Posted on

Расчет времени срабатывания ВА88 с МР211

Самыми распространенными автоматическими выключателями являются автоматические выключатели с нерегулируемыми расцепителями. Однако, в некоторых случаях приходится применять автоматы с электронными регулируемыми расцепителями.

Я уже рассказывал про автоматы серии ВА-99С, а теперь рассмотрим автоматы ВА88 с электронным расцепителем МР211, т.к. недавно пришлось применить их в проекте и потратил немало времени на его изучение, вам тоже может пригодиться.

Автоматические выключатели серии ВА88

Стоит отметить, что техподдержка у ИЕК работает, однако, ответы их желают лучшего. Задаешь конкретный вопрос – отвечают абстрактно, одним предложением, а ты думай, что они имеют ввиду. Кстати, если говорить о техподдержке, то белорусские представители ДКС даже не считают нужным отвечать на письма, сообщения в VIBER, хотя на семинаре себя совсем по-другому ведут, уже 2 месяца жду от них ответ…

Вернемся к автоматам ВА88 с расцепителем МР211.

Нужно понимать, что эти автоматы стоят в несколько раз дороже обычных и применяют их, если требуется четкое выполнение правил селективности.

Предвижу кучу комментариев, поэтому скажу, если вы используете автоматы с нерегулируемыми расцепителями, то выполнить полную селективность практически нереально так, чтобы потом ваш проект согласовали все заинтересованные организации.

Какие настройки имеет автомат ВА88 с МР211?

Уставки срабатывания электронного расцепителя МР211 устанавливаются потребителем на передней панели автоматических выключателей переключением DIP-переключателей согласно требований потребителя.

Панель электронного расцепителя MP211.

На рисунке а, б и в показаны настраиваемые параметры электронного расцепителя. На рисунке г изображена время-токовая характеристика выключателя.

Настройки расцепиеля МР211:

1 Уставка срабатывания защиты от перегрузки (рис. а).

Защита от перегрузки настраивается в соответствии со следующей формулой:

Ir=K× In,

где Ir – требуемый ток расцепителя;

In – номинальный ток автоматического выключателя.

К – коэффициент срабатывания защиты от 0,4 до 1,0. Возможна установка следующих значений коэффициента K: 0,4-0,5-0,6-0,7-0,8-0,9-0,95-1,0.

2 Уставка срабатывания защиты при коротком замыкании (рис. б).

Защита при коротком замыкании настраивается в соответствии с формулой:

Im=M× In.

где, M — коэффициент срабатывания защиты при коротком замыкании. Возможна установка следующих значений коэффициента M: OFF-1,5-2-4-6-8-10-12 (режим OFF позволяет отключить защиту при коротком замыкании).

3 Время задержки срабатывания защиты от перегрузки (рис. в).

Время tr задержки срабатывания защиты от перегрузки при I=6·Ir может иметь следующие значения: 3-6-12-18 с. Данный параметр определяет смещение наклонного участка время-токовой кривой вдоль оси времени, что позволяет изменять задержку времени срабатывания защиты при длительной перегрузке. Точкой привязки при расчетах прогнозируемого тока срабатывания защиты принимается ток, равный по величине шестикратному току Ir защиты при перегрузке.

На рисунке г приведена время-токовая характеристика срабатывания выключателя ВА88 с электронным расцепителем в зависимости от установки параметров K, M и tr.

Но, самое интересное, что величина задержки Т срабатывания защиты, может быть определена по следующей формуле:

Время отключения

где T – расчетное время срабатывания при прогнозируемой фактической величине тока перегрузки, с;

p – коэффициент кратности предполагаемого фактического тока перегрузки относительно номинального тока автоматического выключателя;

tr – время задержки срабатывания защиты, устанавливаемое DIP-переключателем на лицевой панели выключателя.

А теперь давайте на примере посчитаем время срабатывания автомата с МР211 для конкретного случая.

Пусть Ir=480А, Iкз=2120А. Требуемое время отключения – не более 5 с.

Выбираем ВА8840 с МР211, In=800А.

1 Сначала посчитаем по формуле.

Ir=K×In=0,6*800=480А;

р=2120/800=2,65;

Tr=3с.

T=(6*0,6/2,65)2*3=5,5с.

Если выполнить обратный расчет ((6*0,6/р)2*3=5), то получим, что p=Iкз/In должно быть более 2,8 для Ir=480А.

Как я понимаю, при таком значении не важно, какая у вас уставка М, автомат в любом случае отключит за временя не более 5с. Если вы заметили, то в формуле не участвует коэффициент уставки М.

2 Определим время срабатывания по графику время-токовой характеристики.

Время-токовые характеристики срабатывания выключателей ВА88 с электронным расцепителем

Красная линия на графике приблизительно соответствует автомату ВА88 с Ir=480А при М=6.  Именно так мне порекомендовал ИЕК установить кф. М.

Если провести линию 2,65In вертикально, то получим время около 5с, т.е. очень близкое к времени полученному первым методом. Возможно, связано с неточностью построения.

Исходя из этого я могу сделать вывод, что если время отключения получается более 5с, то коэффициент М нужно устанавливать ближайший слева от синей линии. В нашем случае это М=2.

Если у вас имеется опыт настройки автоматических выключателей ВА88 с расцепителем МР211, напишите свое мнение.

Советую почитать:

Вы можете пролистать до конца и оставить комментарий. Уведомления сейчас отключены.

Выбор автоматических выключателей — по току, мощности, нагрузке: таблица, расчет и условия выбора

В электрической сети иногда возникают перегрузки, способные привести к аварии и даже к пожару. Чтобы этого не допустить, были созданы специальные устройства – автоматические выключатели (АВ), которые способны сами определять, когда цепь близка к опасному режиму, и отключать “плохой” участок, не дожидаясь, пока последствия неисправности примут масштабный характер.

Линейка автоматических выключателей

Как они работают

Существует два основных способа отключения автоматов: тепловой и электромагнитный. Во-первых задействован механизм теплового расширения и сжатия материалов, тогда как во-вторых – способность электрического тока вызывать электромагнитное поле, которое может механически воздействовать на материальные объекты. Эти методы служат разным целям, и, как правило, они оба применяются в любом автоматическом выключателе.

Тепловое расцепление

Этот вид защиты электрической сети оберегает цепь от скачков силы тока, которые иногда случаются при неполадках на линии и у потребителя. В автомате ток проходит не через провод, а через особую биметаллическую пластину (это пластина, изготовленная из разных металлов, соединенных “бутербродом”), и когда его величина становится слишком большой, пластина нагревается.

Но так как разные ее части имеют разную теплоемкость, одна сторона греется сильнее, и потому вся конструкция начинает не просто расширяться, как было бы в случае с обычной металлической пластиной, а изгибаться. Изогнутая часть начинает давить на кнопку отключения от сети, и при определенном усилии, автомат срабатывает.

Выбор автоматических выключателей

В автомате ток проходит не через провод, а через особую биметаллическую пластину, и когда его величина становится слишком большой, пластина нагревается

Электромагнитное расцепление

Второй способ выключения – основан на способности электромагнитного поля двигать металлические предметы. Катушка (соленоид) – это аналог постоянного магнита, и при протекании через нее тока, она тоже приобретает свойство притягивать и отталкивать металлы.

Внутрь катушки вставляют стальной сердечник, прикрепленный пружинкой, и когда сила тока в витках катушки достигает порогового значения, магнитное давление превышает силу сопротивления пружины, и выталкивает сердечник прямо на кнопку. От удара она срабатывает, и автомат отключает защищаемый участок от электрической сети.

Примеры выбора плавких предохранителей и автоматических выключателей

Примеры выбора плавких предохранителей и автоматических выключателей

Типы автоматов

Электрические сети и их элементы – цепи бывают самых разных видов и конфигураций, и для каждой из них требуются свои автоматические выключатели.

Рассмотрим параметры, по которым следует их выбирать:

Число полюсов

Установка автоматического выключателя

Автоматический выключатель нужно подбирать под конкретную цепь – он должен обязательно контролировать все фазы линии, и можно, но не обязательно, ноль

Электрические сети могут быть одно- и многофазными. Например, в линиях электропередач течет трехфазный ток, а когда он доходит до наших домов, он превращается в двухфазный, поэтому в розетках только две дырки.

Автоматический выключатель нужно подбирать под конкретную цепь – он должен обязательно контролировать все фазы линии, и можно, но не обязательно, ноль.

На нулевой провод ставят автомат, в том случае, если он вводной, или проще говоря, – самый главный, например в подъезде. Это делают для того, чтобы была возможность в любой момент полностью обесточить квартиру для проведения каких-либо ремонтных работ.

Число полюсов автомата отвечает за то, на какую линию он ориентирован. Если на однофазную, то у него 1 полюс, если на двухфазную, то 2 и так далее. А сами полюса представляют собой ни что иное, как клеммы, которые находятся в углублениях на корпусе автоматического выключателя, и обычно клеммы одного полюса расположены вверху и внизу по одной линии друг с другом.

В квартиры, как правило, устанавливают 2-х полюсные АВ.

Важное правило: на разные провода одной линии можно ставить только один выключатель. Например, если имеется 2 провода – фаза и ноль, нельзя ставить на них по одному однополюсному автомату, а только один общий двухполюсный, потому что в первом случае, срабатывание одного не гарантирует срабатывания другого, а во втором отключатся сразу оба провода неисправной линии.

Максимальный рабочий ток

Автомат срабатывает при определенном значении силы протекающего через него тока, или тока уставки. Это также необходимо учитывать при выборе, поскольку, если например, у вас в квартире сила тока в 6 А – это нормальная величина, а вы взяли автомат, который выключается при 5-ти Амперах, то вы явно не сможете проводить у себя дома время с комфортом.

Учтите, что номинальный ток (ток, при котором автоматический выключатель работает нормально) должен быть не меньше максимально возможного тока в вашей квартире, а иначе при любом включении в цепь, он неизбежно будет срабатывать.

Посмотрите на корпусе автомата, на какой номинал он рассчитан, а затем вычислите примерный максимальный ток линии, которую вы защищаете. Для этого:

  1. Сложите мощности всех бытовых устройств, подключенных к линии, их можно узнать в технических паспортах или на упаковке, а иногда даже на корпусе самого изделия.
  2. Затем разделите получившуюся суммарную мощность на номинальное напряжение, которое для квартир равно 220 В, и на косинус фи, который равен, в среднем, 0,97.
  3. Сравните полученный ток с номинальным током автомата. Если он рассчитан на нормальную работу при таком его значении, то все хорошо, и можно переключаться на сверку других параметров, если же автомат при таком токе будет отключаться, то следует поискать еще.

Ток короткого замыкания

КЗ – это аварийное состояние, при котором тoки линии поднимаются до очень больших значений, и плавят проводку. Вот почему они являются причиной возгораний и пожаров. Одним из назначений АВ является также и защита сети от таких перегрузок. Однако тoк кз не является какой-то определенной фиксированной величиной и поэтому при выборе автомата необходимо проявить внимательность.

На сегодня по правилам ПУЭ разрешается устанавливать АВ с током кз не менее 6 КА, они же являются самыми распространенными автоматами в жилом секторе. Но на промышленных предприятиях, где токи кз могут быть в десятки и в сотни раз выше, используют более мощные автоматические выключатели. Ведь слабый автомат при таких токах просто сгорит и придет в негодность, а постоянно заменять их невыгодно.

Итак, если вы живете в квартире или частном доме, АВ на 6 КА вам хватит, но если дом находится рядом с трансформаторной подстанцией, или по соседству живет какой-нибудь изобретатель-самоучка, из-за которого постоянно отключается свет, то можно взять и на 10.

Автоматические выключатели одного производителя

Рабочее напряжение

Обычные домашние автоматы рассчитаны на переменное напряжение в 220 В в квартире и 380 В в линии. Эти данные можно найти на корпусе АВ.

Селективность выключателя

Это очень полезное свойство, позволяющее отключать от сети поврежденный участок, но при этом оставить в работе максимальное количество других потребителей. Например, у вас в доме 4 розетки и на одной из них произошло кз. Обычный, неселективный выключатель отключит от сети всю квартиру, тогда как селективный обесточит лишь только поврежденную розетку, и вы сможете дальше, как ни в чем ни бывало, наслаждаться прелестями электрификации.

Технически это реализуется следующим образом: на каждую последующую ветвь ставится автомат, время срабатывания которого меньше, чем на предыдущей.

Когда в одной из ветвей происходит кз, автомат срабатывает при длительности кз в 0,1 с, поэтому вышестоящий АВ не успевает отключиться, так как он запрограммирован срабатывать, когда замыкание длится 0,5 с.

Маркировка автоматических выключателей

Маркировка автоматических выключателей

Маркировка автоматических выключателей

Сегодня международным стандартом принята единая маркировка АВ, которая существенно упрощает жизнь электрикам из разных стран:

  • Обозначается производитель.
  • Серия.
  • Время-токовая характеристика и номинал. Для квартир подходит буква “С”, но есть еще “B”, “C” и “D”. Токовый номинал – это величина тока, который может долго протекать через автомат без его срабатывания.
  • Предельный ток кз, при котором автомат будет продолжать функционировать после отключения в режиме кз, или проще говоря, не перегорит.
  • Класс токоограничения. Это та доля тока кз, при которой срабатывает автомат, не давая ему вырасти до максимума.

Блиц-советы

  • Выбирая автомат, не дешевите и не экономьте на здоровье. Китайский хлам не даст вам 100%-ной гарантии, что защита сработает в нужный момент. Отдавайте предпочтение немецкой фирме Шнайдер или АББ, хоть они и дороже, но надежнее.
  • Тщательно подберите все параметры на соответствие номиналу.
  • Обеспечьте селективность, так как электрики смогут починить вашу проводку не ранее, чем через день, вы же не хотите сидеть два дня без света? А если выходные?

Правильно установленная система будет работать долго, поэтому наймите квалифицированного мастера.

Отключение КЗ в сети 0,4 кВ защитой от перегрузки

Недавно столкнулся с вопросом — можно ли отключать короткие замыкания в групповых сетях 0,4 кВ защитой от перегрузки? Т.е. не электромагнитным элементом автоматического выключателя (отсечкой), а его тепловым расцепителем.

Требования ПУЭ к отключению КЗ в сетях с заземлением TN

С одной стороны тепловой расцепитель предназначен для защиты от перегрузки, а не коротких замыканий. С другой стороны для цепей питающих щиты (например, отходящих линий от ГРЩ) ПУЭ 1.7.79 допускает отключение КЗ за время не более 5 с. А такие времена в принципе возможны для теплового расцепителя (см. Рис.1).

 

Рис.1 Стандартная характеристика автомата 0,4 кВ (из каталога компании ABB)

Да и в некоторых источниках рассматривают этот вариант отключения, рекомендуя при этом проверять коэффициент чувствительности по отношению к току расцепителя (3 для обычных цепей и 6 для взрывозащищенных помещений).

Поэтому, с точки зрения требований норм и правил жесткого запрета нет. Но есть один важный момент, который вы должны обязательно учитывать — тепловой спад тока КЗ. Об этом мы поговорим в данной статье.

 

 Что такое тепловой спад тока КЗ?

Кабели в сетях 0,4 кВ обладают преимущественно активным сопротивлением. При этом, из-за низкого напряжения, в таких сетях протекают достаточно большие токи КЗ, которые быстро нагревают кабель. Вследствие этого активное сопротивление кабеля увеличивается, а токи КЗ, соответственно, уменьшаются. 

При малых временах отключения (<0,1 c) этот эффект не так заметен, но при увеличении времени начинает играть огромную роль.

Рис. 2

На Рис. 2 приведена вырезка из ГОСТ 28249-93, где показано номограмма влияния теплового спада тока КЗ на активное сопротивление кабеля (Rк). Коэффициент С — это то, на что вы должны умножить Rк, чтобы получить его правильное значение по истечении определенного времени.

Например, активное сопротивление медного кабеля сечением 16 кв.мм при токе короткого замыкания 2 кА за 1,5 секунды увеличится примерно в 1,3 раза (на графике — вторая кривая слева). С учетом того, что для такого кабеля полное сопротивление примерно равно активному, то и ток КЗ уменьшится почти в 1,3 раза. Как видно влияние нагрева кабелей токами КЗ очень существенно.

 

Влияние теплового спада тока КЗ на время отключения

Если вы отключаете КЗ с большой выдержкой времени, то вы должны пересчитать токи с учетом увеличения сопротивления кабеля. Представьте, что будет, если отключать КЗ с выдержкой 5 с. Ток КЗ, к моменту отключения, может снизится в 1,5-2 раза.

Брать каталожные удельные активные сопротивления нельзя (они обычно даются при 20 С), иначе время отключения будет гораздо больше, чем вы определите по кривой расцепителя. Это может привести к повреждению кабеля, пожарам и другим неприятным последствиям. По крайней мере вы можете выйти за 5 с и нарушить ПУЭ 1.7.79, а ПУЭ нарушать нельзя.

Рис. 3. Влияние нагрева кабеля на время отключения тока КЗ

На Рисунке 3 видно, что если рассчитать ток КЗ по каталожным данным, то мы укладываемся в 5 с. Но это ошибка потому, что к моменту отключения этот ток будет гораздо ниже, а следовательно время может быть больше 5 с.

Стоит отметить, что стандартные модульные автоматы (характеристики В, С) имеют время отключения теплового расцепителя всегда больше 5 с и вопрос отпадает сам собой.

То же самое относится к термомагнитным расцепителям в автоматах в литом корпусе. Например, на Рис. 4 представлена характеристика расцепителя TM-D производства Шнайдер Электрик

Рис. 4. Характеристика расцепителя ТМ-D (из каталога Шнайдер Электрик)

Однако, некоторые характеристики модульных автоматов (например, характеристика D) имеют участок с временами отключения тепловой защитой менее 5 с. То же самое касается электронных расцепителей (например, Micrologic от Шнайдер Электрик), где настройка уставок выполняется очень гибко.

Рис. 5. Характеристика расцепителя Micrologic 5.2 (из каталога Шнайдер Электрик)

 

Термическая стойкость кабеля

Отдельный вопрос — это термическая стойкость кабеля при таких временах отключения. Не факт, что кабель пройдет эту проверку, но вы можете попробовать все посчитать и убедиться сами.

Для энергетических объектов не забываем про проверку кабелей на невозгораемость.

 

Какие выводы?

Основной вывод в том, что не стоит использовать устройство не по назначению) Если написано, что характеристика защищает от перегрузки, то не нужно пытаться применить ее для защиты от коротких замыканий.

Знаю, совет звучит банально, но именно типовые решения делают электроустановку более надежной, а все нестандартные подходы резко увеличивают вероятность ошибки.

Ну, а уж если вы решились на эксперименты, то должны учесть все возможные моменты и, уж конечно, ни про какие упрощенные расчеты речи быть не может. Считаем все параметры максимально подробно и при малейшем сомнении отказываемся от сомнительного решения в пользу типового.

По факту от КЗ должна защищать отсечка автомата, которая работает практически мгновенно. Быстрое отключение автомата решает большинство проблем, перечисленных выше.

У отсечки должна быть нормальная чувствительность к минимальным токам КЗ (обычно не менее 1,5), и если вдруг она оказалась недостаточной, то это не повод переходить на перегрузочную кривую. Это повод искать средства увеличения чувствительности выключателя.

Ну, а о том, как повысить чувствительность автомата к токам КЗ мы поговорим в следующий раз. В том числе в моем новом курсе «Защита сетей 0,4 кВ автоматическими выключателями», который выйдет в августе.

Всего хорошего!

Время-токовые характеристики автоматов. | ЭЛЕКТРОлаборатория

Доброе время суток, дорогие друзья!

Сегодня продолжу рассказывать про автоматические выключатели в свете измерения сопротивления петли «фаза-нуль».

В последней статье посвященной измерению сопротивления петли «фаза-ноль» я обмолвился о время-токовых характеристиках автоматических выключателей. Сегодня приведу для примера такие характеристики для автомата типа ВА47-29:

Для каждого автоматического выключателя такая характеристика своя. Обычно она приводится в паспорте на автомат в том виде как показано на рисунке. Т.е. имеется некоторый разброс в параметрах. Как можно заметить разброс этот достаточно большой.

— для характеристики «В» ток отсечки (ток электромагнитного расцепителя) может находиться в интервале от 3Iн до 5Iн;

— для характеристики «С» — от 5Iн до 10Iн;

— для характеристики «D» — от 10Iн до 14Iн.

Значит, измеренный или рассчитанный нами ток короткого замыкания для конкретной линии может, как удовлетворять параметрам автоматического выключателя (быть достаточным для его отключения), так и не удовлетворять.

Реальную же характеристику зависимости времени срабатывания автоматического выключателя от протекающего через него тока для каждого конкретного автомата можно получить только путем проведения проверки параметров этого автомата.

Но многие лаборатории не имеют оборудования для испытания автоматических выключателей. и соответственно, у них нет такого вида работ. Поступают просто. Для проверки соответствия автоматического выключателя параметрам линии ( возможному току короткого замыкания) используют верхнее значение тока отсечки, т.е. для характеристики «С» это 10Iн. Такой подход вполне оправдан, т.к. автомат наверняка отключится при токе большем большего возможного тока срабатывания расцепителя, но в ряде случаев не достаточно достоверен. Потому что если измеренный ток короткого замыкания меньше 10Iн, то, разумеется при исправном состоянии проводов линии, необходима замена автоматического выключателя на подходящий. Хотя при проведении проверки автоматического выключателя может выясниться. что ток срабатывания его составляет, например, 7Iн и в этом случае уже при измеренном нами токе короткого замыкания автомат должен уверенно отключаться, т.е. замена автомата не требовалась.

Вернемся к время-токовой характеристике. Допустим, мы провели проверку автомата и по измеренным параметрам получили его индивидуальную характеристику ( отображена зеленой линией на рисунке).

Что она нам дает?

Согласно ПУЭ п.1.7.79 время автоматического отключения питания в системе TN не должно превышать значения 0,4с при фазном напряжении 220В , но в цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5с.

Таким образом, имеем две точки на характеристике 0,4с и 5с. В зависимости от места установки автоматического выключателя определяем, какая точка нужна нам и находим в этой точке ток срабатывания (отключения) автоматического выключателя.

Из полученной нами характеристики (зеленая линия) видно, автомат отключится за 0,4с при семикратном от номинального токе, а за 5 с при токе 4,5Iн.

Еще раз отвечу на частый вопрос: Зачем измерять сопротивление петли «фаза-нуль»?

Зная сопротивление петли «фаза-нуль» какой-то цепи (линии), можно найти ток короткого замыкания, который в этой линии может развиться. А зная этот ток, можно ответить на вопрос: сработает ли установленный в этой линии автоматический выключатель и за какое время.

Вот на сегодня и все. Если возникли вопросы, спрашивайте.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *