5 Ампер на дисплее равны 10 Ампер в реальности.
При токе нагрузки 7.5 и 15 Ампер блок питания вел себя одинаково, полный размах пульсаций в обоих случаях составил около 50мВ.
При токах нагрузки 22.5 и 30 Ампер пульсации заметно выросли, но при этом были на одном уровне. Рост уровня пульсаций был при токе около 20 Ампер.
В итоге полный размах составил 80мВ.
Отмечу очень хорошую стабилизацию выходного напряжения, при изменении тока нагрузки от нуля до 100% напряжение изменилось всего на 50мВ. Причем с ростом нагрузки напряжение растет, а не падает, что может быть полезным. В процессе прогрева напряжение не изменялось, что также является плюсом.
Результаты теста я свел в одну табличку, где показана температура отдельных компонентов.
Каждый этап теста длился 20 минут, тест с полной нагрузкой проводился два раза для термопрогрева.
Крышка с вентилятором вставлялась на место, но не привинчивалась, для измерения температуры я ее снимал не отключая БП и нагрузку.
<img src=»https://img.mysku-st.ru/uploads/images/02/55/13/2017/03/06/fd8210.jpg» alt=»» rel=»lbox» />
В качестве дополнения я сделал несколько термограмм.
1. Нагрев проводов к электронной нагрузке при максимальном токе, также через щели в корпусе видно тепловое излучение от внутренних компонентов.
2. Самый большой нагрев имеют диодные сборки, думаю если бы производитель добавил радиатор как это сделано в 240 Ватт версии, то нагрев существенно снизился.
3. Кроме того большой проблемой был отвод тепла от всей этой конструкции, так как суммарная рассеиваемая мощность всей конструкции составила более 400 Ватт.
<img src=»https://img.mysku-st.ru/uploads/images/02/55/13/2017/03/06/75c9d4.jpg» alt=»» rel=»lbox» />
Кстати насчет отвода тепла. Когда я готовил тест, то больше боялся что нагрузке тяжело будет работать при такой мощности. Вообще я проводил уже тесты на такой мощности, но 360-400 Ватт это предельная мощность которую моя электронная нагрузка может рассеивать длительно. Кратковременно же она без проблем «тянет» и 500 Ватт.
Но проблема вылезла в другом месте. На радиаторах силовых элементов у меня установлены термовыключатели рассчитанные на 90 градусов. Один контакт у них припаян, а второй припаять не получилось и я применил клеммники.
При токе 15 Ампер через каждый выключатель эти контакты начинали довольно сильно нагреваться и срабатывание происходило раньше, пришлось принудительно охлаждать еще и эту конструкцию. А кроме того пришлось частично «разгрузить» нагрузку подключением к БП нескольких мощных резисторов.
Но вообще выключатели рассчитаны максимум на 10 Ампер, потому я и не ожидал от них нормальной работоспособности при токе в 1.5 раза больше их максимума. Теперь думаю как их переделать, видимо придется делать электронную защиту с управлением от этих термовыключателей.
А кроме того теперь у меня появилась еще одна задача. По просьбе некоторых читателей я заказал для обзора блоки питания мощностью 480 и 600 Ватт. Теперь думаю чем их лучше нагружать, так как такую мощность (не говоря о токах до 60 Ампер), моя нагрузка точно не выдержит.
Как и в прошлый раз я измерил КПД блока питания, этот тест я планирую проводить и в дальнейших обзорах. Проверка проходила при мощности 0/33/66 и 100%
Вход — Выход — КПД.
5.2 — 0 — 0
147,1 — 120,3 — 81,7%
289 — 241 — 83,4%
437,1 — 362 — 82,8%
Что можно сказать в итоге.
Блок питания прошел все тесты и показал довольно неплохие результаты. В плане нагрева есть даже заметный запас, но выше 100% я бы не советовал его нагружать. Порадовала весьма высокая стабильность выходного напряжения и отсутствие зависимости от температуры.
К тому что не очень понравилось я отнесу безымянные входные и выходные конденсаторы, огрехи пайки некоторых компонентов и посредственную изоляцию между высоковольтными транзисторами и радиатором.
В остальном блок питания самый обычный, работает, напряжение держит, сильно не греется.
На этом все, как обычно жду вопросов.
Как собрать собственный блок питания »maxEmbedded
Этот пост написал Вишвам, фанат электроники и потрясающий гитарист. Он является одним из основных членов roboVITics. Не забудьте поделиться своим мнением после прочтения!
Блок питания — это устройство, которое подает точное напряжение на другое устройство в соответствии с его потребностями.
Сегодня на рынке доступно множество источников питания, таких как регулируемые, нерегулируемые, регулируемые и т. Д., И решение о выборе правильного полностью зависит от того, какое устройство вы пытаетесь использовать с источником питания.Источники питания, часто называемые адаптерами питания или просто адаптерами, доступны с различным напряжением и различной токовой нагрузкой, что является не чем иным, как максимальной мощностью источника питания для подачи тока на нагрузку (нагрузка — это устройство, которое вы пытаетесь подать. мощность к).
Можно спросить себя, «Почему я делаю это сам, когда он доступен на рынке?» Что ж, ответ — даже если вы его купите, он обязательно перестанет работать через некоторое время (и поверьте мне, блоки питания перестают работать без каких-либо предварительных указаний, однажды они будут работать, на следующий день они просто перестанут работать. прекратить работу!).Итак, если вы построите его самостоятельно, вы всегда будете знать, как его отремонтировать, поскольку вы будете точно знать, какой компонент / часть схемы что делает. А дальше, зная, как построить один, вы сможете отремонтировать уже купленные, не тратя деньги на новый.
- Медные провода с допустимой токовой нагрузкой не менее 1 А для сети переменного тока
- Понижающий трансформатор
- 1N4007 Кремнеземные диоды (× 4)
- Конденсатор 1000 мкФ
- Конденсатор 10 мкФ
- Регулятор напряжения (78XX) (XX — требуемое выходное напряжение.Я объясню эту концепцию позже)
- Паяльник
- Припой
- Печатная плата общего назначения
- Гнездо адаптера (для подачи выходного напряжения на устройство с определенной розеткой)
- 2-контактный штекер
Дополнительно
- Светодиод (для индикации)
- Резистор (значение поясняется позже)
- Радиатор для регулятора напряжения (для более высоких выходов тока)
- Переключатель SPST
Трансформаторы
Трансформаторы — это устройства, которые понижают относительно более высокое входное напряжение переменного тока до более низкого выходного напряжения переменного тока.Найти входные и выходные клеммы трансформатора очень сложно. Обратитесь к следующей иллюстрации или в Интернете, чтобы понять, где что находится.
Клеммы ввода / вывода трансформатора
В основном трансформатор имеет две стороны, где заканчивается обмотка катушки внутри трансформатора. Оба конца имеют по два провода на каждом (если вы не используете трансформатор с центральным отводом для двухполупериодного выпрямления). На трансформаторе одна сторона будет иметь три клеммы, а другая — две.Один с тремя выводами — это пониженный выход трансформатора, а другой с двумя выводами — это то место, где должно быть обеспечено входное напряжение.
Регуляторы напряжения
Стабилизаторы напряжения серии 78ХХ — это регуляторы, широко используемые во всем мире. XX обозначает напряжение, которое регулятор будет регулировать как выходное, исходя из входного напряжения. Например, 7805 будет регулировать напряжение до 5 В. Точно так же 7812 будет регулировать напряжение до 12 В.Обращаясь к этим регуляторам напряжения, следует помнить, что им требуется как минимум на 2 вольта больше, чем их выходное напряжение на входе. Например, для 7805 потребуется не менее 7 В, а для 7812 — не менее 14 В в качестве входов. Это избыточное напряжение, которое необходимо подать на регуляторы напряжения, называется пониженным напряжением .
ПРИМЕЧАНИЕ: Входной вывод обозначен как «1», земля — как «2», а выходной — как «3».
Схема регулятора напряженияДиодный мост
Мостовой выпрямитель состоит из четырех обычных диодов, с помощью которых мы можем преобразовать напряжение переменного тока в напряжение постоянного тока.Это лучшая модель для преобразования переменного тока в постоянный, чем двухполупериодные и полуволновые выпрямители. Вы можете использовать любую модель, какую захотите, но я использую ее для повышения эффективности (если вы используете модель двухполупериодного выпрямителя, вам понадобится трансформатор с центральным отводом, и вы сможете использовать только половину преобразованное напряжение).
Следует отметить, что диоды теряют около 0,7 В каждый при работе в прямом смещении. Таким образом, при выпрямлении моста мы упадем 1,4 В, потому что в один момент два диода проводят ток, и каждый из них упадет на 0.7V. В случае двухполупериодного выпрямителя будет потеряно только 0,7 В.
Так как это падение влияет на нас? Что ж, это пригодится при выборе правильного понижающего напряжения для трансформатора. Видите ли, нашему регулятору напряжения нужно на 2 вольта больше, чем его выходное напряжение. Для пояснения предположим, что мы делаем адаптер на 12 В. Таким образом, для регулятора напряжения требуется как минимум 14 вольт на входе. Таким образом, выход диодов (который входит в стабилизатор напряжения) должен быть больше или равен 14 вольт.Теперь о входном напряжении диодов. В целом они упадут на 1,4 Вольт, поэтому входное напряжение на них должно быть больше или равно 14,0 + 1,4 = 15,4 Вольт. Поэтому я бы, вероятно, использовал для этого понижающий трансформатор с 220 на 18 вольт.
Таким образом, понижающее напряжение трансформатора должно быть как минимум на 3,4 В выше желаемого выходного напряжения источника питания.
Схема и изображение диода
Цепь фильтра
Мы фильтруем как вход, так и выход регулятора напряжения, чтобы получить максимально плавное напряжение постоянного тока от нашего адаптера, для которого мы используем конденсаторы.Конденсаторы — это простейшие фильтры тока, они пропускают переменный ток и блокируют постоянный ток, поэтому используются параллельно с выходом. Кроме того, если есть пульсация на входе или выходе, конденсатор выпрямляет его, разряжая накопленный в нем заряд.
Схема и изображение конденсатора
Вот принципиальная схема блока питания:
Принципиальная схемаКак это работает
Сеть переменного тока подается на трансформатор, который понижает 230 В до желаемого напряжения.Мостовой выпрямитель следует за трансформатором, преобразуя переменное напряжение в выходное напряжение постоянного тока и через фильтрующий конденсатор подает его непосредственно на вход (контакт 1) регулятора напряжения. Общий вывод (вывод 2) регулятора напряжения заземлен. Выход (вывод 3) регулятора напряжения сначала фильтруется конденсатором, а затем снимается выходной сигнал.
Сделайте схему на печатной плате общего назначения и используйте 2-контактный штекер (5A) для подключения входа трансформатора к сети переменного тока через изолированные медные провода.
Если вы хотите включить устройство, купленное на рынке, вам необходимо припаять выход блока питания к разъему адаптера. Этот переходник бывает разных форм и размеров и полностью зависит от вашего устройства. Я включил изображение наиболее распространенного типа переходного разъема.
Очень распространенный тип переходного разъема
Если вы хотите запитать самодельную схему или устройство, то вы, вероятно, пропустите выходные провода вашего источника питания напрямую в вашу схему.
Важно отметить, что вам нужно будет соблюдать полярность при использовании этого источника питания, так как большинство устройств, которые вы включаете, будут работать только с прямым смещением и не будут иметь встроенного выпрямителя для исправления неправильной полярности. .
Порты подключения переходного разъема
Практически всем устройствам потребуется заземление на наконечнике и заземление на гильзе, за исключением некоторых, например, в музыкальной индустрии, почти все устройства нуждаются в заземлении на наконечнике и заземлении на гильзе.
Вы можете добавить последовательно светодиод с токоограничивающим резистором для индикации работы источника питания. Значение сопротивления рассчитывается следующим образом:
R = (Vout - 3) / 0,02 Ом
Где, R — значение последовательного сопротивления, а Vout — выходное напряжение регулятора напряжения (а также источника питания).
Схема и изображение резистора
ПРИМЕЧАНИЕ: Значение резистора не обязательно должно быть точно таким, как рассчитано по этой формуле, оно может быть любым, близким к рассчитанному, желательно большим.
Схема и изображение светодиода
Помимо светодиода, вы также можете добавить переключатель для управления режимом включения / выключения источника питания.
Вы также можете использовать теплоотвод, который представляет собой металлический проводник тепла, прикрепленный к регулятору напряжения с помощью болта. Используется в случае, если нам нужны сильноточные выходы от блока питания и регулятор напряжения нагревается.
Радиатор
Здесь я сделал блок питания на 12 В для питания моей платы микроконтроллера.Он работает отлично и стоит где-то около 100 баксов (индийских рупий).
ПРИМЕЧАНИЕ: Для всех плат микроконтроллеров потребуется положительный полюс на наконечнике и заземление на втулке.
Это адаптер на 12 В, который я сделал
- Перед тем, как паять детали на печатную плату, спланируйте на ней расположение вашей схемы, это поможет сэкономить место и позволит меньше места для ошибок при пайке.
- Если вы новичок в схемах и пайке, я бы посоветовал вам сначала сделать эту настройку на макетной плате и проверить свои соединения, а после того, как эта схема заработает на макетной плате, перенесите эту схему на печатную плату и припаяйте.
- Будьте осторожны, , так как вы работаете напрямую с сетью переменного тока.
- Заранее проверьте, какое напряжение требуется устройству, которое вы пытаетесь подключить к источнику питания. Некоторые устройства можно сжечь всего парой дополнительных вольт.
- Стабилизаторы напряжения серии 78XX способны обеспечивать токи до 700 мА при использовании радиатора.
Вот и все. Если вам понравился этот пост, у вас есть какие-либо мнения относительно него или любые дальнейшие запросы и проекты, пожалуйста, прокомментируйте ниже.Кроме того, подпишитесь на maxEmbedded, чтобы оставаться в курсе! Ваше здоровье!
Вишвам Аггарвал
[email protected]
Нравится:
Нравится Загрузка …
СвязанныеПростой настольный блок питания, который может построить любой!
Скачать PDF YouTubeСегодня мы сконструируем очень простой настольный блок питания. Это полезное устройство, которое найдет дом на любом рабочем месте.Его также очень легко построить, что делает его идеальным проектом для начинающих.
Лучше всего, что эта конструкция не требует возиться с любым высоким напряжением. Он безопасен и прост в сборке благодаря использованию сборных модулей и избыточного блока питания ноутбука.
Одним из важнейших элементов оборудования любого рабочего места для электроники является источник питания. Источник регулируемого постоянного напряжения — это то, что нужно каждому экспериментатору.
Чаще всего в цифровой электронике используются напряжения 5 В, 3.3 вольта и 12 вольт. Есть много разных способов получения этих напряжений, в том числе обычные источники питания USB, которые вырабатывают 5 вольт.
Если вы ищете простое в сборке устройство, которое выводит все эти стандартные напряжения, мы уже создали блок питания, использующий старый компьютерный блок питания ATX. Это был хороший прибор, я даже добавил к нему амперметр, чтобы я мог измерять ток. И в большинстве случаев это все, что вам действительно нужно.
Однако бывают случаи, когда вам нужно «необычное» напряжение.Возможно, вы разрабатываете схему, которая в конечном итоге будет работать от батареек, и вам нужно имитировать 6-вольтовую, 7,4-вольтовую или 9-вольтовую батарею. Или вам может понадобиться второй блок питания.
Дизайн, который я придумал, очень легко построить, любой, у кого есть минимальные навыки электронного строительства, не должен иметь проблем с его сборкой. И вам не нужно строить точно такой же блок, который создал я, вы можете использовать принципы проектирования, показанные здесь, для создания блока питания, который будет адаптирован для любого приложения.
Приступим!
Индивидуальный источник питания
Вот посмотрите на блок питания, который я построил. И я покажу вам, как можно построить такой же. Но вам не обязательно.
Вы также можете использовать простые методы проектирования, которые я покажу вам, для создания нестандартного источника питания. С переменным выходом или без него. С другим фиксированным напряжением или без фиксированного напряжения.
Я на самом деле собираю другой блок питания с четырьмя фиксированными выходными напряжениями для моей камеры, чтобы избавиться от четырех отдельных блоков питания, которые я сейчас использую, когда снимаю свои видео.И я буду использовать ту же технику.
Создан с заботой о безопасности
Одна вещь, о которой вы должны быть очень внимательны при создании любого источника питания, — это высокое напряжение на линии (или «сети»).
Переменный ток в вашем доме составляет от 110 до 240 вольт, и он может убить вас, если вы с ним соприкоснетесь! Ошибка подключения может привести к возгоранию или стать причиной «горячего» металлического корпуса, что превратит самодельный блок питания в смертоносное оружие.
В этой конструкции нет необходимости обрабатывать сетевое напряжение. Вы будете работать только с низковольтным постоянным током. Это безопасная конструкция, даже если вы только новичок.
Мы совершим эту «магию», используя то, что у вас, вероятно, уже есть в ящике для мусора или хранится в ящике в шкафу.
И, в качестве бонуса, ваш блок питания будет иметь надлежащую сертификацию для работы с сетевым напряжением без нарушения вашего полиса страхования жилья.
Переработанные детали
«Загадочная деталь», лежащая в основе нашей конструкции блока питания, — это не что иное, как силовой «кирпичик» от старого ноутбука!
Эти «блоки» обычно выдают около 19 вольт, и большинство из них имеют приемлемую токовую нагрузку. Это особенно актуально для старых устройств, предназначенных для 15- и 17-дюймовых ноутбуков, они требовали приличного количества тока.
Я использую старый компьютер HP, который был куплен в 2008 году. Компьютер больше не работает, но его блок питания получил новую жизнь!
Детали блока питания
Наряду с «кирпичиком» блока питания, который я только что описал, эта конструкция упрощена за счет использования модулей понижающего преобразователя.
Я рассмотрел некоторые из этих модулей в статье и видео о Powering Your Projects, которые я сделал. Модули, которые я использовал, не рассматривались в этом контенте, и, поскольку есть сотни таких модулей, вам не обязательно использовать те же, что и я.
Вот детали, которые я использовал в своей простой конструкции блока питания.
Блок питания для ноутбука
Как упоминалось выше, мой блок питания пришел от ноутбука HP.Конечно, вы можете использовать другой, на самом деле, я ожидаю, что вы это сделаете.
Вот несколько особенностей, на которые следует обратить внимание при выборе блока питания:
- Напряжение — Обычное напряжение 19 вольт, что я и использовал. Другое распространенное выходное напряжение — 15 вольт, что также было бы приемлемо. Все, что ниже, ограничит диапазон выходных напряжений, которые вы получите. Обычно вам нужен адаптер, который может обеспечить как минимум на 2 вольта больше, чем максимальное желаемое выходное напряжение.
- Текущий — Чем больше, тем лучше. Мой кирпич рассчитан на 5 ампер, ищите тот, который может выдавать не менее 3 ампер. Следует отметить, что некоторые из этих устройств, особенно от компьютеров других производителей, на самом деле не могут выводить столько, сколько они заявляют. По сути, здесь чем выше, тем лучше.
- Вход — Конечно, он должен быть способен принимать ваше сетевое напряжение с подходящей вилкой. Большинство этих устройств являются «универсальными», так что обычно это не проблема.А если это один из ваших старых компьютеров, значит, у него уже есть подходящая вилка питания.
- Выходной разъем — В идеале ваше устройство будет использовать штекер, для которого вы можете найти ответное гнездо. В противном случае придется припаивать новую вилку. Если вам все же нужно его заменить, я рекомендую использовать коаксиальный «цилиндрический» штекер и гнездо питания 2,1 мм или 2,5 мм, так как они очень распространены и их легко найти.
Ноутбуки — не единственные устройства, в которых используются блоки питания, подходящие для этой конструкции, вы также можете найти некоторые старые принтеры, у которых они есть.Если у вас еще нет одного чека с друзьями и семьей, или просмотрите несколько гаражных распродаж или излишков магазинов. Скорее всего, у вас не возникнет проблем с его получением.
Модули понижающего преобразователя
Недорогие модули понижающего преобразователя — вот что делает возможным этот проект. Они снимают с себя всю тяжелую работу по созданию стабильного регулятора напряжения и намного эффективнее линейных устройств.
Я использовал пару модулей понижающего преобразователя для создания этого источника питания.
DROK 180081 Стабилизатор понижающего регулятора напряжения с числовым программным управлением
Я купил этот модуль на Amazon, и он является сердцем моего блока питания.
Это устройство рассчитано на входное напряжение 6-55 вольт и выходное напряжение 0-50 вольт. Поскольку я подаю только 19 вольт, максимальная выходная мощность составляет около 17 вольт.
Это действительно хорошее устройство с функцией памяти для хранения ряда предустановленных уровней выходного напряжения. Это очень удобная функция, если у вас есть обычные напряжения, которые вам нужно часто использовать.
Он использует поворотный энкодер для установки напряжения с шагом 0,01 В. Цветной дисплей показывает напряжение, ток и мощность, а также уровень входного напряжения.
Мне нравится этот модуль, потому что с ним очень легко работать. Он имеет пару соединений для входной мощности и еще одну пару для выходной мощности.
Вы можете заметить, что есть некоторые похожие модели, которые включают отдельную плату с вентилятором, есть также другие модели, которые могут принимать сетевое напряжение напрямую. Поскольку я пытаюсь избежать необходимости работать напрямую с сетевым напряжением, я решил не использовать их.
Я посмотрел на некоторые другие преобразователи переменного тока с дисплеями и, наконец, основал дизайн на этом, поскольку он имеет очень привлекательную переднюю панель, которая придаст вашему источнику питания профессиональный вид.
Понижающий преобразователь постоянного тока LM2596
LM2596 — очень популярная микросхема понижающего преобразователя, которая используется во многих недорогих модулях регуляторов. Модули, которые я выбрал (которые я также получил от Amazon), были чрезвычайно недорогими, я купил комплект из 10 штук, и они стоят около 1,50 доллара США за штуку
.Выбранные мной модули принимают входное напряжение от 3 до 40 вольт и производят на выходе от 1,5 до 35 вольт. Максимальный ток 3 ампера.
Устройства оснащены многооборотным потенциометром, с помощью которого можно регулировать выходное напряжение.В моем случае я установил для модуля выходное напряжение 5 вольт, поскольку я решил, что было бы неплохо иметь выход 5 вольт, а также переменный.
Эти модули очень просты в использовании. У них есть два контакта для входа постоянного тока и два контакта для выхода.
Шасси и другие детали
Блок питания и понижающие преобразователи являются основными компонентами блока питания, но для выполнения этой работы вам также понадобятся несколько других деталей.
Вот некоторые из других предметов, которые вам понадобятся:
- Шасси — Я купил проектное пластиковое шасси размером 165 мм x 120 мм x 68 мм, но, конечно, вы можете использовать любую коробку, способную вместить ваши компоненты.Вы можете даже напечатать корпус на 3D-принтере, если у вас есть возможности. Я выбрал пластик, потому что его легко резать и сверлить.
- Крепежные стойки — Вам потребуется набор крепежных стержней для каждой выходной мощности. В моем дизайне с фиксированным и переменным выходом я выбрал два черных столбика (для заземления или отрицательного вывода), а также красный и желтый.
- Разъем питания — он должен соответствовать вилке на вашем блоке питания. В некоторых блоках питания используются странные вилки, которые трудно найти, поэтому вам, возможно, придется поменять местами 2 штекера.1 или 2,5 мм джек, так как они очень распространены. Лучше всего подойдет блок, устанавливаемый на шасси.
- Стойки — Вам понадобится пара стоек, чтобы удерживать фиксированный регулятор. В понижающих преобразователях, которые я использовал, есть гнезда для винтов диаметром 3 мм, поэтому я использовал стойки на 3 мм.
- Провод — Потребуется какой-нибудь соединительный провод, лучше 22 калибра. Я обнаружил, что с одножильным проводом легче работать, но вы также можете использовать многожильный. Я бы посоветовал выбрать два разных цвета, чтобы избежать пересечения отрицательного и положительного.
Вам также понадобится припой, паяльник, отвертки, гаечные ключи, плоскогубцы и дрель с битами. То, что у вас, вероятно, уже есть.
Конструкция блока питания
Теперь, когда вы собрали все свои детали и инструменты, пора создать наш блок питания! Я предполагаю, что вы собираете тот же источник питания, что и я, но если это не так, вы можете просто изменить инструкции в соответствии со своими конкретными требованиями.
Как видно из схемы, подключение очень простое.Вы буквально отправляете напряжение со своего блока питания на входы понижающих преобразователей, а затем отправляете выходы преобразователя на клеммы.
Как я сказал с самого начала, это очень простой проект!
Перед тем, как соединить все вместе, я использовал свой существующий блок питания для тестирования отдельных модулей. Я использовал резистор на 18 Ом и 10 Вт в качестве нагрузки и подавал 19 вольт на вход каждого преобразователя. Затем я измерил выходной сигнал мультиметром.
Конечно, вы можете использовать блок питания вместо настольного источника питания, особенно если у вас его еще нет (что вполне может быть причиной того, что вы строите этот).
Я испытал угловой энкодер на понижающем преобразователе переменной и посмотрел результат на своем мультиметре. Казалось, это сработало очень хорошо.
Затем я переключился на «фиксированный» преобразователь и повернул многооборотный потенциометр так, чтобы он давал на выходе 5 вольт.
Детали все рабочие и готовы к сборке.
Строительство источника питания
Прежде чем я смог все подключить, я должен был подготовить шасси. Я просверлил отверстия на передней панели для крепежных столбов, а затем с помощью дрели и ножа вырезал отверстие для модуля переменного понижающего преобразователя.
Открытие, по общему признанию, грубое, но лицевая панель на модуле это прекрасно скрывает.
Еще я просверлил отверстие на задней панели для разъема питания. Вы также можете добавить сюда выключатель, если хотите, я решил не делать этого, так как это простой вопрос — просто «вытащить вилку», когда я хочу все выключить.
Наконец, я просверлил несколько отверстий для стоек, чтобы закрепить меньший модуль понижающего преобразователя.
Подключение всего оборудования
Я обнаружил, что отверстия на моих «фиксированных» понижающих преобразователях могут принимать два сплошных провода сечением 22 г, поэтому я скрутил провода вместе и вставил их в отверстие.Как раз подошли, и я спаял соединения.
В качестве альтернативы вы можете выбрать параллельное соединение входных соединений на разъеме для понижающего преобразователя переменной частоты, поскольку в нем используются винтовые клеммы.
Я использовал наконечники, которые поставлялись с клеммами, и припаял к ним выходные провода постоянного тока от каждого понижающего преобразователя. Модуль переменного понижающего преобразователя с дисплеем поставляется с винтовым разъемом, который отсоединяется от модуля. Это позволяет вам все подключить, а затем подключить модуль позже.
После того, как все было подключено, я прикрепил штекер к задней панели с помощью прилагаемого оборудования. Убедитесь, что не забыли стопорную шайбу, так как это предотвратит ослабление сборки.
Конструкция передней панели состоит из установки крепежных столбов, при этом вторая гайка остается в стороне для последующего прикрепления выступов.
Модуль переменного понижающего преобразователя просто встает на место, если вы правильно прорезали отверстие! К сожалению, производитель не предоставил монтажный шаблон, поэтому я использовал штангенциркуль и линейку, чтобы понять это.
Если вы получите тот же модуль, что и я, вырез по сути представляет собой прямоугольник размером 71,5 мм x 39,2 мм, или, по крайней мере, так мне сказали мои цифровые штангенциркуль.
Затем я прикрепил фиксированный понижающий преобразователь к стойкам и проверил все соединения. Пора собрать шасси!
Herse еще один вид всех частей после того, как проводка сделана, но до того, как все было смонтировано.
Вы можете увидеть, как проушины прикрепляются к задней части крепежных столбов с помощью прилагаемых дополнительных гаек.Хорошо затяните эти гайки.
Теперь вы можете защелкнуть панели на месте, сдвинув переднюю и заднюю панели вместе. Однако не закрывайте все герметично, так как мы хотим протестировать и отрегулировать наш блок питания, прежде чем закрывать корпус.
Тщательно осмотрите все и затем переходите к фазе тестирования.
Тестирование и устранение неисправностей
Предполагая, что вы были осторожны с проводкой, у вас теперь должен быть рабочий блок питания.Возможно, вы захотите точно настроить фиксированное выходное напряжение модуля.
Перед тем, как что-либо подключить к розетке, неплохо было бы выполнить несколько проверок целостности с помощью мультиметра, чтобы убедиться в отсутствии коротких замыканий или ошибок проводки. Если вы потратите немного времени на повторную проверку вещей, это избавит вас от лишних разочарований!
Получите ту же тестовую нагрузку, которую вы использовали раньше, и подключите ее к выходу 5 В вместе с мультиметром в режиме напряжения. Отрегулируйте многооборотный потенциометр на фиксированном модуле, чтобы получить как можно ближе к 5 вольт.
Переместите тестовую нагрузку и мультиметр на переменный выход. Поэкспериментируйте с элементами управления и убедитесь, что ваше выходное напряжение соответствует отображению на вашем измерителе.
Возможно, сейчас самое время просмотреть инструкцию к модулю и узнать, как использовать его функции памяти. Похоже, это довольно способное устройство.
Если вы довольны работой вашего нового блока питания, вы можете выключить его и закончить сборку корпуса. В моем пластиковом корпусе для этого нужно было положить верхнюю часть корпуса, надеть ее на переднюю и заднюю панели, а затем защелкнуть.
Четыре длинных винта удерживают монтажные ножки и используются для крепления верхней и нижней части корпуса. Затяните их, и блок питания готов.
Теперь у вас есть новый блок питания для вашего рабочего места!
Поиск и устранение неисправностей
Наиболее вероятная причина плохой работы с этой конструкцией блока питания — слабый блок питания. Если вам удастся заполучить несколько из них, вы можете обнаружить, что один работает лучше, чем другие.
Если вы не получаете выходного сигнала от одного регулятора, но у вас есть выход на другом, перепроверьте вашу проводку.Вы также можете легко удалить переменный модуль благодаря разъему uts, чтобы помочь вам изолировать проблему.
Также может быть полезен доступ к сильноточному настольному источнику питания для временного использования в качестве входа.
В большинстве случаев вам вообще не нужно устранять неполадки, и все будет работать отлично. И затем вы можете похвалить себя за создание полезного прототипа и испытательного оборудования самостоятельно.
Заключение
Итак, у вас есть простой способ быстро создать полезный источник питания, который можно легко адаптировать к вашим требованиям.
Усовершенствованиями к базовому источнику питания могут быть светодиод питания на 5-вольтовом выходе, вместе с соответствующим понижающим резистором, конечно (220 — 470 Ом звучит хорошо). И вы можете добавить переключатель питания, чтобы вы могли быстро отключить питание.
Так что получайте удовольствие, перерабатывая и переделывая старые компьютерные блоки питания в настольные блоки питания собственной уникальной конструкции!
ресурсов
PDF-версия — PDF-версия этой статьи, отлично подходит для печати и использования на рабочем месте.
СвязанныеСводка
Название статьи
Простой настольный блок питания, который может построить любой!
Описание
Создайте простой и безопасный настольный блок питания, перепрофилировав старый блок питания ноутбука вместе с некоторыми высокотехнологичными модулями понижающего преобразователя.
Автор
Мастерская Dronebot
Имя издателя
Мастерская Dronebot
Логотип издателя
Как преобразовать 110 переменного тока в 12 вольт постоянного тока
Обновлено 28 декабря 2019 г.
Ли Джонсон
Большинству электронных устройств требуется некоторая форма преобразования, чтобы безопасно использовать электричество из сетевой розетки, будь то простое сокращение напряжение, преобразование из переменного в постоянный или и то, и другое.
Хотя можно преобразовать источник электроэнергии с напряжением 110 вольт в 12 вольт с помощью базового трансформатора напряжения, если вы также переключаетесь между электричеством переменного и постоянного тока, вам потребуется нечто большее, чем просто такое базовое устройство. Вы можете сделать это самостоятельно, если у вас есть некоторый опыт работы в электронике, но гораздо эффективнее (и все еще доступно) просто купить один из множества готовых преобразователей, предназначенных для этой цели.
Цепи переменного и постоянного тока
Понимание разницы между цепями переменного и постоянного тока является важной частью понимания проблемы преобразования 110 В переменного тока в 12 В постоянного тока.Короче говоря, DC означает постоянного тока , а AC означает переменного тока , и хотя питание в ваш дом подается в форме переменного тока, большинство устройств принимают вход постоянного тока. Вот почему преобразователи переменного тока в постоянный так широко используются, и на самом деле, большая часть электроники, такая как ваш ноутбук, будет поставляться в стандартной комплектации.
Постоянный ток гораздо проще понять: ток течет в одном направлении с постоянным напряжением, управляющим им. Это тип энергии, который, например, вырабатывается батареей, который является постоянным (не считая снижения напряжения по мере разряда батареи).
Переменный ток, с другой стороны, меняет направление, и напряжение, создающее ток, колеблется между положительным и отрицательным значением в виде синусоидальной волны. Переменный ток используется для домашних и офисных источников питания, потому что его легче транспортировать на большие расстояния.
Трансформаторы напряжения
Напряжение вашего источника питания, по сути, говорит вам, какой «толчок» он должен, чтобы протекать ток. Более высокое напряжение может производить больший ток при условии, что оно подключено к той же цепи (или к чему-либо с таким же сопротивлением).Однако, если напряжение, которое вы используете в качестве источника питания, больше, чем может выдержать питаемое вами устройство, это может привести к его повреждению.
Вот почему используются трансформаторы , потому что они преобразуют напряжения из более высоких значений в более низкие или наоборот. Трансформатор состоит из двух катушек с проволокой, каждая из которых обернута вокруг железного «сердечника», одна из которых подключена к источнику питания, а другая ведет к устройству.
Электричество от первой катушки создает магнитное поле с помощью сердечника, и это магнитное поле индуцирует ток во вторичной катушке.Разница в количестве витков вокруг каждого сердечника вызывает изменение напряжения питания, подаваемого на выводимое ядро.
Поиск преобразователя 110 в 12 В
Чтобы преобразовать 110 В переменного тока в 12 В постоянного тока, вам просто нужно купить преобразователь, предназначенный для этой цели, в магазине электроники или в Интернете, у обоих из которых будет много вариантов. Лучший совет — проверить устройство, которое вы ищете, чтобы узнать входное напряжение и входной ток, и купить преобразователь, у которого выходное напряжение и ток соответствуют этим значениям.
Если вы ищете блок питания на 12 В, вы уже знаете, каким он должен быть, но не забудьте также проверить ток. Вы также должны убедиться, что преобразователь принимает соответствующее напряжение от сетевой розетки (обозначенной как вход), которое будет составлять 110 В, если вы ищете преобразователь с 110 на 12 вольт.
Наконец, проверьте полярность на устройстве, которое вы запитываете, и на самом адаптере. Полярности обычно изображаются серией из трех кружков, центральный из которых имеет внутреннюю (сплошную) сердцевину, а внешняя кривая не образует полного круга.
На внешних кругах есть положительные и отрицательные символы, и они связаны либо с центральным ядром, либо с внешней кривой на центральном символе. Если положительный знак находится справа (и соединяется с центральным сердечником), то он имеет положительную полярность, а если отрицательный знак делает это, он имеет отрицательную полярность.
Преобразователь будет работать, если вы соблюдаете полярность, напряжение и ток на адаптере и устройстве, а также убедитесь, что адаптер может принимать напряжение от вашей розетки.Подключите устройства, и все готово.
Как инверторы преобразуют электричество постоянного тока в переменный?
Криса Вудфорда. Последнее изменение: 17 августа 2020 г.
Одна из самых значительных битв 19 века велась не за землю или ресурсы, а за установление типа электричества. это приводит в действие наши здания.
В самом конце 1800-х годов американские электрические пионер Томас Эдисон (1847–1931) изо всех сил старался продемонстрировать что постоянный ток (DC) был лучшим способом подачи электроэнергии мощность, чем переменного тока (AC), система, поддерживаемая его главный соперник Никола Тесла (1856–1943).Эдисон пробовал все виды хитрые способы убедить людей в том, что кондиционер слишком опасен, от убить слона на электрическом стуле, чтобы (довольно хитро) поддержать использование AC на электрическом стуле для приведения в исполнение смертной казни. Даже так, Система Tesla победила, и мир в значительной степени работает на переменном токе власть с тех пор.
Беда только в том, что многие наши приборы предназначены для работы с переменным током, малогабаритные генераторы часто вырабатывают постоянный ток. Тот означает, что если вы хотите запустить что-то вроде гаджета с питанием от переменного тока от Автомобильный аккумулятор постоянного тока в мобильном доме, вам нужно устройство, которое преобразует DC to AC — инвертор, как его еще называют.Давай ближе посмотрите на эти гаджеты и узнайте, как они работают!
На фото: набор электрических инверторов, которые можно использовать с оборудованием для производства возобновляемой энергии, например, солнечными батареями и ветряными микровентиляторами. Фото Уоррена Гретца любезно предоставлено Министерство энергетики США / NREL (DoE / NREL).
В чем разница между электричеством постоянного и переменного тока?
Когда учителя естествознания объясняют нам основную идею электричества как поток электронов обычно говорят о прямом ток (постоянный ток).Мы узнаем, что электроны работают как линия муравьев, идущих вместе с пакетами электрической энергии в одном способ, которым муравьи несут листья. Это достаточно хорошая аналогия для что-то вроде базового фонарика, где у нас есть схема ( непрерывный электрический контур), соединяющий батарею, лампу и выключатель, и электрическая энергия систематически транспортируется от батареи к лампу, пока не разрядится вся энергия батареи.
Анимация: В чем разница между электричеством постоянного и переменного тока? Предположим, вам нужно пропылесосить комнату.Прямой ток немного похож на движение от одной стороны к другой по прямой линии; переменный ток похож на движение вперед и назад на пятно. Оба выполняют свою работу, хотя и немного по-разному!
В более крупных бытовых приборах электричество работает иначе. Источник питания, который поступает из розетки в стене, основан на переменный ток (AC), где переключается электричество примерно 50–60 раз в секунду (другими словами, частота 50–60 Гц). Может быть трудно понять, как AC обеспечивает энергия, когда она постоянно меняет свое мнение о том, куда она идет! Если электроны, выходящие из вашей розетки, получат, скажем, несколько миллиметрах вниз по кабелю, затем нужно изменить направление и вернуться опять же, как они вообще добрались до лампы на вашем столе, чтобы сделать ее загораться?
Ответ на самом деле довольно прост.Представьте себе кабели бегает между лампой и стеной, набитой электронами. Когда вы нажимаете на переключатель, все электроны заполняют кабель колебаться взад и вперед в нити лампы — и эта быстрая перетасовка преобразует электрическую энергию в тепло и заставляет лампы накаливания свечения. Электроны не обязательно должны двигаться по кругу для переноса энергии: в AC они просто «бегут на месте».
Что такое инвертор?
Фото: Типичный электрический инвертор.Это сделано Xantrex / Trace Engineering. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL (DoE / NREL).
Одно из наследий Теслы (и его делового партнера Джорджа Westinghouse, босс Westinghouse Electrical Company), что большая часть бытовой техники, которая есть в наших домах, специально разработана работать от сети переменного тока. Устройства, которым нужен постоянный ток, но они должны получать питание от розеток переменного тока требуется дополнительное оборудование, называемое выпрямителем, обычно строится из электронных компонентов, называемых диоды для преобразования переменного тока в постоянный.
Инвертор выполняет противоположную работу, и его довольно легко понять суть того, как это работает. Предположим, у вас в фонарик и выключатель замкнут, поэтому постоянный ток течет по цепи, всегда в одном направлении, как гоночная машина по трассе. Что теперь если вынуть аккумулятор и перевернуть. Предполагая, что он подходит в противном случае он почти наверняка будет питать фонарик, и вы не заметит никакой разницы в получаемом вами свете, но электрический ток на самом деле будет течь в обратном направлении.Предположим, вы у них были молниеносные руки и они были достаточно ловкими, чтобы постоянно менять направление движения. аккумулятор 50–60 раз в секунду. Тогда вы станете чем-то вроде механического инвертор, преобразующий постоянный ток батареи в переменный ток с частотой 50–60 герц.
Конечно, инверторы, которые вы покупаете в магазинах электротоваров, не работают должным образом. таким образом, хотя некоторые из них действительно механические: они используют электромагнитные Включает и выключает эти переключатели на высокой скорости для реверсирования тока направление. Подобные инверторы часто производят так называемый прямоугольный выход: ток либо течет в одну сторону, либо наоборот, или он мгновенно переключается между двумя состояниями:
Такие внезапные переключения мощности довольно жестоки для некоторых видов электрического оборудования.При нормальном питании переменного тока ток постепенно переключается с одного направления на другое по синусоидальной схеме, например:
Электронные инверторымогут использоваться для создания такого плавно изменяющегося выхода переменного тока из Вход постоянного тока. В них используются электронные компоненты, называемые индукторами и конденсаторы, чтобы выходной ток увеличивался и падал более плавно чем резкое включение / выключение прямоугольного сигнала на выходе, которое вы получаете с базовый инвертор.
Инверторытакже могут использоваться с трансформаторами для изменения определенных Входное напряжение постоянного тока в совершенно другое выходное напряжение переменного тока (выше или ниже), но выходная мощность всегда должна быть меньше чем входная мощность: из сохранения энергии следует, что инвертор и трансформатор не могут выдавать больше мощности, чем потребляют в, и некоторая энергия неизбежно будет потеряна в виде тепла по мере того, как течет электричество через различные электрические и электронные компоненты.В На практике КПД инвертора часто превышает 90 процентов, хотя основы физики говорят нам, что некоторая энергия — пусть и небольшая — всегда где-то потрачено зря!
Как работает инвертор?
Мы только что получили очень простой обзор инверторов — и теперь давайте вернемся к нему еще раз. немного подробнее.
Представьте, что вы аккумулятор постоянного тока, и кто-то хлопает вас по плечу и просит вас вместо этого производить AC. Как бы ты это сделал? Если все ток, который вы производите, течет в одном направлении, а как насчет добавления просто переключиться на выходной провод? Включение и выключение тока, очень быстро, будет давать импульсы постоянного тока — что будет при минимум половина работы.Для правильного включения переменного тока вам понадобится переключатель, который позволил вам полностью изменить направление тока и сделать это около 50-60 раз в секунду. Визуализируйте себя как человеческую батарею, меняющую контакты вперед и назад более 3000 раз в минуту. Вам понадобится аккуратная работа пальцами!
По сути, устаревший механический инвертор сводится к коммутационному блоку. подключен к электрическому трансформатору. Если вы изучили наши статья о трансформаторах, вы узнаете, что они электромагнитные устройства, которые изменяют переменный ток низкого напряжения на переменный ток высокого напряжения или наоборот, с использованием двух катушек проволоки (называемых первичной и вторичной), намотанной вокруг общего железного сердечника.В механическом инверторе либо электродвигатель или какой-либо другой механизм автоматического переключения переворачивает входящий постоянный ток вперед и назад в первичный, просто поменяв местами контакты, и это производит переменный ток во вторичной — так он не так уж сильно отличается от воображаемого инвертора, который я набросал выше. Переключающее устройство работает примерно так же, как и в электрический дверной звонок. Когда питание подключено, он намагничивает переключатель, потянув ее открыть и на короткое время выключить.Весна тянет переключите обратно в положение, включите его снова и повторите процесс — снова и снова.
Анимация: Основная концепция электромеханического инвертора. Постоянный ток подается в первичную обмотку (розовые зигзагообразные провода с левой стороны) тороидального трансформатора (коричневый пончик) через вращающуюся пластину (красный и синий) с перекрестными соединениями. Когда пластина вращается, она неоднократно переключает соединения с первичной обмоткой, поэтому трансформатор получает на вход переменный ток, а не постоянный ток.Это повышающий трансформатор с большим количеством обмоток во вторичной обмотке (желтый зигзаг, правая сторона), чем в первичной, поэтому он увеличивает небольшое входное напряжение переменного тока до большего выходного переменного тока. Скорость вращения диска определяет частоту выходного переменного тока. Большинство инверторов не работают так; это просто иллюстрирует концепцию. Установленный таким образом инвертор будет давать очень грубый выходной сигнал прямоугольной формы.
Типы инверторов
Если вы просто включаете и выключаете постоянный ток или переключаете его обратно и вперед, так что его направление продолжает меняться, то, что вы в конечном итоге, очень резкие изменения тока: все в одну сторону, все в другую направление и обратно.Нарисуйте диаграмму тока (или напряжения) против времени, и вы получите прямоугольную волну. Хотя электричество, различающееся таким образом, составляет , технически , переменный ток, это совсем не похоже на переменный ток доставляется в наши дома, что гораздо более плавно волнообразная синусоида). Вообще здоровенный бытовые приборы в наших домах, которые используют чистую энергию (например, электрические обогреватели, лампы накаливания, чайники или холодильники) не особо заботятся волны какой формы они получают: все, что им нужно, это энергия и много это — так что прямоугольные волны их действительно не беспокоят.Электронные устройства, на с другой стороны, они гораздо более привередливы и предпочитают более плавный ввод они получают от синусоидальной волны.
Это объясняет, почему инверторы бывают двух разных видов: инверторы истинной / чистой синусоидальной волны (часто сокращенно до PSW) и модифицированные / квазисинусоидальные инверторы (сокращенно MSW). В виде их название предполагает, что настоящие инверторы используют так называемые тороидальные (в форме пончика) трансформаторы и электронные схемы для преобразования постоянный ток в плавно изменяющийся переменный ток очень похожий на настоящую синусоиду, обычно подаваемую в наши дома.Их можно использовать для питания любых устройств переменного тока от источника постоянного тока. источник, включая телевизоры, компьютеры, видеоигры, радио и стереосистемы. С другой стороны, модифицированные синусоидальные инверторы используют относительно недорогая электроника (тиристоры, диоды и другие простые компоненты) на производят своего рода «закругленную» прямоугольную волну (гораздо более грубую приближение к синусоиде), и пока они подходят для доставки мощность для здоровенных электроприборов, они могут вызывать и вызывают проблемы с тонкой электроникой (или чем-либо с электронным или микропроцессорным контроллером), в общем, это означает, что они не подходят для ноутбуков, медицинского оборудования, цифровых часы и устройства умного дома.Кроме того, если задуматься, их закругленный квадрат волны в целом обеспечивают большую мощность устройства, чем чистая синусоида (площадь под квадратом больше, чем под кривой). Это делает их менее эффективными и потерянная мощность, рассеиваемая в виде тепла, означает некоторый риск перегрева инверторов MSW. С другой стороны, они, как правило, немного дешевле, чем настоящие инверторы.
Artwork: Модифицированная синусоида (MSW, зеленый) больше похожа на синусоидальную волну (синий цвет), чем на прямоугольную волну (оранжевый цвет), но все же включает в себя внезапные резкие изменения тока.Чем больше шагов в модифицированной синусоиде, тем ближе она к идеализированная форма истинной синусоиды.
Хотя многие инверторы работают как автономные блоки с аккумулятором, которые полностью Независимо от сети, другие (известные как интерактивные инверторы , или , привязанные к сети инверторы ) являются специально разработан для постоянного подключения к сети; обычно они используются для передачи электричества от чего-то как солнечная панель, обратно в сеть с правильным напряжением и частотой.Это нормально, если ваша главная цель — выработать собственную силу. Это не так полезно если вы хотите иногда быть независимым от сетки или хотите резервный источник питания на случай отключения электроэнергии, потому что если ваш подключение к сети прерывается, и вы не производите электроэнергию самостоятельно (например, сейчас ночь и ваши солнечные панели неактивны), инвертор тоже выходит из строя, и вы совершенно лишены силы — так же беспомощны, как если бы вы генерировали свою собственную силу или нет.По этой причине некоторые люди используют бимодальные инверторы или двунаправленные инверторы , которые могут работать либо в автономном, либо в привязанном к сети режиме (но не в обоих одновременно). С у них есть лишние детали, они имеют тенденцию быть более громоздкими и более дорого.
Подпись: Никола Тесла. Хотя он выиграл войну токов, его соперника Томаса Эдисона до сих пор помнят как первооткрывателя электроэнергии. Гравюра Теслы работы Саронга, 1906 год, любезно предоставлено Библиотекой Конгресса США.
Что такое инверторы?
Инверторымогут быть очень большими и здоровенными, особенно если они имеют встроенный аккумуляторные батареи, чтобы они могли работать автономно. Они тоже выделяют много тепла, поэтому они имеют большие радиаторы (металлические плавники) и часто охлаждающие вентиляторы. Как вы можете видеть на нашем верхнем фото, типичные размером с автомобильный аккумулятор или автомобильное зарядное устройство; большие единицы выглядят немного похоже на батарею автомобильных аккумуляторов в вертикальной стопке. Самые маленькие инверторы больше портативные коробки размером с автомобильный радиоприемник, которые можно подключить к прикуривателю розетка для производства переменного тока для зарядки портативных компьютеров или мобильных телефонов.
Как бытовые приборы различаются по потребляемой мощности, так и инверторы различаются. в мощности, которую они производят. Как правило, на всякий случай вы нужен инвертор, рассчитанный примерно на четверть выше максимальной мощности устройства, которым вы хотите управлять. Это учитывает тот факт, что некоторые приборы (например, холодильники и морозильники или люминесцентные лампы) потребляют пиковую мощность при первом включении. Пока инверторы могут обеспечивать пиковую мощность в течение коротких периодов времени, это важно отметить, что они на самом деле не предназначены для работы на пике мощность на длительные периоды.
Электрические системы на 12 В | ЛодкаUS
Регулировка напряжения
Регулятор напряжения определяет скорость и способ, которым генератор переменного тока или зарядное устройство переменного тока будет заряжать вашу батарею. Обычно мы думаем о регуляторах напряжения специально для генераторов переменного тока, но даже зарядные устройства переменного тока имеют внутренние компоненты, которые определяют скорость и способ заряда. В более совершенных устройствах эти внутренние компоненты можно отрегулировать на месте. Если зарядка не выполнена должным образом, ваши батареи могут выйти из строя, от полного разряда до перегрева, выделения газов и, по сути, саморазрушения.
Базовый регулятор напряжения генератора поддерживает напряжение на определенном уровне, согласовывая выходную мощность генератора с нагрузкой и уровнем заряда аккумулятора. Напряжение падает при включении нагрузки в систему питания или при разрядке аккумулятора. Затем регулятор увеличивает выходную силу тока генератора переменного тока до тех пор, пока уровень напряжения не восстановится, а затем сужает выходную мощность до уровня, который будет поддерживать это напряжение.
У вас должен быть регулятор, который является внешним и регулируемым на месте, чтобы вы могли регулировать производительность генератора, адаптируя выходную мощность генератора к типу и размеру заряжаемых аккумуляторов.«Умный» регулятор напряжения также может быть настроен на зарядку определенных типов батарей таким образом, чтобы они не только хорошо заряжались, но и продлевали срок их службы. Хороший морской регулируемый интеллектуальный регулятор напряжения должен иметь возможность заряжать на трех этапах, часто называемых «объемным, абсорбционным и плавающим». Bulk достаточно быстро вкладывает много энергии в батарею, чтобы быстро довести ее до определенного уровня. Затем регулятор переключится в режим абсорбции до того, как батарея станет слишком горячей, загазованной или поврежденной иным образом.При абсорбции зарядка происходит медленнее, чтобы обеспечить более низкий заряд в соответствии с состоянием заряда аккумулятора. Как только напряжение достигает желаемого уровня, регулятор переходит в плавающий режим, что по существу поддерживает батарею, производя настройку для использования. Некоторые регуляторы даже имеют тепловые датчики на банках (ах), чтобы они могли компенсировать этот фактор. Конечно, все это необходимо настроить под параметры вашей батареи и / или банка. Аккумуляторы разных размеров и типов (например, свинцово-кислотные, гелевые и AGM) требуют разных типов и скоростей зарядки, а также разных уровней напряжения.Обычно в этом вам поможет инструкция к регулятору напряжения.
Ваша 12-вольтовая система также может использоваться для подачи переменного тока, как у вас дома, с добавлением одобренного для морских судов инвертора, который будет преобразовывать постоянный ток (обычно получаемый из вашей аккумуляторной батареи) в переменный. Для получения дополнительной информации см. Нашу статью об инверторах.
Инверторыувеличивают нагрузку на батарею, и размер банка и зарядка генератора должны это компенсировать. Конечно, чем больше потребление переменного тока от инвертора, тем больше инвертор потребляет постоянный ток от батареи.Кроме того, поскольку инвертор преобразует более высокий ток, его эффективность будет снижаться, что снова приведет к более высокой скорости разряда батареи. Это делает еще более важным наличие надежного морского генератора переменного тока, управляемого внешним регулируемым регулятором напряжения. При наличии подходящего оборудования вы можете использовать переменный ток во время работы и поддерживать заряженные батареи. Если аккумуляторные батареи достаточно велики для вашего потребления и должным образом заряжены, у вас может быть тихое время на якоре с доступной мощностью переменного тока без постоянной работы генератора.
В настоящее время на рынке представлены зарядные устройства для аккумуляторов с питанием от переменного тока, которые могут заряжать и обслуживать не только разные банки, но и банки с различными конструкциями, например, свинцово-кислотные, гелевые и AGM. По сути, они прыгают от банка к банку, ощущая и делая то, что необходимо для этого банка. Конечно, вы должны настроить их в соответствии с вашей системой. Когда вы заряжаете свои аккумуляторы при наличии переменного тока (от док-станции или от бортового морского генератора) через зарядное устройство, оно должно быть рассчитано на использование на море, а также иметь «интеллектуальную» зарядку с аналогичными настройками заряда и характеристиками заряда, описанными выше в отношении регулятор напряжения генератора.
С несколькими банками батарей многие люди предпочитают иметь устройство, которое автоматически переключает выход заряда на разные банки, чтобы ни один банк не перезаряжался. Однако многие предпочитают контролировать состояние банка вручную и использовать переключатель выбора батареи, чтобы направить зарядный ток в соответствующий банк. Отказ автоматических устройств, часто спрятанных в моторном отсеке, может привести к неправильной зарядке, ведущей к разрядке или перезарядке, которая «сожжет» аккумулятор, разрушит его и может вызвать взрыв или выброс большого количества агрессивного взрывоопасного газа.
Высокопроизводительный портативный настольный источник питания постоянного тока: сэкономьте деньги и освободите место на скамейке, построив свой собственный
Настольный источник питания, паяльник и портативный мультиметр, необходимый элемент любой электроники набор инструментов лаборатории. Некоторым проектам требуется только один постоянный напряжение питания, но чаще правильно тестировать и отладка проекта требует различных напряжений и токи. Значительное время на отладку можно сэкономить за счет с помощью высокоэффективного регулируемого настольного питания для по желанию набирайте напряжение и ток.К сожалению, типичный универсальные настольные регулируемые блоки питания громоздки и дорогие — по крайней мере, более эффективные версии — и имеют ряд ограничений. Нет действительно портативных (портативный) из-за необходимых структур отвода тепла. Более того, даже дорогостоящие расходные материалы не поддерживают нулевое ток или напряжение, и не может соответствовать переходным и короткая производительность, демонстрируемая представленной здесь поставкой.
Демонстрационная схема DC2132A компанииLinear Technology — это высокопроизводительный, компактный и эффективный настольный источник постоянного тока
Сэкономьте деньги и освободите место на столе, создав собственный высококачественный настольный блок питания.Ключевым компонентом этого источника питания является линейный регулятор LT3081, окруженный коротким списком простых в использовании компонентов (см. Рисунок 1). Уникальный источник опорного тока LT3081 и выходной усилитель с повторителем напряжения позволяют подключать два линейных регулятора параллельно для регулирования выходного тока и напряжения до 3 А и более 24 В. Линейные регуляторы на выходе подавляют пульсации на выходе, не требуя больших выходных конденсаторов, что приводит к действительно плоскому выходу постоянного тока и небольшим размерам.
Рис. 1. Структурная схема стендового источника постоянного тока в смешанном режиме. Центральными компонентами являются параллельные LT3081, которые обеспечивают низкий уровень пульсаций на выходе и устанавливают ограничения по напряжению и току.
В показанном здесь источнике питания параллельным LT3081 предшествует высокопроизводительный синхронный понижающий преобразователь, в данном случае 40 В, 6 А LT8612. Не требуется ни радиатора, ни вентилятора, в отличие от линейных настольных источников питания с силовыми транзисторами, которым требуются радиаторы и принудительный воздушный поток (вентиляторы) для достаточного рассеивания тепла.
LT8612 эффективно понижает от 10 В до 40 В при высоком или низком токе до динамически адаптируемого выходного напряжения, которое остается чуть выше выходного напряжения настольного источника питания (выход линейного регулятора LT3081). Выходной сигнал LT8612 имеет низкий уровень пульсаций, а преобразование эффективно во всем диапазоне настольных источников питания. Потери мощности в устройствах LT3081 сводятся к минимуму за счет того, что их входной сигнал остается чуть выше пропадания. Этот настольный комплект включает необычную возможность регулировки предельного напряжения и тока до нуля.Полная схема этого настольного источника постоянного тока в смешанном режиме показана на рисунке 2.
Рис. 2. Полный комплект настольного источника питания постоянного тока 0–24 В, 0–3 А.
Линейные регуляторы обычно используются на выходе понижающих преобразователей для подавления пульсаций импульсного источника питания с минимальным снижением эффективности. Параллельные линейные стабилизаторы LT3081, показанные на рисунках 1 и 2, снижают пульсации на выходе LT8612 и точно регулируют постоянное напряжение и постоянный ток на выходе источника питания. LT3081 обладает уникальной способностью (для линейных регуляторов) легко подключаться параллельно для более высоких выходных токов.
На рисунках 1 и 2 показано, как два параллельных LT3081 удваивают поддерживаемый ток одного LT3081 (1,5 А) до 3 А. Несколько параллельных соединений и два небольших балластных резистора 10 мОм — все, что необходимо для точного распределения тока между ними без потери точности выходного напряжения. Доступные высококачественные потенциометры 10 кОм и 5 кОм обеспечивают управление в диапазоне от 0 В до 24 В и от 0 В до 3 А при подключении к контактам SET и ILIM. Потенциометры с большим количеством оборотов и большей точностью, безусловно, могут быть использованы для создания настольного питания.
Минимальный предел тока настольного источника питания 0А. LT3081 гарантирует выходной ток 0 А, пока сопротивление резистора ILIM меньше 200 Ом. Небольшой резистор 100 Ом включен последовательно с потенциометром ILIMIT, чтобы максимально увеличить диапазон поворота и по-прежнему гарантировать нулевой ток, когда два регулятора используются параллельно.
Минимальное выходное напряжение стендового блока питания 0В. LT3081 гарантирует выход 0 В до тех пор, пока на выходе подается 4 мА. Лучший способ сделать это — использовать отрицательный источник питания для получения 8 мА для двух LT3081.Стабилизатор LTC3632 –5V легко создает эту отрицательную нагрузку, рассеивает мало энергии и занимает лишь крохотное пространство на плате.
После точного набора целевого напряжения вы не хотите видеть дрейф напряжения питания на стенде при добавлении, увеличении или уменьшении нагрузки. В идеале он должен поддерживать плоский профиль регулирования во всем диапазоне токов нагрузки вплоть до предельного тока (рисунки 3 и 4).
Рис. 3. График V-I для стендового источника постоянного тока показывает регулирование нагрузки <50 мВ от 0 до 3 А, падение с обрыва выше 3.1А.
Рис. 4. Регулируемый предел тока смещает границу, показанную на рис. 3, до любого значения от 3,1 А до 0,0 А.
Показанный здесь источник питания удовлетворяет этому требованию. Выходной ток LT3081 практически не меняется от 0 до 1,5 А. Минимальный нагрев ИС помогает поддерживать регулировку нагрузки стендового источника питания ниже 50 мВ для любого выходного напряжения, как показано на Рисунке 3, даже при 15 мВ из-за балластных резисторов 10 мОм. Падение 1,7 В на линейных регуляторах при токе 1,5 А вызывает повышение температуры всего на 30 ° C с корпусом DD, как показано на Рисунке 5.
Рис. 5. Термосканы настольного источника питания в условиях высокой мощности и короткого замыкания показывают, что компоненты стендового источника постоянного тока остаются холодными без использования радиатора или вентилятора.
Установка ручки ограничения тока должна быть такой же детерминистической, как и ручка напряжения. Если ограничение тока установлено на 3,0 А, стендовый источник питания должен ввести ограничение тока ровно на 3,0 А и никогда не обеспечивать более высокий ток. Высокопроизводительный стендовый источник питания должен демонстрировать кривую регулирования напряжения по отношению к току, которая остается плоской, пока не упадет со скалы до 0 В при достижении предела тока.На рис. 4 показано, что стендовый источник питания работает должным образом, независимо от того, где установлен предел тока.
Портативный настольный источник питания постоянного тока может выдавать ток 0–3 А при любом напряжении от 0 до 24 В при входном напряжении от 10 до 40 В, а входное напряжение как минимум на 5 В выше желаемого выходного напряжения. Вход может поступать от входного преобразователя переменного / постоянного тока, доступного при напряжениях 19 В, 28 В и 36 В. Это также может быть простой трансформатор на 24 В переменного тока, выпрямительный мост и конденсатор 10 мФ, который дает примерно 34 В с пульсацией 1–2 В.
Понижающий импульсный преобразователь LT8612 блока питания понижает входное напряжение переменного / постоянного тока (от 10 до 40 В) до любого напряжения в диапазоне от 0 В до чуть ниже его входного напряжения. Низкая пульсация на выходе преобразователя на основе LT8612 дополнительно снижается на 1,7 В на параллельном линейном стабилизаторе LT3081 до конечного стабилизированного напряжения, при этом пульсации на выходе почти не возникает.
Высокая эффективность сохраняет прохладу
Синхронный понижающий преобразователь LT8612 легко поддерживает 3А и эффективно понижает выходной ток до 1.7 В от входов до 40 В, даже при относительно высокой частоте переключения, 700 кГц, из-за низкого минимального времени включения 40 нс. КПД показан на рисунке 6. Высокий КПД при высокой частоте переключения позволяет реализовать преобразователь с несколькими небольшими компонентами, которые остаются холодными при высокой мощности.
Рисунок 6. КПД и потери мощности стендового источника постоянного тока для различных входных и выходных условий.
Дифференциальная обратная связь
LT8612 использует схему дифференциальной обратной связи, показанную на рисунках 1 и 2, для регулирования своего выхода (входа в пару LT3081) на 1.На 7 В выше выхода настольного источника питания (выход пары LT3081). LT3081 работает лучше всего, когда его входное напряжение как минимум на 1,5 В выше его выхода, при этом 1,7 В используется здесь в качестве запаса для переходных процессов.
Дифференциальная обратная связь продолжает работать во время переходных процессов на выходе и коротких замыканий, как показано на рисунках 7 и 8. Когда выход закорочен на GND, выход LT8612 следует за ним на GND. Когда выходной сигнал внезапно увеличивается при срабатывании короткого замыкания или изменении потенциометра, LT8612 следует за возрастающим выходным сигналом LT3081, стремясь остаться равным 1.7 В выше быстро меняющегося выхода. Выходного конденсатора разумного размера 100 мкФ достаточно, чтобы обеспечить стабильность LT8612 в широком диапазоне условий, сохраняя при этом относительно быструю переходную характеристику, хотя он никогда не будет двигаться так быстро, как линейные регуляторы.
Рис. 7. Переходная характеристика на выходе 5 В, от 1 А до 3 А показывает (а) низкие пульсации на выходе и (б) выходной сигнал LT8612 отслеживает переходный процесс LT3081 V OUT .
Рис. 8. Выход 5 В (а) переходный процесс при перегрузке и (б) переходный процесс при коротком замыкании хорошо переносятся стендовым источником постоянного тока.
Эта установка может быть расширена для поддержки выходного тока 4,5 А с помощью трех параллельных линейных регуляторов LT3081. Импульсный стабилизатор не требует изменений, поскольку LT8612 поддерживает пиковый ток переключения 6 А.
Выходное напряжение настольного источника питания легко регулируется вручную с помощью потенциометра, подключенного к контактам SET пары LT3081. Кажется достаточно простым, что SET выводит на каждый источник 50 мкА и что их суммарный ток, умноженный на регулируемый резистор, может генерировать правильное выходное напряжение без дополнительных компонентов.Тем не менее, этого тока может быть недостаточно для надежного настольного источника питания, поскольку он может немного дрейфовать в зависимости от температуры LT3081.
Одним из способов борьбы с дрейфом тока является использование источника более высокого тока для управления потенциометром вывода SET. LT3092 — это точный источник тока, который работает до 40 В и используется для управления точным током 2,4 мА для выхода 24 В с резистором 10 кОм. Его выходной ток легко отрегулировать, изменив установленное значение резистора, когда требуется другое максимальное выходное напряжение.Максимальное выходное напряжение должно составлять 5,5 В при использовании источника 12 В, 15 В при использовании источника 24 В и 24 В при использовании источника 36 В. Входной переключатель используется в схеме для отключения питания LT3092, когда переключатель питания выключен. Отсоединение этой ИС от V IN , когда переключатель выключен, предотвращает ее постоянный ток от зарядки ненагруженного выхода настольного источника питания, спасая инженеров от потенциально опасных обстоятельств.
Функции выводов LT3081 SET и ILIM позволяют легко программировать выходное напряжение и ток на любом уровне с помощью простого поворота потенциометра.Параллельные LT3081 имеют одинаковое соединение контактов SET и напряжение, а также те же контакты ILIM + и ILIM — . Потенциометры 10 кОм и 5 кОм выбраны для получения диапазонов выходного сигнала от 0 В до 24 В и от 0 А до 3 А (или немного выше для небольшого запаса мощности). Потенциометры легко получить, и их можно выбрать из ряда параметров производительности и стоимости.
Стендовая поставка, показанная на фотографии на странице 12, включает однооборотные потенциометры с легко поворачиваемыми валами и прямоугольными соединениями печатной платы.Их можно установить на боковом отверстии коробки, если вы решите заключить печатную плату в защитный чехол. Металлокерамический элемент предотвращает временной и температурный дрейф с рейтингом 150 ppm / ºC по сравнению с номиналом 1000 ppm / ºC аналогичных версий пластиковых элементов. Менее дорогие пластмассовые потенциометры по-прежнему отлично подходят для использования со стандартными настольными приборами, или десятиоборотные прецизионные потенциометры могут использоваться для очень точной подстройки как пределов напряжения, так и тока.
Если дрейф V OUT из-за температурного коэффициента I SET не является проблемой, источник тока LT3092 можно удалить, а потенциометр 10k можно заменить потенциометром 250k с аналогичным качеством.
Несмотря на то, что установить потенциометр SET на 0 В с помощью короткого замыкания на GND тривиально, LT3081 должен вытащить 4 мА, чтобы он опустился до 0 В. Резистивная предварительная нагрузка от V OUT к GND вытягивает ток только тогда, когда V OUT не равно нулю, поэтому вместо этого используется отрицательное питание для поглощения тока с выхода 0 В. Отрицательный стабилизатор LTC3632 представляет собой небольшой источник −5 В, который потребляет −8 мА через небольшой резистор через −5 В и V BE под землей (−0,6 В). Хотя LTC3632 выключается при выключении переключателя питания, он продолжает работать при включенном питании, даже если выходное напряжение выше 0 В.Следует проявлять осторожность при выборе транзистора с отрицательным током, поскольку -8 мА • Падение 24,6 В может быть значительным источником тепла, если тепловое сопротивление транзистора превышает 250 ° C / Вт или отрицательный ток увеличивается до более -10 мА.
LT3081 также обеспечивает контроль ограничения тока 0А независимо от настройки выходного напряжения. С ручкой тока, повернутой до упора вверх, настольный источник питания обеспечивает резкое ограничение тока примерно на уровне 3,1 А. Если нагрузка увеличивается выше этой точки, напряжение падает с обрыва.Простой поворот ручки перемещает этот резкий скачок ограничения тока вниз до любого другого значения вплоть до 0 А, как показано на Рисунке 4.
Самым экстремальным состоянием перегрузки является короткое замыкание, которое не только толкает выход через обрыв, но и полностью опускает его на землю. Настольный источник питания изящно поддерживает свой предел тока при коротком замыкании и регулирует выход LT8612 до 1,7 В, обеспечивая источник ограниченного тока через LT3081 и в короткое замыкание.
Результаты переходного короткого замыкания показаны на рисунке 8, демонстрируя регулирование короткого замыкания ИС и короткоживущего выброса разряда выходного конденсатора.Всплеск короткого замыкания <10 мкс составляет 1/500 длительности обычно используемого лабораторного настольного источника питания в смешанном режиме высокой мощности (с аналогичными настройками), как показано на рисунке 9. Длительный всплеск разряда, показанный на рисунке 9, может потенциально повредить испытанию. недостатком дорогих, широко используемых универсальных настольных источников питания из-за низкой скорости транзистора мощности и / или более высокой выходной емкости.
Рис. 9. Результаты переходных процессов для дорогостоящего настольного источника питания Xh200-10 в смешанном режиме, который демонстрирует медленные переходные процессы и отклик на короткое замыкание по сравнению с настольным источником постоянного тока, описанным в этой статье, с аналогичными настройками (Рис. 8).
Подключите к выходу мультиметр или простой аналоговый дисплей для получения точных показаний напряжения. Добавьте еще один мультиметр или дисплей последовательно с выходом для точного считывания тока. Если вы хотите избежать добавления дополнительного измерительного оборудования последовательно с выходом, клемму IMON можно также использовать для преобразования напряжения в ток.
Блок питания лабораторного стола Sorenson XHR100-10 при коротком замыкании с ограничением 1,5 А
Рис. 10. Настольный источник питания постоянного тока имеет низкие пульсации на выходе для смешанного источника питания с малыми 60 мкФ C OUT .
Этот источник питания постоянного тока представляет собой удобный инструмент для генерации постоянного напряжения или тока на лету в лаборатории. Просто включите питание 10–40 В постоянного тока, включите переключатель и поверните ручки. Поскольку они небольшие и недорогие, некоторые из этих портативных настольных источников питания могут питаться от одного и того же источника постоянного тока, когда требуются несколько выходов и токов цепи.
Просто создать полностью автономный стендовый источник питания, добавив простой преобразователь переменного тока в постоянный на входе.На рисунке 11 показан простой трансформатор от 120 до 24 В переменного тока (5: 1), выпрямительный мост и выходной конденсатор 10 мФ, которые в совокупности дают 34 В постоянного тока с небольшой пульсацией. Этот простой преобразователь переменного тока в постоянный можно использовать для получения максимального выходного напряжения настольного источника питания 22 В.
Рис. 11. Простая комбинация трансформатора C (RMS) 24 ВА, выпрямительного моста и конденсатора обеспечивает входной интерфейс 34 В переменного / постоянного тока для полного решения.
Выпрямительный мост должен иметь диоды Шоттки с номиналом 3 А или выше.Если они перегреваются, вы все равно можете избежать добавления радиатора, заменив Schottkys на контроллер идеального диодного моста LT4320 и четыре полевых МОП-транзистора для уменьшения нагрева моста. Размер выходного конденсатора 10 мФ можно изменить, чтобы отрегулировать выходную пульсацию. При полной мощности конденсатор 10 мФ будет создавать пульсации около ± 1 В на входе 34 В постоянного тока.
Вы также можете собрать универсальный настольный источник питания, подключив любой универсальный преобразователь переменного тока в постоянный черный ящик с номиналом 12 В – 36 В, 3 А. Любой преобразователь переменного тока в постоянный, снятый со старого ноутбука или купленный в магазине электроники, должен работать.Единственным ограничением является то, что максимальное выходное напряжение настольного источника питания должно оставаться примерно на 5 В ниже минимального номинального значения источника входного напряжения.
Создайте свой собственный высокопроизводительный стендовый источник постоянного тока для регулирования постоянного напряжения и тока 0–24 В и 0–3 А, используя пару параллельных линейных регуляторов LT3081, синхронный понижающий LT8612, источник тока LT3092 и крошечный отрицательный источник питания LTC3632. Настольный источник питания отличается низкой пульсацией на выходе с низкой выходной емкостью, отличной переходной характеристикой, регулируется до 0 В и 0 А, остается в режиме регулирования во время короткого замыкания и остается холодным без громоздких радиаторов.Его можно легко подключить к преобразователю переменного тока в постоянный или запитать от источника постоянного тока. Готовое решение для поставки стенда отличается низкой стоимостью, небольшими размерами и простотой сборки, несмотря на его высочайшие эксплуатационные характеристики.
Можно ли использовать светодиодную ленту 12 В при напряжении менее 12 В?
Когда вы ищете светодиодные ленты, вы, скорее всего, встретите в качестве спецификации постоянный ток 12 В или 24 В постоянного тока. Как вы могли догадаться, это необходимое входное напряжение для работы светодиодной ленты.Но что значит «требуется»? Совершенно интуитивно понятно, что обеспечение более 12 В постоянного тока на светодиодной ленте 12 В — не лучшая идея, потому что вы можете вызвать перегрузку светодиодной ленты, выгорание диодов или чрезмерное нагревание, которое может повредить как схему, так и компоненты платы. Но что, если мы подадим 11 В или даже 9 В? Это «разрешено»? Это плохо для светодиода?
Короткий ответ — нет, совсем нет — использование уровня напряжения ниже указанного в спецификации вполне приемлемо и безопасно.Мы также провели несколько тестов, чтобы предоставить вам некоторые реальные данные, чтобы вы знали, чего ожидать, если вы решите использовать недостаточную мощность светодиодных лент.
Прежде чем мы перейдем к нашей тестовой настройке и результатам, вам может быть интересно, в каких ситуациях светодиодная полоса может быть недогружена или применимо ли недостаточное движение светодиода к вашей конкретной настройке. Светодиодные ленты
разработаны на уровне схемы для сопряжения с определенным напряжением. Например, мы предлагаем блоки питания 12 В и 24 В постоянного тока в комплекте с нашими светодиодными лентами 12 В и 24 В постоянного тока, и в большинстве случаев напряжение будет точно совпадать.
Практически все характеристики, такие как потребляемая мощность на фут и люмен на фут, предполагают, что подаваемое напряжение точно соответствует номинальному уровню (т.е. 12 В постоянного тока или 24 В постоянного тока).
При этом совершенно безопасно и допустимо недогружать светодиодную ленту, подавая напряжение ниже номинального. Но большинство продуктов для светодиодных лент не публикуют никакой информации о том, как и в какой степени пониженное напряжение влияет на характеристики светодиодных лент, и именно поэтому мы решили провести наши испытания.Результаты наших тестов показывают некоторые приблизительные оценки, которые можно использовать.
Существует три основных ситуации, в которых напряжение источника питания может быть ниже, чем указано в спецификации напряжения светодиодной ленты. Первый — это намеренный выбор использования более низкого напряжения для достижения более низкой светоотдачи, чем номинальная светоотдача. Например, вы можете обнаружить, что 450 люмен при 5,5 Вт на фут — это слишком много для ваших нужд, и вместо этого вы предпочтете использовать светодиодные ленты при 2,3 Вт на фут. Использование источника питания 20 В на светодиодной ленте 24 В может быть простым и эффективным способом добиться этого без необходимости покупать и устанавливать диммер.
Вторая ситуация может возникнуть из-за существующих ограничений системы. Например, если вы собираетесь установить светодиодные ленты в аккумуляторной системе, напряжение источника питания может упасть ниже 12 В постоянного тока по мере разряда системы. Наши данные ниже должны оказаться полезными для определения того, какой уровень энергопотребления вы можете ожидать, если и когда напряжение питания упадет ниже номинального напряжения светодиодной ленты.
Третья ситуация может быть вызвана недостаточным калибром проводов и, как следствие, падением напряжения.Когда через длинный медный провод недостаточной толщины проходит слишком большой ток, уровень напряжения может упасть еще до того, как он начнет подавать питание на светодиодную ленту.
Мы взяли 30-сантиметровый сегмент наших светодиодных лент со сверхвысоким коэффициентом цветопередачи 95 CRI и подключили его к настольному источнику питания. Настольный источник питания имеет возможность регулирования входного напряжения, и мы измерили потребляемый ток как функцию входного напряжения с шагом 0,1 В.
Мы повторили этот тест для версий на 12 В и 24 В.
Сначала мы измерили потребляемый ток при соответствующем номинальном напряжении, а затем уменьшили напряжение с шагом 0,1 В и сняли показание потребляемого тока. Ниже представлены результаты, нанесенные на график.
Важно: обратите внимание, что эти результаты основаны на ограниченных тестах только наших собственных светодиодных лент. Результаты будут отличаться для разных продуктов и производителей.
Ниже приведен график, показывающий соотношение между входным напряжением и потребляемой мощностью (рассчитывается как входное напряжение x потребляемый ток).Вы увидите довольно линейную зависимость между 1,0 Вт на фут и 5,0 Вт на фут.
Сначала мы замечаем, что светодиодные ленты не загораются до минимального порогового напряжения. Это примерно 7,5 В для светодиодных лент на 12 В и 15,5 В для светодиодных лент на 24 В. Это немного противоречит интуиции, поскольку это означает, что вы не можете просто ожидать, что вход источника питания 6 В на светодиодной полосе 12 В будет просто производить половину мощности. (Узнайте больше о том, как работают диодные напряжения и схемы, и почему это так).
После этого минимального порогового напряжения потребляемая мощность увеличивается примерно на 1,0 Вт на фут каждые 0,75 В и 1,5 В для светодиодных лент на 12 В и 24 В соответственно.
Обычный уровень напряжения для блоков питания ноутбуков составляет 19,5 В постоянного тока, поэтому вы можете найти эти результаты полезными, если вы в затруднительном положении, и это единственный блок питания, который у вас есть под рукой. Согласно нашим результатам, вход 19,5 В постоянного тока обеспечит уровень мощности примерно 2,0 Вт на фут на светодиодной полосе 24 В постоянного тока, что является быстрым и легким способом преднамеренного снижения светоотдачи примерно на 60%.
Как мы упоминали выше, светодиодные ленты с нижним приводом при использовании более низкого напряжения, чем его номинальное напряжение, полностью безопасны и не оказывают вредного воздействия на светодиоды или схемы.
Во всяком случае, если снизить их номинальный ток, теоретический срок службы и долговечность светодиодных лент будет еще больше.
С технической точки зрения минусов действительно нет. С практической точки зрения? Единственным недостатком может быть то, что вы в некотором смысле переплачиваете за мощность.
Светодиодная лента хорошего качества предназначена для комфортного обеспечения определенного уровня яркости, и поэтому она разработана с соответствующим количеством светодиодов на фут, а также с достаточной толщиной меди, чтобы выдерживать напряжение. Это неизбежно означает, что вы платите больше за более высокое качество и количество компонентов и материалов, но, недооценивая их, вы не используете их в полной мере. Можно сказать, что это немного похоже на покупку спортивного автомобиля, но при этом не ездить на нем быстрее 50 миль в час.
Другие сообщения
Затемнение светодиодных лент и светодиодных ламп с использованием интеллектуальных систем освещения
В последние годы наблюдается быстрый рост интеллектуальных систем освещения, которые позволяют пользователям управлять своим светом через приложения для смартфонов и … Подробнее
Как затемнить светодиодные ленты
Светодиодные ленты — отличные инструменты освещения для любого проекта.Но иногда вам может потребоваться некоторый уровень динамического контроля над яркостью … Подробнее
Что означает плотность светодиода на светодиодной ленте?
При покупке светодиодных лент вы можете встретить число, называемое «плотность светодиода», или такое обозначение, как 300 светодиодов.Что это значит? Thi … Подробнее
Преимущества светодиодной системы на 24 В по сравнению с 12 В
Если вы планируете приобрести или установить лампы для низковольтной системы освещения, вы, вероятно, столкнетесь как с 12 В постоянного тока, так и с 2 .