Posted on

Содержание

Схемы выпрямителей

Добавлено 4 марта 2017 в 15:10

Сохранить или поделиться

Теперь мы подошли к наиболее популярному применению диода: выпрямлению. Упрощенно, выпрямление – это преобразование переменного напряжения в постоянное. Оно включает в себя устройство, которое позволяет протекать электронам только в одном направлении. Как мы уже видели, это именно то, что и делает полупроводниковый диод. Простейшим выпрямителем является однополупериодный выпрямитель. Он пропускает через себя на нагрузку только половину синусоиды сигнала переменного напряжения.

Схема однополупериодного выпрямителяСхема однополупериодного выпрямителя

Однополупериодный выпрямитель не удовлетворяет требований большинства источников питания. Содержание гармоник в выходном сигнале выпрямителя слишком велико, и, следовательно, их трудно отфильтровать. Кроме того питающий источник переменного напряжения подает питание на нагрузку во время только одной половины каждого полного периода, а это означает, что половина его возможностей не используется. Тем не менее, однополупериодный выпрямитель является очень простым способом уменьшения мощности, подводимой к активной нагрузке. Переключатели некоторых двухпозиционных ламповых диммеров подают напрямую полное переменное напряжение на лампу накаливания для «полной» яркости или через однополупериодный выпрямитель для уменьшения яркости (рисунок ниже).

Использование однополупериодного выпрямителя: двухпозиционный ламповый диммерИспользование однополупериодного выпрямителя: двухпозиционный ламповый диммер

В положении переключателя «Тускло» лампа накаливания получает примерно половину мощности, которую она бы получала при работе с полным периодом переменного напряжения. Поскольку питание после однополупериодного выпрямителя пульсирует гораздо быстрее, чем нить накала успевает нагреться и охладиться, лампа не мигает. Вместо этого, нить накала просто работает на меньшей, чем обычно, температуре, обеспечивая менее яркий свет. Эта идея быстроты «пульсирования» питания по сравнению с медленно реагирующей нагрузкой широко используется в мире промышленной электроники для управления электроэнергией, подаваемой на нагрузку. Так как управляющее устройство (в данном случае, диод) в любой момент времени либо полностью проводит, либо полностью не проводит ток, то оно рассеивает мало тепловой энергии, контролируя при этом мощность нагрузки, что делает этот метод управления питанием очень энергоэффективным. Эта схема, возможно, является самым грубым способом подачи пульсирующего питания на нагрузку, но она достаточна в качестве применения, доказывающего правильность идеи.

Если нам нужно выпрямить питание переменным напряжением, чтобы получить полное использование обоих полупериодов синусоидального сигнала, то необходимо использовать другие схемы выпрямителей. Такие схемы называются двухполупериодными выпрямителями. Один из типов двухполупериодных выпрямителей, называемый выпрямителем

со средней точкой, использует трансформатор со средней точкой во вторичной обмотке и два диода, как показано на рисунке ниже.

Двухполупериодный выпрямитель, схема со средней точкойДвухполупериодный выпрямитель, схема со средней точкой

Понять работу данной схемы довольно легко, рассмотрев ее в разные половины периода синусоидального сигнала. Рассмотрим первую половину периода, когда полярность напряжения источника положительна (+) наверху и отрицательна внизу. В это время ток проводит только верхний диод, нижний диод блокирует протекание тока, а нагрузка «видит» первую половину синусоиды, положительную наверху и отрицательную внизу. Во время первой половины периода ток протекает только через верхнюю половину вторичной обмотки трансформатора (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Верхняя половина вторичной обмотки проводит ток во время положительной полуволны на входе, доставляя положительную полуволну на нагрузкуДвухполупериодный выпрямитель со средней точкой: Верхняя половина вторичной обмотки проводит ток во время положительной полуволны на входе, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

В течение следующего полупериода полярность переменного напряжения меняется на противоположную. Теперь другой диод и другая половина вторичной обмотки трансформатора проводят ток, а часть схемы, проводившая ток во время предыдущего полупериода, находится в ожидании. Нагрузка по-прежнему «видит» половину синусоиды, той же полярности, что и раньше: положнительная сверху и отрицательная снизу (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Во время отрицательной полуволны на входе ток проводит нижняя половина вторичной обмотки, доставляя положительную полуволну на нагрузкуДвухполупериодный выпрямитель со средней точкой: Во время отрицательной полуволны на входе ток проводит нижняя половина вторичной обмотки, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

Одним из недостатков этой схемы двухполупериодного выпрямителя является необходимость трансформатора со средней точкой во вторичной обмотке. Особенно сильно этот недостаток проявляется, если для схемы имеют значение высокая выходная мощность; размер и стоимость подходящего трансформатора становятся одними из определяющих факторов. Следовательно, схема выпрямителя со средней точкой используется только в приложениях с низким энергопотреблением.

Полярность на нагрузке двухполупериодного выпрямителя со средней точкой может быть изменена путем изменения направления диодов. Кроме того, перевернутые диоды могут подключены параллельно с существующим выпрямителем с положительным выходом. В результате получится двуполярный двухполупериодный выпрямитель со средней точкой, показанный на рисунке ниже. Обратите внимание, что соединение диодов между собой аналогично схеме моста.

Двуполярный двухполупериодный выпрямитель со средней точкойДвуполярный двухполупериодный выпрямитель со средней точкой

Существует еще одна популярная схема двухполупериодного выпрямителя, она построена на базе схемы четырехдиодного моста. По очевыдным причинам эта схема называется двухполупериодным мостовым выпрямителем

.

Двухполупериодный мостовой выпрямительДвухполупериодный мостовой выпрямитель

Направления потоков электронов в двухполупериодном мостовом выпрямителе показано на рисунках ниже для положительной и отрицательной полуволн синусоиды переменного напряжения источника. Обратите внимание, что независимо от полярности на входе, ток через нагрузку протекает в одном и том же направлении. То есть, отрицательная полуволна на источнике соответствует положительной полуволне на нагрузке. Ток протекает через два диода, соединенных последовательно для обеих полярностей. Таким образом, из-за падения напряжения на двух диодах теряется (0.7 x 2 = 1.4В для кремниевых диодов). Это является недостатком по сравнению с двухполупериодным выпрямителем со средней точкой. Этот недостаток является проблемой только для очень низковольтных источников питания.

Двухполупериодный мостовой выпрямитель. Поток электронов для положительных полупериодовДвухполупериодный мостовой выпрямитель. Поток электронов для положительных полупериодовДвухполупериодный мостовой выпрямитель. Поток электронов для отрицательных полупериодовДвухполупериодный мостовой выпрямитель. Поток электронов для отрицательных полупериодов

Запоминание правильного соединения диодов схемы мостового выпрямителя иногда может вызвать проблемы у новичка. Альтернативное представление этой схемы может облегчить запоминание и понимание. Это точно такая же схема, за исключением того, что все диоды нарисованы в горизонтальном положении и указывают в одном направлении (рисунок ниже).

Альтернативное представление схемы двухполупериодного мостового выпрямителя
Альтернативное представление схемы двухполупериодного мостового выпрямителя

Одним из преимуществ такого представления схемы мостового выпрямителя является то, что она легко расширяется до многофазной версии (рисунок ниже).

Схема трехфазного мостового выпрямителяСхема трехфазного мостового выпрямителя

Линия каждой из фаз подключается между парой диодов: один ведет к положительному (+) выводу нагрузки, а второй – к отрицательному. Многофазные системы с количеством фаз, более трех, так же могут быть легко использованы в схеме мостового выпрямителя. Возьмем, например, схему шестифазного мостового выпрямителя (рисунок ниже).

Схема шестифазного мостового выпрямителя
Схема шестифазного мостового выпрямителя

При выпрямлении многофазного переменного напряжения сдвинутые по фазе импульсы накладываются друг на друга создавая выходное постоянное напряжение, которое более «гладкое» (имеет меньше переменных составляющих), чем при выпрямлении однофазного переменного напряжения. Это преимущество является решающим в схемах выпрямителей высокой мощности, где физический размер фильтрующих компонентов будет чрезмерно большим, но при этом необходимо получить постоянное напряжение с низким уровнем шумов. Диаграмма на рисунке ниже показывает двухполупериодное выпрямление трехфазного напряжения.

Трехфазное переменное напряжение и выходное напряжение трехфазного двухполупериодного выпрямителяТрехфазное переменное напряжение и выходное напряжение трехфазного двухполупериодного выпрямителя

В любом случае выпрямления (однофазном или многофазном) количество переменного напряжения, смешанного с выходным постоянным напряжением выпрямителя, называется напряжением пульсаций. В большинстве случаев напряжение пульсаций нежелательно, так как целью выпрямления является «чистое» постоянное напряжение. Если уровни мощности не слишком велики, для уменьшения пульсаций в выходном напряжении могут быть использованы схемы фильтрации.

Иногда метод выпрямления классифицируется путем подсчета количества «импульсов» постоянного напряжения на выходе каждые 360° синусоиды входного напряжения. Однофазная однополупериодная схема выпрямителя тогда будет называться 1-импульсным выпрямителем, поскольку он дает один импульс во время полного периода (360°) сигнала переменного напряжения. Однофазный двухполупериодный выпрямитель (независимо от схемы, со средней точкой или мостовой) будет называться 2-импульсным выпрямителем, поскольку он выдает 2 импульса постоянного напряжения за один период переменного напряжения. Трехфазный двухполупериодный выпрямитель будет называться 6-импульсным.

Современное соглашение в электротехнике описывает работу схемы выпрямителя с помощью трехпозиционной записи фаз, путей и количества импульсов. Схема однофазного однополупериодного выпрямителя в данном зашифрованном обозначении будет следующей 1Ph2W1P (1 фаза, 1 путь, 1 импульс), а это означает, что питающее переменное напряжение однофазно, ток каждой фазы источника переменного напряжения протекает только в одном направлении (пути), и, что в постоянном напряжении создается один импульс каждые 360° входной синусоиды. Однофазный двухполупериодный выпрямитель со средней точкой в этой системе записи будет обозначаться, как 1Ph2W2P: 1 фаза, 1 путь или направление протекания тока в каждой половине обмотки, и 2 импульса в выходном напряжении за период. Однофазный двухполупериодный мостовой выпрямитель будет обозначаться, как 1Ph3W2P: так же, как и схема со средней точкой, за исключением того, что ток может протекать двумя путями через линии переменного напряжения, вместо только одного пути. Трехфазный мостовой выпрямитель, показанный ранее, будет называться выпрямителем 3Ph3W6P.

Вожможно ли получить количество импульсов больше, чем удвоенное количество фаз в схеме выпрямителя? Ответ на этот вопрос, да: особенно в многофазных цепях. При помощи творческого использования трансформаторов наборы двухполупериодных выпрямителей могут быть соединены параллельно таким образом, что на выходе для трехфазного переменного напряжения может быть получено более шести импульсов постоянного напряжения. Когда схемы соединения обмоток трансформатора не одинаковы, из первичной во вторичную цепь трехфазного трансформатора вводится 30° фазовый сдвиг. Другими словами, трансформатор подключенный по схеме либо Y-Δ, либо Δ-Y будет давать сдвиг фазы на 30°; в то время, как подкючение трансформатора по схеме Y-Y или Δ-Δ такого эффекта не даст. Это явление может быть использовано при наличии одного трансформатора, подключенного по схеме Y-Y к одному мостовому выпрямителю, и другого трансформатора, подключенного по схеме Y-Δ к другому мостовому выпрямителю, а затем параллельном соединению выходов постоянного напряжения обоих выпрямителей (рисунок ниже). Поскольку формы напряжений пульсаций на выходах двух выпрямителей смещены по фазе на 30° относительно друг друга, в результате сложения они дадут меньшие пульсации, чем каждый выпрямитель по отдельности: 12 импульсов каждые 360° вместо шести:

Схема многофазного выпрямителя: 3 фазы, 2 пути, 12 импульсов (3Ph3W12P)Схема многофазного выпрямителя: 3 фазы, 2 пути, 12 импульсов (3Ph3W12P)

Подведем итоги

  • Выпрямление – это преобразование переменного напряжения в постоянное.
  • Однополупериодный выпрямитель – это схема, которая позволяет только одной половине синусоиды переменного напряжения достичь нагрузки, давая на ней в результате неизменяющуюся полярность. Полученное постоянное напряжение, приложенное к нагрузке, значительно «пульсирует».
  • Двухполупериодный выпрямитель – это схема, которая преобразует обе половины периода синусоиды переменного напряжения в непрерывную последовательность импульсов одной полярности. Полученное постоянное напряжение, приложенное к нагрузке, «пульсирует» не так сильно.
  • Многофазное переменное напряжении при выпрямлении дает более «гладкую» форму постоянного напряжения (меньшее напряжение пульсаций) по сравнению с выпрямленным однофазным напряжением.

Оригинал статьи:

Теги

ВыпрямительДиодИсточник питанияУчебникЭлектроника

Сохранить или поделиться

radioprog.ru

Полупроводниковые выпрямители блоков питания, схемы, онлайн расчёт

Классификация, свойства, схемы, онлайн калькулятор.
Расчёт ёмкости сглаживающего конденсатора.

«- Почему пульт не работает?
  — Я, конечно, не электрик, но, по-моему, пульт не работает, потому что телевизора нет».

— А для чего нам ещё «нахрен не упал» профессиональный электрик?
— Для чего? Да много для чего! Например, для того, чтобы быть в курсе, что без источника питания, а точнее без преобразователя сетевого переменного напряжения в постоянное, не обходится ни одно электронное устройство.
— А электрик?
— Электрик, электрик… Что электрик?… «Электрик Сидоров упал со столба и вежливо выругался…»

Итак, приступим.
Выпрямитель — это электротехническое устройство, предназначенное для преобразования переменного напряжения в постоянное.
Выпрямитель содержит трансформатор,
необходимый для преобразования напряжения сети Uc до величины U2, определяемой требованиями нагрузки;
вентильную группу (в нашем случае диодную), которая обеспечивает одностороннее протекание тока в цепи нагрузки;
фильтр, передающий на выход схемы постоянную составляющую напряжения и сглаживающий пульсации напряжения.

Расчёт трансформатора — штука громоздкая, в рамках этой статьи рассматриваться не будет, поэтому сразу перейдём к основным и наиболее распространённым схемам выпрямителей блоков питания радиоэлектронной аппаратуры.
В процессе повествования давайте сделаем допущение, что под величинами переменных напряжений и токов в цепях выпрямителей мы будем подразумевать их действующие (эффективные) значения:
Uдейств = Uампл/√2 и Iдейств = Iампл/√2.
Именно такие значения приводятся в паспортных характеристиках обмоток трансформаторов, да и большинство измерительных приборов отображают — не что иное, как аккурат эффективные значения сигналов переменного тока.

Однополупериодный выпрямитель.

Выпрямители блоков питанияВыпрямители блоков питанияВыпрямители блоков питания
Рис.1

На Рис.1 приведена однофазная однополупериодная схема выпрямления, а также осциллограммы напряжений в различных точках (чёрным цветом — напряжение на нагрузке при отсутствии сглаживающего конденсатора С1, красным — с конденсатором).
В данном типе выпрямителя напряжение с вторичной обмотки трансформатора поступает в нагрузку через диод только в положительные полупериоды переменного напряжения. В отрицательные полупериоды полупроводник закрыт, и напряжение в нагрузку подаётся только с заряженного в предыдущий полупериод конденсатора.
Однополупериодная схема выпрямителя применяется крайне редко и только для питания цепей с низким током потребления ввиду высокого уровня пульсаций выпрямленного напряжения, низкого КПД, и неэффективного использования габаритной мощности трансформатора.

Здесь обмотка трансформатора должна обеспечивать величину тока, равную удвоенному значению максимального тока в нагрузке Iобм = 2×Iнагр  и напряжение холостого хода ~U2 ≈ 0,75×Uн.
При выборе диода D1 для данного типа схем, следует придерживаться следующих его параметров:
Uобр > 3,14×Uн   и   Iмакс > 3,14×Iн.

Едем дальше.
Двухполупериодный выпрямитель с нулевой точкой.

Выпрямители блоков питанияВыпрямители блоков питанияВыпрямители блоков питания
Рис.2

Схема, приведённая на Рис.2, является объединением двух противофазных однополупериодных выпрямителей, подключённых к общей нагрузке. В одном полупериоде переменного напряжения ток в нагрузку поступает с верхней половины вторичной обмотки через открытый диод D1, в другом полупериоде — с нижней, через второй открытый диод D2.
Как и любая двухполупериодная, эта схема выпрямителя имеет в 2 раза меньший уровень пульсации по сравнению с однополупериодной схемой. К недостаткам следует отнести более сложную конструкцию трансформатора и такое же, как в однополупериодной схеме — нерациональное использование трансформаторной меди и стали.

Каждая из обмоток трансформатора должна обеспечивать величину тока, равную значению максимального тока в нагрузке Iобм = Iнагр  и напряжение холостого хода ~U2 ≈ 0,75×Uн.
Полупроводниковые диоды D1 и D2 должны обладать следующими параметрами:
Uобр > 3,14×Uн   и   Iмакс > 1,57×Iн.

И наконец, классика жанра —
Мостовые схемы двухполупериодных выпрямителей.

Выпрямители блоков питанияВыпрямители блоков питанияВыпрямители блоков питания
Рис.3

На Рис.3 слева изображена схема однополярного двухполупериодного мостового выпрямителя с использованием одной обмотки трансформатора. Графики напряжений на входе и выходе выпрямителя аналогичны осциллограммам, изображённым на Рис.2.
Во время положительного полупериода переменного напряжения ток протекает через цепь, образованную D2 и D3, во время отрицательного — через цепь D1 и D4. В обоих случаях направление тока, протекающего через нагрузку, одинаково.

Если сравнивать данную схему с предыдущей схемой выпрямителя с нулевой точкой, то мостовая имеет более простую конструкцию трансформатора при таком же уровне пульсаций, менее жёсткие требования к обратному напряжению диодов, а главное — более рациональное использование трансформатора и возможность уменьшения его габаритной мощности.
К недостаткам следует отнести необходимость увеличения числа диодов, что приводит к повышенным тепловым потерям за счёт большего падения напряжения в выпрямителе.

Обмотка трансформатора должна обеспечивать величину тока, равную Iобм = 1,41×Iнагр  и напряжение холостого хода ~U2 ≈ 0,75×Uн.
Полупроводниковые диоды следует выбирать исходя из следующих соображений:
Uобр > 1,57×Uн   и   Iмакс > 1,57×Iн.

При наличии у трансформатора двух одинаковых вторичных обмоток, или одной с отводом от середины выводом, однополярная схема преобразуется в схему двуполярного выпрямителя со средней точкой (Рис.3 справа).
Естественным образом, диоды в двуполярном исполнении должны выбираться исходя из двойных значений Uобр и Iмакс по отношению к однополярной схеме.

Значения Uобр и Iмакс приведены исходя из величин наибольшего (амплитудного) значения обратного напряжения, приложенного к одному диоду, и наибольшего (амплитудного) значения тока через один диод при отсутствии сглаживающих фильтров на выходе.

Конденсатор С1 во всех схемах — это простейший фильтр, выделяющий постоянную составляющую напряжения и сглаживающий пульсации напряжения в нагрузке.
Для выпрямителей, не содержащих стабилизатор, его ёмкость рассчитывается по формулам:
С1 = 6400×Iн/(Uн×Кп) для однополупериодных выпрямителей и
С1 = 3200×Iн/(Uн×Кп) — для двухполупериодных,
где Кп — это коэффициент пульсаций, численно равный отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей.
Для стабилизированных источников питания ёмкость С1 можно уменьшить в 5-10 раз.

«Коэффициент пульсаций выбирают самостоятельно в зависимости от предполагаемой нагрузки, допускающей питание постоянным током вполне определённой «чистоты»:
10-3… 10-2   (0,1-1%) — малогабаритные транзисторные радиоприёмники и магнитофоны,
10-4… 10-3   (0,01-0,1%) — усилители радио и промежуточной частоты,
10-5… 10-4   (0,001-0,01%) — предварительные каскады усилителей звуковой частоты и микрофонных усилителей.» — авторитетно учит нас печатное издание.

Ну и под занавес приведём незамысловатую онлайн таблицу.

КАЛЬКУЛЯТОР РАСЧЁТА ВЫПРЯМИТЕЛЯ ДЛЯ БЛОКА ПИТАНИЯ.

А на следующей странице рассмотрим сглаживающие фильтры силовых выпрямителей, не только ёмкостные, но и индуктивные, а также активные фильтры на биполярных транзисторах.

Выпрямители блоков питания

 

vpayaem.ru

Что такое трехфазное выпрямление, принцип работы и схемы

В данной статье поговорим про трехфазный выпрямитель (контролируемый и неконтролируемый). Подробно опишем его принцип работы, а так же рассмотрим схемы полуволнового и полноволнового трехфазного выпрямителя.

Описание

В предыдущей статье мы видели, что процесс преобразования входного источника переменного тока в постоянный источник постоянного тока называется выпрямлением, причем наиболее популярные схемы, используемые для выполнения этого процесса выпрямления, основаны на полупроводниковых диодах. На самом деле выпрямление переменного напряжения является одним из самых популярных применений диодов, так как диоды недорогие, небольшие и надежные, что позволяет нам создавать многочисленные типы выпрямительных цепей, используя либо индивидуально подключенные диоды, либо всего один встроенный мостовой выпрямительный модуль.

Однофазные источники питания, такие как в домах и офисах, обычно имеют фазо-нейтральное напряжение 120 или 240 Врм, также называемое линией нейтрали (LN), и номиналом постоянного напряжения и частоты, которые создают переменное напряжение или ток в форму синусоидальной формы волны с сокращением «AC».

Трехфазные выпрямители, также известные как многофазные выпрямительные схемы, аналогичны предыдущим однофазным выпрямителям. Разница на этот раз в том, что мы используем три однофазных источника питания, соединенных вместе, которые были произведены одним единственным трехфазным генератором.

Преимущество здесь состоит в том, что трехфазные выпрямительные схемы могут использоваться для питания многих промышленных устройств, таких как управление двигателем или зарядка аккумулятора, которые требуют более высоких требований к мощности, чем однофазная выпрямительная схема.

Трехфазные источники питания развивают эту идею на один шаг вперед, комбинируя вместе три напряжения переменного тока одинаковой частоты и амплитуды, причем каждое напряжение переменного тока называется «фазой». Эти три фазы имеют сдвиг по фазе на 120 электрических градусов друг от друга, создавая последовательность фаз или поворот фазы на 360 o  ÷ 3 = 120 o, как показано.

Трехфазная форма волны

Трехфазная форма волны

Преимущество здесь заключается в том, что трехфазный источник переменного тока (AC) может использоваться для подачи электроэнергии непосредственно на сбалансированные нагрузки и выпрямители. Поскольку трехфазный источник питания имеет фиксированное напряжение и частоту, он может использоваться в схеме выпрямления для получения энергии постоянного тока с постоянным напряжением, которая затем может быть отфильтрована, что приводит к выходному напряжению постоянного тока с меньшей пульсацией по сравнению с однофазной выпрямительной схемой.

Принцип работы

Видя, что 3-фазный источник питания — это просто три однофазные комбинации, мы можем использовать это многофазное свойство для создания 3-фазных цепей выпрямителя.

Как и в случае однофазного выпрямления, в трехфазном выпрямлении используются диоды, тиристоры, транзисторы или преобразователи для создания полуволновых, двухволновых, неконтролируемых и полностью управляемых выпрямительных цепей, преобразующих данный трехфазный источник питания в постоянный выходной уровень постоянного тока. В большинстве случаев трехфазный выпрямитель подается напрямую от электросети или от трехфазного трансформатора, если подключенная нагрузка требует другого уровня выхода постоянного тока.

Как и в случае предыдущего однофазного выпрямителя, наиболее простой трехфазной выпрямительной схемой является схема неуправляемого полуволнового выпрямителя, в которой используются три полупроводниковых диода, по одному диоду на фазу, как показано ниже.

Полуволновое трехфазное выпрямление

Полуволновое трехфазное выпрямление

Так как же работает эта трехфазная полуволновая выпрямительная схема? Анод каждого диода подключен к одной фазе источника напряжения с катодами всех трех диодов, соединенных вместе в одну положительную точку, эффективно создавая схему диода типа «ИЛИ». Эта общая точка становится положительной (+) клеммой нагрузки, в то время как отрицательная (-) клемма нагрузки подключается к нейтрали (N) источника питания.

Предполагая, что чередование фаз красно-желто-синее (V A  — V B  — V C ) и красная фаза (V A ) начинается при 0 o . Первым проводящим диодом будет диод 1 ( D 1  ), так как он будет иметь более положительное напряжение на своем аноде, чем диоды D 2или D 3 . Таким образом, диод D 1 проводит для положительного полупериода V A, в то время как D 2 и D 3 находятся в их обратном смещенном состоянии. Нейтральный провод обеспечивает обратный путь тока нагрузки к источнику питания.

Через 120 электрических градусов диод 2 (D 2 ) начинает проводить для положительного полупериода V B (желтая фаза). Теперь его анод становится более положительным, чем диоды D 1 и D 3, которые оба «выключены», потому что они смещены в обратном направлении. Аналогичным образом , 120 о дальнейшем V С(синия фаза) начинает возрастать поворачивая «ON» диод 3 (D 3 ) в качестве анода становится более положительным, таким образом, превращая «OFF» диоды D 1 и D 2 .

Затем мы можем видеть, что для трехфазного выпрямления, какой бы диод не имел более положительного напряжения на своем аноде, по сравнению с двумя другими диодами, он автоматически начнет проводить, тем самым давая схему проводимости: D 1 D 2 D 3, как показано.

картинка-схема проводимости диодов

Из приведенных выше сигналов для резистивной нагрузки видно, что для полуволнового выпрямителя каждый диод пропускает ток в течение одной трети каждого цикла, а выходной сигнал в три раза больше входной частоты источника переменного тока. Следовательно, в данном цикле имеется три пика напряжения, поэтому за счет увеличения количества фаз от однофазного до трехфазного источника улучшается выпрямление источника питания, то есть выходное напряжение постоянного тока становится более плавным.

Для трехфазного полуволнового выпрямителя напряжения питания V A V B и V C сбалансированы, но с разностью фаз 120 o, что дает:

A  = V P * sin (ωt — 0 o )

B  = V P * sin (ωt — 120 o )

C  = V P * sin (ωt — 240 o )

Таким образом, среднее значение постоянного тока формы волны выходного напряжения от трехфазного полуволнового выпрямителя задается как:

среднее значение постоянного тока формы волны выходного напряжения от трехфазного полуволнового выпрямителя

Поскольку напряжение обеспечивает пиковое напряжение V P равно V RMS * 1,414, из этого следует, что V P равно V P / 1,414, что дает 0,707 * V P , поэтому среднее выходное напряжение постоянного тока выпрямителя можно выразить через среднеквадратичное фазное напряжение, дающее:

среднее выходное напряжение постоянного тока выпрямителя

Полноволновое трехфазное выпрямление

В двухволновой трехфазной неконтролируемой мостовой выпрямительной схеме используются шесть диодов, по два на фазу аналогично однофазному мостовому выпрямителю. Трехфазный двухполупериодный выпрямитель получается с использованием двух схем полуволнового выпрямителя. Преимущество здесь состоит в том, что схема производит более низкий пульсационный выход, чем предыдущий полуволновой 3-фазный выпрямитель, поскольку его частота в шесть раз превышает входной сигнал переменного тока.

Кроме того, двухполупериодный выпрямитель может питаться от сбалансированного 3-фазного 3-проводного треугольника, подключенного треугольником, поскольку четвертый нейтральный (N) провод не требуется. Рассмотрим ниже трехполупериодную трехфазную схему выпрямителя.

картинка-схема трехполупериодного трехфазного выпрямителя

Как и раньше, при условии чередования фаз красного-желтого-синего (V A  — V B  — V C) и красной фазы (V A ) начинается при 0 o . Каждая фаза подключается между парой диодов, как показано на рисунке. Один диод проводящей пары питает положительную (+) сторону нагрузки, в то время как другой диод питает отрицательную (-) сторону нагрузки.

Диоды D 1, D 3, D 2 и D 4 образуют мостовую выпрямительную сеть между фазами A и B, аналогично диоды D 3 D 5, D 4 и D 6 между фазами B и C и D 5, D 1, D 6 и D 2 между фазами C и А.

Таким образом, диоды D 1, D 3 и D 5 питают положительную шину и в зависимости от того, какая из них имеет более положительное напряжение на своем анодном выводе, проводит. Аналогично, диоды D 2, D 4 и D 6 питают отрицательную шину, и какой диод имеет более отрицательное напряжение на своих катодных выводах.

Тогда мы можем видеть, что для трехфазного выпрямления диоды проводят в совпадающих парах, давая схему проводимости для тока нагрузки: D 1-2 D 1-6 D 3-6 D 3-6 D 3-4 D 5- 4 D 5-2 и D 1-2, как показано.

Форма волны двухфазного выпрямителя

В трехфазных силовых выпрямителях проводимость всегда происходит в наиболее положительном диоде и соответствующем наиболее отрицательном диоде. Таким образом, когда три фазы вращаются через выводы выпрямителя, проводимость передается от диода к диоду. Затем каждый диод проводит в течение 120 o (одну треть) в каждом цикле питания, но так как требуется два диода для проводки в парах, каждая пара диодов будет проводить только 60 o (одну шестую) цикла в любой момент времени, так как показано выше.

Поэтому мы можем правильно сказать, что для трехфазного выпрямителя, питаемого от «3» вторичных обмоток трансформатора, каждая фаза будет разделена на 360 o / 3, таким образом, требуя 2 * 3 диода. Отметим также, что в отличие от предыдущего полуволнового выпрямителя, между входной и выходной клеммами выпрямителя нет общего соединения. Следовательно, он может питаться от звезды или от трансформатора.

Таким образом, среднее значение постоянного тока сигнала выходного напряжения от трехфазного двухполупериодного выпрямителя задается как:

среднее значение постоянного тока сигнала выходного напряжения от трехфазного двухполупериодного выпрямителя

Где: V S равно (V L (PEAK)  ÷ √ 3 ), а где V L (PEAK) — максимальное линейное напряжение (V L * 1,414).

Резюме трехфазного выпрямления

В этой статье мы увидели, что трехфазное выпрямление — это процесс преобразования трехфазного источника переменного тока в пульсирующее постоянное напряжение, когда выпрямление преобразует входной источник питания синусоидального напряжения и частоты в постоянное напряжение постоянного тока. Таким образом, выпрямление мощности превращает переменный источник в однонаправленный источник.

Но мы также видели, что 3-фазные неконтролируемые полуволновые выпрямители, которые используют один диод на фазу, требуют подключения в виде звезды в качестве четвертого нейтрального (N) провода для замыкания цепи от нагрузки к источнику. Трехфазный двухполупериодный мостовой выпрямитель, который использует два диода на фазу, требует только трех линий электропередачи, без нейтрали, такой как та, которая обеспечивается питанием от треугольника.

Другим преимуществом двухполупериодного мостового выпрямителя является то, что ток нагрузки хорошо сбалансирован по мосту, что повышает эффективность (отношение выходной мощности постоянного тока к подводимой входной мощности) и снижает содержание пульсаций, как по амплитуде, так и по частоте, по сравнению с полуволновой конфигурацией.

Увеличивая количество фаз и диодов в конфигурации моста, можно получить более высокое среднее выходное напряжение постоянного тока с меньшей амплитудой пульсаций, как, например, при 6-фазном выпрямлении каждый диод будет проводить только одну шестую цикла. Кроме того, многофазные выпрямители производят более высокую частоту пульсаций, что означает меньшую емкостную фильтрацию и намного более плавное выходное напряжение. Таким образом, 6, 12, 15 и даже 24-фазные неконтролируемые выпрямители могут быть разработаны для улучшения коэффициента пульсации для различных применений.

meanders.ru

РадиоКот :: Выпрямители. Как и почему.

РадиоКот >Обучалка >Аналоговая техника >Основы — слишком просто? Вам сюда. Продолжаем. >

Выпрямители. Как и почему.

Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему щастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пжалста.

Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,

Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.

а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).

Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:

Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.

Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.

Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.

Ну а теперь к делу.

1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.

2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, много большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.

4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.

5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.

6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.

7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.

Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

Для однополупериодного выпрямителя формула несколько отличается:

Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.

Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В

Для справки — допустимые пульсации:
Микрофонные усилители — 0,001…0,01%
Цифровая техника — пульсации 0,1…1%
Усилители мощности — пульсации нагруженного блока питания 1…10% в зависимости от качества усилителя.

Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Выпрямители. Виды и устройство. Структура и особенности

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Устройство и структура выпрямителя

Рис. 1

Выпрямители в общем виде можно изобразить структурной схемой (Рис. 2), в которую входит:

1 — Силовой трансформатор.
2 — Диодный мост, состоящий из диодов.
3 — Устройство фильтрования.
4 — Нагрузочная цепь со стабилизатором.

Рис. 2

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства (Рис. 1 — а). Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста Uн.

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iнодновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный (Рис. 1 — б). В блоке применяются чаще всего элементы в виде диодов.

На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки (Рис. 1 — в). В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Стабилизатор напряжения

Устройство стабилизации напряжения предназначено для снижения внешнего влияния на выходное напряжение. Воздействиями могут быть: изменение частоты тока, температуры, перепады напряжения и другие факторы. В конструкции стабилизатора используются полупроводниковые элементы в виде стабилитронов, тиристоров, симисторов и других полупроводников, устройство и работа которых будет рассмотрена отдельно.

Классификация

Выпрямители, выполненные на основе полупроводниковых элементов, классифицируются по различным признакам.

По мощности на выходе:
  • Повышенной мощности – свыше 100 киловатт.
  • Средней мощности – менее 100 кВт.
  • Малой мощности – до 0,6 киловатт.
По фазности сети питания:
  • 1-фазные.
  • 3-фазные.
По количеству импульсов одного полюса выпрямленного напряжения U2 за один период:
  • Однотактные (имеют один полупериод).
  • Двухтактные (два полупериода).
По типу управления вентилями выпрямители делятся на:
  • Управляемые. В схеме применяются транзисторы, тиристоры.
  • Неуправляемые. Используются диоды.
Выпрямители разделяют для следующих видов нагрузки:
  • Активно-емкостная.
  • Активно-индуктивная.
  • Активная.
Расчет выпрямителя

Характер нагрузки, формы потребления тока влияют на способы расчета выпрямителя, и значительно отличаются. Расчет выпрямителя выполняется путем подбора схемы выпрямителя, вида вентилей, определения нагрузки на трансформатор, фильтр и диоды, энергетических и электрических параметров.

Ряд факторов влияет на выбор схемы прибора. Эти факторы необходимо учитывать согласно предъявляемому требованию к выпрямителю.

К таким факторам можно отнести:
  • Мощность и напряжение.
  • Пульсация и частота напряжения на выходе.
  • Значение обратного напряжения на диодах и их количество.
  • Коэффициент мощности и другие параметры.
  • КПД.

Коэффициент применения трансформатора по мощности оказывает большое влияние на расчет выпрямителя. Этот параметр вычисляется формулой:

Где Id, Ud, — средние величина выпрямленного тока и напряжения, I1, U1  — рабочая первичная величина тока и напряжения, I2, U2  – рабочая величина вторичного тока и напряжения.

При повышении коэффициента использования трансформатора размеры прибора в общем уменьшаются, а КПД увеличивается.

Схемы выпрямления
Однофазные выпрямители

Схемы приборов для подключения к питанию однофазной сети используются чаще всего для бытовых электрических устройств. В них применяются однофазные трансформаторы, функционирующие с фазой и нолем. Обе обмотки трансформатора таких приборов являются однофазными.

Однофазная однотактная схема

Однополупериодная схема чаще всего используют для выравнивания токов малой мощности (несколько миллиампер), когда нет необходимости идеального выравнивания напряжения на выходе выпрямителя. Такая схема характерна значительными пульсациями выходного напряжения и малым коэффициентом использования трансформатора.

На диаграмме видна работа однотактного выпрямителя на активную нагрузку.

Нагрузочный ток id под воздействием ЭДС вторичной обмотки (е2) может пройти только за те полупериоды, на которых анод диода обладает положительным потенциалом по отношению к катоду. По диоду в первый полупериод протекает ток ivd, а во второй полупериод ток становится нулевым (при отрицательном потенциале анода).

Напряжение на выходе выпрямителя ud всегда ниже ЭДС обмотки е2, из-за того, что определенная часть напряжения теряется. Наибольшее обратное сопротивление вентиля Uобрmax достигает амплитудной величины ЭДС вторичной обмотки.

Диаграммы токов обеих обмоток трансформатора аналогичны, если не считать ток намагничивания и удалить из него величину Id, так как она не трансформируется в первичную обмотку. Из-за этой величины в сердечнике трансформатора образуется вспомогательный магнитный поток, который насыщает сердечник.

Такой эффект называется вынужденным подмагничиванием. Это можно выделить, как основной недостаток схемы. После насыщения ток намагничивания трансформатора повышается по сравнению с нормальным режимом. Повышение этого тока создает условия для увеличения сечения проводника первичной обмотки. Вследствие этого возрастают размеры трансформатора.

Похожие темы:

electrosam.ru

принцип действия, обозначения на схеме, проверка исправности

Схема диодного мостаПочти вся электронная аппаратура для своей работы требует определённую величину постоянного напряжения. В электрический сети передаётся синусоидальный сигнал с частотой 50 Гц. Для преобразования сигнала используется свойство полупроводниковых элементов пропускать ток только в одном направлении, а в другом блокировать его прохождение. В качестве преобразователя применяется схема диодного моста, позволяющая получать на выходе сигнал постоянной величины.

Физические свойства p-n перехода

Главным элементом, использующимся при создании выпрямительного узла, является диод. В основе его работы лежит электронно-дырочный переход (p-n).

Общепринятое определение гласит: p-n переход — это область пространства, находящаяся на границе соединения двух полупроводников разного типа. В этом пространстве образуется переход n-типа в p-тип. Значение проводимости зависит от атомного строения материала, а именно от того, насколько прочно атомы удерживают электроны. Атомы в полупроводниках располагаются в виде решётки, а электроны привязаны к ним электрохимическими силами. Сам по себе такой материал является диэлектриком. Он или плохо проводит ток, или не проводит его совсем. Но если в решётку добавить атомы определённых элементов (легирование), физические свойства такого материала кардинально изменяются.

Схема диодного моста выпрямителя

Примешанные атомы начинают образовывать, в зависимости от своей природы, свободные электроны или дырки. Образованный избыток электронов формирует отрицательный заряд, а дырок — положительный.

Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. Электрон, перемещаясь, занимает свободное место, дырку. При этом на его старом месте также образовывается дырка. В результате чего создаётся два потока движения зарядов: один основной, а другой обратный. Материал с отрицательным зарядом в качестве основных носителей использует электроны, его называют полупроводником n-типа, а с положительным зарядом, использующим дырки, p-типа. В полупроводниках обоих типов неосновные заряды образуют ток, обратный движению основных зарядов.

В радиоэлектронике из материалов для создания p-n перехода используется германий и кремний. При легировании кристаллов этих веществ образуется полупроводник с различной проводимостью. Например, введение бора приводит к появлению свободных дырок и образованию p-типа проводимости. Добавление фосфора, наоборот, создаст электроны, и полупроводник станет n-типа.

Принцип работы диода

Диод — это полупроводниковый прибор, имеющий малое сопротивление для тока в одном направлении, и препятствующий его прохождению в обратном. Физически диод состоит из одного p-n перехода. Конструктивно представляет собой элемент, содержащий два вывода. Вывод, подключённый к p-области, называется анодом, а соединённый с n-областью — катодом.

При работе диода существует три его состояния:

  • сигнал на выводах отсутствует;
  • он находится под действием прямого потенциала;
  • он находится под действием обратного потенциала.

Прямым потенциалом называется такой сигнал, когда плюсовой полюс источника питания подключён к области p-типа полупроводника, другими словами, полярность внешнего напряжения совпадает с полярностью основных носителей. При обратном потенциале отрицательный полюс подключён к p-области, а положительный к n.

Диодный мост

В области соединения материала n- и p-типа существует потенциальный барьер. Он образуется контактной разностью потенциалов и находится в уравновешенном состоянии. Высота барьера не превышает десятые доли вольта и препятствует продвижению носителей заряда вглубь материала.

Если к прибору подключено прямое напряжение, то величина потенциального барьера уменьшается и он практически не оказывает сопротивление протеканию тока. Его величина возрастает и зависит только сопротивления p- и n- области. При прикладывании обратного потенциала, величина барьера увеличивается, так как из n-области уходят электроны, а из p-области дырки. Слои обедняются и сопротивление барьера прохождению тока возрастает.

Основным показателем элемента является вольт-амперная характеристика. Она показывает зависимость между приложенным к нему потенциалом и током, протекающим через него. Представляется эта характеристика в виде графика, на котором указывается прямой и обратный ток.

Схема простого выпрямителя

Синусоидальное напряжение представляет собой периодический сигнал, изменяющийся во времени. С математической точки зрения он описывается функцией, в которой начало координат соответствует времени равным нулю. Сигнал состоит из двух полуволн. Находящаяся полуволна в верхней части координат относительно нуля называется положительным полупериодом, а в нижней части — отрицательным.

При подаче переменного напряжения на диод через подключённую к его выводам нагрузку, начинает протекать ток. Этот ток обусловлен тем, что в момент поступления положительного полупериода входного сигнала диод открывается. В этом случае к аноду прикладывается положительный потенциал, а к катоду отрицательный. При смене волны на отрицательный полупериод диод запирается, так как меняется полярность сигнала на его выводах.

Таким образом, получается, что диод как бы отрезает отрицательную полуволну, не пропуская её на нагрузку и на ней появляется пульсирующий ток только одной полярности. В зависимости от частоты приложенного напряжения, а для промышленных сетей она составляет 50 Гц, изменяется и расстояние между импульсами. Такого вида ток называется выпрямленным, а сам процесс —однополупериодным выпрямлением.

Выпрямительный мост

Выпрямляя сигнал, используя один диод, можно питать нагрузку, не предъявляющую особых требований к качеству напряжения. Например, нить накала. Но если запитать, например, приёмник, то появится низкочастотный гул, источником которого и будет промежуток, возникающий между импульсами. В некоторой мере для избавления от недостатков однополупериодного выпрямления совместно с диодом применяется параллельно включённый нагрузке конденсатор. Этот конденсатор будет заряжаться при поступлении импульсов и разряжаться при их отсутствии на нагрузку. А значит, чем больше значение ёмкости конденсатора, тем ток на нагрузке будет более сглажен.

Но наибольшего качества сигнала возможно достичь, если использовать для выпрямления одновременно две полуволны. Устройство, позволяющее это реализовать, получило название диодный мост, или по-другому — выпрямительный.

Диодный мост

Такое устройство представляет собой электрический прибор, служащий для преобразования переменного тока в постоянный. Словосочетание «диодный мост» образуется из слова «диод», что предполагает использование в нём диодов. Схема диодного моста выпрямителя зависит от сети переменного тока, к которой он подключается. Сеть может быть:

  • однофазной;
  • трёхфазной.

В зависимости от этого и выпрямительный мост называется мостом Гретца или выпрямителем Ларионова. В первом случае используется четыре диода, а во втором прибор собирается уже на шести.

Для чего нужен диодный мост

Первая схема выпрямительного прибора собиралась на радиолампах и считалась сложным и дорогим решением. Но с развитием полупроводниковой техники диодный мост полностью вытеснил альтернативные способы выпрямления сигнала. Вместо диодов редко, но ещё применяются селеновые столбы.

Конструкции и характеристики прибора

Конструктивно выпрямительный мост выполняется из набора отдельных диодов или литого корпуса, имеющего четыре вывода. Корпус может быть плоского или цилиндрического вида. По принятому стандарту, значками на корпусе прибора отмечаются выводы подключения переменного напряжения и выходного постоянного сигнала. Выпрямители, имеющие корпус с отверстием, предназначены для крепления на радиатор. Основными характеристиками выпрямительного моста являются:

  1. Наибольшее прямое напряжение. Это максимальная величина, при которой параметры прибора не выходят за границы допустимых.
  2. Наибольшее допустимое обратное напряжение. Это максимальное импульсное напряжение, при котором мост длительно и надёжно работает.
  3. Наибольший рабочий ток выпрямления. Обозначает средний ток, протекающий через мост.
  4. Максимальная частота. Частота подаваемого на мост напряжения, при которой прибор работает эффективно и не превышает допустимый нагрев.

Превышение значений характеристик выпрямителя приводит к резкому сокращению срока его службы или пробою p-n переходов. Необходимо отметить такой момент, что все параметры диодов указываются для температуры окружающей среды 20 градусов. К недостаткам применения мостовой схемы выпрямления относят большее падение напряжения, по сравнению с однополупериодной схемой, и более низкое значение коэффициента полезного действия. Для уменьшения величины потерь и снижения нагрева мосты часто изготавливают с применением быстрых диодов Шотки.

Схема подключения устройства

На электрических схемах и печатных платах диодный выпрямитель обозначается в виде значка диода или латинскими буквами. Если выпрямитель собран из отдельных диодов, то рядом с каждым ставится обозначение VD и цифра, обозначающая порядковый номер диода в схеме. Редко используются надписи VDS или BD.

Диодный выпрямитель может подключаться напрямую к сети 220 вольт или после понижающего трансформатора, но схема включения его остаётся неизменной.

На каких принципах построена работа выпрямительного устройства

При поступлении сигнала в каждом из полупериодов ток сможет протекать только через свою пару диодов, а противоположная пара будет для него заперта. Для положительного полупериода открытыми будут VD2 и VD3, а для отрицательного VD1 и VD4. В итоге на выходе получится постоянный сигнал, но его частота пульсации будет увеличена в два раза. Для того чтобы уменьшить пульсацию выходного сигнала, используется, как и в случае с одним диодом, параллельное включение конденсатора С1. Такой конденсатор ещё называют сглаживающим.

Но случается так, что диодный мост ставится не только в переменную сеть, но и подключается в уже выпрямленную. Для чего нужен диодный мост в такой цепи, станет понятно, если обратить внимание в каких схемах используется такое его включение. Эти схемы связаны с использованием чувствительных радиоэлементов к переполюсовке питания. Использование моста позволяет осуществить простую, но эффективную защиту «от дурака». В случае ошибочного подключения полярности питания радиоэлементы, установленные за мостом, не выйдут из строя.

Проверка на работоспособность

Такой тип электронного прибора можно проверить, не выпаивая из схемы, так как в конструкциях устройств никакое его шунтирование не используется. В случае выпрямителя, собранного из диодов, проверяется каждый диод в отдельности. А в случае с монолитным корпусом измерения проводятся на всех четырёх его выводах.

Суть проверки сводится к прозвонке мультиметром диодов на короткое замыкание. Для этого выполняются следующие действия:

  1. Мультиметр переключается в режим позвонки диодов или сопротивления.
  2. Штекер одного провода (чёрного) вставляется в общее гнездо тестера, а второго (красного) в гнездо проверки сопротивления.
  3. Щупом, подключённым чёрным проводом, дотроньтесь до первой ножки, а щупом красного провода до третьего вывода. Тестер должен показать бесконечность, а если поменять полярность проводов, то мультиметр покажет сопротивление перехода.
  4. Минус тестера подается на четвёртую ногу, а плюс на третью. Мультиметр покажет сопротивление, при смене полярности бесконечность.
  5. Минус на первую ногу, плюс на вторую. Тестер покажет открытый переход, при смене – закрытый.

Такие показания тестера говорят об исправности выпрямителя. В случае отсутствия мультиметра можно воспользоваться обычным вольтметром. Но при этом придётся подать питание на схему и замерить напряжение на сглаживающем конденсаторе. Его величина должна превышать входное в 1,4 раза.

tokar.guru

Синхронный выпрямитель своими руками

Приветствую, Самоделкины!
Сегодня мы сделаем шаг на ступень выше в электронике, а именно, соберем синхронный выпрямитель. Устройство не новое, но еще не сильно популярное.

Автором данной самоделки является Роман (автор YouTube канала «Open Frime TV»).

Как известно, в любом блоке питания на выходе стоит выпрямительный диод. В последнее время широко используют диоды шоттки, так как у них меньше падение напряжения и, следовательно, они меньше греются. Но нагрев все-таки есть и при больших мощностях он внушительный.
Если ставить диод ultrafast, то там ситуация еще хуже, так как падение напряжения больше, и отсюда появляется одна из важнейших проблем — это радиаторы.



По-хорошему, нельзя устанавливать высокую сторону и низкую на один радиатор, так как может случиться пробой и на выход попадет высокое напряжение. Значит нужно разделять горячую и холодную сторону на разные радиаторы. Но не у всех есть нужное количество радиаторов чтобы все охладить. Да и при больших мощностях уже не обойтись без принудительного охлаждения.
Умные люди начали думать над данной проблемой и нашли простой выход — использовать вместо диодов полевые транзисторы.


У них сопротивление открытого канала очень маленькое и, следовательно, ток, протекающий через них, будет меньше выделять тепла. На первый взгляд все просто, но нет. Для корректной работы транзисторам необходимо правильное управление. Тут тоже поработали умные люди и создали микросхемы для управления транзисторами в синхронном выпрямителе.

Нам же остается просто собрать схему и разобраться, как она работает. Сама схема перед вами:

Как видим, деталей тут всего ничего. Микросхема выпрямителя есть только в smd корпусе.


Из этого получается, что схема управления много места не займет, а кпд вырастет в разы. Итак, попробуем разобраться, как это работает. Первое, что бросается в глаза, это то, что средняя точка будет плюсом, а боковые минусом.

Все потому, что транзисторы включаются в обратном направлении.

Работает выпрямитель таким образом: допустим, во время первого импульса мы имеем такие знаки на обмотках.

Микросхема это отслеживает и открывает нижний транзистор.

Ток в это время течет по вот такой цепи:

Далее следует второй импульс.

Теперь открывается верхний транзистор и пропускает ток в нагрузку.
Опытные электронщики сразу же вспомнят внутренний диодик в транзисторе, но если еще раз посмотреть на знаки напряжений, то становится понятно зачем транзистор включен в обратном направлении.

В то время, когда один транзистор открыт, второй подперт высоким напряжением и диод априори не может пропустить ток.

Но каждое действие имеет последствия, в нашем случае это проявляется в том, что к транзистору приложены две амплитуды напряжения. Как вы поняли это плохо. Подробнее об этом узнаем при реальном расчете.

Теперь, что касается остальных элементов схемы. Стабилитрон нужен для ограничения питания микросхемы, так как оно не должно превышать 20В.

Конденсатор сглаживает напряжение питания микросхемы.

Резистор, идущий на землю, можно выбирать в пределах от 25 до 150 кОм, он влияет на скорость открытие транзистора. Автор выбрал резистор на 30 кОм, этого вполне достаточно.

Также на скорость открытия влияет затворный резистор, его номинал может быть от 10 до 30 Ом, можно и больше расширить предел, это уже на ваше усмотрение.

Для проверки работоспособности данной схемы пришлось нарисовать печатку. Это чисто плата синхронного выпрямителя. Скачать схему и печатку можно ЗДЕСЬ.

Ее можно встроить в любой полумостовой блок питания и забыть про перегрев выходной части. Как видим печатка получилась компактной. Ширина силовых дорожек небольшая, но как уже говорилось ранее, это макет.

Когда плату вытравили, запаиваем ее. Сложности могут возникнуть только с микросхемой, но если постараться, то все получится. В итоге получаем вот такое красивое устройство:

Теперь давайте более детальней поговорим про расчет. Так как это у автора пробный вариант, и он не оснащен задающей частью, то для запуска воспользуемся внешним трансформатором от какого-то старого проекта. Задающая часть тут IR2153. На выходе должны получать около 24В.

Расчеты этого блока перед вами:

Нас интересует такой параметр, как амплитудное значение напряжения вторичной обмотки, оно у нас 28В. И теперь умножаем это значение на 2, почему, уже говорилось выше. И вот на полученное напряжение нам нужно выбирать транзистор. Заходим в каталог транзисторов радиорынка и начинаем смотреть, что имеется в наличии.

И вот тут всплывают минусы синхронного выпрямителя, проявляются они в соотношении цены, напряжения транзистора и сопротивления открытого канала.

Как видим, чем больше напряжение, тем больше и сопротивление, а если сопротивление низкое, то цена на данный транзистор довольно большая. Но тут уже каждый будет решать нужен ему такой выпрямитель или нет.
Для того, чтобы оптимально выбрать транзистор, нам нужно понимать сколько же мощности на нем рассеется. В этом нам поможет закон дедушки Ома.

Транзистор выбираем по двойной амплитуде. Соотношение цена-сопротивление канала, выбор пал на 75nf75.

Произведя расчет для тока в 10А, получаем выделяемую мощность в 1,1Вт. Сравним теперь синхронный выпрямитель с диодом шоттки. При тех же 10А получим 4Вт. Результат налицо.

В общем, смысл такого выпрямителя в следующем, на низких напряжениях он в разы лучше диода, а вот с повышением напряжения уже картина становится не такой красивой.

Цена на компоненты большая, а кпд выше на пару процентов. Посмотрим, как работает устройство. Подключаем вторичку проводами прямо к плате и смотрим напряжение на выходе, оно примерно 24В, что соответствует ранее посчитанному.

Это означает, что плата работает в штатном режиме. Тест на нагрев проводить пока не целесообразно, так как задающая часть слабовата. Сейчас мы только проверяем работоспособность.

Теперь можем для демонстрации работы встать щупом осциллографа на затвор транзистора и посмотреть, как он открывается.

Как видим, импульс немного завален. Это означает, что к нагреву добавятся еще коммутационные потери, но они не такие значительные.
Да, и еще, во время построения данного выпрямителя можно с легкостью наступить на грабли. Проявляются они в виде неоригинальных транзисторов, у которых сопротивление открытого канала намного больше заявлено в даташите. Это сейчас очень актуальная тема.

Ну а на этом пора заканчивать. Благодарю за внимание. До новых встреч!


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *