Зависимость сечения кабеля и провода от токовых нагрузок и мощности
При проектировании схемы любой электрической установки и монтаже, выбор сечения проводов и кабелей является обязательным этапом. Чтобы правильно подобрать силовой провод нужного сечения, необходимо учитывать величину максимального потребления.
Сечения проводов измеряется в квадратных милиметрах или «квадратах». Каждый «квадрат» алюминиевого провода способен пропустить через себя в течение длительного времени нагреваясь до допустимых пределов максимум — только 4 ампера, а медный провода 10 ампер тока. Соответственно, если какой-то электропотребитель потребляет мощность равную 4 киловаттам (4000 Ватт), то при напряжении 220 вольт сила тока будет равна 4000/220=18,18 ампер и для его питания достаточно подвести к нему электричество медным проводом сечением 18,18/10=1,818 квадрата. Правда в этом случае провод будет работать на пределе своих возможностей, поэтому следует взять запас по сечению в размере не менее 15%. Получим 2,091 квадрата. И теперь подберем ближайший провод стандартного сечения. Т.е. к этому потребителю мы должны вести проводку медным проводом сечением 2 квадратных миллиметра именуемого нагрузкой тока. Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Алюминиевый провод будет соответственно в 2,5 раза толще.
Из расчета достаточной механической прочности открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться таблицами.
Медные жилы проводов и кабелей |
||||
Сечение токопроводящей жилы, мм. | Напряжение, 220 В | Напряжение, 380 В | ||
ток, А | мощность, кВт | ток, А | мощность, кВт | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33,0 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66,0 | 260 | 171,6 |
Алюминиевые жилы проводов и кабелей |
||||
Сечение токопроводящей жилы, мм. | Напряжение, 220 В | Напряжение, 380 В | ||
ток, А | мощность, кВт | ток, А | мощность, кВт | |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11,0 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22,0 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44,0 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132,0 |
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами к примеру кабель МКЭШВнг |
||||||
Сечение токопроводящей жилы, мм. | Открыто | Ток, А, для проводов проложенных в одной трубе | ||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | ||
0,5 | 11 | — | — | — | — | — |
0,75 | 15 | — | — | — | — | — |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 34 | 37 | 31 | |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
150 | 440 | 360 | 330 | — | — | — |
185 | 510 | — | — | — | — | — |
240 | 605 | — | — | — | — | — |
300 | 695 | — | — | — | — | — |
400 | 830 | — | — | — | — | — |
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами |
||||||
Сечение токопроводящей жилы, мм. | Открыто | Ток, А, для проводов проложенных в одной трубе | ||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | ||
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 39 | 42 | 38 | |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
150 | 340 | 275 | 255 | — | — | — |
185 | 390 | — | — | — | — | — |
240 | 465 | — | — | — | — | — |
300 | 535 | — | — | — | — | — |
400 | 645 | — | — | — | — | — |
Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, |
|||||||
Сечение токопроводящей жилы, мм. | Ток*, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
1,5 | 23 | 19 | 33 | 19 | 27 | ||
2,5 | 30 | 27 | 44 | 25 | 38 | ||
4 | 41 | 38 | 55 | 35 | 49 | ||
6 | 50 | 50 | 70 | 42 | 60 | ||
10 | 80 | 70 | 105 | 55 | 90 | ||
16 | 100 | 90 | 135 | 75 | 115 | ||
25 | 140 | 115 | 175 | 95 | 150 | ||
35 | 170 | 140 | 210 | 120 | 180 | ||
50 | 215 | 175 | 265 | 145 | 225 | ||
70 | 270 | 215 | 320 | 180 | 275 | ||
95 | 325 | 260 | 385 | 220 | 330 | ||
120 | 385 | 300 | 445 | 260 | 385 | ||
150 | 440 | 350 | 505 | 305 | 435 | ||
185 | 510 | 405 | 570 | 350 | 500 | ||
240 | 605 | — | — | — | — |
* Токи относятся к кабелям и проводам с нулевой жилой и без нее.
Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных |
|||||||
Сечение токопроводящей жилы, мм. | Ток, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
2,5 | 23 | 21 | 34 | 19 | 29 | ||
4 | 31 | 29 | 42 | 27 | 38 | ||
6 | 38 | 38 | 55 | 32 | 46 | ||
10 | 60 | 55 | 80 | 42 | 70 | ||
16 | 75 | 70 | 105 | 60 | 90 | ||
25 | 105 | 90 | 135 | 75 | 115 | ||
35 | 130 | 105 | 160 | 90 | 140 | ||
50 | 165 | 135 | 205 | 110 | 175 | ||
70 | 210 | 165 | 245 | 140 | 210 | ||
95 | 250 | 200 | 295 | 170 | 255 | ||
120 | 295 | 230 | 340 | 200 | 295 | ||
150 | 340 | 270 | 390 | 235 | 335 | ||
185 | 390 | 310 | 440 | 270 | 385 | ||
240 | 465 | — | — | — | — |
Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.
Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки | |||||
Сечение медных жил проводов и кабелей, кв.мм | Допустимый длительный ток нагрузки для проводов и кабелей, А | Номинальный ток автомата защиты, А | Предельный ток автомата защиты, А | Максимальная мощность однофазной нагрузки при U=220 B | Характеристика примерной однофазной бытовой нагрузки |
1,5 | 19 | 10 | 16 | 4,1 | группа освещения и сигнализации |
2,5 | 27 | 16 | 20 | 5,9 | розеточные группы и электрические полы |
4 | 38 | 25 | 32 | 8,3 | водонагреватели и кондиционеры |
6 | 46 | 32 | 40 | 10,1 | электрические плиты и духовые шкафы |
10 | 70 | 50 | 63 | 15,4 | вводные питающие линии |
В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.
Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях | |
Наименование линий | Наименьшее сечение кабелей и проводов с медными жилами, кв.мм |
Линии групповых сетей | 1,5 |
Линии от этажных до квартирных щитков и к расчетному счетчику | 2,5 |
Линии распределительной сети (стояки) для питания квартир | 4 |
Надеемся данная информация была полезна для Вас. Мы же напоминаем что у нас Вы можете купить кабель МКЭКШВнг отличного качества по низкой цене.
Сечение провода и нагрузка (мощность) таблица
При монтаже электропроводки в квартире или в частном доме очень важно правильно подобрать сечение провода. Если взять слишком толстый кабель, то это «влетит вам в копеечку», так как его цена напрямую зависит от диаметра (сечения) токопроводящих жил. Применение же тонкого кабеля приводит к его перегреву и при несрабатывании защиты возможно оплавление изоляции, короткое замыкание и как следствие — пожар. Наиболее правильным будет выбор сечения провода в зависимости от нагрузки, что отражено в приведенных ниже таблицах.
Сечение кабеля
Сечение кабеля — это площадь среза токоведущей жилы. Если срез жилы круглый (как в большинстве случаев) и состоит из одной проволочки — то площадь/сечение определяется по формуле площади круга. Если в жиле много проволочек, то сечением будет сумма сечений всех проволочек в данной жиле.
Величины сечения во всех странах стандартизированы, причем стандарты бывшего СНГ и Европы в этой части полностью совпадают. В нашей стране документом, которым регулируется этот вопрос, являются «Правила устройства электроустановок» или кратко — ПУЭ.
Сечение кабеля выбирается исходя из нагрузок с помощью специальных таблиц, называемых «Допустимые токовые нагрузки на кабель.» Если нет никакого желания разбираться в этих таблицах — то Вам вполне достаточно знать, что на розетки желательно брать медный кабель сечением 1,5-2,5 мм², а на освещение — 1,0-1,5мм².
Для ввода одной фазы в рядовую 2-3 комнатную квартиру вполне хватит 6,0мм². Все равно на Ваших 40-80 м² большего оборудования не поместиться, даже с учетом электроплиты.
Многие электрики для «прикидки» нужного сечения считают, что 1мм² медного провода может пропустить через себя 10А электрического тока: соответственно 2,5 мм² меди способны пропустить 25А, а 4,0 мм² — 40А и т.д. Если Вы немного проанализируете таблицу выбора сечения кабеля, то увидите, что такой метод годится только для прикидки и только для кабелей сечением не выше 6,0мм².
Ниже дана сокращенная таблица выбора сечения кабеля до 35 мм² в зависимости от токовых нагрузок. Там же для Вашего удобства приведена суммарная мощность электрооборудования при 1-фазном (220В) и 3-фазном (380В) потреблении.
При прокладке кабеля в трубе (т.е. в любых закрытых пространствах) возможные токовые нагрузки на кабель должны быть меньше, чем при прокладке открыто. Это связано с тем, что кабель в процессе эксплуатации нагревается, а теплоотдача в стене или в земле значительно ниже, чем на открытом пространстве.
Когда нагрузка называется в кВт — то речь идет о совокупной нагрузке. Т.е. для однофазного потребителя нагрузка будет указана по одной фазе, а для трехфазного — совокупно по всем трем. Когда величина нагрузки названа в амперах (А) — речь всегда идет о нагрузке на одну жилу (или фазу).
Таблица нагрузок по сечению кабеля:
Сечение кабеля, мм² | Проложенные открыто | Проложенные в трубе | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
медь | алюминий | медь | алюминий | |||||||||
ток, А | мощность, кВт | ток, А | мощность, кВт | ток, А | мощность, кВт | ток, А | мощность, кВт | |||||
220В | 380В | 220В | 380В | 220В | 380В | 220В | 380В | |||||
0.5 | 11 | 2.4 | ||||||||||
0.75 | 15 | 3.3 | ||||||||||
1 | 17 | 3.7 | 6.4 | 14 | 3 | 5.3 | ||||||
1.5 | 23 | 5 | 8.7 | 15 | 3.3 | 5.7 | ||||||
2.5 | 30 | 6.6 | 11 | 24 | 5.2 | 9.1 | 21 | 4.6 | 7.9 | 16 | 3.5 | 6 |
4 | 41 | 9 | 15 | 32 | 7 | 12 | 27 | 5.9 | 10 | 21 | 4.6 | 7.9 |
6 | 50 | 11 | 19 | 39 | 8.5 | 14 | 34 | 7.4 | 12 | 26 | 5.7 | 9.8 |
10 | 80 | 17 | 30 | 60 | 13 | 22 | 50 | 11 | 19 | 38 | 8.3 | 14 |
16 | 100 | 22 | 38 | 75 | 16 | 28 | 80 | 17 | 30 | 55 | 12 | 20 |
25 | 140 | 30 | 53 | 105 | 23 | 39 | 100 | 22 | 38 | 65 | 14 | 24 |
35 | 170 | 37 | 64 | 130 | 28 | 49 | 135 | 29 | 51 | 75 | 16 | 28 |
Для самостоятельного расчета необходимого сечение кабеля, например, для ввода в дом, можно воспользоваться кабельным калькулятором или выбрать необходимое сечение по таблице.
Настоящая таблица касается кабелей и проводов в резиновой и пластмассовой изоляции. Это такие широко распространенные марки как: ПВС, ВВП, ВПП, ППВ, АППВ, ВВГ. АВВГ и ряд других. На кабели в бумажной изоляции есть своя таблица, на не изолированные провода и шины — своя.
При расчетах сечения кабеля специалист должен также учитывать методы прокладки кабеля: в лотках, пучками и т.п.
- Кроме того, величины из таблиц о допустимых токовых нагрузках должны быть откорректированы следующими снижающими коэффициентами:
- поправочный коэффициент, соответствующий сечению кабеля и расположению его в блоке;
- поправочный коэффициент на температуру окружающей среды;
- поправочный коэффициент для кабелей, прокладываемых в земле;
- поправочный коэффициент на различное число работающих кабелей, проложенных рядом.
Расчет сечения провода
Начнем не с таблицы, а с расчета. То есть, каждый человек, не имея под рукой интернет, где в свободном доступе ПУЭ с таблицами имеется, может самостоятельно определить сечение кабеля по току. Для этого потребуется штангенциркуль и формула.
Если рассмотреть сечение кабеля, то это круг с определенным диаметром.
Существует формула площади круга: S= 3,14*D²/4, где 3,14 – это Архимедово число, «D» — диаметр измеренной жилы. Формулу можно упростить: S=0,785*D².
Если провод состоит из нескольких жил, то замеряется диаметр каждой, вычисляется площадь, затем все показатели суммируются. А как вычислить сечение кабеля, если каждая его жила состоит из нескольких тоненьких проводков?
Процесс немного усложняется, но не сильно. Для этого придется подсчитать количество проводков в одной жиле, измерить диаметр одного проводка, вычислить его площадь по описанной формуле и умножить данный показатель на количество проводков. Это и будет сечение одной жилы. Теперь необходимо это значение умножить на количество жил.
Если нет желания считать проводки и измерять их размеры, надо просто замерить диаметр одной жилы, состоящий из нескольких проводов. Снимать размеры надо аккуратно, чтобы не смять жилу. Обратите внимание, что этот диаметр не является точным, потому что между проводками остается пространство.
Соотношение тока и сечения
Чтобы понять, как работает электрический кабель, необходимо вспомнить обычную водопроводную трубу. Чем больше ее диаметр, тем больше воды через нее будет проходить. То же самое и с проводами.
Чем больше их площадь, тем большей силы ток, через них пройдет, тем большую нагрузку такой провод выдерживает. При этом кабель не будет перегреваться, что является самым важным требованием правил пожарной безопасности.
Поэтому связка сечение – ток является основным критерием, который используется в подборе электрических проводов в разводке. Поэтому вам необходимо сначала разобраться, сколько бытовых приборов и какой общей мощности будет подключены к каждому шлейфу.
Сечение жилы провода, мм2 | Медные жилы | Алюминиевые жилы | ||
---|---|---|---|---|
Ток, А | Мощность, Вт | Ток, А | Мощность, Вт | |
0.5 | 6 | 1300 | ||
0.75 | 10 | 2200 | ||
1 | 14 | 3100 | ||
1.5 | 15 | 3300 | 10 | 2200 |
2 | 19 | 4200 | 14 | 3100 |
2.5 | 21 | 4600 | 16 | 3500 |
4 | 27 | 5900 | 21 | 4600 |
6 | 34 | 7500 | 26 | 5700 |
10 | 50 | 11000 | 38 | 8400 |
16 | 80 | 17600 | 55 | 12100 |
25 | 100 | 22000 | 65 | 14300 |
К примеру, на кухне обязательно устанавливается холодильник, микроволновка, кофемолка и кофеварка, электрочайник иногда посудомоечная машина. То есть, все эти прибору могут в один момент быть включены одновременно. Поэтому в расчетах и используется суммарная мощность помещения.
Узнать потребляемую мощность каждого прибора можно из паспорта изделия или на бирке.
- Для примера обозначим некоторые из них:
- Чайник – 1-2 кВт.
- Микроволновка и мясорубка 1,5-2,2 кВт.
- Кофемолка и кофеварка – 0,5-1,5 кВт.
- Холодильник 0,8 кВт.
Узнав мощность, которая будет действовать на проводку, можно подобрать ее сечение из таблицы. Не будем рассматривать все показатели данной таблицы, покажем те, которые преобладают в быту.
Чем отличается кабель от провода
Прежде чем перейти к основному содержимому, нам необходимо понять, что же мы все-таки хотим рассчитать, сечение провода или кабеля, в чем различия одного от другого!? Несмотря на то, что обыватель применяет эти два слова как синонимы, подразумевая под этим что-то свое, но если быть дотошными, то разница все же имеется.
Так провод это одна токопроводящая жила, будь то моножила или набор проводников, изолированная в диэлектрик, в оболочку. А вот кабель, это уже несколько таких проводов, объединенных в единое целое, в своей защитной и изоляционной оболочке. Для того, чтобы вам было лучше понятно, что к чему, взгляните на картинку.
Так вот, теперь мы в курсе, что рассчитывать нам необходимо именно сечение провода, то есть одного токопроводящего элемента, а второй будет уже уходить от нагрузки, обратно к питанию.
Однако мы порой и сами забываемся не лучше Вашего, так что если вы нас подловите на том, что где-то все же встретится слово кабель, то не сочтите уж за невежество, стереотипы делают свое дело.
Выбор кабеля
Делать внутреннюю разводку лучше всего из медных проводов. Хотя алюминиевые им не уступят. Но тут есть один нюанс, который связан с правильно проведенном соединении участков в распределительной коробке. Как показывает практика, места соединений часто выходят из строя из-за окисления алюминиевого провода.
Еще один вопрос, какой провод выбрать: одножильный или многожильный? Одножильный имеет лучшую проводимость тока, поэтому именно его рекомендуют к применению в бытовой электрической разводке. Многожильный имеет высокую гибкость, что позволяет его сгибать в одном месте по несколько раз без ущерба качеству.
Одножильный или многожильный
При монтаже электропроводки обычно применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ. В этом списке встречаются как гибкие кабели, так и с моножилой.
Здесь мы хотели бы сказать вам одну вещь. Если ваша проводка не будет шевелиться, то есть это не удлинитель, не место сгиба, которое постоянно меняет свое положение, то предпочтительно использовать моножилу.
Вы спросите почему? Все просто! Не смотря на то, насколько хорошо не были бы уложены в защитную изоляционною оплетку проводники, под нее все же попадет воздух, в котором содержится кислород. Происходит окисление поверхности меди.
В итоге, если проводников много, то площадь окисления намного больше, а значит токопроводящее сечение «тает» на много больше. Да, это процесс длительный, но и мы не думаем, что вы собрались менять проводку часто. Чем больше она проработает, тем лучше.
Особенно это эффект окисления будет сильно проявляться у краев реза кабеля, в помещениях с перепадом температуры и при повышенной влажности. Так что мы вам настоятельно рекомендуем использовать моножилу! Сечение моножилы кабеля или провода изменится со временем незначительно, а это так важно, при наших дальнейших расчетах.
Медь или алюминий
В СССР большинство жилых домов оснащались алюминиевой проводкой, это было своеобразной нормой, стандартом и даже догмой. Нет, это совсем не значит, что страна была бедная, и не хватало на меди. Даже в некоторых случая наоборот.
Но видимо проектировщики электрических сетей решили, что экономически можно много сэкономить, если применять алюминий, а не медь. Действительно, темпы строительства были огромнейшие, достаточно вспомнить хрущевки, в которых все еще живет половина страны, а значит эффект от такой экономии был значительным. В этом можно не сомневаться.
Тем не менее, сегодня другие реалии, и алюминиевую проводку в новых жилых помещениях не применяют, только медную. Это исходит из норм ПУЭ пункт 7.1.34 «В зданиях следует применять кабели и провода с медными жилами…».
Так вот, мы вам настоятельно не рекомендуем экспериментировать и пробовать алюминий. Минусы его очевидны. Алюминиевые скрутки невозможно пропаять, так же очень трудно сварить, в итоге контакты в распределительных коробках могут со временем нарушиться. Алюминий очень хрупкий, два-три изгиба и провод отпал.
Будут постоянные проблемы с подключением его к розеткам, выключателем. Опять же если говорить о проводимой мощности, то медный провод с тем же сечением для алюминия 2,5 мм.кв. допускает длительный ток в 19А, а для меди в 25А. Здесь разница больше чем 1 КВт.
Так что еще раз повторимся — только медь! Далее мы и будем уже исходить из того, что сечение рассчитываем для медного провода, но в таблицах приведем значения и для алюминия. Мало ли что.
Зачем производится расчет
Провода и кабели, по которым протекает электрический ток, являются важнейшей частью электропроводки.
Расчет сечения провода необходимо производить затем, чтобы убедится, что выбранный провод соответствует всем требованиям надежности и безопасной эксплуатации электропроводки.
Безопасная эксплуатация заключается в том, что если вы выберете сечение, не соответствующее его токовым нагрузкам, то это приведет к чрезмерному перегреву провода, плавлению изоляции, короткому замыканию и пожару.
Поэтому к вопросу о выборе сечения провода необходимо отнестись очень серьезно.
Что нужно знать
Основным показателем, по которому рассчитывают провод, является его длительно допустимая токовая нагрузка. Проще говоря, это такая величина тока, которую он способен пропускать на протяжении длительного времени.
Чтобы найти величину номинального тока, необходимо подсчитать мощность всех подключаемых электроприборов в доме. Рассмотрим пример расчета сечения провода для обычной двухкомнатной квартиры.
Таблица потребляемой мощности/силы тока бытовыми электроприборами
Электроприбор | Потребляемая мощность, Вт | Сила тока, А |
---|---|---|
Стиральная машина | 2000 – 2500 | 9,0 – 11,4 |
Джакузи | 2000 – 2500 | 9,0 – 11,4 |
Электроподогрев пола | 800 – 1400 | 3,6 – 6,4 |
Стационарная электрическая плита | 4500 – 8500 | 20,5 – 38,6 |
СВЧ печь | 900 – 1300 | 4,1 – 5,9 |
Посудомоечная машина | 2000 – 2500 | 9,0 – 11,4 |
Морозильники, холодильники | 140 – 300 | 0,6 – 1,4 |
Мясорубка с электроприводом | 1100 – 1200 | 5,0 – 5,5 |
Электрочайник | 1850 – 2000 | 8,4 – 9,0 |
Электрическая кофеварка | 630 – 1200 | 3,0 – 5,5 |
Соковыжималка | 240 – 360 | 1,1 – 1,6 |
Тостер | 640 – 1100 | 2,9 – 5,0 |
Миксер | 250 – 400 | 1,1 – 1,8 |
Фен | 400 – 1600 | 1,8 – 7,3 |
Утюг | 900 –1700 | 4,1 – 7,7 |
Пылесос | 680 – 1400 | 3,1 – 6,4 |
Вентилятор | 250 – 400 | 1,0 – 1,8 |
Телевизор | 125 – 180 | 0,6 – 0,8 |
Радиоаппаратура | 70 – 100 | 0,3 – 0,5 |
Приборы освещения | 20 – 100 | 0,1 – 0,4 |
После того как мощность будет известна расчет сечения провода или кабеля сводится к определению силы тока на основании этой мощности. Найти силу тока можно по формуле:
1) Формула расчета силы тока для однофазной сети 220 В:
расчет силы тока для однофазной сети
где Р — суммарная мощность всех электроприборов, Вт;
U — напряжение сети, В;
КИ= 0.75 — коэффициент одновременности;
cos для бытовых электроприборов- для бытовых электроприборов.
2) Формула для расчета силы тока в трехфазной сети 380 В:
расчет силы тока для трехфазной сети
Зная величину тока, сечение провода находят по таблице. Если окажется что расчетное и табличное значения токов не совпадают, то в этом случае выбирают ближайшее большее значение. Например, расчетное значение тока составляет 23 А, выбираем по таблице ближайшее большее 27 А — с сечением 2.5 мм2.
Какой провод лучше использовать
На сегодняшний день для монтажа, как открытой электропроводки, так и скрытой, конечно же большой популярностью пользуются медные провода.
- Медь, по сравнению с алюминием, более эффективна:
- она прочнее, более мягкая и в местах перегиба не ломается по сравнению с алюминием;
- меньше подвержена коррозии и окислению. Соединяя алюминий в распределительной коробке, места скрутки со временем окисляются, это приводит к потере контакта;
- проводимость меди выше чем алюминия, при одинаковом сечении медный провод способен выдержать большую токовую нагрузку чем алюминиевый.
Недостатком медных проводов является их высокая стоимость. Стоимость их в 3-4 раза выше алюминиевых. Хотя медные провода по стоимости дороже все же они являются более распространенными и популярными в использовании чем алюминиевые.
Расчет сечения медных проводов и кабелей
Подсчитав нагрузку и определившись с материалом (медь), рассмотрим пример расчета сечения проводов для отдельных групп потребителей, на примере двухкомнатной квартиры.
Как известно, вся нагрузка делится на две группы: силовую и осветительную.
В нашем случае основной силовой нагрузкой будет розеточная группа, установленная на кухне и в ванной. Так как там устанавливается наиболее мощная техника (электрочайник, микроволновка, холодильник, бойлер, стиральная машина и т.п.).
Для этой розеточной группы выбираем провод сечением 2.5мм2. При условии, что силовая нагрузка будет разбросана по разным розеткам. Что это значит? Например, на кухне для подключения всей бытовой техники нужно 3-4 розетки подключенных медным проводом сечением 2.5 мм2 каждая.
Если вся техника подключается через одну единственную розетку, то сечения в 2.5 мм2 будет недостаточно, в этом случае нужно использовать провод сечением 4-6 мм2. В жилых комнатах для питания розеток можно использовать провод сечением 1.5 мм2, но окончательный выбор нужно принимать после соответствующих расчетов.
Питание всей осветительной нагрузки выполняется проводом сечением 1.5 мм2.
Необходимо понимать, что мощность на разных участках электропроводки будет разной, соответственно и сечение питающих проводов тоже разным. Наибольшее его значение будет на вводном участке квартиры, так как через него проходит вся нагрузка. Сечение вводного питающего провода выбирают 4 – 6 мм2.
При монтаже электропроводки применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ.
Выбор сечения кабеля по мощности
Вот мы добрались и до сути нашей статьи. Однако всё, что было выше, упускать нельзя, а значит и мы умолчать не могли.
Если попытаться изложить мысль логично и по-простому, то через каждое условное сечение проводника может пройти ток определенной силы. Заключение это вполне логичное и теперь лишь осталось узнать эти соотношения и соотнести для разных диаметров провода, исходя из его типоряда.
Также нельзя умолчать, что здесь, при расчете сечения по току, в «игру вступает» и температура. Да, это новая составляющая – температура. Именно она способна повлиять на сечение. Как и почему, давайте разбираться.Все мы знаем о броуновском движении. О постоянном смещении ионов в кристаллической решетке. Все это происходит во всех материалах, в том числе и в проводниках. Чем выше температура, тем больше будут эти колебания ионов внутри материала. А мы знаем, что ток — это направленное движение частиц.
Так вот, направленное движение частиц будет сталкиваться в кристаллической решетке с ионами, что приведет к повышению сопротивления для тока.
Чем выше температура, тем выше электрическое сопротивление проводника. Поэтому по умолчанию, сечение провода для определенного тока принимается при комнатной температуре, то есть при 18 градусах Цельсия. Именно при этой температуре приведены все справочные значения в таблицах, в том числе и наших.
Несмотря на то, что алюминиевые провода мы не рассматриваем в качестве проводов для электропроводки, по крайней мере, в квартире, тем не менее, они много где применяются. Скажем для проводки на улице. Именно поэтому мы также приведем значения зависимостей сечения и тока и для алюминиевых проводов.
Итак, для меди и алюминия будут следующие показатели зависимости сечения провода (кабеля) от тока (мощности). Смотрите таблицу.
Таблица проводников под допустимый максимальный ток для их использования в проводке:
С 2001 года алюминиевые провода для проводки в квартирах не применяются. (ПЭУ)
Да, здесь как заметил наш читатель, мы фактически не привели расчета, а лишь предоставили справочные данные, сведенные в таблицу, на основании этих расчетов. Но смеем вас замерить, что для расчетов необходимо перелопатить множество формул, и показателей. Начиная от температуры, удельного сопротивления, плотности тока и тому подобных.
Поэтому такие расчеты мы оставим для спецов. При этом необходимо заметить, что и они не являются окончательными, так как могут незначительно разнится, в зависимости от стандарта на материал и запаса провода по току, применяемого в разных странах.
А вот о чем мы еще хотели бы сказать, так это о переводе сечения провода в диаметр. Это необходимо, когда имеется провод, но по каким-то причинам маркировки на нем нет. В этом случае по диаметру провода можно вычислить сечения и наоборот из сечения диаметр.
Общепринятые сечения для проводки в квартире
Мы с вами много говорили о наименованиях, о материалах, об индивидуальных особенностях и даже о температуре, но упустили из вида жизненные обстоятельства.
Так если вы нанимаете электрика для того, чтобы он провел вам проводку в комнатах вашей квартиры или дома, то обычно принимаются следующие значения. Для освещения сечения провода берется в 1,5 мм 2, а для розеток в 2,5 мм 2.
Если проводка предназначена для подключения бойлеров, нагревателей, плит, то здесь уже рассчитывается сечение провода (кабеля) индивидуально.
Выбор сечения провода исходя из количества потребителей
О чем еще хотелось сказать, так это о том, что лучше использовать несколько независимых линий питания для каждого из помещений в комнате или квартире. Тем самым вы не будете применять провод с сечением 10 мм 2 для всей квартиры, проброшенный во все комнаты, от которого идут отводы.
Такой провод будет приходить на вводный автомат, а затем от него, в соответствии с мощностью потребляемой нагрузки будут разведены выбранные сечения проводов, для каждого из помещений.
Типовая принципиальная схема электропроводки для квартиры или дома с электрической плитой (с указанием сечения кабеля для электроприборов)
Токовые нагрузки в сетях с постоянным током
В сетях с постоянным током расчет сечения идет несколько по-другому. Сопротивление проводника постоянному напряжению гораздо выше, чем переменному (при переменном токе сопротивлением на длинах до 100 м вообще пренебрегают).
Кроме этого, для потребителей постоянного тока как правило очень важно, чтобы напряжение на концах было не ниже 0,5В (для потребителей переменного тока, как известно колебания напряжения в пределах 10% в любую сторону допустимы).
Есть формула, определяющая насколько упадет напряжение на концах по сравнению с базовым напряжением, в зависимости от длины проводника, его удельного сопротивления и силы тока в цепи:
U = ((p l) / S) I
- где:
- U — напряжение постоянного тока, В
- p — удельное сопротивление провода, Ом*мм2/м
- l — длина провода, м
- S — площадь поперечного сечения, мм2
- I — сила тока, А
Зная величины указанных показателей достаточно легко рассчитать нужное Вам сечение: методом подстановки, или с помощью простейших арифметических действий над данным уравнением.
Если же падение постоянного напряжения на концах не имеет значения, то для выбора сечения можно пользоваться таблицей для переменного тока, но при этом корректировать величины тока на 15% в сторону уменьшения, т.е. при постоянном токе справочные сечения кабеля могут пропускать тока на 15 % меньше, чем указано в таблице.
Подобное правило также работает для выбора автоматических выключателей для сетей с постоянным током, например: для цепей с нагрузкой в 25А, нужно брать автомат на 15% меньшего номинала, в нашем случае подходит предыдущий типоразмер автомата — 20А.
Кабель, передающий электрический ток, – один из важнейших элементов электрической сети. В случае выхода кабеля из строя работа всей системы становится невозможной, поэтому для предотвращения отказов, а также опасности возгорания от перегрева, следует произвести точный расчёт сечения кабеля по нагрузке.
Такой расчёт дает уверенность в безопасной и надёжной работе сети и приборов, но что ещё важнее – безопасности людей.
Выбор сечения, недостаточного для токовой нагрузки, приводит к перегреву, оплавлению и повреждению изоляции, а это, в свою очередь, – к короткому замыканию и даже пожару. Так что для проведения расчётов и тщательного выбора подходящего кабеля есть масса причин.
Что необходимо для расчёта по нагрузке
Основной показатель, помогающий рассчитать сечение и марку кабеля – предельно допустимая длительная нагрузка (по току). Если проще, то это – величина тока, которую кабель способен пропускать в условиях его прокладки без перегрева достаточно долго.
Для этого необходимо простое арифметическое суммирование мощностей всех электроприборов, которые будут включаться в сеть.
Следующим важным этапом, позволяющим достичь безопасности, является расчёт сечения кабеля по нагрузке, для чего необходимо подсчитать силу тока, используя формулу:
Для однофазной сети напряжением 220 В:
- Где:
- Р – это суммарная мощность для всех электроприборов, Вт;
- U — напряжение сети, В;
- COSφ — коэффициент мощности.
Для трёхфазной сети напряжением 380 В:
Наименование прибора | Примерная мощность, Вт |
---|---|
LCD-телевизор | 140-300 |
Холодильник | 300-800 |
Пылесос | 800-2000 |
Компьютер | 300-800 |
Электрочайник | 1000-2000 |
Кондиционер | 1000-3000 |
Освещение | 300-1500 |
Микроволновая печь | 1500-2200 |
Получив точное значение величины тока, следует обратиться к таблицам, позволяющим найти кабель или провод требуемого сечения и материала. Но если полученное значение величины тока не совсем совпадает с табличным значением, то не стоит «экономить», а лучше выбрать ближайшее, но большее значение сечения кабеля.
Пример: при напряжении сети 220 В полученное значение величины тока составило 22 ампера, ближайшее большее значение (27 А) имеет медный провод или кабель из меди, сечением 2,5 мм кв. Это означает, что оптимальным выбором станет именно такой кабель, а не с сечением 1,5 мм кв., имеющим значение допустимого длительного тока 19 А.Сечение токо- проводящих жил, мм | Медные жилы проводов и кабелей | |||
---|---|---|---|---|
Напряжение 220В | Напряжение 380В | |||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66 | 260 | 171,6 |
Если выбирается кабель с алюминиевыми жилами, то лучше взять сечение жилы не 2,5, а 4 мм кв.
Сечение токо- проводящих жил, мм | Алюминиевые жилы проводов и кабелей | |||
---|---|---|---|---|
Напряжение 220В | Напряжение 380В | |||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132 |
Расчёт для помещений
Предыдущий расчёт позволил точно вычислить материал и сечение вводного кабеля, по которому будет идти общая максимальная нагрузка. Теперь следует произвести аналогичные расчёты по каждому помещению и его группам. И вот почему: нагрузка на розеточные группы может значительно отличаться.
Так, розетки с подключённой стиральной машиной и феном нагружены гораздо больше, чем розетка для миксера и кофеварки на кухне. Поэтому не стоит «упрощать» задачу, без раздумий укладывая провод сечением 2,5 квадрата на розетки, так как иногда этого просто не хватит.
Следует помнить, что суммарная нагрузка в помещении состоит из 1) силовой и 2) осветительной. И если с осветительной нагрузкой всё ясно – она выполняется медным проводом с сечением в 1,5 мм кв., то с розетками не так всё просто.
Следует помнить, что обычно кухня и ванная комната – наиболее «нагруженные» линии, так как именно там расположены холодильник, электрочайник, бойлер, микроволновка, а иногда и стиральная машинка. Поэтому лучше всего распределить эту нагрузку по различным розеточным группам, а не использовать блок на 5-6 розеток.
Иногда от «специалистов» можно услышать, что для розеток в остальных помещениях достаточно и «кабеля-полторушки», однако выдели бы вы те чёрные полосы, видные из-под обоев, которые оставляет после себя прогоревший кабель после включения в него масляного обогревателя или тепловентилятора!
- Наиболее распространенные марки проводов и кабелей:
- ППВ — медный плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
- АППВ — алюминиевый плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
- ПВС — медный круглый, количество жил — до пяти, с двойной изоляцией для прокладки открытой и скрытой проводки;
- ШВВП – медный круглый со скрученными жилами с двойной изоляцией, гибкий, для подключения бытовых приборов к источникам питания;
- ВВГ — кабель медный круглый, до четырех жил с двойной изоляцией для прокладки в земле;
- ВВП — кабель медный круглый одножильный с двойной ПВХ (поливинилхлорид) изоляцией, П — плоский (токопроводящие жилы расположены в одной плоскости).
Сергей Владимирович, инженер-электрик.
Подробнее об авторе.
Расчет сечения кабеля
Сечение кабеля — это площадь среза токоведущей жилы. Если срез жилы круглый (как в большинстве случаев) и состоит из одной проволочки — то площадь/сечение определяется по формуле площади круга. Если в жиле много проволочек, то сечением будет сумма сечений всех проволочек в данной жиле.
Величины сечения во всех странах стандартизированы, причем стандарты бывшего СНГ и Европы в этой части полностью совпадают. В нашей стране документом, которым регулируется этот вопрос, являются «Правила устройства электроустановок» или кратко — ПУЭ.
Сечение кабеля выбирается исходя из нагрузок с помощью специальных таблиц, называемых «Допустимые токовые нагрузки на кабель.» Если нет никакого желания разбираться в этих таблицах — то Вам вполне достаточно знать, что на розетки желательно брать медный кабель сечением 1,5-2,5мм², а на освещение — 1,0-1,5мм². Для ввода одной фазы в рядовую 2-3 комнатную квартиру вполне хватит 6,0мм². Все равно на Ваших 40-80 м² большего оборудования не поместиться, даже с учетом электроплиты.
Многие электрики для «прикидки» нужного сечения считают, что 1мм² медного провода может пропустить через себя 10А электрического тока: соответственно 2,5 мм² меди способны пропустить 25А, а 4,0 мм² — 40А и т.д. Если Вы немного проанализируете таблицу выбора сечения кабеля, то увидите, что такой метод годится только для прикидки и только для кабелей сечением не выше 6,0мм².
Ниже дана сокращенная таблица выбора сечения кабеля до 35 мм² в зависимости от токовых нагрузок. Там же для Вашего удобства приведена суммарная мощность электрооборудования при 1-фазном (220В) и 3-фазном (380В) потреблении. Обратите внимание, что при прокладке кабеля в трубе (т.е. в любых закрытых пространствах, как например, в стене) возможные токовые нагрузки на кабель должны быть меньше, чем при прокладке открыто. Это связано с тем, что кабель в процессе эксплуатации нагревается, а теплоотдача в стене или в земле значительно ниже, чем на открытом пространстве.
Важно Когда нагрузка называется в кВт — то речь идет о совокупной нагрузке. Т.е. для однофазного потребителя нагрузка будет указана по одной фазе, а для трехфазного — совокупно по всем трем. Когда величина нагрузки названа в амперах (А) — речь всегда идет о нагрузке на одну жилу (или фазу).
Сечение кабеля, мм² | Проложенные открыто | Проложенные в трубе | ||||||||||
медь | алюминий | медь | алюминий | |||||||||
ток, А | кВт | ток, А | кВт | ток, А | кВт | ток, А | кВт | |||||
220В | 380В | 220В | 380В | 220В | 380В | 220В | 380В | |||||
0,5 | 11 | 2,4 | ||||||||||
0,75 | 15 | 3,3 | ||||||||||
1,0 | 17 | 3,7 | 6,4 | 14 | 3,0 | 5,3 | ||||||
1,5 | 23 | 5,0 | 8,7 | 15 | 3,3 | 5,7 | ||||||
2,5 | 30 | 6,6 | 11,0 | 24 | 5,2 | 9,1 | 21 | 4,6 | 7,9 | 16,0 | 3,5 | 6,0 |
4,0 | 41 | 9,0 | 15,0 | 32 | 7,0 | 12,0 | 27 | 5,9 | 10,0 | 21,0 | 4,6 | 7,9 |
6,0 | 50 | 11,0 | 19,0 | 39 | 8,5 | 14,0 | 34 | 7,4 | 12,0 | 26,0 | 5,7 | 9,8 |
10,0 | 80 | 17,0 | 30,0 | 60 | 13,0 | 22,0 | 50 | 11,0 | 19,0 | 38,0 | 8,3 | 14,0 |
16,0 | 100 | 22,0 | 38,0 | 75 | 16,0 | 28,0 | 80 | 17,0 | 30,0 | 55,0 | 12,0 | 20,0 |
25,0 | 140 | 30,0 | 53,0 | 105 | 23,0 | 39,0 | 100 | 22,0 | 38,0 | 65,0 | 14,0 | 24,0 |
35,0 | 170 | 37,0 | 64,0 | 130 | 28,0 | 49,0 | 135 | 29,0 | 51,0 | 75,0 | 16,0 | 28,0 |
Если Вы внимательно изучили приведенную таблицу и таки желаете самостоятельно определить необходимое Вам сечение кабеля, например, для ввода в дом, то Вам также необходимо знать следующее. Настоящая таблица касается кабелей и проводов в резиновой и пластмассовой изоляции. Это такие широко распространенные марки как: ПВС, ВВП, ВПП, ППВ, АППВ, ВВГ. АВВГ и ряд других. На кабеля в бумажной изоляции есть своя таблица, на не изолированные провода и шины — своя. При расчетах сечения кабеля специалист должен также учитывать методы прокладки кабеля: в лотках, пучками и т.п. Кроме того, величины из таблиц о допустимых токовых нагрузках должны быть откорректированы следующими снижающими коэффициентами:
поправочный коэффициент, соответствующий сечению кабеля и расположению его в блоке;
поправочный коэффициент на температуру окружающей среды;
поправочный коэффициент для кабелей, прокладываемых в земле;
поправочный коэффициент на различное число работающих кабелей, проложенных рядом.
Если и это Вас не останавливает — то открывайте справочник под ред.Белоруссова на стр.503, а мы снимаем шляпу.
Если деньги для Вас не проблема, тогда смело увеличивайте справочное сечение жилы на 50%, и спите спокойно: так как даже все поправочные коэффициенты в сумме не дадут больше.
При расчете необходимого сечения кабеля основной критерий — это количество тепла, выделяемого кабелем при прохождении через него электрического тока и температура окружающей среды. Вообще-то, любой электропроводник может пропустить через себя очень много тока, вплоть до температуры своего плавления, а это в десятки раз больше, чем указано в справочниках. Обратите внимание, что в справочниках приведены величины для длительных токовых нагрузок на кабель. А кратковременные нагрузки могут быть гораздо выше. Т.е. запас всегда есть. Но при условии, что Вы приобрели кабель, произведенный по ГОСТу. Если же Вам вместо медного кабеля продали нечто, сделанное из какого-то сплава и покрытое пластиком из вторичного полиэтилена (из использованных кульков и ПЭТ-бутылок), то зачем Вам все эти таблицы: см. статью «Как выбрать кабель»
Токовые нагрузки в сетях с постоянным током
В сетях с постоянным током расчет сечения идет несколько по другому. Сопротивление проводника постоянному
напряжению гораздо выше, чем переменному (при переменном токе сопротивлением на длинах до 100 м вообще пренебрегают).
Кроме этого, для потребителей постоянного тока как правило очень важно, чтобы напряжение на концах было не ниже 0,5В (для потребителей
переменного тока, как известно колебания напряжения в пределах 10% в любую строону допустимы). Есть формула, определяющая
насколько упадет напряжение на концах по сравнению с базовым напряжением, в зависимости от длины проводника, его удельного сопротивления
и силы тока в цепи:
U = ((p l) / S) I, где
U — напряжение постоянного тока, В
p — удельное сопротивление провода, Ом*мм2/м
l — длина провода, м
S — площадь поперечного сечения, мм2
I — сила тока, А
Зная величины указанных показателей достаточно легко рассчитать нужное Вам сечение: методом подставновки, или с помощью простйеших арифметических
действий над данным уравнением.
Если же падение постоянного напряжения на концах не имеет значения, то для для выбора сечения можно пользоваться таблицей для переменного тока, но при этом корректировать величины тока на 15% в сторону уменьшения, т.е. при постоянном токе справочные сечения кабеля могут пропускать тока на 15 % меньше, чем указано в таблице. Подобное правило также работает для выбора автоматических выключателей для сетей с постоянным током, например: для цепей с нагрузкой в 25А, нужно брать автомат на 15% меньшего номинала, в нашем случае подходит предыдущий типоразмер автомата — 20А.
Удельное электрическое сопротивление некоторых металлов, применяемых в электротехнике
Металл | Сопротивление, Ом·мм2/м |
Серебро | 0,015…0,0162 |
Медь | 0,01724…0,018 |
Золото | 0,023 |
Алюминий | 0,0262…0,0295 |
Вольфрам | 0,053…0,055 |
Цинк | 0,059 |
Никель | 0,087 |
Железо | 0,098 |
Платина | 0,107 |
Олово | 0,12 |
Свинец | 0,217…0,227 |
Внимание: это авторская статья, поэтому при использовании материала просьба делать ссылку на первоисточник.
author: Оleg Stolyarov
Главная Услуги Загрузить | В таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов, для расчетов и выбора защитных средств, кабельно-проводниковых материалов и электрооборудования. Медные жилы, проводов и кабелей
Алюминиевые жилы, проводов и кабелей
В расчете применялись: данные таблиц ПУЭ; формулы активной мощности для однофазной и трехфазной симметричной нагрузки расчет кабеля по мощности, сечение кабеля по току, сечение провода по току, сечение кабеля по мощности, выбор сечения кабеля по мощности, расчет сечения кабеля по мощности, сечение провода по мощности, сечение провода и мощность, таблица сечения проводов, расчет сечения кабеля, сечение кабеля от мощности, сечение кабеля и мощность, выбор сечения кабеля по току, выбор кабеля по мощности, сечение провода мощность, расчет сечения провода по мощности, расчет кабеля по мощности, таблица сечения кабеля, сечение провода таблица, расчёт сечения кабеля по мощности, выбор кабеля по току, таблица соотношения ампер киловатт сечение, медь сколько киловатт, допустимый ток проводов сечения |
Как рассчитать сечение кабеля по мощности потребителя, длине и току
На сегодняшний день существует широкий ассортимент кабельной продукции, с поперечным сечением жил от 0,35 мм.кв. и выше.
Если неправильно выбрать сечение кабеля для бытовой проводки, то результат может иметь два итога:
- Чересчур толстая жила «ударит» по Вашему бюджету, т.к. ее погонный метр будет стоить дороже.
- При неподходящем диаметре проводника (меньшем, чем необходимо), жилы начнут нагреваться и плавить изоляцию, что вскоре приведет к самовозгоранию электропроводки и короткому замыканию.
Как Вы понимаете, и тот и другой итог неутешительный, поэтому перед монтажом электропроводки в доме и квартире необходимо правильно рассчитать сечение кабеля в зависимости от мощности потребителя, силы тока и длины линии. Сейчас мы подробно рассмотрим каждую из методик.
Расчет по мощности электроприборов
Для каждого кабеля есть определенная величина тока (мощности), которую он способен выдержать при работе электроприборов. Если ток (мощность), потребляемый всеми приборами, будет превышать допустимую величину для токопроводящей жилы, то в скором времени аварии не избежать.
Чтобы самостоятельно рассчитать мощность электроприборов в доме, необходимо на лист бумаги выписать характеристики каждого прибора отдельно (плиты, телевизора, светильников, пылесоса и т.д.). После этого все значения суммируются, и готовое число используется для выбора кабеля с жилами с оптимальной площадью поперечного сечения.
Формула расчета имеет вид:
Pобщ = (P1+P2+P3+…+Pn)*0.8,
Где: P1..Pn–мощность каждого прибора, кВт
Обращаем Ваше внимание на то, что получившееся число необходимо умножить на поправочный коэффициент – 0,8. Этот коэффициент обозначает, что из всех электроприборов одновременно работать будет только 80%. Такой расчет более логичный, потому что, к примеру, пылесосом либо феном Вы точно не будете пользоваться в течение длительного времени без перерыва.
Таблицы выбора сечения кабеля по мощности потребителя:
Это приведенные и упрощенные таблицы, более точные значения вы можете найти в ПУЭ п.1.3.10-1.3.11.
Как вы видите, для каждого определенного вида кабеля табличные значения имеют свои данные. Все что Вам нужно, это найти ближайшее значение мощности и посмотреть соответствующее сечение жил.
Чтобы Вы наглядно поняли, как правильно рассчитать кабель по мощности, приведем простой пример:
Мы подсчитали, что суммарная мощность всех электроприборов в квартире составляет 13 кВт. Данное значение необходимо умножить на коэффициент 0,8, что в результате даст 10,4 кВт действительной нагрузки. Далее в таблице ищем подходящее значение в колонке. Нас устраивает цифра «10,1» при однофазной сети (напряжение 220В) и «10,5», если сеть трехфазная.
Это значит, что нужно выбрать такое сечение жил кабеля, который будет питать все расчётные приборы – в квартире, комнате или каком-либо другом помещении. То есть такой расчёт нужно проводить для каждой розеточной группы, запитанной от одного кабеля, или для каждого прибора, если он запитан напрямую от щитка. В примере выше, мы привели расчет площади поперечного сечения жил вводного кабеля на весь дом или квартиру.
Итого, выбор сечения останавливаем на 6-миллиметровом проводнике при однофазной сети либо 1,5-миллиметровом при трехфазной сети. Как вы видите, все довольно просто и даже электрик-новичок справится с таким заданием самостоятельно!
Расчет по токовой нагрузке
Расчет сечения кабеля по току более точный, поэтому лучше всего пользоваться им. Суть аналогична, но только в данном случае необходимо определить токовую нагрузку на электропроводку. Для начала по формулам считаем силу тока по каждому из приборов.
Если в доме однофазная сеть, для расчета необходимо воспользоваться следующей формулой:Для трехфазной сети формула будет иметь вид:Где, P – мощность электроприбора, кВт
cos Фи- коэффициент мощности
Более подробно о формулах, связанных с вычислением мощности, можно прочитать в статье: https://samelectrik.ru/kak-najti-moshhnost-toka.html.
Далее все токи суммируются и по табличным значениям необходимо выбрать сечение кабеля по току.
Обращаем Ваше внимание на то, что от условий прокладки проводника будут зависеть значения табличных величин. При монтаже открытой электропроводки допустимые токовые нагрузки и мощность будут значительно большими, чем при прокладке проводки в трубе.
Повторимся, любой расчет сечения проводится для конкретного прибора или их группы.
Таблица выбора сечения кабеля по току и мощности:
Расчет по длине
Ну и последний способ, позволяющий рассчитать сечение кабеля – по длине. Суть следующих вычислений заключается в том, что каждый проводник имеет свое сопротивление, которое с увеличением протяженности линии способствует потерям напряжения (чем больше расстояние, тем больше и потери). В том случае, если величина потерь превысит отметку в 5%, необходимо выбрать проводник с жилами покрупнее.
Для вычислений используется следующая методика:
- Нужно рассчитать суммарную мощность электроприборов и силу тока (выше мы предоставили соответствующие формулы).
- Выполняется расчет сопротивления электропроводки. Формула имеет следующий вид: удельное сопротивление проводника (p) * длину (в метрах). Получившееся значение необходимо разделить на выбранное поперечное сечение кабеля.
R=(p*L)/S, где p – табличная величина
Обращаем Ваше внимание на то, что длина прохождения тока должна умножаться в два раза, т.к. ток изначально идет по одной жиле, а потом возвращается назад по другой.
- Рассчитываются потери напряжения: сила тока умножается на рассчитанное сопротивление.
Uпотерь=Iнагрузки*Rпровода
ПОТЕРИ=(Uпотерь/Uном)*100%
- Определяется величина потерь: потери напряжения делятся на напряжение в сети и умножаются на 100%.
- Итоговое число анализируется. Если значение меньше 5%, оставляем выбранное сечение жилы. В противном случае подбираем более “толстый” проводник.
Допустим мы рассчитали, что сопротивление жил у нас 0,5 Ома, а ток 16 Ампер, тогда:
Uпотерь=16*0,5=8 Вольт
ПОТЕРИ=(8/220)*100%=0,03636*100%=3,6%
Что вполне допустимо для большинства случаев, согласно ГОСТ 29322-14 «Стандартные напряжения». Подробнее в статье: https://samelectrik.ru/kakoe-otklonenie-napryazheniya-v-seti-schitaetsya-predelnym.html.
Таблица удельных сопротивлений:
Если Вы протягиваете линию на довольно протяженное расстояние, обязательно производите расчет с учетом потерь по длине, иначе будет высокая вероятность неправильного выбора сечения кабеля.
Видео примеры расчетов
Наглядные видео примеры всегда позволяют лучше усвоить информацию, поэтому предоставляем их к Вашему вниманию:
Видео инструкция: как самому рассчитать сечение жил
Видео инструкция: как правильно выбрать диаметр кабеля?
Расчет сечения кабеля по току, токовая нагрузка по сечению кабеля
Как кабели, так и провода, через которые постоянно проходит электрический ток — это важнейший элемент электропроводки, установленной на территории дома или любого другого помещения. Правильно подобрать сечение кабеля по току следует для того, чтобы проверить, действительно ли провод, выбранный покупателем, полностью соответствует требованиям безопасности и надежности. Безопасность следует рассматривать с точки выбора соответствующего сечения в зависимости от токовых нагрузок. При неправильном подборе провод будет постоянно подвергаться повышенному нагреву, изоляция начнет плавиться. Конечный итог — короткое замыкание и возникновение пожара. Соответственно, грамотный подбор сечения всегда требует серьезного подхода.
Для правильного расчета сечений всей электропроводки в квартире или доме мы рекомендуем обратиться в соответствующие проектные организации, так как при выполнении таких комплексных расчетов существует множество нюансов, описание которых выходит за рамки данной статьи.
Однако, даже в таком случае, вам необходимо знать ту базовую информацию, которая приводится далее.
Что нужно знать при совершении правильного выбора
Делая выбор сечения кабеля по току, главным параметром, на который ориентируются специалисты, является максимальный уровень токовой нагрузки. Иными словами, это величина электрического тока, которую он без проблем может пропускать через себя на протяжении длительного периода времени.
Для определения величины номинального тока следует определить суммарную мощность всех используемых электрических приборов. Точное значение мощности необходимо искать на корпусе прибора или в паспорте на него, мощность измеряется в ваттах (Вт).
Стоит отметить, что :
- На этапе планирования проводки вы можете еще не знать какие бытовые приборы будут подключаться, например, вы их еще не купили.
- К одной и той же розетке могут подключаться совершенно различные устройства, вплоть до очень мощных – утюга или фена.
- Рано или поздно к какой-либо розетке может быть подключен тройник или удлинитель, к которому, в свою очередь будет подключено несколько устройств.
При расчете сечения проводки необходимо делать значительный многократный запас. Исключение могут составлять разве что проводка к светильникам, так как в последнее время имеется тенденция снижения мощности источников света.
Ниже предлагаем ознакомиться с таблицей, в которой приведены примеры значения мощностей (в правой колонке) различных бытовых приборов. Параметры, естественно, могут быть разными, в зависимости от технических характеристик самого оборудования.
Итак, после того, как вы узнали мощность, то легко сможете вычислить силу тока, потребляемую приборами:
I = P / U
I обозначает силу тока в амперах, P — мощность приборов, указанная в инструкции по эксплуатации любого бытового оборудования, выраженную в ваттах. U — напряжение электрической сети, выраженное в вольтах, как правило, это 220 В. Подставив в формулу свои значения, полученные при подсчете количества потребителей в доме, рассчитать сечение провода можно будет без особого труда. Для максимальной точности рекомендуем воспользоваться калькулятором.
Например, типовые холодильник, микроволновка и чайник на кухне будут потреблять 300 Вт + 700 Вт + 1200 Вт = 2200 Вт. Делим полученную мощность на напряжение сети 220 В получаем суммарную силу тока: 2200 Вт / 220 В = 10 А.
Какие провода лучше всего использовать
На современном рынке представлена продукция, предназначенная для обустройства как скрытой, так и открытой электрической проводки внутри квартиры. При составлении расчетов сечения кабелей многие специалисты рекомендуют пользоваться медными проводами. Практика показывает, что по сравнению с алюминиевой продукцией, медь является более эффективным вариантом. На то есть ряд причин.
- Продукция имеет хороший запас прочности, характеризуется достаточно хорошей мягкостью. При возникновении мест перегиба конструкция не ломается, чего нельзя сказать об алюминиевых аналогах, требующих прямой прокладки без сильного перегиба.
- Медный материал меньше подвергается воздействию химических процессов — окислению и коррозии. При соединении алюминия внутри распределительной коробки со временем могут окислиться места скрутки. Соответственно, контакт может быть утерян.
- Используя калькулятор расчета сечения кабеля, мастера обращают внимание на показатели проводимости. У меди они более высокие. При наличии двух экземпляров с одинаковым сечением медная продукция сможет выдержать более высокий уровень токовой нагрузки, чем при использовании алюминия.
Единственный недостаток медного провода заключается в повышенной стоимости. Окончательная цена превышает алюминиевые аналоги в 3–4 раза. С другой стороны, отдав больше денег на прокладку электросети внутри дома, владелец получает на практике полноценную электрическую проводку, способную выдерживать сложные условия эксплуатации. Согласно требованиям Правил устройства электроустановок (ПУЭ), в зданиях необходимо прокладывать кабели и провода с медными жилами.
Применение продукции на основе алюминия рекомендуется при обустройстве распределительных и питающих сетей, но при условии, если расчетное сечение составляет 16 квадратных миллиметров или больше. В требованиях 7-ого издания ПУЭ указано, что алюминиевые провода и кабели сечением менее 16 мм² не допускаются к использованию при монтаже.
Расчет сечения
Определиться с выбором допустимой токовой нагрузки кабельной продукции с алюминиевыми и медными жилами вы можете с помощью таблиц, приведенных ниже. Обратите внимание – в табличке с алюминиевыми проводами подразумевается применение продукции, изготовленной с применением поливинилхлоридной пластиковой изоляции.
Для определения сечение необходимо найти соответствующее рассчитанное значение силы тока, умноженное на коэффициент запаса. Например, для нашего примера с 10 А, взяв запас примерно в 3 раза мы увидим, что необходим провод с сечением, не менее 2.5 мм². Конечно, если применить кабель с большим значением сечения, то хуже не будет. Еще раз повторюсь, что такой огромный коэффициент запаса мы берем при условии, если не знаем какая нагрузка может быть подключена в дальнейшем.
Информация, указанная в таблице, приводится в соответствии с требованиями профильного нормативного документа ГОСТ, регламентирующего особенности силовых кабелей, в которых присутствует пластмассовая изоляция.
Также обратите внимание, что выбираемый провод должен без нагрева выдерживать предельное значение автоматического выключателя щитка, к которому он подключен. Это крайне важно, так как в случае приближения потребляемой силы тока к значениям, предельным для электропроводки сработает автоматический выключатель, чем спасет вас от перегрева провода и возможного пожара.
После подсчета нагрузки и определения оптимального материала (в нашем случае это будет медь), рассмотрим еще один пример определения исходных параметров проводников. В данном случае будет вестись расчет сечения кабеля по длине и диаметру.
Известно, что нагрузка разделяется на две базовые категории — осветительную и силовую.
В случае с нашими измерениями базовой силовой нагрузкой считается группа розеток, установленных в ванной комнате и в кухонном помещении. Причина заключается в том, что именно здесь монтируется наиболее производительная бытовая аппаратура — чайники, микроволновые печи, холодильники, автоматические стиральные машины, бойлеры и так далее.
Делая окончательный выбор, следует ориентировать на проводник, который имеет сечение два с половиной квадратных миллиметра, но при условии, что величина силовой нагрузки будет разбрасываться по различным розеткам одновременно. Что это дает на практике? К примеру, чтобы подключить всю бытовую технику на территории кухни необходимо установить три-четыре розетки, которые подключаются с помощью медного провода. Многие заказчики часто задаются вопросом касательно того, можно ли соединять провода разного сечения. На самом деле, делать это не стоит, так как продукция, имеющая меньший показатель сечения, может не справиться с возложенной на нее нагрузкой, в результате чего либо расплавится изоляция, либо произойдет короткое замыкание.
Если планируется подключение всей бытовой техники посредством одной розетки, рассчитать сечение кабеля придется заново, так как 2.5-миллиметровой продукции окажется явно недостаточно. Альтернативный вариант — провод, сечение которого варьируется в пределах от четырех до шести квадратных миллиметров. Жилые комнаты могут обойтись установкой проводов сечением полтора квадратных миллиметра. Окончательный выбор всегда совершается только после правильного составления расчетов.
Пользуясь программой для расчета сечения кабеля, не стоит забывать и о питании осветительных приборов. По мнению специалистов, для организации правильного питания осветительной нагрузки можно обойтись электрической проводкой сечением полтора квадратных миллиметров.
Следует всегда помнить о том, что уровень мощности на участках электрической проводки может оказаться разным. Соответственно, придется индивидуально подбирать сечение питающих проводов. Составляя расчет сечения провода по диаметру, подбирать наиболее «толстую» продукцию необходимо на вводных участках, так как они принимают на себя всю нагрузку от подключенных потребителей. Оптимальный вариант — использование вводного провода сечением от четырех до шести квадратных миллиметров.
В процессе выполнения монтажных работ обычно используется продукция типа ВВГнг, ПВС, АППВ и ППВ.
Выводы
Для обустройства новой электросети в своем доме необходимо предварительно рассчитать суммарную мощность электрооборудования, которое будет подключаться к розеткам. При совершении окончательного выбора важно определиться с уровнем сечения. Категорически запрещается использовать провода и кабели, сечение которого меньше требуемого. Это может привести к нагреву и расплавлению изоляции, короткому замыканию, а также ряду других неприятностей. Если вы планируете использовать импортную продукцию, ознакомьтесь с расшифровкой маркировок.
На вводном участке соединение проводов разного сечения запрещается. Величина сечения постепенно уменьшается — чем ближе к розетке, тем меньшим оно будет. При выборе схемы, в которой одна розетка будет одновременно питать все приборы, установленные в одном помещении, диаметр проводки следует увеличить. Рекомендуется делать упор на товары, изготовленные из меди, так как они демонстрируют хорошую стойкость к перегрузкам, а также являются более долговечными.
Видео по теме
Сечение медного кабеля | Полезные статьи
Проектирование любых электрических сетей включает выбор кабеля с подходящими параметрами, ключевым из которых является сечение. От того, насколько правильно подобрано сечение медного кабеля, зависит работоспособность и надежность всей сети. Если неправильно рассчитать этот параметр, то можно столкнуться с проблемой, когда сеть будет работать с существенным перегрузом. Использование кабеля на переделе возможностей обычно приводит к его значительному нагреву и рано или поздно он выйдет из строя.
По определению, сечение медного кабеля — это площадь среза токоведущей жилы. Если кабель состоит из одной жилы круглого сечения, то его площадь вычисляется по формуле площади круга, а если из множества проводников — то суммой сечения всех жил. Этот параметр является стандартизированной величиной. Главным документом, регламентирующим этот вопрос, является ПУЭ («Правила устройства электроустановок»). Кроме того, зная марку кабеля, количество и сечение жил, можно также определить, сколько весит медный кабель.
Как рассчитать сечение медного кабеля
Для того чтобы правильно рассчитать сечение кабеля, необходимо знать следующие параметры медных кабелей: напряжение сети, сила тока и мощность потребителей. Основным же параметром, влияющим на подбор кабеля, является предельно допустимая токовая нагрузка. Выбор сечения по токовой нагрузке производится по следующему алгоритму:
1) определение суммарной мощности нагрузки;
2) расчет силы тока;
3) выбор сечения кабеля по таблице.
Допустим, вам необходимо выбрать кабель для бытовой сети. Для начала необходимо определить суммарную мощность всех электрических приборов и оборудования, которые планируется использовать. Делается это простым арифметическим сложением всей нагрузки. Значение мощности у каждого прибора указывается в его паспортных данных и на табличке. Расчет силы тока для однофазной сети 220 В рассчитывается по формуле:
I = P / 220, где
Р — суммарная мощность, кВт;
220 — напряжение сети, В.
Формула расчета для 3-фазной сети 380В:
I = P / √3 х 380
Используя полученную величину, остается выбрать соответствующее значение сечения из таблицы в ПУЭ.
Кабель медный: технические характеристики
Описанная методика помогает выбрать для квартиры или дома силовой кабель для различных групп электропотребителей. Следует понимать, что токовая нагрузка для осветительной группы значительно ниже, чем у розеточной, следовательно, нет необходимости закладывать везде одинаковое сечение. Вес медного кабеля и его стоимость для освещения будут существенно ниже.
Дополнительные факторы, влияющие на выбор сечения
Дополнительным фактором, который может внести свои коррективы при выборе, является длина кабеля. Его следует учитывать при прокладке длинных трасс. Дело в том, что при увеличении длины увеличивается вес медного кабеля, а с ним — сопротивление и потери. Проектная величина потерь не должна превышать 5 %.
Потери можно рассчитать вручную, но проще всего воспользоваться готовыми данными зависимости потерь от момента нагрузки из ПУЭ и приведенными в таблицах ниже. Момент нагрузки — величина, получаемая произведением длины кабеля в метрах на мощность в кВт. Например, момент нагрузки для медного кабеля длиной 40 м и мощности нагрузки 3 кВт составляет: 40 х 3 = 120 кВт*м.
Зависимость потерь напряжения от момента нагрузки для кабельной линии 220В при заданном сечении токопроводящей жилы
Зависимость потерь напряжения от момента нагрузки для кабельной линии 380 В при заданном сечении токопроводящей жилы
Приведенные данные не учитывают увеличение сопротивления от нагрева кабеля при токах эксплуатации, составляющих от 0,5 и выше от предельно допустимых значений для данного сечения. В этом случае необходимо применить поправочный коэффициент, который также приводится в ПУЭ.
При более точных расчетах длинных кабельных сетей учитывают также потери в контактных соединениях. Это обычно делается при наличии большого количества потребителей (например, при проектировании линии городского освещения). Существуют и другие, менее значительные факторы, влияющие на величину потерь, но ими, как правило, пренебрегают, если общая величина падения напряжения не превышает нормативные 5 %.
Компания «Кабель.РФ®» является одним из лидеров по продаже кабельной продукции и располагает складами, расположенными практически во всех регионах Российской Федерации. Проконсультировавшись со специалистами компании, вы можете приобрести нужную вам марку медного кабеля по выгодным ценам.
Учебное пособие по физике: электрическое сопротивление
Электрон, движущийся по проводам и нагрузкам внешней цепи, встречает сопротивление. Сопротивление препятствует прохождению заряда. Для электрона путешествие от терминала к терминалу не является прямым маршрутом. Скорее, это зигзагообразный путь, который возникает в результате бесчисленных столкновений с неподвижными атомами в проводящем материале. Электроны сталкиваются с сопротивлением — препятствием для их движения. В то время как разность электрических потенциалов, установленная между двумя выводами , способствует перемещению заряда , а препятствует его движению .Скорость, с которой заряд проходит от терминала к терминалу, является результатом совместного действия этих двух величин.
Переменные, влияющие на электрическое сопротивлениеПоток заряда по проводам часто сравнивают с потоком воды по трубам. Сопротивление потоку заряда в электрической цепи аналогично эффектам трения между водой и поверхностями трубы, а также сопротивлению, создаваемому препятствиями на ее пути.Именно это сопротивление препятствует потоку воды и снижает как скорость потока, так и скорость дрейфа . Подобно сопротивлению потоку воды, общее сопротивление потоку заряда в проводе электрической цепи зависит от некоторых четко идентифицируемых переменных.
Во-первых, общая длина проводов влияет на величину сопротивления. Чем длиннее провод, тем большее сопротивление будет. Существует прямая зависимость между величиной сопротивления, с которым сталкивается заряд, и длиной провода, который он должен пройти.В конце концов, если сопротивление возникает в результате столкновений между носителями заряда и атомами провода, то, вероятно, столкновений будет больше в более длинном проводе. Больше столкновений означает большее сопротивление.
Во-вторых, на величину сопротивления влияет площадь поперечного сечения проводов. Более широкие провода имеют большую площадь поперечного сечения. Вода будет течь по более широкой трубе с большей скоростью, чем по узкой. Это можно объяснить меньшим сопротивлением, которое присутствует в более широкой трубе.Таким же образом, чем шире провод, тем меньше будет сопротивление прохождению электрического заряда. Когда все другие переменные одинаковы, заряд будет течь с большей скоростью через более широкие провода с большей площадью поперечного сечения, чем через более тонкие провода.
Третья переменная, которая, как известно, влияет на сопротивление потоку заряда, — это материал, из которого сделан провод. Не все материалы созданы равными с точки зрения их проводящей способности. Некоторые материалы являются лучшими проводниками, чем другие, и обладают меньшим сопротивлением потоку заряда.Серебро — один из лучших проводников, но никогда не используется в проводах бытовых цепей из-за своей стоимости. Медь и алюминий являются одними из наименее дорогих материалов с подходящей проводящей способностью, позволяющей использовать их в проводах бытовых цепей. На проводящую способность материала часто указывает его удельное сопротивление . Удельное сопротивление материала зависит от электронной структуры материала и его температуры. Для большинства (но не для всех) материалов удельное сопротивление увеличивается с повышением температуры.В таблице ниже приведены значения удельного сопротивления для различных материалов при температуре 20 градусов Цельсия.
Материал | Удельное сопротивление (Ом • метр) |
Серебро | 1,59 х 10 -8 |
Медь | 1.7 х 10 -8 |
Золото | 2,2 х 10 -8 |
Алюминий | 2,8 х 10 -8 |
Вольфрам | 5,6 х 10 -8 |
Утюг | 10 х 10 -8 |
Платина | 11 х 10 -8 |
Свинец | 22 х 10 -8 |
Нихром | 150 х 10 -8 |
Углерод | 3.5 х 10 -5 |
Полистирол | 10 7 — 10 11 |
Полиэтилен | 10 8 — 10 9 |
Стекло | 10 10 — 10 14 |
Твердая резина | 10 13 |
Как видно из таблицы, существует широкий диапазон значений удельного сопротивления для различных материалов.Материалы с более низким сопротивлением обладают меньшим сопротивлением потоку заряда; они лучшие дирижеры. Материалы, показанные в последних четырех строках вышеприведенной таблицы, обладают таким высоким удельным сопротивлением, что их даже нельзя рассматривать как проводники.
Посмотрите! Используйте виджет Resistivity of a Material , чтобы найти удельное сопротивление данного материала. Введите название материала и нажмите кнопку Submit , чтобы узнать его удельное сопротивление. Математическая природа сопротивленияСопротивление — это числовая величина, которую можно измерить и выразить математически. Стандартной метрической единицей измерения сопротивления является ом, представленный греческой буквой омега -. Электрическое устройство с сопротивлением 5 Ом будет представлено как R = 5 . Уравнение, представляющее зависимость сопротивления ( R ) проводника цилиндрической формы (например,, провод) от влияющих на него переменных равно
, где L представляет длину провода (в метрах), A представляет площадь поперечного сечения провода (в метрах 2 ) и представляет удельное сопротивление материала (в Ом • метр). В соответствии с вышеизложенным, это уравнение показывает, что сопротивление провода прямо пропорционально длине провода и обратно пропорционально площади поперечного сечения провода.Как показано в уравнении, знание длины, площади поперечного сечения и материала, из которого изготовлен провод (и, следовательно, его удельного сопротивления), позволяет определить сопротивление провода.
Расследовать! Резисторы — один из наиболее распространенных компонентов в электрических цепях. На большинстве резисторов нанесены цветные полосы или полосы. Цвета отображают информацию о значении сопротивления.Возможно, вы работаете в лаборатории и вам нужно знать сопротивление резистора, используемого в лаборатории. Используйте виджет ниже , чтобы определить значение сопротивления по цветным полосам.
1. В бытовых цепях часто используются провода двух разной ширины: 12-го и 14-го калибра. Проволока 12-го калибра имеет диаметр 1/12 дюйма, а проволока 14-го калибра — 1/14 дюйма.Таким образом, провод 12-го калибра имеет более широкое сечение, чем провод 14-го калибра. Цепь на 20 А, используемая для настенных розеток, должна быть подключена с использованием провода 12-го калибра, а цепь на 15 А, используемая для цепей освещения и вентилятора, должна быть подключена с помощью провода 14-го калибра. Объясните физику, лежащую в основе такого электрического кода.
2. Основываясь на информации, изложенной в предыдущем вопросе, объясните риск, связанный с использованием провода 14-го калибра в цепи, которая будет использоваться для питания 16-амперной пилы.
3. Определите сопротивление медного провода 12 калибра длиной 1 милю. Дано: 1 миля = 1609 метров и диаметр = 0,2117 см.
4. Два провода — A и B — круглого сечения имеют одинаковую длину и изготовлены из одного материала. Тем не менее, сопротивление провода A в четыре раза больше, чем у провода B.Во сколько раз диаметр проволоки B больше диаметра проволоки A?
Зависимость сечения кабеля и провода от токовых нагрузок и мощности. Преобразователь ватт в ампер сколько выдерживает 10 ампер
Часто наши покупатели, видя цифры в названии стабилизатора, принимают их за мощность в ваттах. На самом деле, как правило, производитель указывает суммарную мощность устройства в вольт-амперах, которая далеко не всегда равна мощности в ваттах.Из-за этого нюанса возможны регулярные перегрузки стабилизатора по мощности, что в свою очередь приведет к его преждевременному выходу из строя.
Электроэнергетика включает в себя несколько понятий, из которых мы рассмотрим наиболее важные для нас:
Полная мощность (ВА) — величина, равная произведению силы тока (Ампер) на напряжение в цепи (Вольт). Измеряется в вольт-амперах.
Активная мощность (Вт) — величина, равная произведению силы тока (Амперы) на напряжение в цепи (Вольт) и на коэффициент нагрузки (cos φ) … Измеряется в ваттах.
Коэффициент мощности (cos φ) — величина, характеризующая потребителя тока. Проще говоря, этот коэффициент показывает, сколько полной мощности (вольт-ампер) необходимо, чтобы «протолкнуть» мощность (ватт), необходимую для выполнения полезной работы, в текущий потребитель. Этот коэффициент можно найти в технических характеристиках текущих потребительских устройств. На практике может принимать значения от 0,6 (например, перфоратор) до 1 (нагревательные приборы). Cos φ может быть близок к единице в том случае, если потребители тока тепловые (ТЭНы и т. Д.)) и осветительные нагрузки. В остальных случаях его стоимость будет отличаться. Для простоты принято значение 0,8.
Активная мощность (Вт) = Полная мощность (Вольт-Амперы) * Коэффициент мощности (Cos φ)
Тех. при выборе стабилизатора напряжения для дома или дачи в целом его полную мощность в Вольт-амперах (ВА) следует умножить на коэффициент мощности Cos φ = 0,8. В результате получаем примерных мощности в ваттах (Вт), на которую рассчитан этот стабилизатор.Не забывайте при расчетах учитывать пусковые токи электродвигателей. В момент пуска их потребляемая мощность может превышать номинальную от трех до семи раз.
Выбор автоматов защиты производится не только при монтаже новой электрической сети, но и при модернизации электрощита, а также при включении в схему дополнительных мощных устройств, увеличивающих нагрузку до такого уровня. с чем не справляются старые устройства аварийного отключения.А в этой статье мы поговорим о том, как правильно выбрать автомат по мощности, что следует учитывать при этом процессе и каковы его особенности.
Непонимание важности этой задачи может привести к очень серьезным проблемам. Ведь пользователи часто не утруждают себя выбором автоматического выключателя по мощности, а берут первое имеющееся в магазине устройство, руководствуясь одним из двух принципов — «дешевле» или «мощнее». Такой подход, связанный с невозможностью или нежеланием рассчитать общую мощность устройств, подключенных к электросети, и в соответствии с ней выбрать автоматический выключатель, часто становится причиной выхода из строя дорогостоящего оборудования в случае короткого замыкания. или даже огонь.
Для чего нужны автоматические выключатели и как они работают?
Modern AB имеют две степени защиты: тепловую и электромагнитную. Это позволяет защитить линию от повреждений в результате длительного превышения протекающего тока номинального значения, а также короткого замыкания.
Основным элементом теплового расцепителя является двухметаллическая пластина, которую называют биметаллической. Если он подвергается воздействию тока повышенной мощности в течение достаточно длительного времени, он становится гибким и, воздействуя на отключающий элемент, запускает машину.
Наличие электромагнитного расцепителя определяет отключающую способность автоматического выключателя, когда цепь подвергается воздействию сверхтоков короткого замыкания, которые она не может выдержать.
Расцепитель электромагнитного типа представляет собой соленоид с сердечником, который при прохождении через него тока большой мощности мгновенно смещается в сторону отключающего элемента, отключая защитное устройство и обесточивая сеть.
Это позволяет защитить провод и устройства от потока электронов, значение которого намного выше, чем рассчитанное для кабеля определенного сечения.
В чем опасность несовпадения кабеля с нагрузкой на сеть?
Правильный выбор силового выключателя защиты — очень важная задача. Неправильно подобранное устройство не защитит линию от резкого увеличения силы тока.
Но не менее важно правильно выбрать сечение кабеля для проводки. В противном случае, если общая мощность превысит номинальное значение, которое может выдержать проводник, это приведет к значительному повышению температуры последнего.В результате утепляющий слой начнет плавиться, что может привести к возгоранию.
Чтобы более наглядно представить, чем грозит несоответствие сечения разводки общей мощности подключенных к сети устройств, рассмотрим такой пример.
Новые хозяева, купив квартиру в старом доме, устанавливают в ней несколько современных бытовых приборов, дающих общую нагрузку на схему равную 5 кВт. Эквивалент тока в этом случае будет около 23 А. В соответствии с этим в схему включен автоматический выключатель на 25 А.Казалось бы, выбор машины по мощности сделан правильно, и сеть готова к работе. Но через некоторое время после включения техники в доме появляется дым с характерным запахом пригоревшей изоляции, а через некоторое время появляется пламя. При этом автоматический выключатель не отключит сеть от источника питания — ведь номинальный ток не превышает допустимого.
Если хозяина в этот момент нет рядом, расплавленная изоляция через некоторое время вызовет короткое замыкание, которое в конечном итоге приведет к срабатыванию машины, но пламя от проводки может уже распространиться по всему дому.
Причина в том, что, хотя расчет машины на мощность был выполнен правильно, провод сечением 1,5 мм² был рассчитан на 19 А и не выдержал существующей нагрузки.
Чтобы вам не приходилось браться за калькулятор и самостоятельно рассчитывать сечение проводки по формулам, приводим типовую таблицу, в которой легко найти искомое значение.
Защита слабого звена
Итак, мы убедились, что расчет автоматического выключателя должен основываться не только на суммарной мощности включенных в схему устройств (вне зависимости от их количества), но и на сечении проводов.Если этот показатель неодинаков по всей ЛЭП, то выбираем участок с наименьшим участком и рассчитываем машину исходя из этого значения.
Требования ПУЭ гласят, что выбранный автоматический выключатель должен обеспечивать защиту самого слабого участка электрической цепи или иметь номинальный ток, который будет соответствовать аналогичному параметру для установок, включенных в сеть. Это также означает, что для подключения необходимо использовать провода, сечение которых позволит выдерживать общую мощность подключаемых устройств.
Как осуществляется подбор сечения провода и номинал автоматического выключателя — в следующем видео:
Если нерадивый хозяин проигнорирует это правило, то в случае возникновения аварийной ситуации из-за недостаточной защиты самого слабого участка проводки он не должен винить выбранный прибор и ругать производителя — виновником ситуации будет только он сам. .
Как рассчитать номинал автоматического выключателя?
Допустим, мы учли все вышесказанное и выбрали новый кабель, отвечающий современным требованиям и имеющий необходимое сечение.Теперь электропроводка гарантированно выдержит нагрузку от включенной бытовой техники, даже если их много. Теперь переходим непосредственно к выбору автоматического выключателя по текущему номиналу. Вспоминаем школьный курс физики и определяем расчетный ток нагрузки, подставляя соответствующие значения в формулу: I = P / U.
Здесь I — значение номинального тока, P — общая мощность включенных в цепь установок (с учетом всех потребителей электроэнергии, включая лампочки), U — напряжение сети.
Чтобы упростить выбор автоматического выключателя и избавить вас от необходимости брать в руки калькулятор, мы приводим таблицу, в которой указаны номинальные значения АВ, включенные в однофазные и трехфазные сети, и соответствующую общую мощность нагрузки.
Эта таблица поможет легко определить, сколько киловатт нагрузки соответствует какому номинальному току защитного устройства. Как видим, автомат на 25 Ампер в сети с однофазным подключением и напряжением 220 В соответствует мощности 5.5 кВт, для AV на 32 А в аналогичной сети — 7,0 кВт (в таблице это значение выделено красным цветом). При этом для электрической сети с трехфазным подключением «треугольник» и номинальным напряжением 380 В автомат на 10 А соответствует суммарной мощности нагрузки 11,4 кВт.
Подробно о выборе автоматических выключателей на видео:
Заключение
В представленном материале мы рассказали, для чего нужны устройства защиты электрических цепей и как они работают.Кроме того, учитывая предоставленную информацию и предоставленные табличные данные, вас не смутит вопрос о том, как выбрать автоматический выключатель.
p = UхI мощность равна напряжению, умноженному на силу тока 220 х 9 = 1980 Вт или 1,98 кВт.
Умножьте это будет максимальное значение мощности, обычно используют мощность отключения Pav = I * U / 2
HERR ADOLF, понятно, почему Россия вам не подчинялась, ведь вы даже не можете найти мощность, зная напряжение U и ток I :)).Так что Россия вам поможет: N = IU = 220 * 9 = 1980Вт или 1,98кВт или 2,69л. из.
Утюг получается
Вы получите мощность своего чайника, которая написана на упаковке, ток измеряли по электронной почте. без обрыва провода чайника и сети! = около 2квт
touch.otvet.mail.ru
Автомат на 20 Ампер сколько будет кВт?
примерно так
Как перевести амперы в киловатты в однофазной сети Ватт = Ампер * Вольт Ну переводите ватты в киловатты
20ампер * 220вольт =…. ватт
20 * 1,45 = 29А * 220В = до 6,3 может 4мм2 меди, но как-то нерационально, поэтому ставить под него 16А и 2,5мм2, практически до 5, 3,5 — железо
4 кВт. 1 кВт = 5 ампер при 220 вольт.
touch.otvet.mail.ru
ребята, а как посчитать количество ватт в розетке 220 вольт 6 ампер?
Измерьте прибором.
220V x 6A = 1320W Боюсь объяснять, чтобы случайно не обидеть.
ток равен мощности (ватт), деленной на напряжение
Существует простая формула для постоянного тока: P = UI. Но это строго верно для постоянного тока. В случае переменной (в розетке) точнее писать S = UI. Разница в том, что S — полная мощность, а P — активная, а есть еще и реактивная мощность — при переменном токе и наличии в цепи катушек индуктивности (катушки) или конденсаторов (конденсатора). Для переменного однофазного тока активная мощность будет P = UI cos φ, где φ — угол между векторами активной и полной мощности.Обычно cos f = 0,8-0,9.
Не морочите голову парню cos phi. В общем, Серега, перестань, что 1320 Вт. О …
touch.otvet.mail.ru
Электрические системы часто требуют сложного анализа конструкции, поскольку необходимо обрабатывать множество различных величин, ватт, вольт, ампер и т. Д. В этом случае необходимо точно рассчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксировано, например, в домашней сети, но мощность и ток означают разные понятия, хотя они являются взаимозаменяемыми величинами.
Онлайн-калькулятор для пересчета ватт в амперы
Для получения результата обязательно указывайте напряжение и потребляемую мощность.
В таких случаях очень важно иметь помощника, чтобы точно перевести вату в амперы при постоянном значении напряжения.
Онлайн-калькулятор поможет нам перевести амперы в ватты. Перед тем, как использовать онлайн-калькулятор, необходимо разобраться в значении необходимых данных.
- Мощность — это скорость потребления энергии.Например, лампочка мощностью 100 Вт потребляет 100 джоулей энергии в секунду.
- Ампер — величина измерения силы электрического тока, определяется в кулонах и показывает количество электронов, прошедших через определенный участок проводника за указанное время
- В вольтах измеряется напряжение протекания электрического тока.
Чтобы преобразовать ватты в амперы, калькулятор очень прост в использовании, пользователь должен ввести индикатор напряжения (В) в указанные столбцы, затем потребляемую мощность устройства (Вт) и нажать кнопку расчета.Через несколько секунд программа покажет точное текущее значение в амперах. Формула, сколько ватт в амперах
Внимание: если показатель количества имеет дробное число, то его нужно вводить в систему через точку, а не через запятую. Таким образом, калькулятор мощности может конвертировать ватты в амперы за считанные секунды, вам не нужно писать сложные формулы и думать об их повторном использовании.
шения. Все просто и доступно!
Таблица расчета ампер и нагрузки в ваттах
Выбираем в магазине две вещи, которые нужно использовать «в тандеме», например утюг и розетку, и вдруг сталкиваемся с проблемой — «электрические параметры» на маркировке указаны в разных единицах.
Как выбрать подходящие устройства и устройства? Как перевести амперы в ватты?
Родственные, но разные
Сразу оговоримся, что прямой перевод единиц сделать нельзя, так как они обозначают разные величины.
Вт — указывает мощность, то есть скорость потребления энергии.
Ампер — это единица силы, которая указывает скорость, с которой ток течет через определенную секцию.
Чтобы обеспечить безупречную работу электрических систем, вы можете рассчитать отношение ампер к ваттам при определенном напряжении в сети.Последний измеряется в вольтах и может быть:
- фиксированный;
- постоянный;
- переменных.
С учетом этого проведено сравнение показателей.
«Фиксированный» перевод
Зная, помимо величин мощности и силы, также показатель напряжения, вы можете преобразовать амперы в ватты по следующей формуле:
В данном случае P — мощность в ваттах, I — ток в амперах, U — напряжение в вольтах.
Онлайн калькулятор
Чтобы постоянно быть «в теме», вы можете составить для себя таблицу «ампер-ватт» с наиболее часто встречающимися параметрами (1А, 6А, 9А и др.).
Этот «график отношения» будет действителен для сетей фиксированного и постоянного напряжения.
«Варианты нюансов»
Для расчета с переменным напряжением в формулу входит другое значение — коэффициент мощности (КМ). Теперь это выглядит так:
Доступный по цене инструмент, такой как онлайн-калькулятор ампер в ватт, может помочь сделать процесс преобразования быстрее и проще.Не забывайте, что если вам нужно ввести дробное число в столбец, это делается через точку, а не через запятую.
Таким образом, на вопрос «1 ватт — сколько ампер?», Используя калькулятор, можно дать ответ — 0,0045. Но он будет действителен только для стандартного напряжения 220 В.
Используя калькуляторы и таблицы, представленные в Интернете, вы можете не беспокоиться о формулах, а легко сравнивать разные единицы измерения.
Это поможет вам выбрать автоматические выключатели для разных нагрузок и не беспокоиться о вашей бытовой технике и состоянии проводки.
Ампер — ваттный стол:
6 | 12 | 24 | 48 | 64 | 110 | 220 | 380 | Вольт | |
5 Вт | 0,83 | 0,42 | 0,21 | 0,10 | 0,08 | 0,05 | 0,02 | 0,01 | Ампер |
6 Вт | 1 | 0,5 | 0,25 | 0,13 | 0,09 | 0,05 | 0,03 | 0,02 | Ампер |
7 Вт | 1,17 | 0,58 | 0,29 | 0,15 | 0,11 | 0,06 | 0,03 | 0,02 | Ампер |
8 Вт | 1,33 | 0,67 | 0,33 | 0,17 | 0,13 | 0,07 | 0,04 | 0,02 | Ампер |
9 Вт | 1,5 | 0,75 | 0,38 | 0,19 | 0,14 | 0,08 | 0,04 | 0,02 | Ампер |
10 Вт | 1,67 | 0,83 | 0,42 | 0,21 | 0,16 | 0,09 | 0,05 | 0,03 | Ампер |
20 Вт | 3,33 | 1,67 | 0,83 | 0,42 | 0,31 | 0,18 | 0,09 | 0,05 | Ампер |
30 Вт | 5,00 | 2,5 | 1,25 | 0,63 | 0,47 | 0,27 | 0,14 | 0,03 | Ампер |
40 Вт | 6,67 | 3,33 | 1,67 | 0,83 | 0,63 | 0,36 | 0,13 | 0,11 | Ампер |
50 Вт | 8,33 | 4,17 | 2,03 | 1,04 | 0,78 | 0,45 | 0,23 | 0,13 | Ампер |
60 Вт | 10,00 | 5 | 2,50 | 1,25 | 0,94 | 0,55 | 0,27 | 0,16 | Ампер |
70 Вт | 11,67 | 5,83 | 2,92 | 1,46 | 1,09 | 0,64 | 0,32 | 0,18 | Ампер |
80 Вт | 13,33 | 6,67 | 3,33 | 1,67 | 1,25 | 0,73 | 0,36 | 0,21 | Ампер |
90 Вт | 15,00 | 7,50 | 3,75 | 1,88 | 1,41 | 0,82 | 0,41 | 0,24 | Ампер |
100 Вт | 16,67 | 3,33 | 4,17 | 2,08 | 1,56 | , 091 | 0,45 | 0,26 | Ампер |
200 Вт | 33,33 | 16,67 | 8,33 | 4,17 | 3,13 | 1,32 | 0,91 | 0,53 | Ампер |
300 Вт | 50,00 | 25,00 | 12,50 | 6,25 | 4,69 | 2,73 | 1,36 | 0,79 | Ампер |
400 Вт | 66,67 | 33,33 | 16,7 | 8,33 | 6,25 | 3,64 | 1,82 | 1,05 | Ампер |
500 Вт | 83,33 | 41,67 | 20,83 | 10,4 | 7,81 | 4,55 | 2,27 | 1,32 | Ампер |
600 Вт | 100,00 | 50,00 | 25,00 | 12,50 | 9,38 | 5,45 | 2,73 | 1,58 | Ампер |
700 Вт | 116,67 | 58,33 | 29,17 | 14,58 | 10,94 | 6,36 | 3,18 | 1,84 | Ампер |
800 Вт | 133,33 | 66,67 | 33,33 | 16,67 | 12,50 | 7,27 | 3,64 | 2,11 | Ампер |
900 Вт | 150,00 | 75,00 | 37,50 | 13,75 | 14,06 | 8,18 | 4,09 | 2,37 | Ампер |
1000 Вт | 166,67 | 83,33 | 41,67 | 20,33 | 15,63 | 9,09 | 4,55 | 2,63 | Ампер |
1100 Вт | 183,33 | 91,67 | 45,83 | 22,92 | 17,19 | 10,00 | 5,00 | 2,89 | Ампер |
1200 Вт | 200 | 100,00 | 50,00 | 25,00 | 78,75 | 10,91 | 5,45 | 3,16 | Ампер |
1300 Вт | 216,67 | 108,33 | 54,2 | 27,08 | 20,31 | 11,82 | 5,91 | 3,42 | Ампер |
1400 Вт | 233 | 116,67 | 58,33 | 29,17 | 21,88 | 12,73 | 6,36 | 3,68 | Ампер |
1500 Вт | 250,00 | 125,00 | 62,50 | 31,25 | 23,44 | 13,64 | 6,82 | 3,95 | Ампер |
электромагнетизм — течет ли электричество по поверхности провода или внутри?
В случае переменного тока плотность тока экспоненциально падает с расстоянием от внешней поверхности провода («скин-эффект»), как объяснил Мартин Беккет.Это можно показать аналитически из квазистатического приближения к уравнениям Максвелла, как это сделано в главе 5 Джексона.
Более интересен случай постоянного тока. Во-первых, вам нужно указать внешнее электрическое поле $ {\ bf E} _0 $, которое «проталкивает» ток. Обычно это считается однородным и параллельным проводу. Токи, протекающие через провод, имеют тенденцию притягиваться друг к другу и, следовательно, группироваться вместе (так называемый «пинч-эффект»). Пинч-эффект постоянного тока обсуждается в http: // aapt.scitation.org/doi/abs/10.1119/1.1974305, http://aapt.scitation.org/doi/abs/10.1119/1.14075 и http://aapt.scitation.org/doi/abs/10.1119/1.17271. Оказывается, что уравнений Максвелла недостаточно для однозначного определения распределения плотности тока по поперечному сечению провода; вам также необходимо указать микроскопическую модель носителей заряда.
С одной стороны, вы можете рассматривать как положительные, так и отрицательные носители заряда как полностью подвижные и с равными отношениями заряда к массе.Это хорошее описание прохождения тока через плазму, и плазменные шнуры могут быть достаточно сильными, чтобы раздавить металл.
С другой стороны, вы можете рассматривать положительные заряды как полностью стационарные в лабораторной раме, с фиксированной плотностью и «невосприимчивые» к электромагнитным полям, с током, полностью обусловленным движением мобильных отрицательных носителей заряда. Это более реалистичная модель для металлической проволоки, поскольку силы межатомного обмена и обмена Ферми между атомами меди намного сильнее, чем те, которые индуцируются типичными приложенными полями и электронными токами.Оказывается, что в лабораторном корпусе общая линейная плотность заряда провода должна быть равна нулю в состоянии равновесия (в противном случае он будет обмениваться электронами с фиксированными источниками и опускаться в батарею, пока не нейтрализуется), но в остальной части движущейся электронов, плотность заряда объемного объема должна быть равна нулю (в противном случае электроны будут испытывать радиальную электрическую силу, тянущую их к оси провода или от нее). 2} $.2 \ rho_0 $ вокруг поверхности провода, что уравновешивает отрицательный объемный заряд, поэтому радиальное электрическое поле вне провода исчезает. Этот поверхностный заряд находится в покое в лабораторной раме, поэтому , а не вносит вклад в ток.
В системе координат электронов нет объемной объемной плотности заряда или радиального электрического поля внутри провода. (Есть магнитное поле от движения положительных ионов, но электроны не чувствуют его, так как они находятся в состоянии покоя в этой системе отсчета.3 \ rho_0 $. В этом кадре есть радиальное электрическое поле вне провода, которое не влияет на электроны, но притягивает или отталкивает заряженные частицы вне провода.
Но в медном проводе с типичными токами электроны крайне нерелятивистские ($ \ beta \ ll 1 $), поэтому общий отрицательный объемный заряд и положительный поверхностный заряд чрезвычайно малы.
Переносная способность по току — обзор
2.3 Транспорт с высоким смещением
При высоких смещениях на токонесущую способность углеродных нанотрубок в значительной степени влияет электрон-фононное рассеяние.На рис. 2.8 показаны экспериментально измеренные вольт-амперные характеристики нанотрубки малого диаметра. Проводимость максимальна при нулевом смещении и уменьшается с увеличением смещения, что свидетельствует об увеличении электрон-фононного рассеяния. Для рассмотрения режима переноса с большим смещением в металлических нанотрубках был предложен подход, основанный на уравнении Больцмана [25]. Подход с использованием уравнения Больцмана описывает временную эволюцию и пространственную зависимость функций распределения электронов
Рисунок 2.8. Зависимость тока от приложенного смещения металлической нанотрубки при различных температурах. Дифференциальная проводимость максимальна при нулевом смещении и достигает гораздо более низких значений при высоких смещениях. Рисунок после Ref. [25].
fL (E, x)
и
fR (E, x)
, которые представляют движущиеся влево и вправо электроны. При наличии процессов рассеяния и однородного электрического поля эти уравнения имеют вид
(2.36) ∂fL∂t + vF∂fL∂x + 1ħeVL∂fL∂k = [∂fL∂t] рассеяние
∂fR∂t− vF∂fR∂x − 1ħeVL∂fR∂k = [∂fR∂t] рассеяние.
Три источника рассеяния включены для описания переноса высокого смещения в металлических углеродных нанотрубках: упругое рассеяние на дефектах, обратное рассеяние на фононах и прямое рассеяние на фононах. Упругое рассеяние определяется выражением
(2.37) [∂fL∂t] elastic = vFle (fL − fR)
, где
le
— упругая длина свободного пробега. Столкновения обратного рассеяния с фононами приводят к скорости изменения функции заполнения
(2.38) [∂fL (E) ∂t] bp = vFlbp {[1 − fL (E)] fR (E + ħΩ) — [1 − fR (E − ħΩ)] fL (E)}
, а нападающий рассеяние на фононах равно
(2.39) [∂fL (E) ∂t] fp = vFlfp {[1 − fL (E)] fL (E + ħΩ) — [1 − fL (E − ħΩ)] fL (E )}.
Эти уравнения дополняются граничными условиями на контактах
(2.40) fR (E) | x = 0 = tL2f0 (E − μL) + (1 − tL2) fL (E) | x = 0
fL ( E) | x = L = tR2f0 (E − μR) + (1 − tR2) fR (E) | x = L
, где
f0
— равновесное распределение Ферми, а
tL, R
— коэффициенты передачи на контактах.После определения функций распределения путем решения уравнений Больцмана с граничными условиями, ток вычисляется из
(2.41) I = 4e2h∫ (fL − fR) dE
, где функции распределения могут быть вычислены при любом (кроме то же самое) точка
x
в установившемся режиме. Рис. 2.9 показывает численно рассчитанный [25] ток в зависимости от напряжения для металлической углеродной нанотрубки длиной один микрон, включая электрон-фононное рассеяние с фононами 150 мэВ, и с параметрами
Рис. 2.9. Расчет зависимости тока от напряжения для металлической углеродной нанотрубки с использованием уравнения переноса Больцмана и электрон-фононного рассеяния. На вставке показан процесс электрон-фононного рассеяния, при котором электроны с энергией, превышающей энергию фонона, испускают фонон и рассеиваются обратно. Рисунок после Ref. [25].
tL, R2 = 0,5
,
le = 300 нм, lpb = 10 нм
и
lpf = ∞
. Превосходное согласие с экспериментом показывает, что длина свободного пробега для рассеяния оптических фононов составляет около 10 нм, и преобладает рассеяние на фононах в диапазоне 150 мэВ.
Поскольку длина свободного пробега для рассеяния на оптических фононах мала, проводимость при высоком смещении заметно уменьшается в нанотрубках, которые намного длиннее этой длины свободного пробега. Если предположить, что все электроны, падающие из левого контакта с энергией на 160 мэВ, превышающей энергию Ферми на стороне стока, отражаются эмиссией фононов, то максимальный ток, протекающий в длинной нанотрубке (много длин свободного пробега) при больших смещениях, составляет примерно
.(2,42) I = 4e2h260 мВ = 25 мкА.
В ряде экспериментов сообщалось о токах, сравнимых с 25 мкА в длинных нанотрубках [20, 25, 26]. Недавнее моделирование вольт-амперных характеристик в баллистическом пределе и с электрон-фононными взаимодействиями также показало, что рассеяние на оптических фононах происходит в масштабе нескольких десятков нанометров, как показано на рис. 2.10. При малых смещениях проводимость
Рисунок 2.10. Расчетные вольт-амперные характеристики в баллистическом пределе (штриховая линия) и при электрон-фононном рассеянии для различных длин.Для самой длинной рассматриваемой нанотрубки (213 нм) ток близок к 25 мкА, как предполагает формула. (2.42). По мере уменьшения длины нанотрубки ток приближается к баллистическому пределу. Рисунок после Ref. [27].
dI / dV
— это почти
4e2 / h
, независимо от длины нанотрубки, что указывает на перенос баллистического заряда в пересекающихся поддиапазонах. По мере увеличения смещения допустимая нагрузка по току и дифференциальная проводимость зависят от длины. Самая длинная из рассматриваемых нанотрубок (длина 213 нм) значительно превышает длину свободного пробега около 10 нм.Расчетный ток для этой нанотрубки составляет около 25 мкА при смещении 1 В, что согласуется с формулой. (2.42). По мере уменьшения длины нанотрубки пропускная способность по току увеличивается и приближается к баллистическому пределу (пунктирная линия) на рис. 2.8.
Стоит отметить, что экспериментально измеренные длины свободного пробега для рассеяния оптических фононов почти в пять раз меньше теоретических предсказаний. В [20] теоретически средняя длина свободного пробега из-за оптического и зонного рассеяния на границах оценивается примерно в 50 нм, но было обнаружено, что экспериментальные данные могут быть объяснены только при условии, что чистая длина свободного пробега составляет 10 нм.Причина этого несоответствия неясна. Одна возможность состоит в том, что испускаемые фононы не могут легко рассеяться в окружающую среду, что приводит к избытку горячих фононов и меньшей экспериментально наблюдаемой длине свободного пробега.
В отличие от нанотрубок малого диаметра, многослойные нанотрубки большого диаметра демонстрируют увеличение дифференциальной проводимости при приложении смещения [8, 28, 29]. На рис. 2.11 показаны экспериментально измеренные ток и проводимость в зависимости от смещения для нанотрубки диаметром 15.6 нм [28]. Низкая проводимость смещения составляет
Рисунок 2.11. Наблюдаемая кривая
I
—V
одиночной многослойной углеродной нанотрубки в диапазоне смещения от -8 до 8 В (правая ось). Проводимость около нулевого смещения составляет0,4G0
и линейно увеличивается до приложенного смещения 5,8 В, где она уменьшается. Многослойная нанотрубка имеет более 15 оболочек и имеет диаметр и длину примерно 15,6 и 500 нм соответственно. Рисунок из Ref. [28].0.4G0
вместо максимального
2G0
.Что еще более важно, проводимость увеличивается с приложенным смещением, что также замечено в [5]. [8]. Это качественно отличается от описанного выше случая нанотрубок малого диаметра, где проводимость уменьшается с увеличением смещения (рис. 2.8). Существует множество потенциальных причин увеличения проводимости со смещением, наблюдаемого в этих многостенных нанотрубках большого диаметра. Одна из возможностей состоит в том, что внутренние стенки многослойной нанотрубки начинают проводить ток по мере увеличения смещения. Однако недавние теоретические работы показали, что этот механизм маловероятен [30].Наиболее вероятным объяснением увеличения проводимости при приложении смещения является туннелирование Зинера между непересекающейся валентной зоной и зоной проводимости [31]. Этот процесс показан на рис. 2.12. Рассмотрим электрон, падающий в непересекающуюся валентную подзону нанотрубки из левого контакта. Этот электрон может либо туннелировать в подзону непересекающейся проводимости с той же симметрией (пунктирная стрелка), либо отражаться по Брэггу обратно в левый контакт (пунктирная стрелка). Барьер для туннелирования Зенера в непересекающейся поддиапазоне составляет
Рисунок 2.12. Каждый прямоугольный прямоугольник представляет собой график зависимости энергии от волнового вектора, нижняя часть поддиапазона которого равна электростатическому потенциалу. Для ясности показаны только несколько поддиапазонов. Показаны три процесса: прямая передача (сплошная линия), брэгговское отражение (пунктирная линия) и межподзонное туннелирование (пунктирная линия). Рисунок после Ref. [31].
ΔENC
, а ширина туннельного барьера зависит от профиля потенциала в нанотрубке. Поскольку высота барьера
ΔENC
увеличивается с уменьшением диаметра нанотрубок, оказывается, что непересекающиеся подзоны металлических нанотрубок малого диаметра не проводят значительного тока [27, 31].С другой стороны, для нанотрубок большого диаметра барьер для туннелирования
ΔENC
намного меньше, и в результате вероятность туннелирования увеличивается с увеличением диаметра нанотрубки. Самосогласованные расчеты вольт-амперных характеристик коротких нанотрубок действительно показывают существенную зависимость проводимости от диаметра, возникающую в результате туннелирования в непересекающиеся / полупроводниковые подзоны [27, 31].
Наконец, мы обсудим падение электростатического потенциала в углеродных нанотрубках при низком и высоком смещении.Мы ограничимся обсуждением идеальной связи между нанотрубкой и контактами. В этом случае проводимость нанотрубки определяется количеством подзон, по которым проходит ток и происходит рассеяние из-за электрон-фононного взаимодействия внутри нанотрубки. Обратите внимание, что дополнительное сопротивление на границе контакта нанотрубки приведет к падению приложенного смещения на этом сопротивлении в дополнение к падению на нанотрубке.
При низком смещении, меньшем, чем энергия оптических и зонных граничных фононов (160 мэВ), электрон-фононное рассеяние подавляется, и, следовательно, бездефектные нанотрубки являются существенно баллистическими.В этом пределе низкого смещения приложенное смещение в основном падает на двух концах нанотрубки, как показано на рис. 2.13 (а). Интересно, что даже несмотря на то, что нанотрубка баллистическая, электрическое поле вблизи контакта зависит от диаметра трубки. Электрическое поле в центре нанотрубки увеличивается с увеличением диаметра, потому что плотность состояний на атом уменьшается с увеличением диаметра, как показано, например, в уравнении. (1.41). Это делает экранирование в нанотрубках большего диаметра менее эффективным.Когда приложенное смещение увеличивается, позволяя излучать оптические и граничные фононы зоны, электростатический потенциал равномерно падает по длине нанотрубки при условии, что длина нанотрубки во много раз превышает длину свободного пробега. Падение потенциала на рис. 2.13 (б) соответствует этому случаю.
Рисунок 2.13. Расчетный электростатический потенциал вдоль оси нанотрубки. (а) Низкий потенциал смещения для (12,0) и (240,0) нанотрубок, которые имеют диаметры 0,94 и 18,8 нм соответственно. Приложенное смещение составляет 100 мВ.Экранирование нанотрубок большого диаметра значительно хуже. Длина нанотрубки составляет 213 нм. (b) Потенциал как функция положения показан для (12,0) нанотрубок длиной 42,6 и 213 нм в присутствии рассеяния (сплошная линия), с профилем потенциала в баллистическом пределе (пунктирная линия), показанным для сравнения. . Рисунок после Ref. [27].
Сопротивление и резисторы | Безграничная физика
Закон Ома
ЗаконОма гласит, что ток пропорционален напряжению; схемы являются омическими, если они подчиняются соотношению V = IR.
Цели обучения
Контрастная форма вольт-амперных графиков для омических и неомических цепей
Основные выводы
Ключевые точки
- Напряжение управляет током, а сопротивление препятствует ему. Закон
- Ома относится к пропорциональному соотношению между напряжением и током. Это также относится к конкретному уравнению V = IR, которое справедливо при рассмотрении схем, содержащих простые резисторы (сопротивление которых не зависит от напряжения и тока).
- Цепи или компоненты, которые подчиняются соотношению V = IR, известны как омические и имеют линейные зависимости тока от напряжения, проходящие через начало координат.
- Существуют неомические компоненты и схемы; их графики I-V не являются линейными и / или не проходят через начало координат.
Ключевые термины
- простая схема : Схема с одним источником напряжения и одним резистором.
- омический : То, что подчиняется закону Ома.
Закон Ома
Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов V, которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток. Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению V.Немецкий физик Георг Симон Ом (1787-1854) был первым, кто экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению: [латекс] \ text {I} \ propto \ text {V} [/ latex ].
Это важное соотношение известно как закон Ома. Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.Напомним, что хотя напряжение управляет током, сопротивление ему препятствует. Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Следовательно, ток обратно пропорционален сопротивлению: [latex] \ text {I} \ propto \ frac {1} {\ text {R}} [/ latex].
Простая схема : Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленными красными параллельными линиями.Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.
Единицей измерения сопротивления является Ом, где 1 Ом = 1 В / А. Мы можем объединить два приведенных выше соотношения, чтобы получить I = V / R. Это соотношение также называется законом Ома. В этой форме закон Ома действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах.Омические материалы имеют сопротивление R, которое не зависит от напряжения V и тока I. Объект с простым сопротивлением называется резистором, даже если его сопротивление невелико.
Падение напряжения : Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.
Дополнительное понимание можно получить, решив I = V / R для V, что дает V = IR. Это выражение для V можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока I.Для обозначения этого напряжения часто используется фраза «падение ИК-излучения». Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывая ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления. Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию).В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку E = qΔV, и через каждую из них протекает одинаковое q. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны.
В истинно омическом устройстве одно и то же значение сопротивления будет вычислено из R = V / I независимо от значения приложенного напряжения V. То есть отношение V / I является постоянным, и когда ток отображается как В зависимости от напряжения кривая является линейной (прямая линия).Если напряжение принудительно устанавливается равным некоторому значению V, тогда это напряжение V, деленное на измеренный ток I, будет равно R. Или, если ток будет увеличен до некоторого значения I, тогда измеренное напряжение V, деленное на этот ток I, также будет R. график I против V как прямая линия. Однако есть компоненты электрических цепей, которые не подчиняются закону Ома; то есть их соотношение между током и напряжением (их ВАХ) нелинейное (или неомическое). Примером может служить диод с p-n переходом.
Кривые вольт-амперной характеристики : ВАХ четырех устройств: двух резисторов, диода и батареи.Два резистора подчиняются закону Ома: график представляет собой прямую линию, проходящую через начало координат. Два других устройства не подчиняются закону Ома.
Закон Ома : Краткий обзор закона Ома.
Температура и сверхпроводимость
Сверхпроводимость — это явление нулевого электрического сопротивления и вытеснения магнитных полей в некоторых материалах при температуре ниже критической.
Цели обучения
Описать поведение сверхпроводника при температуре ниже критической и в слабом внешнем магнитном поле
Основные выводы
Ключевые точки
- Сверхпроводимость — это сверхпроводимость. Сверхпроводимость — это термодинамическая фаза, обладающая определенными отличительными свойствами, которые в значительной степени не зависят от микроскопических деталей.
- В сверхпроводящих материалах характеристики сверхпроводимости проявляются при понижении температуры ниже критической. Возникновение сверхпроводимости сопровождается резкими изменениями различных физических свойств.
- Когда сверхпроводник помещается в слабое внешнее магнитное поле H и охлаждается ниже температуры перехода, магнитное поле выбрасывается.
- Сверхпроводники могут поддерживать ток без приложенного напряжения.
Ключевые термины
- высокотемпературные сверхпроводники : материалы, которые ведут себя как сверхпроводники при необычно высоких температурах (выше примерно 30 K).
- критическая температура : В сверхпроводящих материалах характеристики сверхпроводимости проявляются при этой температуре (и сохраняются ниже).
- сверхпроводимость : Свойство материала, при котором он не оказывает сопротивления прохождению электрического тока.
Сверхпроводимость — это явление точно нулевого электрического сопротивления и вытеснения магнитных полей, возникающее в некоторых материалах при охлаждении ниже критической температуры.Он был обнаружен Хайке Камерлинг-Оннес (на фото) 8 апреля 1911 года в Лейдене.
Хайке Камерлинг-Оннес : Хайке Камерлинг-Оннес (1853-1926).
Большинство физических свойств сверхпроводников варьируются от материала к материалу, например теплоемкость и критическая температура, критическое поле и критическая плотность тока, при которых сверхпроводимость разрушается. С другой стороны, существует класс свойств, не зависящих от основного материала.Например, все сверхпроводники имеют точно нулевое удельное сопротивление по отношению к низким приложенным токам, когда нет магнитного поля или если приложенное поле не превышает критического значения. Существование этих «универсальных» свойств подразумевает, что сверхпроводимость является термодинамической фазой и, таким образом, обладает определенными отличительными свойствами, которые в значительной степени не зависят от микроскопических деталей.
В сверхпроводящих материалах характеристики сверхпроводимости проявляются, когда температура T понижается ниже критической температуры T c .Возникновение сверхпроводимости сопровождается резкими изменениями различных физических свойств — отличительным признаком фазового перехода. Например, электронная теплоемкость пропорциональна температуре в нормальном (несверхпроводящем) режиме. При сверхпроводящем переходе он претерпевает прерывистый скачок и после этого перестает быть линейным, как показано на.
Когда сверхпроводник помещается в слабое внешнее магнитное поле H и охлаждается ниже температуры перехода, магнитное поле выбрасывается.Эффект Мейснера не вызывает полного выброса поля. Скорее, поле проникает в сверхпроводник на очень малое расстояние (характеризуемое параметром λ), называемое лондонской глубиной проникновения. Он экспоненциально спадает до нуля в объеме материала. Эффект Мейснера — определяющая характеристика сверхпроводимости. Для большинства сверхпроводников лондонская глубина проникновения составляет порядка 100 нм.
Сверхпроводящий фазовый переход : Поведение теплоемкости (cv, синий) и удельного сопротивления (ρ, зеленый) при сверхпроводящем фазовом переходе.
Сверхпроводники также способны поддерживать ток без какого-либо приложенного напряжения — свойство, используемое в сверхпроводящих электромагнитах, таких как те, что используются в аппаратах МРТ. Эксперименты показали, что токи в сверхпроводящих катушках могут сохраняться годами без какого-либо измеримого ухудшения. Экспериментальные данные указывают на то, что в настоящее время продолжительность жизни составляет не менее 100 000 лет. Теоретические оценки времени жизни постоянного тока могут превышать расчетное время жизни Вселенной, в зависимости от геометрии провода и температуры.
Значение этой критической температуры варьируется от материала к материалу. Обычно обычные сверхпроводники имеют критические температуры в диапазоне от примерно 20 К до менее 1 К. Твердая ртуть, например, имеет критическую температуру 4,2 К. По состоянию на 2009 год самая высокая критическая температура, найденная для обычного сверхпроводника, составляет 39 К. для магния. диборид (MgB 2 ), хотя экзотические свойства этого материала вызывают некоторые сомнения в его правильной классификации как «обычный» сверхпроводник.Высокотемпературные сверхпроводники могут иметь гораздо более высокие критические температуры. Например, YBa 2 Cu 3 O 7 , один из первых открытых купратных сверхпроводников, имеет критическую температуру 92 К; Были обнаружены купраты на основе ртути с критическими температурами, превышающими 130 К. Следует отметить, что химический состав и кристаллическая структура сверхпроводящих материалов могут быть довольно сложными, как показано в
.Элементарная ячейка сверхпроводника YBaCuO : Элементарная ячейка сверхпроводника YBaCuO.Атомы обозначены разными цветами.
Сопротивление и удельное сопротивление
Сопротивление и удельное сопротивление описывают степень, в которой объект или материал препятствуют прохождению электрического тока.
Цели обучения
Определить свойства материала, которые описываются сопротивлением и удельным сопротивлением
Основные выводы
Ключевые точки
- Сопротивление объекта (т. Е. Резистора) зависит от его формы и материала, из которого он состоит.
- Удельное сопротивление ρ является внутренним свойством материала и прямо пропорционально общему сопротивлению R, внешней величине, которая зависит от длины и площади поперечного сечения резистора.
- Удельное сопротивление различных материалов сильно различается. Точно так же резисторы могут иметь разные порядки величины.
- Резисторы расположены последовательно или параллельно. Эквивалентное сопротивление цепи последовательно включенных резисторов является суммой всех сопротивлений.Сопротивление, обратное эквивалентному сопротивлению цепи параллельно включенных резисторов, является суммой обратных сопротивлений каждого резистора.
Ключевые термины
- Эквивалентное сопротивление серии : Сопротивление сети резисторов, расположенных таким образом, что напряжение в сети является суммой напряжений на каждом резисторе. В этом случае эквивалентное сопротивление — это сумма сопротивлений всех резисторов в сети.
- параллельное эквивалентное сопротивление : такое сопротивление сети, при котором на каждый резистор действует одинаковая разность потенциалов (напряжение), поэтому токи, проходящие через них, складываются.В этом случае сопротивление, обратное эквивалентному сопротивлению, равно сумме обратных сопротивлений всех резисторов в сети.
- удельное сопротивление : Обычно сопротивление материала электрическому току; в частности, степень сопротивления материала потоку электричества.
Сопротивление и удельное сопротивление
Сопротивление — это электрическое свойство, препятствующее прохождению тока. Ток, протекающий через провод (или резистор), подобен воде, протекающей по трубе, а падение напряжения на проводе подобно перепаду давления, которое проталкивает воду по трубе.Сопротивление пропорционально тому, сколько давления требуется для достижения заданного потока, в то время как проводимость пропорциональна тому, сколько потока возникает при заданном давлении. Проводимость и сопротивление взаимны. Сопротивление объекта зависит от его формы и материала, из которого он состоит. Цилиндрический резистор легко анализировать, и таким образом мы можем получить представление о сопротивлении более сложных форм. Как и следовало ожидать, электрическое сопротивление цилиндра R прямо пропорционально его длине L, подобно сопротивлению трубы потоку жидкости.Чем длиннее цилиндр, тем больше зарядов соударяется с его атомами. Чем больше диаметр цилиндра, тем больше тока он может пропускать (опять же, аналогично потоку жидкости по трубе). Фактически, R обратно пропорционально площади поперечного сечения цилиндра A.
Цилиндрический резистор : однородный цилиндр длиной L и площадью поперечного сечения A. Его сопротивление потоку тока аналогично сопротивлению, оказываемому трубой потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление.Чем больше площадь его поперечного сечения A, тем меньше его сопротивление.
Как уже упоминалось, для данной формы сопротивление зависит от материала, из которого состоит объект. Различные материалы обладают разным сопротивлением потоку заряда. Мы определяем удельное сопротивление вещества ρ так, чтобы сопротивление объекта R было прямо пропорционально ρ. Удельное сопротивление ρ — это внутреннее свойство материала, независимо от его формы или размера. Напротив, сопротивление R — это внешнее свойство, которое действительно зависит от размера и формы резистора.(Аналогичная внутренняя / внешняя связь существует между теплоемкостью C и удельной теплоемкостью c). Напомним, что объект, сопротивление которого пропорционально напряжению и току, называется резистором.
Типичный резистор : Типовой резистор с осевыми выводами.
Что определяет удельное сопротивление? Удельное сопротивление разных материалов сильно различается. Например, проводимость тефлона примерно в 1030 раз ниже, чем проводимость меди. Почему такая разница? Грубо говоря, металл имеет большое количество «делокализованных» электронов, которые не застревают в каком-либо одном месте, но могут свободно перемещаться на большие расстояния, тогда как в изоляторе (например, тефлоне) каждый электрон прочно связан с одним атомом и требуется большая сила, чтобы оторвать его.Точно так же резисторы могут иметь разные порядки величины. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 10 12 Ом или более. Сопротивление между руками и ногами у сухого человека может составлять 10 5 Ом, в то время как сопротивление человеческого сердца составляет примерно 10 3 Ом. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10 –5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Разность потенциалов (напряжение), наблюдаемая в сети, является суммой этих напряжений, поэтому общее сопротивление (последовательное эквивалентное сопротивление) можно найти как сумму этих сопротивлений:
[латекс] \ text {R} _ {\ text {eq}} = \ text {R} _ {1} + \ text {R} _ {2} + \ cdots + \ text {R} _ {\ text {N}} [/ латекс].
В качестве особого случая сопротивление N резисторов, соединенных последовательно, каждый из которых имеет одинаковое сопротивление R, определяется как NR. Каждый резистор в параллельной конфигурации подвержен одной и той же разности потенциалов (напряжению), однако протекающие через них токи складываются . Таким образом, можно вычислить эквивалентное сопротивление (Req) сети:
[латекс] \ frac {1} {\ text {R} _ {\ text {eq}}} = \ frac {1} {\ text {R} _ {1}} + \ frac {1} {\ text {R} _ {2}} + \ cdots + \ frac {1} {\ text {R} _ {\ text {N}}} [/ latex].
Параллельное эквивалентное сопротивление может быть представлено в уравнениях двумя вертикальными линиями «||» (как в геометрии) как упрощенное обозначение.Иногда вместо «||» используются две косые черты «//», если на клавиатуре или шрифте отсутствует символ вертикальной линии. Для случая, когда два резистора включены параллельно, это можно рассчитать по формуле:
[латекс] \ text {R} _ {\ text {eq}} = \ text {R} _ {1} \ parallel \ text {R} _ {2} = \ frac {\ text {R} _ {1 } \ text {R} _ {2}} {\ text {R} _ {1} + \ text {R} _ {2}} [/ latex].
В качестве особого случая сопротивление N резисторов, соединенных параллельно, каждый из которых имеет одинаковое сопротивление R, определяется как R / N. Сеть резисторов, которая представляет собой комбинацию параллельного и последовательного соединения, может быть разбита на более мелкие части, которые являются одним или другим, например, как показано на.
Сеть резисторов : В этой комбинированной схеме цепь может быть разбита на последовательный компонент и параллельный компонент.
Однако некоторые сложные сети резисторов не могут быть решены таким образом. Это требует более сложного анализа схем. Одно из практических применений этих соотношений состоит в том, что нестандартное значение сопротивления обычно может быть синтезировано путем соединения ряда стандартных значений последовательно или параллельно. Это также можно использовать для получения сопротивления с более высокой номинальной мощностью, чем у отдельных используемых резисторов.В частном случае N идентичных резисторов, все подключенных последовательно или все подключенных параллельно, номинальная мощность отдельных резисторов умножается на N.
Сопротивление, резисторы и удельное сопротивление : краткий обзор сопротивления, резисторов и удельного сопротивления.
Зависимость сопротивления от температуры
Удельное сопротивление и сопротивление зависят от температуры, причем зависимость линейна для малых изменений температуры и нелинейна для больших.
Цели обучения
Сравнить температурные зависимости удельного сопротивления и сопротивления при больших и малых изменениях температуры
Основные выводы
Ключевые точки
- При изменении температуры на 100ºC или менее удельное сопротивление (ρ) изменяется с изменением температуры ΔT как: [latex] \ text {p} = \ text {p} _ {0} (1 + \ alpha \ Delta \ text {T }) [/ latex] где ρ 0 — исходное удельное сопротивление, а α — температурный коэффициент удельного сопротивления.
- При больших изменениях температуры наблюдается нелинейное изменение удельного сопротивления с температурой.
- Сопротивление объекта демонстрирует такую же температурную зависимость, как и удельное сопротивление, поскольку сопротивление прямо пропорционально удельному сопротивлению.
Ключевые термины
- удельное сопротивление : Обычно сопротивление материала электрическому току; в частности, степень сопротивления материала потоку электричества.
- температурный коэффициент удельного сопротивления : эмпирическая величина, обозначаемая α, которая описывает изменение сопротивления или удельного сопротивления материала в зависимости от температуры.
- полупроводник : Вещество с электрическими свойствами, промежуточными между хорошим проводником и хорошим изолятором.
Удельное сопротивление всех материалов зависит от температуры. Некоторые материалы могут стать сверхпроводниками (нулевое сопротивление) при очень низких температурах (см.). И наоборот, удельное сопротивление проводников увеличивается с повышением температуры. Поскольку атомы колеблются быстрее и на больших расстояниях при более высоких температурах, электроны, движущиеся через металл, например, создают больше столкновений, эффективно увеличивая удельное сопротивление.При относительно небольших изменениях температуры (около 100 ° C или менее) удельное сопротивление ρ изменяется с изменением температуры ΔT, как выражается в следующем уравнении:
Сопротивление образца ртути : Сопротивление образца ртути равно нулю при очень низких температурах — это сверхпроводник примерно до 4,2 К. Выше этой критической температуры его сопротивление совершает внезапный скачок, а затем увеличивается почти линейно. с температурой.
[латекс] \ text {p} = \ text {p} _ {0} (1 + \ alpha \ Delta \ text {T}) [/ latex]
, где ρ 0 — исходное удельное сопротивление, а α — температурный коэффициент удельного сопротивления.Для более значительных изменений температуры α может изменяться, или для нахождения ρ может потребоваться нелинейное уравнение. По этой причине обычно указывается суффикс для температуры, при которой измерялось вещество (например, α 15 ), и соотношение сохраняется только в диапазоне температур вокруг эталона. Обратите внимание, что α положителен для металлов, что означает, что их удельное сопротивление увеличивается с температурой. Температурный коэффициент обычно составляет от + 3 · 10 −3 K −1 до + 6 · 10 −3 K −1 для металлов, близких к комнатной температуре.Некоторые сплавы были разработаны специально, чтобы иметь небольшую температурную зависимость. Например, манганин (состоящий из меди, марганца и никеля) имеет α, близкое к нулю, поэтому его удельное сопротивление незначительно меняется с температурой. Это полезно, например, для создания не зависящего от температуры эталона сопротивления.
Отметим также, что α отрицательна для полупроводников, что означает, что их удельное сопротивление уменьшается с повышением температуры. Они становятся лучшими проводниками при более высоких температурах, поскольку повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока.Это свойство уменьшения ρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.
Сопротивление объекта также зависит от температуры, поскольку R 0 прямо пропорционально ρ. Для цилиндра мы знаем, что R = ρL / A, поэтому, если L и A не сильно изменяются с температурой, R будет иметь ту же температурную зависимость, что и ρ. (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, и поэтому влияние температуры на L и A примерно на два порядка меньше, чем на ρ.) Таким образом,
[латекс] \ text {R} = \ text {R} _ {0} (1 + \ alpha \ Delta \ text {T}) [/ latex]
— это температурная зависимость сопротивления объекта, где R 0 — исходное сопротивление, а R — сопротивление после изменения температуры T. Многие термометры основаны на влиянии температуры на сопротивление (см.). Одним из наиболее распространенных является термистор, полупроводниковый кристалл с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры.Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.
Термометры : Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.
Сопротивление | электроника | Britannica
Узнайте, как сопротивление влияет на поток электронов в электрической цепи
В каждой электрической цепи есть некоторое сопротивление потоку электрического тока, даже в материалах, которые являются хорошими проводниками.
Encyclopædia Britannica, Inc. Посмотреть все видео по этой статьеСопротивление , в электричестве, свойство электрической цепи или части цепи, которая преобразует электрическую энергию в тепловую энергию в противодействии электрическому току. Сопротивление включает столкновения заряженных частиц с током с неподвижными частицами, составляющими структуру проводников. Сопротивление часто считается локализованным в таких устройствах, как лампы, нагреватели и резисторы, в которых оно преобладает, хотя оно характерно для каждой части цепи, включая соединительные провода и линии электропередачи.
Рассеивание электрической энергии в виде тепла, даже если оно небольшое, влияет на величину электродвижущей силы или напряжения возбуждения, необходимого для создания заданного тока в цепи. Фактически, электродвижущая сила В (измеренная в вольтах) в цепи, деленная на ток I (ампер), протекающий через эту цепь, количественно определяет величину электрического сопротивления R. Точнее, R = V . / I. Таким образом, если 12-вольтовая батарея постоянно пропускает двухамперный ток по длине провода, провод имеет сопротивление шесть вольт на ампер или шесть Ом.Ом — это общепринятая единица электрического сопротивления, эквивалентная одному вольту на ампер и обозначаемая заглавной греческой буквой омега (Ом). Сопротивление провода прямо пропорционально его длине и обратно пропорционально его площади поперечного сечения. Сопротивление также зависит от материала проводника. См. Удельное сопротивление .
Сопротивление проводника или элемента схемы обычно увеличивается с повышением температуры. При охлаждении до крайне низких температур некоторые проводники имеют нулевое сопротивление.В этих веществах, называемых сверхпроводниками, продолжают течь токи после снятия приложенной электродвижущей силы.
Величина, обратная сопротивлению, 1/ R, называется проводимостью и выражается в единицах обратного сопротивления, называемых mho.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчасВлияние емкости кабеля среднего и высокого напряжения на эксплуатационные пределы
3 августа 2018 г., Опубликовано в статьях: Energize, Рекомендуемые: Energize
Майка Райкрофта, EE Publishers
Часто задается вопрос, почему все электрические цепи передачи и распределения нельзя прокладывать под землей, чтобы избежать визуальных и других эффектов.Главный аргумент против строительства подземных систем обычно финансовый. Но затраты — не единственное ограничение. Основные законы электричества ограничивают физическую длину подземного кабеля.
Эти ограничения относительно не важны для воздушных линий, но серьезно ограничивают длину подземных кабельных систем, особенно систем высокого напряжения. Ограничивающим фактором здесь является емкость кабеля, которая намного выше, чем у воздушных линий, и имеет гораздо большее влияние на производительность.
Рис. 1: Изменение тока нагрузки в зависимости от длины кабеля.
Существует два основных ограничивающих эффекта емкости кабеля: эффект Ферранти и зарядный ток. Эффект Ферранти приводит к тому, что напряжение на дальнем конце кабеля превышает напряжение на входном конце в ненагруженных или слабо нагруженных условиях. Эффект зарядки кабеля приводит к возникновению емкостного тока, протекающего по кабелю в условиях нагрузки и без нагрузки. При достаточно высоком значении емкости зарядный ток может превышать номинальный.В подземных линиях зарядный ток во много раз больше, чем в воздушных линиях, в зависимости от линейного напряжения. Если линия достаточно длинная, зарядный ток может быть равен общему количеству тока, который линия может нести. Это сильно ограничит его способность передавать мощность. Зарядный ток также может влиять на работу защитных устройств и должен учитываться при расчете настроек таких устройств.
Зарядный ток
Емкость системы передачи будет вызывать непрерывный ток, даже если нагрузка не подключена.Это называется зарядным током. Подземные кабели имеют в 20–75 раз больший зарядный ток, чем у воздушных линий [1]. Емкость кабеля увеличивается с увеличением длины кабеля, а с увеличением емкости также увеличивается потребляемый зарядный ток. Предел длины кабеля (отрезка) достигается, когда зарядный ток равен номинальному току кабеля.
Пренебрегая сопротивлением линии и распределенным характером емкости, зарядный ток будет равен:
I c = V / X c = V × 2πfC
где:
f = частота
C = емкость
Рис.2: Емкость подземных кабелей.
Ток, протекающий по кабелю, не может превышать допустимую нагрузку кабеля, и, таким образом, зарядный ток уменьшает величину тока и, следовательно, мощность, которая может подаваться на нагрузку, или, наоборот, нагрузку, которая может обслуживаться кабелем. Ток, протекающий по кабелю в условиях нагрузки, будет зависеть от характера и коэффициента мощности нагрузки. Для чисто резистивной нагрузки с коэффициентом мощности (PF), равным единице (т. Е. 1), и без учета индуктивности кабеля переносимая нагрузка будет уменьшаться с расстоянием, как показано на рис.1.График представляет Ic как зарядный ток, Il — ток нагрузки, Im — допустимую нагрузку кабеля, Lm — длину отсечки и L — длину кабеля.
Аналогичный график применим для коэффициента мощности, близкого к 1.
График на рис. 1 показывает, что допустимая нагрузка резко падает после длины приблизительно 0,75 отрезанной длины, и очень небольшое уменьшение допустимой нагрузки для кабелей длиной менее 0,4 отрезанной длины. длина. Увеличение допустимого тока нагрузки с 92% до 98% от Im потребует уменьшения вдвое длины кабеля.
Для доставки значительной части Im к нагрузке потребуется любой практичный кабель. Длина кабеля часто определяется системными требованиями, и выбор кабеля и рабочего напряжения будет определять часть Im, которая может быть доставлена в нагрузку.
Рабочее напряжение и зарядный ток
Зарядный ток кабеля увеличивается с увеличением рабочего напряжения, при условии, что емкость кабеля остается прежней. Кабели с более высоким напряжением имеют более толстую изоляцию и, следовательно, большее расстояние между проводниками, а также меньшую емкость, но связь между напряжением кабеля и емкостью не является прямой.Для кабелей с той же допустимой нагрузкой кабель с более высоким номинальным напряжением будет иметь более высокий зарядный ток и, следовательно, более короткую длину отсечки.
Рис. 3: Модель подземного кабеля с сосредоточенными π сечениями.
Емкостное реактивное сопротивление не зависит от напряжения. Передача высокого напряжения обычно осуществляется при более низких токах, но зарядный ток будет увеличиваться с увеличением напряжения, тем самым ограничивая длину высоковольтных кабелей. Более низкое напряжение приведет к более низкому зарядному току и, следовательно, к увеличению расстояния.
В Таблице 1 приведены примеры отрезанной длины кабеля высокого напряжения (HV) из одножильного сшитого полиэтилена (XLPE), рассчитанного на разные напряжения и примерно одинаковую допустимую нагрузку.
В Таблице 2 приведены примеры отрезков кабеля для одножильных кабелей высокого напряжения из сшитого полиэтилена, рассчитанных на разные напряжения, для примерно одинаковой пропускной способности.
Ограничивающие эффекты зарядного тока
В условиях нагрузки по кабелю проходит реактивный ток для зарядки линии, активный ток для потерь в линии и полезный активный и реактивный токи для нагрузки.Это накладывает
ограничивает допустимую токовую нагрузку кабеля. Для выбранного расстояния передачи текущий запас, оставшийся после зарядки линии, соответствует полезному току для нагрузки. Существует расстояние отсечки, при котором кабель полностью загружается линейным зарядным током. В этом случае на нагрузку нельзя передать мощность. Это расстояние отсечки соответствует пределу передачи кабеля, основанному на ограничении тока.
Номинальное напряжение (кВ) | Текущий рейтинг (A) | Емкость (мкФ / км) | Обрезанная длина (км) |
500 | 1076 | 0,12 | 48,9 |
400 | 1098 | 0,15 | 58,2 |
345 | 980 | 0,13 | 69,5 |
220 | 1001 | 0,15 | 96,5 |
132 | 1020 | 0,18 | 136,6 |
Расчет емкости кабеля
Емкость существует между жилами кабеля и между жилами и оболочкой.Емкость трехжильного кабеля показана на рис. 2.
Рассмотрим трехжильный симметричный подземный кабель, показанный на рис. 2.
Пусть C S будет емкостью между любым сердечником и оболочкой, а C C будет емкостью между сердечником (т. Е. Емкостью между любыми двумя проводниками). На рис. 2 три C C соединены треугольником, а емкость между сердечником и оболочкой C S соединены звездой из-за того, что оболочка образует единую точку N .Схема на рис. 2 (ii) может быть упрощена, как показано на рис. 2 (iii). Внешние точки A, B и C представляют собой жилы кабеля, а точка N представляет оболочку (показана посередине для упрощения схемы). Следовательно, весь трехжильный кабель эквивалентен трем конденсаторам, соединенным звездой, каждый C емкостью C S + 3C C , как показано на рис. 2 (iii).
Емкость кабеля зависит от диаметра жил, расстояния между жилами, а также между жилами и оболочкой.Для данной конструкции кабеля и диаметра жилы это будет определяться толщиной изоляции, которая определяется рабочим напряжением кабеля. При том же размере жилы кабели с более высоким напряжением имеют меньшую емкость. При одинаковом рабочем напряжении кабели с большей допустимой нагрузкой, т. Е. С большим диаметром жилы, имеют более высокую емкость. Зарядный ток можно рассчитать как:
I = 2πf (C S + 3C C ) В Амперы
Эффект Ферранти и рост напряжения
Эффект Ферранти приводит к увеличению напряжения на приемном конце по сравнению с напряжением на передающем конце в слабо загруженных или ненагруженных цепях передачи энергии.В крайних случаях напряжение может превышать номинальное значение линии. Эффект обусловлен совместным действием емкости и индуктивности линии. Это происходит на очень длинных линиях передачи, но поскольку емкость кабелей намного выше, это происходит на гораздо более коротких длинах и более распространено.
В электротехнике эффект Ферранти — это повышение напряжения на приемном конце длинной линии передачи, которое намного больше, чем напряжение на передающем конце.Это происходит, когда линия находится под напряжением, но это происходит в случае очень небольшой нагрузки или когда нагрузка отключена. Емкостный зарядный ток линии отвечает за дисбаланс напряжений, который вызывает падение напряжения на индуктивности линии, которое совпадает по фазе с конечными напряжениями отправителя, при этом сопротивление линии считается незначительным.
Номинальное напряжение (кВ) | Текущий рейтинг (A) | Емкость (мкФ / км) | Обрезанная длина (км) |
400 | 853 | 0,12 | 56,6 |
345 | 980 | 0,13 | 69,5 |
220 | 1561 | 0,18 | 125,5 |
Следовательно, индуктивность и емкость линии в основном ответственны за это явление.Относительное повышение напряжения пропорционально квадрату длины линии передачи. Эффект Ферранти имеет гораздо более выраженный эффект в подземных кабелях, возможно даже на коротких длинах, из-за их высокой емкости. Степень повышения напряжения можно оценить с помощью упрощенной модели кабеля. Подземный кабель обычно моделируется как сосредоточенные T- или π-участки (рис. 3).
Упрощенное объяснение эффекта Ферранти на приблизительной основе может быть получено путем объединения параметров индуктивности и емкости линии в один участок π, как показано на рис.4.
где:
C = Емкость на единицу длины (мкФ / км).
L = индуктивность на единицу длины (Мч / км).
От π модели кабеля [3]
где:
Z = Последовательный импеданс (R + jwLl)
Y = Полная проводимость шунта (jwCl)
l = Длина кабеля (км)
В условиях холостого хода I r = 0, но в условиях низкой нагрузки им можно пренебречь.
Сопротивление без пренебрежения:
Это уравнение показывает, что (V s — V r ) отрицательно. То есть V r > V s . Это уравнение также показывает, что эффект Ферранти зависит от частоты и электрической длины линии. Коэффициент увеличения напряжения на основе эффекта Ферранти — это отношение напряжения на приемном конце к напряжению на передающем конце.
Из уравнения видно, что коэффициент повышения напряжения пропорционален квадрату длины линии.Увеличение длины линии вдвое увеличит коэффициент повышения напряжения в четыре раза.
Смягчение
Есть несколько способов ослабить влияние зарядного тока, некоторые из них практичны, а другие немного более креативны.
Шунтовая компенсация реактивной мощности
Индуктивность может быть добавлена на концах кабеля или в промежуточных точках, чтобы противодействовать влиянию емкости. Если на концах задействованы трансформаторы, могут быть предусмотрены дополнительные обмотки для обеспечения необходимого реактивного сопротивления.Эффект шунтирующего реактивного сопротивления заключается в уменьшении реактивного тока, протекающего в цепи, и, таким образом, позволяет течь более высокому току нагрузки. В идеале была бы полезна полная компенсация, но этого следует избегать из-за возможного резонанса.
Рис. 4: Упрощенная модель кабеля.
Системы передачи постоянного тока
Перемещение по прокладке подземных кабелей передачи может потребовать преобразования с передачи переменного тока в постоянный. Возможны протяженные подземные системы передачи постоянного тока.Передача постоянного тока не имеет тех же проблем, что и переменный ток. Передача постоянного тока имеет свои дополнительные затраты, в первую очередь преобразовательные подстанции. Требования к изоляции для кабелей постоянного тока ниже, чем для кабелей переменного тока, и, следовательно, ниже затраты.
Системы передачи HVDC обычно связаны с воздушными линиями, но были разработаны кабельные системы. Кабельные системы постоянного тока не имеют проблем с зарядкой емкости кабеля. Воздушные системы среднего и низкого постоянного тока используются в распределительных сетях и могут быть расширены до подземных кабельных сетей в тех случаях, когда рассматриваются кабельные системы переменного тока.
кабельных систем постоянного тока были установлены в ряде стран, и для обслуживания сектора распределения были разработаны системы постоянного тока малой мощности, такие как лампы постоянного тока. По-прежнему необходимы исследования, чтобы определить влияние на энергосистему NE широко распространенного перехода на передачу постоянного тока.
Оптимизация напряжения кабеля
Инновационное решение предложено Дебом [3]. Поскольку зарядный ток зависит от напряжения, использование кабеля при напряжении ниже номинального снижает зарядный ток.Используя метод, предложенный в [3], можно определить оптимальное рабочее напряжение. Напряжение передачи считается оптимальным, когда оно обеспечивает максимальную мощность передачи. Этот подход основан на том, что номинальное напряжение не является рабочим напряжением, а является верхней границей рабочего напряжения. Исследование с использованием этого подхода показало, что снижение напряжения между 130 и 184 км увеличивает пропускную способность, а снижение напряжения на высоте более 184 км неизбежно [4].
Список литературы
[1] NEI: « Underground vs.Надземная передача и распределение », www.puc.nh.gov/2008IceStorm/ST&E%20Presentations/NEI%20Underground%20Presentation%2006-09-09.pdf
[2] K Daware: « Емкость подземных кабели », Electricaleasy.com, 2017/04.
[3] G Deb: « Эффект Ферранти в линиях передачи », IJECE Vol. 2, № 4, август 2012 г.
[4] T Vrana: « Оптимальное напряжение передачи для очень длинных кабелей HVAC» , Energy Procedure Vol. 94, сентябрь 2016.
Присылайте свои комментарии на адрес [email protected]