Posted on

Содержание

Индуктивный датчик своими руками линейка. Универсальный индукционный датчик. Характеристика индуктивных преобразователей

Работа на производственных предприятиях требует частичной или полной автоматизации системы. Для этого используются различные приспособления, обеспечивающие бесперебойное функционирование. Приспособления из металла довольно часто контролируют индуктивные бесконтактные датчики, имеющие свои преимущества и недостатки. Они имеют небольшой размер и хорошо выполняют свою функцию при условии правильного подключения.

Общие сведения

Индукционный датчик представляет собой специальное приспособление, относящееся к бесконтактным. Это значит, что для определения местоположения объекта в пространстве ему не требуется непосредственный контакт с ним. Благодаря такой технологии, возможна автоматизация производственного процесса.

Как правило, приспособление применяется в различных линиях и системах на крупных заводах и фабриках. Его также можно использовать в качестве конечного выключателя. Прибор отличается высоким качеством и надежностью , работает даже в сложных условиях. Оказывает воздействие только на металлические предметы, поскольку другие материалы к нему нечувствительны.

Приспособление довольно устойчиво к агрессивным химическим веществам, широко применяется в машиностроительной, пищевой и текстильной промышленности. Аэрокосмическая, военная и железнодорожная отрасль также не обходится без этих датчиков.

Важность прибора делает его востребованным, поэтому множество компаний по всему миру выпускает различные модели со стандартным и расширенным набором функций, в разной ценовой категории.

Устройство прибора

Индуктивный датчик состоит из нескольких взаимосвязанных между собой узлов, которые и обеспечивают его бесперебойную работу. Основные детали приспособления следующие:

Все элементы расположены в корпусе, изготовленном из латуни или полиамида. Эти материалы считаются очень прочными для того, чтобы защитить сердцевину от отрицательного воздействия условий производства. Благодаря надежности конструкции,

датчик способен выдержать значительную нагрузку и при этом корректно функционировать.

Принцип работы

Благодаря специальному генератору, выдающему особые колебания, осуществляется работа устройства. При попадании в поле его действия предмета, сделанного из металла, подается сигнал на блок управления.

Работа приспособления начинается после включения, которое даёт толчок к образованию магнитного поля. Это поле в свою очередь оказывает влияние на вихревые токи, меняющие амплитуду колебаний генератора, который первым реагирует на любые изменения.

Как только поступает сигнал, начинается обработка его в других узлах устройства. Сила этого сигнала во многом зависит от размера предмета, попавшего в поле действия приспособления, а также расстояния, на котором он находится. Следующим этапом будет преобразование аналогового сигнала в логический. Только так возможно точно определить его значение.


Особую роль играют такие датчики на производстве , где металлические детали должны идти по линии в определенном положении. Прибор может фиксировать его и при обнаружении любого, даже незначительного отклонения сигнализирует на главный пульт управления.

Как правило, чтение результатов функционирования устройства осуществляет специалист, выполняющий также роль контролера, наблюдающего за бесперебойной работой всей системы.

Основные определения

Для контроля работы устройства и чтения его сигналов существует несколько определений. Наиболее важными считаются следующие:

Благодаря этим определениям, возможно настроить приспособление для получения максимально точных данных, играющих важную роль в производственном процессе.

Преимущества и недостатки

Индукционные датчики имеют свои достоинства и недостатки, как и любое другое устройство. Главным преимуществом считается простота конструкции, не требующая сложной настройки и не нуждающаяся в особых условиях для монтирования. Приспособление не имеет скользящих контактов, сделано из прочного материала и может на протяжении длительного времени работать без перерыва.

Стоит также отметить, что прибор очень редко выходит из строя, и ремонт его не представляет сложности. Именно поэтому его часто устанавливают на предприятиях, где необходим почти круглосуточный контроль за производственным процессом. Бесконтактное подключение позволяет без проблем осуществлять соединение с промышленной системой напряжения.

Важным преимуществом считается высокая чувствительность, позволяющая устанавливать датчики на производстве, где работают с металлическими предметами из разных сплавов.

Несмотря на все достоинства приспособления, существуют и некоторые недостатки. Наиболее важным считаются погрешности, которые прибор выдает в работе. Нелинейный тип погрешности проявляется вследствие того, что прибор имеет свой показатель индуктивной величины, который может отличаться от значения тех предметов, на которые он реагирует. Именно поэтому датчик может реагировать на металл некорректно и подавать неверные сигналы.

Часто встречается темпер

MLab.org.ua — Изготовление высоковольтного емкостного датчика

Высоковольтный емкостной датчик (далее датчик) – устройство для снятия формы вторичного напряжения системы зажигания и последующей передачи его на один из входов регистрирующего оборудования.

Датчик состоит из держателя, емкостной пластины, которая гальванически соединена с сигнальным проводом, экранированного кабеля и соответствующего разъема для подключения датчика к входу регистрирующего оборудования.

Важно!
Экран кабеля датчика обязательно должен быть соединен с землей регистрирующего оборудования. Экран должен представлять собой плотную металлическую оплетку, вязанную крест на крест без просветов. Чем меньше длина участка сигнального провода кабеля без экрана – тем меньше будет электромагнитных наводок с соседних ВВ проводов.
Снятие формы вторичного напряжения датчиком основано на наличии паразитной емкостной связи, возникающей между токопроводящей жилой ВВ провода и емкостной пластиной датчика.

Из чего следует:

1. Сигнал на выходе датчика будет тем больше чем ближе емкостная пластина к токопроводящей жиле ВВ провода.

2. Влияние электромагнитных наводок с соседних ВВ проводов будет тем меньше чем меньше размер емкостной пластины и чем меньше не экранированный участок сигнального провода.

3. Величина паразитной емкостной связи всегда зависит от ВВ провода (толщины токопроводящей жилы, толщины и диэлектрической проницаемости изоляции) из чего следует, что величина сигнала на выходе датчика будет разной для одного и того же истинного значения вторичного напряжения, т.е. не возможно однозначно установить соответствие 1 В на выходе датчика – 10 КВ во вторичной цепи.

4. Емкостная связь представляет собой дифференцирующую цепочку (ФВЧ) пропускающую высокочастотные колебания (область пробоя), и не пропускающую низкочастотные колебания (область горения), т.е. форма вторичного напряжения на выходе датчика будет искажена.

Сд – емкость между токопроводящей жилой ВВ провода и емкостной пластиной датчика
Rвх – входное сопротивление регистрирующего оборудования
Свх – входная емкость не учитывается, так как она фактически в данном случае ни на что не влияет

На графике красного цвета изображен исходный сигнал (меандр 1 КГц, скважность 10%, амплитуда 1 В)
На графике синего цвета изображен сигнал, полученный на выходе дифференцирующей цепочки


Сигнал с выхода датчика без использования компенсационной емкости

Для устранения искажения формы вторичного напряжения на выходе датчика, необходимо использовать дополнительную компенсационную емкость, которая с емкостью датчик-жила образует емкостной делитель:

Без учета входного сопротивления регистрирующего оборудования, коэффициент передачи емкостного делителя определяется следующим соотношением: Kп = Сд / (Сд + Ск). Как видно из соотношения, чем больше значение емкости Ск тем меньше будет значение напряжения на выходе емкостного делителя. Для идеального емкостного делителя без учета входного сопротивления регистрирующего оборудования Ск можно взять сколь угодно малое, при этом форма сигнала на выходе делителя в точности будет соответствовать форме сигнала на его входе.

При учете входного сопротивления соотношение для определения коэффициента передачи становится гораздо объемнее, но зависимость Kп от Ск остается той же. Входное сопротивление регистрирующего оборудования на прямую не влияет на Kп, оно определяет “степень вносимого искажения”.

При увеличении входного сопротивления искажения формы вторичного напряжения значительно уменьшаются. В большинстве случаев входное сопротивления практических все осциллографов используемых для автодиагностики находится в диапазоне 1 МОм, за исключением специализированных входов предназначенных исключительно для подключения ВВ датчиков. По этому при непосредственном подключении датчика к входу осциллографа (без специализированного адаптера) Rвх также можно принять за константу, и ограничится варьированием только Ск.

Примечание!
Подключение датчика к входу осциллографа просто через резистор 10 МОм приведет к увеличению входного сопротивления и соответственно уменьшению искажения формы вторичного напряжения, но при этом примерно в десять раз уменьшиться коэффициент передачи входного тракта канала. Для увеличения входного сопротивления без уменьшения коэффициента передачи необходимо использовать промежуточный буфер (повторитель – простейший адаптер) с высоким входным сопротивлением и низким выходным сопротивлением.

Для текущих Сд (точно не известно) и Rвх (обычно 1 МОм) значение Ск подбирается исходя из компромисса:
1. Чем меньше Ск тем больше амплитуда напряжения на выходе емкостного делителя
2. Чем больше Ск тем меньше степень искажения формы вторичного напряжения

Практически значение Ск возможно увеличивать до тех пор, пока “амплитуда” напряжения на выходе емкостного делителя будет достаточно выделяться на фоне шума.

Местоположение подключения Ск: в начале кабеля (ближе к емкостной пластине) или в конце кабеля (ближе к входу регистрирующего оборудования) – практически не влияет на форму и амплитуду сигнала с выхода датчика.

На графике красного цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной на входе осциллографа, на графике синего цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной непосредственно возле емкостной пластины. Как видно форма сигналов практически одинакова, а амплитуда различается в пределах разброса номинала используемых емкостей +/- 20%.

Примеры осциллограмм вторичного напряжения снятого одним и тем же датчиком с емкостной пластиной в виде круга диаметром ~10 мм при разных значениях Ск, на стенде с DIS катушки 2112-3705010 (форма вторичного напряжения несколько отличается от привычной из-за разряда на открытом воздухе).


Ск = 470 пФ. Область горения значительно проседает, но амплитуда пробоя достигает 5 Вольт.


Ск = 1.8 нФ. Область горения также значительно проседает, амплитуда пробоя уменьшилась до 2 Вольт.


Ск = 3.3 нФ. Область горения не много проседает, амплитуда пробоя уменьшилась до 1 Вольта.


Ск = 10 нФ. Область горения практически не проседает, но и амплитуда пробоя уменьшилась до 0.4 Вольт.

Как видно при Ск = 10 нФ форма вторичного напряжения практически не искажена, а шум довольно не значительный.

Для сравнения приведены осциллограммы вторичного напряжения снятые с одного и того же ВВ провода без использования адаптера и с использованием специализированного адаптера зажигания.

На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 10 нФ) непосредственно подключенного к входу осциллографа. На графике синего цвета изображен сигнал, полученный с адаптера Постоловского, к которому подключен “родной” ВВ датчик Постоловского.

Как видно форма обеих сигналов практически совпадает, но с адаптера содержащего промежуточные усилители, сигнал имеет в 3 раза большую амплитуду.

Примечание!
Все адаптеры, использующие емкостные датчики искажают форму вторичного напряжения, но при высоком входном сопротивлении и достаточной Ск, вносимое искажение крайне не значительно.

В простейшем случае емкостной съемник это любой металлический предмет расположенный рядом с ВВ проводом, т.е. в роли емкостной пластины могут выступать зажим типа “крокодил”, фольга намотаня на ВВ провод, монетка и т.д.

Практически в качестве высоковольтного емкостного датчика рекомендуется использовать конструкцию, которая удовлетворяет следующим требованием:
1. Высокая степень защиты от пробоя
2. Малая подверженность электромагнитным наводкам от соседних ВВ проводов
3. Удобное конструктивное исполнение для быстрого подключения датчика к ВВ проводу

Примеры конструкции ВВ емкостных датчиков:


Жестяная пластинка 20×70 мм, выгибается, так что бы плотно прижиматься к ВВ проводу.


По сути, та же пластина только в изоляции.


ВВ датчик типа “прищепка”.


ВВ датчик аналогичный одной из конструкций Бош (поставляется по цене $7 / шт).

В качестве примера рассмотрим процесс изготовления ВВ датчика на основании выше приведенной конструкции компании Бош.

Для изготовления датчика необходимо:

1. Выше рассмотренная ручка ВВ датчика.

2. Экранированный кабель 1-3 м. Желательно использовать мягкий микрофонный кабель, так как при эксплуатации он намного удобнее жесткого коаксиального кабеля. Волновое сопротивление кабеля 50 или 75 Ом, значения не имеет, так как все исследуемые сигналы находятся в области низких частот.

3. Разъемы для подключения датчика к осциллографу или адаптеру зажигания BNC-FJ / BNCP / FC-022 Переходник гнездо F / BNC под F-ку (разъем один и тот же только у разных производителей / продавцов он по-разному называется).

BNC-M / FC-001 / RG58 / F разъем

Примечание!
При покупке F разъема и кабеля обращайте внимание на соответствие диаметра кабеля к диметру разъема для накрутки на кабель, иначе либо придется срезать часть изоляции кабеля для уменьшения его диаметра, либо наматывать ленту на кабель для увеличения его диаметра.
4. Сальник / гермоввод / кабельный ввод PG-7 с дюймовой резьбой

5. Емкостная пластина “пятачок” диаметром 9-10 мм

“Пятачок” возможно либо вырезать из жести, либо использовать специальный пробойник (лучше всего использовать пробойник на 8 мм, после развальцовки получится “пятачок” диаметром чуть больше 9 мм):

Также в качестве “пяточка” возможно, использовать подходящие по диаметру канцелярские кнопки.

6. Компенсационная емкость – не полярный (лучше керамический) конденсатор номиналом от 2.2 нФ до 10 нФ на напряжение 50 Вольт (если использовать конденсатор на 1 КВ то в случае пробоя ВВ провода он все равно сгорит). Возможно использовать как выводные конденсаторы так и планарные в корпусе 1206 или 0805.

Порядок изготовления:

1. Удалить изоляцию с экранированного кабеля до оплетки, на участке 12-13 мм. Часть оплетки под снятой изоляцией вывернуть наружу и равномерно расположить вдоль кабеля. С сигнального провода снять изоляцию на участке 10-11 мм и залудить его.

2. Накрутить на кабель F разъем, так что бы он плотно держался на кабеле и хорошо контактировал с частью вывернутой оплетки. При этом сигнальный провод должен выступать на достаточную длину из F разъема для надежного контакта с центральным стержнем разъема BNC-FJ.

3. Накрутить разъем BNC-FJ на F разъем. После чего проверить наличие контакта (прозвонить тестером) между сигнальным проводом и центральным стержнем разъема BNC-FJ, между оплеткой кабеля и экраном разъема BNC-FJ и отсутствие контакта между сигнальным проводом и оплеткой кабеля.

4. Если есть сальник PG-7 то предварительно надеть его на кабель открутив с него гайку.

5. Удалить изоляцию и оплетку с противоположного конца кабеля, на участке 3-5 мм. С сигнального провода снять изоляцию на участке 2-3 мм. Припаять к залуженному сигнальному проводу емкостную пластину.

При необходимости припаять компенсационную емкость между сигнальным проводом и оплеткой.

6. Обмотать участок сигнального провода и припаеную компенсационную емкость изолентой, так что бы емкостная пластина не болталась и была поджата краем изоленты. После чего емкостную пластину обильно смазывать солидолом.

Солидол “улучшает” диэлектрическую проницаемость и устраняет скачки области горения.

На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) без солидола. На графике синего цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) с использованием солидола. Без использования солидола область горения иногда “подскакивает” на 20-30%.

7. Надеть ручку ВВ датчика так, что бы емкостная пластина упиралась в дно колпачка датчика. После чего зажать кабель либо с помощью сальника PG-7 либо закрепить изолентой (при этом с датчиком нужно обращаться крайне осторожно, что бы случайно не вырвать кабель из ручки датчика).

В результате должен получится высоковольтный емкостной датчик, который возможно непосредственно подключать к одному из аналоговых (с наличием Ск) или к логическому (без Ск) входов осциллографа.

Диагностика классической системы зажигания с трамблером с помощью 2-х рассматриваемых датчиков…

Самодельные датчики — Меандр — занимательная электроника

Электронный датчик — это прибор, изменяющий свое состояние в зависимости от внешних воздействий и преобразующее их кинетическую, механическую, акустическую (и др.) энергию в электрический ток. В статье описываются варианты изготовления и применения датчиков различного назначения.

Почти любой датчик может быть изготовлен несколькими разными способами. Даже в обычных бытовых и «полевых» условиях можно изготовить простые датчики самостоятельно, без потери их качества. Сами по себе датчики являются только частью электрического устройства (как элемент — частью схемы). Радиолюбительские датчики применяются повсеместно в непрофессиональной аппаратуре, изготовленной самими радиолюбителями.

Механические датчики

На рис.1 показан вариант плоского механического датчика. Монтируя один или несколько таких датчиков под любым современным (мягким) «половым» покрытием, к примеру, ковролином, линолеумом, или, как иной вариант, даже под обоями на стене, удается необычным образом управлять нагрузкой в электрической цепи 220 В, например освещением. Такой вариант уместен в прихожей, там, где «половые» механические датчики, представляющие собой две проводящие электрический ток пластины — плоские кнопки на замыкание, являются элементами электронного устройства, управляющего слаботочным электромагнитным реле, включающим освещение. В качестве примера простейших механических датчиков промышленного изготовления с контактами на замыкание приведу пример участка плоской клавиатуры (калькулятора или иного устройства).
При нажатии ногой или рукой на плоскость такого датчика (или нажатии рукой на определенное место на стене квартиры, офиса, если датчики-кнопки установлены под обоями) фольгированные контакты датчика замыкаются, и импульс слабого тока по соединительным проводам поступает на электрическую схему управления. Чувствительность такого плоского датчика высокая — он реагирует даже на небольшую нагрузку (собака или кот весом более 2 кг, пройдясь по датчику, способен включить свет). Важно для широкого круга читателей, что его вполне можно изготовить самостоятельно, применив смекалку, относительно тонкий диэлектрик и небольшое количество фольги (пищевой, оберточной или иной).

Как видно из рис.1, на плотную фольгу (толщина листа 1 мм) накладывают картон (толщина 1…2 мм) с прорезанным внутри отверстием, а уже сверху на него накладывают еще один слой фольги. К токопроводящей фольге (вполне подходит плотная фольга на бумажной основе) аккуратно припаивают тонкие гибкие проводники, к примеру, провод МГТФ-0,07.

Весь получившийся «бутерброд» затем ламинируют для механической надежности датчика и изоляции его от внешней среды, включая возможную влажную среду. Ламинировать можно с помощью специальной пленки (продается в магазинах канцтоваров) для ламинаторов.

Вариант ламинирования двух электрических пластин с диэлектриком между ними

В качестве материала для альтернативного ламинирования используют полиэтиленовую папку-карман для бумаг или школьных принадлежностей — ее нужно разрезать по размеру датчика, вложить фольгу и картон внутрь и через тряпочку прогладить утюгом. Можно просто обклеить датчик скотчем. Если в схеме управления используются помехоустойчивые элементы, то длина соединительных проводов от датчиков до элементов электрической схемы может составлять несколько метров.

Если изготовить такой датчик в несколько слоев, чередуя проводник и диэлектрик, то получившийся «толстый бутерброд» можно использовать как датчик силы воздействия (нажима), или даже как датчик взвешивания людей (прообраз напольных весов). Вариантов применения механического плоского датчика много, а его особенностью, как рассмотрено выше, является возможность легкой маскировки. Плоский датчик надежен и долговечен.

Акустические датчики

На рис.2 и рис.3 показаны две разные электрические схемы весьма чувствительного акустического датчика, вырабатывающего пачки импульсов при звуковом воздействии, отличном от спокойного акустического фона. Схема на операционном усилителе (рис.2) использует в качестве датчика воздействия пьезоэлемент.Такой вариант неоднократно публиковался в сочетании с другими типами операционных усилителей (далее — ОУ), поэтому он не претендует на оригинальность. В качестве пьезоэлемента использован капсюль ЗП-22, который из-за невысокой чувствительности реагирует только на удары, однако с успехом может применяться в охранных устройствах, например, для охраны целостности стеклянных окон. Для этого капсюль нужно надежно приклеить к стеклу, и датчик будет выдавать одиночные импульсы при ударах по стеклу и при постукиваниях в районе расположения капсюля.

Чем больше площадь стекла (охраняемой зоны), тем более чувствительным должен быть датчик. Он может применяться для охраны со стороны внешних стекол и витрин в магазинах и офисах.

Чем больше сопротивление резистора R4 на входе компаратора, тем чувствительнее схема. С выхода компаратора (вывод 6) импульс поступает на ключевую схему. Конденсатор C1 (К50-24, К50-29, К50-35) фильтрует помехи по питанию.На рис.3 показан более чувствительный вариант акустического датчика. В качестве микрофона ВМ1 используется любой угольный микрофон от старых телефонных аппаратов (МК-10, МК-16-У и аналогичные).

В таких микрофонах находится угольный порошок, очень чувствительный к сотрясениям и звуковым волнам, он изменяет сопротивление микрофона по постоянному току. Эти импульсы и улавливает усилитель на транзисторах VT1-VT4.

Транзисторный усилитель НЧ собран таким образом, что коэффициент усиления второго каскада вдвое больше, чем у первого. На электрической схеме показан усилитель с большой чувствительностью, однако, если такая чувствительность не является необходимой, то можно обойтись только одним каскадом на составном транзисторе \/Т1,VT2.

Усилитель НЧ работоспособен в широких пределах напряжения питания схемы.


С коллектора последнего транзистора пачки импульсов поступают на ключевую или формирующую последовательность импульсов схему (к примеру, одновибратор). Усиление эффективно регулируется резистором R1 (чем больше его сопротивление, тем чувствительнее схема) и в незначительных пределах резистором R6.

Многие знают о недостатках угольных микрофонов, и я здесь не буду скрывать их от читателя. Действительно, отрицательной особенностью устройства на основе приведенной схемы является его инерционность, обусловленная свойствами самих угольных микрофонов. Но для некоторых радиолюбительских разработок приведенная электрическая схема практически незаменима по своей простоте, эффективности и «финансовому» взносу, ведь угольный микрофон можно приобрести практически за бесценок.

Проводники от микрофона к электрической схеме должны иметь минимальную длину. Транзисторы можно применять любые из серий КТ3107, КТ361 или аналогичные импортные.

Рассмотренные варианты схем акустических датчиков могут найти разное практическое применение, к примеру, использоваться как акустический датчик, реагирующий на разговор в помещении и включающий локальную электрическую подсветку (бра).

Если корпус устройства вместе с микрофоном смонтировать на полу, то тогда устройство будет оповещать о приближении человека задолго до его подхода к датчику. Звук от шагов человека по полу передается на несколько метров, таким образом, вариантов применения акустического датчика в 2-4-комнатной «обычной» квартире (деревенском доме) даже на устаревшем угольном микрофоне очень много.

Индуктивный датчик

Его вариантов также несколько.

На рис.4 показан относительно простой датчик, реагирующий на магнитное поле, создаваемое переменным током. Когда вблизи обмотки катушки L1 протекает даже небольшой переменный ток (десятки мА), он «наводится» в катушке и передается на усилительный каскад на составном транзисторе.Усилитель для этой схемы (вместо VT1 и VT2) может быть любой конфигурации, но обязательно с большим коэффициентом усиления по току. Катушку наматывают проводом ПЭВ или ПЭЛ диаметром 0,1…0,15 мм «внавал», 2500 витков, на любом подходящем картонном, деревянном или пластмассовом каркасе диаметром 8 мм. Внутрь каркаса вставляют сердечник из феррита марки 600-2000НН. Длина каркаса соответствует длине сердечника и находится в пределах 25…40 мм.

С положительной обкладки конденсатора С2 снимается переменное напряжение, наведенное в катушке L1. Если в качестве катушки применить магнитную антенну (используемую для приема радиостанций в диапазонах ДВ и СВ), можно получить прибор, реагирующий на радиоволны определенной длины. Как необычный вариант катушки, можно использовать катушку, в том числе «плоскую» намотку из магнитной карты доступа, представленной (в раскрытом виде) на рис.5.

Чувствительность устройства регулируют резистором R1 задающим смещение на составном транзисторе. Чем больше сопротивление переменного резистора, тем чувствительнее схема.

Для оптимального режима усиления (так как напряжение питания этой схемы может быть разным) номинал резистора R2 подбирают так, чтобы ток, потребляемый этим узлом от источника питания, был в пределах 2 мА.

На практике датчик улавливает переменный ток от 50 мА в проводке на расстоянии до 5 см от него. Длина проводов от катушки L1 до входного каскада электрической схемы (для исключения наводок) должна стремиться к минимуму.

переменным током. Когда вблизи обмотки катушки L1 протекает даже небольшой переменный ток (десятки мА), он «наводится» в катушке и передается на усилительный каскад на составном транзисторе.

Усилитель для этой схемы (вместо VT1 и VT2) может быть любой конфигурации, но обязательно с большим коэффициентом усиления по току. Катушку наматывают проводом ПЭВ или ПЭЛ диаметром 0,1…0,15 мм «внавал», 2500 витков, на любом подходящем картонном, деревянном или пластмассовом каркасе диаметром 8 мм. Внутрь каркаса вставляют сердечник из феррита марки 600-2000НН. Длина каркаса соответствует длине сердечника и находится в пределах 25…40 мм.

С положительной обкладки конденсатора С2 снимается переменное напряжение, наведенное в катушке L1. Если в качестве катушки применить магнитную антенну (используемую для приема радиостанций в диапазонах ДВ и СВ), можно получить прибор, реагирующий на радиоволны определенной длины. Как необычный вариант катушки, можно использовать катушку, в том числе «плоскую» намотку из магнитной карты доступа, представленной (в раскрытом виде) на рис.5.Чувствительность устройства регулируют резистором R1 задающим смещение на составном транзисторе. Чем больше сопротивление переменного резистора, тем чувствительнее схема.

Для оптимального режима усиления (так как напряжение питания этой схемы может быть разным) номинал резистора R2 подбирают так, чтобы ток, потребляемый этим узлом от источника питания, был в пределах 2 мА.

На практике датчик улавливает переменный ток от 50 мА в проводке на расстоянии до 5 см от него. Длина проводов от катушки L1 до входного каскада электрической схемы (для исключения наводок) должна стремиться к минимуму.

Датчик тока

Конструкция устройства показана на рис.6.Этот датчик представляет собой геркон с намоткой по всей длине стеклянного корпуса изолированного обмоточного провода диаметром 0,08…0,1 мм. Намотка «внавал» содержит 300-400 витков (в зависимости от практического назначения датчика).

Когда по обмотке протекает электрический ток, геркон под воздействием магнитной индукции замыкает / размыкает (в зависимости от типа геркона) контакты, коммутируя электрическую цепь.

На основе этого датчика радиолюбитель может самостоятельно изготовить «токовое реле», соединив один из контактов геркона с концом обмотки, как показано на рис. 7.Сразу после замыкания в электрической цепи, протекающий через нагрузку ток создает падение напряжения на обмотке L1.

Падение напряжения на обмотке прямо пропорционально силе тока в этой цепи. Наведенное напряжение создаст небольшое электромагнитное поле, которое будет достаточным для воздействия на контакты геркона, которые (согласно схеме, показанной на рис.7) заблокируют саму электрическую цепь.

Когда нагрузка обесточится (или ток в ее цепи уменьшится, что может произойти в силу разных причин), падение напряжения на L1 уменьшится, уменьшится магнитное поле, и контакты геркона разомкнутся.

Чувствительность такого датчика зависит от количества витков L1 и силы тока в цепи. Токовое реле, как и электромагнитный датчик, имеет много вариантов применения в радиотехнических конструкциях.

Литература

1.    Кашкаров А.П. 500 схем для радиолюбителей. Электронные датчики // СПб.: Наука и Техника, 2007.

2.    Кашкаров А.П. Датчики в электронных схемах: от простого к сложному. — М.: ДМК Пресс, 2013.

Автор: Андрей Кашкаров, г. Санкт-Петербург

Источник: Радиоаматор №11/12, 2014

Индуктивный датчик для осциллографа своими руками. Универсальный индукционный датчик. Положительная и отрицательная логика работы

Здесь же я отдельно вынес такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании – повсеместно. Кроме того, приведены реальные инструкции к датчикам и ссылки на примеры.

Принцип активации (работы) датчиков при этом может быть любым – индуктивные (приближения), оптические (фотоэлектрические), и т.д.

В первой части были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным и с подключением к контроллеру не всё так просто.

Схемы подключения датчиков PNP и NPN

Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.

Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.

Датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)

Датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.

Призываю всех не путаться, работа этих схем будет подробно расписана далее.

На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.

Схемы подключения NPN и PNP выходов датчиков

На левом рисунке – датчик с выходным транзистором NPN . Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.

Справа – случай с транзистором PNP на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

Как проверить индуктивный датчик?

Для этого нужно подать на него питание, то есть подключить его в схему. Затем – активировать (инициировать) его. При активации будет загораться индикатор. Но индикация не гарантирует правильной работы индуктивного датчика. Нужно подключить нагрузку, и измерить напряжение на ней, чтобы быть уверенным на 100%.

Замена датчиков

Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.

Это реализуется такими способами:

  • Переделка устройства инициации – механически меняется конструкция.
  • Изменение имеющейся схемы включения датчика.
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы – изменение активного уровня данного входа, изменение алгоритма программы.

Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:

PNP-NPN схемы взаимозаменяемости. Слева – исходная схема, справа – переделанная.

Понять работу этих схем поможет осознание того факта, что транзистор – это ключевой элемент, который можно представить обычными контактами реле (примеры – ниже, в обозначениях).

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Итак, схема слева. Предположим, что тип датчика – НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные “контакты” разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.

Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.

Если внутренней нагрузки в датчике нет, и коллектор “висит в воздухе”, то это называют “схема с открытым коллектором”. Эта схема работает ТОЛЬКО с подключенной нагрузкой.

Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать “прям щас”.

Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 – 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен – на входе контроллера дискретный “0”, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов – тахометр, или количество заготовок.

Да, не совсем то, что мы хотели, и схемы взаимозаменяемости npn и pnp датчиков не всегда приемлемы.

Как добиться полного функционала? Способ 1 – механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 – перепрограммировать вход контроллера чтобы дискретный “0” был активным состоянием контроллера, а “1” – пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.

Условное обозначение датчика приближения

На принципиальных схемах индуктивные датчики (датчики приближения) обозначают по разному. Но главное – присутствует квадрат, повёрнутый на 45° и две вертикальные линии в нём. Как на схемах, изображённых ниже.

НО НЗ датчики. Принципиальные схемы.

На верхней схеме – нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема – нормально закрытый, и третья схема – оба контакта в одном корпусе.

Цветовая маркировка выводов датчиков

Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются её.

Однако, нелишне перед монтажом убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.

Вот эта маркировка.

  • Синий (Blue) – Минус питания
  • Коричневый (Brown) – Плюс
  • Чёрный (Black) – Выход
  • Белый (White) – второй выход, или вход управления, надо смотреть инструкцию.

Система обозначений индуктивных датчиков

Тип датчика обозначается цифро-буквенным кодом, в котором зашифрованы основные параметры датчика. Ниже приведена система маркировки популярных датчиков Autonics. / Каталог датчиков приближения Omron, pdf, 1.14 MB, скачан:1247 раз./

/ Чем можно заменить датчики ТЕКО, pdf, 179.92 kB, скачан:1004 раз./

/ Датчики фирмы Turck, pdf, 4.13 MB, скачан:1336 раз./

/ Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан:2163 раз./

Реальные датчики

Датчики купить проблематично, товар специфический, и в магазинах электрики такие не продают. Как вариант, их можно купить в Китае, на АлиЭкспрессе.

А вот какие я встречаю в своей работе.

Всем спасибо за внимание, жду вопросов по подключению датчиков в комментариях!

Переменные и пульсирующие электромагнитные поля создаются трансформаторами, дросселями, электродвигателями, реле переменного тока и т.д. Для их обнаружения, индикации и усреднённой оценки применяются различные приборы, втом числе содержащие индуктивные датчики.

Принцип работы датчиков электромагнитного поля заключается в регистрации электродвижущей силы (ЭДС), возникающей в катушке индуктивности при приближении к ней магнита или внесении её в магнитное поле. Физические явления здесь строго подчиняются закону электромагнитной индукции Фарадея.

Области применения индуктивных датчиков электромагнитного поля — искатели скрытой проводки, индикаторы короткозамкнутых витков, измерители магнитных полей вокруг трансформаторов и дисплеев, научные эксперименты (Рис. 3.63, а…м).

Рис. 3.63. Схемы подключения индуктивных датчиков электромагнитного поля к МК {начало):

а) /4/ — это датчик низкочастотного магнитного поля промышленной сети 50 Гц. Состоит он из катушки головного телефона, но без амбушюры и металлической мембраны;

б) /4/ — это датчик магнитного поля ультразвуковой частоты для исследования работы строчных трансформаторов телевизоров (15.625 кГц) или VGA-мониторов (31.25 кГц). Катушка датчика содержит 50 витков провода ПЭВ-0.23…0.31, намотанных на ферритовом стержне 200 х 10 мм. Конденсатор С/ подбира

«Принцип работы индуктивных датчиков?» – Яндекс.Кью

Чтобы понять принцип работы индуктивного датчика, разберём его составляющие.

Состоит индуктивный датчик:

1. Электромагнитная система → 2. Генератор → 3. Демодулятор → 4. Пороговое устройство → 5. Выходной усилитель

1электромагнитная система.
Её также называют чувствительным элементом датчика. Электромагнитная система является частью генератора.
Она представляет собой катушку индуктивности, помещенную в магнитопровод. Чаще всего это круглая ферритовая чашка. Чашки в зависимости от габаритов датчика могут иметь диаметр от 3,3 мм до 150 мм.

С внешней стороны ферритовый сердечник закрыт диэлектрическим колпачком. Его торцевая часть называется чувствительной поверхностью.

Область перед чувствительной поверхностью является зоной чувствительности датчика. Там сконцентрировано магнитное поле. Оно распространяется примерно на половину диаметра датчика.

2генератор.
Это та часть электронной схемы датчика, которая вырабатывает электрические колебания. Генератор формирует переменное электромагнитное поле, в сечении напоминающее букву М.
Катушка индуктивности и конденсатор (устройство для накопления заряда и энергии электрического поля) образуют колебательный контур. Генератор вырабатывает незатухающие синусоидальные колебания. При попадании металлического объекта в зону чувствительности датчика в нём образуются вихревые токи. Они создают встречный магнитный поток, демпфирующий колебания контура. Другими словами, происходит затухание электромагнитных колебаний, уменьшается их амплитуда. Чем ближе металлический объект к чувствительной поверхности датчика и чем больше его размер, тем сильнее затухание.

3демодулятор или детектор, он же выпрямитель.

Преобразует изменение высокочастотных колебаний генератора в изменение постоянного напряжения.

4пороговое устройство сравнивает переданное демодулятором напряжение с заранее установленным порогом срабатывания.
При достижении порога формируется логический сигнал «0 или 1» (т. е. «выключение / или включение»). Таким образом, пороговое устройство преобразует аналоговый сигнал детектора в «цифровой»выходной, его ещё называют дискретным.

В качестве порогового устройства используются как транзисторные, так и микросхемные варианты компараторов и триггеров Шмитта.

Особенностью порогового устройства является то, что пороги переключения из «0» в «1» и из «1» в «0» не совпадают. Это делается преднамеренно для повышения помехоустойчивости датчика. Данное свойство называют гистерезисом.

5выходной усилитель увеличивает мощность выходного сигнала до необходимого значения для передачи последующим устройствам.

Выходной усилитель часто называют выходным ключом, так как он оперирует логическими значениями 0 и 1.

В качестве выходного ключа могут использоваться транзисторы разных типов, тиристоры (симисторы), реле электромагнитные, реле твердотельные, оптроны, специализированные микросхемы (интеллектуальные ключи).

Электромагнитная система, генератор, демодулятор, пороговое устройство и выходной усилитель являются основой индуктивных датчиков.

Подытожим:
Принцип действия индуктивного датчика основан на изменении параметров электромагнитного поля при вхождении металлического объекта в зону чувствительности. Эти изменения фиксируются электронной схемой датчика и изменяют его состояние. В результате этого происходит коммутация выходных цепей: размыкание нормально замкнутого, замыкание нормально разомкнутого или переключение контактов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *