Выпрямительные устройства
Для питания электронной аппаратуры, электродвигателей постоянного тока, электролизных и других установок возникает необходимость в выпрямлении переменного тока в постоянный. Под выпрямлением понимается процесс преобразования переменного тока в постоянный с помощью устройств, обладающих односторонней проводимостью (электрических вентилей).
Выпрямительные устройства обычно состоят из трех основных элементов (рис. 13.3): трансформатора, электрического вентиля и сглаживающего фильтра. Трансформатор позволяет изменять значение переменного напряжения, получаемого от источника питания до значения требуемого выпрямленного напряжения. Сглаживающие фильтры предназначены для уменьшения пульсации выпрямленного тока и напряжения на выходе выпрямительных устройств.
Рис. 13.3. Структура выпрямительного устройства
Выпрямление переменного тока осуществляется электрическим вентилем. Вентиль преобразует переменное напряжение в пульсирующее, что обеспечивается его свойством односторонней проводимости. При прямом напряжении вентиль имеет сопротивление, близкое к нулю, а при обратном напряжении его сопротивление становится очень большим.
Электрические вентили по своим вольтамперным характеристикам подразделяют на две группы. К первой относят вакуумные электронные и полупроводниковые диоды. Ко второй относят газоразрядные (ионные) приборы. Однако в настоящее время большинство выпрямителей выполняют на полупроводниковых диодах германиевых и кремниевых. Силовые полупроводниковые вентили по сравнению с другими имеют ряд преимуществ: более высокий КПД, постоянная готовность к работе, большой срок службы, малая масса и габариты, высокая надежность.
Вольтамперная характеристика полупроводникового диода (рис. 13.4,б) отличается от идеальной характеристики вентиля (рис. 13.4, а), так как при обратном напряжении диод проводит ток. Однако у хороших полупроводниковых диодов обратные токи весьма малы и несущественно влияют на работу выпрямителя.
а) б)
Рис. 13.4. Вольт-амперная характеристика: а — идеальная характеристика вентиля б — полупроводникового диода
При выпрямлении переменного тока в зависимости от числа фаз сети, питающей выпрямительное устройство, и характера нагрузки, а также требований, предъявляемых к выпрямленным току и напряжению, электрические вентили могут быть соединены по различным схемам.
Рис. 13.5. Схема однополупериодного выпрямителя
На рис. 13.5 представлена простейшая схема однополупериодного выпрямителя, в состав которой входят трансформатор Тр, вентиль Д и активная нагрузка R. Диаграммы напряжений и тока в схеме однополупериодного выпрямителя показаны на рис. 13.6.
13.6. Диаграмма напряжений и тока в схеме однополупериодного выпрямителя
Ток в цепи нагрузки, включенной последовательно с вентилем, проходит лишь в те моменты времени, когда к вентилю приложено прямое напряжение. Каждые полпериода напряжение вторичной обмотки трансформатора меняет свой знак. Поэтому в течение одной половины периода к вентилю прикладывается прямое напряжение, в течение следующего полупериода — обратное.
Через вентиль и нагрузку ток проходит только в одном (прямом) направлении, т. е. ток в нагрузке получается постоянным по направлению, но пульсирующим. Выпрямленное напряжение совпадает по форме с выпрямленным током. Частота пульсаций выпрямленного напряжения равна частоте сети.
Пульсирующие ток и напряжение содержат постоянные составляющие. Среднее за период значение выпрямленного (пульсирующего) напряжения, т. е. его постоянная составляющая, определяется величиной U0=U2m/π, где U2т — амплитудное значение напряжения во вторичной обмотке трансформатора, или U0=2U2/π, где U2 – действующее значение напряжения.
Максимальное значение обратного напряжения, прикладываемого к вентилю, равно амплитудному значению U2т :
Качество выпрямителя характеризуется отношением постоянной составляющей выпрямленного напряжения к действующему значению переменного напряжения: U0/U2. Чем больше значение этого отношения, тем выше качество схемы выпрямителя. Для однополупериодного выпрямителя U0/U2 = 0,45.
Важным требованием к выпрямителю является снижение переменной составляющей выпрямленного напряжения при получении постоянной составляющей. Выполнение этого требования характеризуется коэффициентом пульсаций Кп, равным отношению амплитудного значения переменной составляющей выпрямленного напряжения к его постоянной составляющей: Кп=Um/U0.
Коэффициент пульсаций часто определяют по первой гармонике: Кп1=Um1/U0., где Um1 амплитуда первой гармоники выпрямленного напряжения. Для однополупериодного выпрямителя Кп1=1,57.
К выпрямителям предъявляется также требование, касающееся режима работы вентилей: обратное напряжение, прикладываемое к закрытым вентилям, не должно намного превышать выпрямленное напряжение. Выполнение этого требования характеризуется отношением максимального значения обратного напряжения к среднему значению выпрямленного: Uобр.m/U0 Для однополупериодного выпрямителя: Uобр.m/U0=π.
К недостаткам однополупериодной схемы выпрямления следует отнести значительные пульсации выпрямленных тока и напряжения, а также недостаточно высокое использование трансформатора, так как по его вторичной обмотке при этом протекает ток только в течение полупериода. Выпрямители подобного типа применяют главным образом в маломощных установках, когда выпрямленный ток мал, а достаточно удовлетворительное сглаживание пульсаций может быть обеспечено с помощью фильтра.
На практике часто используют различные схемы двухполупериодных выпрямителей.
а) б)
Рис. 13.7. Схемы двухполупериодного выпрямителя: а — с выводом от середины вторичной обмотки трансформатора; б — мостовая схема
На рис. 13.7, а, б представлены схемы двухполупериодного выпрямителя с выводом от середины вторичной обмотки трансформатора и мостовая схема. Наиболее распространена из них мостовая схема, в которой не требуется трансформатор, имеющий отвод от середины вторичной обмотки, что позволяет получить двухполупериодное выпрямление переменного тока при полном использовании мощности трансформатора.
Четыре вентиля схемы образуют мост, к одной диагонали которого присоединяются концы вторичной обмотки трансформатора, а к другой нагрузка выпрямителя. Вентили в схеме работают поочередно попарно: при положительной полуволне напряжения U2 которая соответствует прямому напряжению вентиля Д1, ток проходит через Д1, нагрузку и Д3, а при отрицательной полуволне напряжения U2 соответствующей прямому напряжению вентиля Д2 ток проходит через Д2, нагрузку и Д4. На рис. 12.6 представлены диаграммы напряжений и тока в мостовой схеме. Частота пульсаций выпрямленного напряжения здесь в два раза больше, чем в однополупериодной схеме, что увеличивает среднее значение выпрямленного напряжения:
.
Коэффициент пульсаций выпрямленного напряжения по первой гармонике Кп1= 0,667.
Максимальное значение обратного напряжения, прикладываемого к закрытым вентилям, равно амплитудному значению напряжения U2m , так как падение напряжения на открытых вентилях близко к нулю, т. е.
.
Рис. 13.8. Диаграммы напряжений и тока в мостовой схеме
Простейшие схемы выпрямителей имеют большой коэффициент пульсаций выпрямленного напряжения. Поэтому далее предусматривают сглаживающие фильтры.Коэффициент пульсаций выпрямленного напряжения можно значительно снизить, если на выходе выпрямителя включить сглаживающий электрический фильтр. Простейшими сглаживающими фильтрами являются конденсатор, включаемый параллельно слаботочной нагрузке (рис. 13.9, а) и дроссель, включаемый последовательно с сильноточной нагрузкой (рис. 13.9, б).
Другие фильтры (комбинированные), представляющие собой сочетания емкостных и индуктивных элементов, позволяют получить достаточно малые значения коэффициента пульсации.
При использовании простейшего емкостного фильтра сглаживание пульсаций выпрямленного напряжения и тока происходит за счет периодической зарядки конденсатора фильтра С (когда напряжение на выходе трансформатора превышает напряжение на нагрузке) и последующей его разрядки на сопротивление нагрузки
а) б)
Рис. 13.9. Схемы простейших сглаживающих фильтров
Конденсатор, как известно, не пропускает постоянной составляющей тока и обладает тем меньшим сопротивлением для переменных составляющих, чем выше их частота. Емкостные фильтры предпочтительно применять в схемах выпрямления с малыми значениями выпрямленного тока, так как при этом возрастает эффективность сглаживания.
Простейший индуктивный сглаживающий фильтр состоит из индуктивной катушки — дросселя, включаемого последовательно с нагрузкой. В результате пульсаций выпрямленного тока в катушке индуктивности возникает электродвижущая сила самоиндукции eL=±L·di/dt, которая в силу закона электромагнитной индукции стремится сгладить пульсации тока в цепи нагрузки, а следовательно, и пульсации напряжения на ее зажимах. Индуктивные фильтры обычно применяют в схемах выпрямления с большими значениями выпрямленного тока, так как в этом случае увеличивается эффективность сглаживания.
Качество фильтра оценивают коэффициентом сглаживания
Ксгл=Кпвх/Кп.вых,
где Кпвх и Кп.вых — коэффициенты пульсаций выпрямителя на входе и выходе фильтра.
Чем больше Ксгл тем эффективнее работает фильтр.
При работе выпрямителя часть выпрямленного напряжения падает на активном сопротивлении вторичной обмотки трансформатора, на прямом сопротивлении открытого вентиля, на элементах сглаживающего фильтра. С увеличением выпрямленного тока I0 подобные потери напряжения увеличиваются, а напряжение на нагрузке U0 уменьшается. Зависимость U0 = f (I0) называют внешней характеристикой выпрямителя (рис. 13.10). Чем меньше изменяется напряжение на нагрузке U0 при изменении тока I0, тем выше качество выпрямителя.
Выпрямитель напряжения: виды, как это работает?
В современном многообразии электрических приборов как бытового назначения, так и для иных задач большинство содержит выпрямитель. Это связано с их непрерывным усложнением в связи с увеличением функциональности. А для многофункциональности необходима электроника, потребляющая постоянный ток. Его обеспечивает источник питания. В нем всегда расположен выпрямитель. Далее расскажем об этом устройстве более подробно.
Какими были первые выпрямители
Развитие электроснабжения начиналось с нуля. А это значит, что не было ни знаний, ни, тем более, оборудования для этого. Потребовалось почти столетие, чтобы появились современные полупроводниковые выпрямители. Они являются следствием исторически сложившейся инфраструктуры электроснабжения. А она, как известно, развивалась на основе переменного напряжения.
Электроснабжение на постоянном напряжении эффективнее, поскольку не сказываются потери в ЛЭП из-за индуктивности и емкости проводов. Но почти везде электроэнергия в сети соответствует переменному напряжению. Это происходит потому, что электроснабжение невозможно без изменения величины напряжения. А эту задачу до сих пор наиболее эффективно решает только трансформатор. Различие свойств электрических цепей с переменным и постоянным напряжением было сразу же замечено исследователями.
А поскольку эффективным источником электроэнергии является вторичная обмотка трансформатора, надо было так или иначе получить некое подобие постоянного напряжения на ее основе. На первом этапе развития электротехники появились только электромагнитные машины. Их и приспособили для выпрямления напряжения. Также было известно явление электролиза. Его тоже использовали для изготовления выпрямителей — электролитических.
Механическое выпрямление напряжения
Определение выпрямления означает получение однонаправленного электрического тока. Его величина при этом будет зависеть от формы переменного напряжения в каждом полупериоде. Но однонаправленный электрический ток при этом получается, как при положительном полупериоде напряжения, так и при его отрицательном значении. При этом нагрузка при переходе напряжения через ноль должна отключаться от ненужной полуволны напряжения. Первые выпрямители выполняли эту задачу механическими контактами.
Они либо приводились в движение синхронным двигателем, либо перемещались достаточно быстродействующим соленоидом. В обеих схемах контакты, переключающие напряжение, перемещаются синхронно с напряжением. В схеме с двигателем они вращаются, замыкаясь в нужный момент времени.
Узел, предназначенный для выпрямления напряжения, при вращении аналогичен коллектору двигателя постоянного тока. Количество ламелей – контактов определяется числом оборотов синхронного двигателя. При переходе синусоиды выпрямляемого напряжения через ноль обе щетки контактируют либо с началом, либо с концом ламели. Начало ламели совпадает с острием стрелки, указывающей направление вращения двигателя.
Время контакта щеток с ламелью совпадает с длительностью половины периода выпрямляемого напряжения. Синхронный двигатель вращается точно и кратно частоте питающего напряжения, которое он выпрямляет присоединенным к нему коллектором. Но его инерционность не позволит выпрямить скачкообразное изменение частоты питающего напряжения. Поэтому он эффективен только как выпрямитель напряжения электросети.
Выпрямитель на соленоиде замыкает контакт либо на время, когда сердечник втягивается, либо наоборот. Он может сработать только при некотором минимальном напряжении, которое достаточно для перемещения контактов. Поэтому часть полуволны вблизи перехода напряжения через ноль не будет обработана как следует. Но зато такой выпрямитель может быть изготовлен довольно-таки небольшим. Поэтому он был широко распространен в свое время.
МВ-81 со снятой крышкой Контакт МВ-81Очевидно то, что без коммутации электрической цепи выпрямления напряжения не может быть. А возможности механического контакта ограничены мощностью искры, которая возникает в момент разрыва электрической цепи. Она постепенно уничтожает этот контакт тем быстрее, чем больше электрическая мощность при его размыкании.
Электролитический выпрямитель
Это устройство работает без коммутации. Однако оно было изобретено только после появления достаточно чистого алюминия. Известно, что этот металл образует тонкую пленку прочного окисла на своей поверхности. Окись алюминия — это почти изолятор. Если погрузить алюминиевую пластину в определенный раствор и подать на нее отрицательный потенциал, пленка разрушится. При этом ток в растворе должен исходить из погруженной рядом железной пластины — анода.
Пленка окиси алюминия моментально растворится в растворе, например, фосфорнокислого натрия. Поэтому поверхность катода получится из чистого алюминия. А ток будет беспрепятственно течь между погруженными электродами. Но как только полярность электродов сменится на противоположную, поверхность алюминиевой пластины моментально окислится. Пленка с большим сопротивлением не будет пропускать электрический ток.
Энергетические характеристики электролитического выпрямителя зависят от объема сосуда, а также от размеров и числа пластин. Пластина из чистого алюминия работоспособна длительное время. Вывести из строя такой выпрямитель можно только механическим разрушением. От увеличения тока он «застрахован» свойствами электролита. Слишком высокое напряжение просто не будет выпрямляться. Но при его возвращении к номинальной величине этот выпрямитель продолжит работу. Он просто не убиваем.
Электролитический выпрямительЛамповые варианты
Такие механические и электролитические выпрямляющие устройства просуществовали несколько десятилетий до того времени, как появились электронные лампы. Но и они были ограничены потерями электроэнергии. Хотя и не связанными с коммутацией. Дело в том, что для работы лампы необходим предварительно созданный запас электронов.
А его не научились получать в лампах иначе, как раскаляя нить накала. Вот и получалось, что, несмотря на быстродействие, обычная лампа-диод расходовала слишком много электроэнергии на выпрямление напряжения. Но со временем была изобретена мощная ртутная лампа — ртутный выпрямитель. Она отличалась тем, что в ней возникал управляемый электрический разряд в парах ртути. Разряд существовал только на одной полуволне напряжения.
Ртутный выпрямительЭто позволило довести мощность выпрямителя до значений, приемлемых для промышленного использования. И на основе ртутных выпрямителей были построены первые ЛЭП, работающие при постоянном напряжении. А во всех остальных электроприборах так и применялись электронные лампы-диоды. В 30-е годы ХХ века появились первые полупроводниковые выпрямители на основе селена. Они так и назывались — «селеновые выпрямители».
Структура селеновой выпрямительной пластины Конструктивное исполнение селеновых выпрямителейОднако характеристики этих выпрямителей оставляли желать лучшего. Поэтому поиски более эффективных технических решений продолжались и завершились появлением полупроводникового диода. Но его преимущества тоже относительны. Температура полупроводника не может превышать 130–150 градусов Цельсия. По этой причине все предшествующие виды выпрямителей имеют свою нишу для условий с высокой температурой и радиацией. При остальных условиях эксплуатации применяются диодные выпрямители.
Полупроводниковые схемы
Любой выпрямитель — это схема. Она включает в себя вторичную обмотку трансформатора, выпрямляющий элемент, электрический фильтр и нагрузку. При этом существует возможность получать умножение напряжения. Выпрямленное напряжение — это сумма постоянного и переменного напряжений. Переменная составляющая — это нежелательная компонента, которую уменьшают тем или иным способом. Но поскольку используются полуволны переменного напряжения, иначе быть не может.
Влияние переменной составляющей оценивается коэффициентом пульсации.
Его можно уменьшить двумя способами:
- улучшая эффективность электрического фильтра;
- улучшая параметры выпрямляемого переменного напряжения.
Простейший выпрямитель однополупериодный. Он отсекает одну из полуволн переменного напряжения. Поэтому коэффициент пульсаций в такой схеме получается самым большим. Но если выпрямляется трехфазное напряжение с одним диодом в каждой фазе, а также одним и тем же фильтром, получится в три раза меньший коэффициент пульсаций. Однако наилучшими характеристиками обладают двухполупериодные выпрямители.
Использовать обе полуволны переменного напряжения можно двумя способами:
- по схеме моста;
- по схеме со средней точкой обмотки (схема Миткевича).
Сравним обе эти схемы для одного и того же значения выпрямленного напряжения. В схеме моста используется меньше витков вторичной обмотки трансформатора, что является преимуществом. Но при этом в однофазном выпрямительном мосте необходимы четыре диода. В схеме со средней точкой необходимо в два раза больше витков вторичной обмотки со средней точкой, что является недостатком. Еще один недостаток этой схемы — необходимость симметрии частей обмотки относительно средней точки.
Асимметрия будет дополнительным источником пульсаций. Но зато в этой схеме нужны только два диода, что является преимуществом. При выпрямлении на диоде существует напряжение. Его величина почти не изменяется в зависимости от силы тока, протекающего через этот диод. Поэтому мощность, рассеиваемая на полупроводниковом диоде, растет по мере увеличения силы выпрямленного тока. Это весьма ощутимо при большой силе тока, и поэтому полупроводниковые диоды размещаются на охлаждающих радиаторах и при необходимости обдуваются.
При выпрямлении тока большой силы два диода схемы со средней точкой будут экономичнее и компактнее в сравнении с четырьмя диодами выпрямительного моста. Схемы выпрямителей в свое время не появились из ниоткуда. Их изобрели инженеры. Поэтому схемы выпрямителей в литературе иногда называются в связи с именами своих первооткрывателей. Мостовая схема именуется как «полный мост Гретца». Схема со средней точкой — «выпрямитель Миткевича».
Полупроводниковые диоды вместе с конденсаторами позволяют создавать схемы, в которых конденсаторы за полпериода заряжаются и за полпериода разряжаются в нагрузку. При этом напряжения, которые на них накапливаются, суммируются. Таким путем можно создавать схемы для умножения напряжения. Наиболее простая и эффективная схема выпрямителя, который удвоит напряжение, содержит два диода и два конденсатора. Ее называют схемой Латура-Делона. Ее аналогом является схема Гренашера.
Создавая необходимое число ячеек, содержащих конденсаторы и диоды, можно получить любое напряжение, кратное их числу. Схема, соответствующая этому решению, показана далее. В ней каждая из ячеек содержит конденсатор и диод.
Она также именуется как «генератор Кокрофта-Уолтона». Для двух- и трехфазных напряжений существуют соответствующие выпрямители. Это такие же схемы, как и для однофазного напряжения, но соединяемые в соответствии с достигаемой целью. Примеры таких схем показаны далее.
Многофазные источники переменного напряжения — это наиболее эффективный способ получения минимальной величины коэффициента пульсации. Классификация как многофазных, так и прочих выпрямителей в целом довольно-таки обширна. Они характеризуются:
В статье были подробно рассмотрены лишь некоторые виды выпрямителей, имеющие наиболее широкое использование.
Делая выбор того или иного устройства, необходимо руководствоваться параметрами напряжения нагрузки. Только таким путем получается эффективное выпрямление напряжения.
Похожие статьи:Выпрямители тока часть 2. Виды однофазных и трехфазных схем
Продолжаем рассматривать выпрямители тока, их различные схемы сборки. Всевозможные схемы обеспечивают применение таких устройств в разных отраслях промышленности и в быту.
Производство и передача электроэнергии чаще всего выполняется на переменном токе, так как трансформация напряжения является наиболее простым способом. Но, довольно весомая часть выработанной электрической энергии применяется в виде постоянного тока, даже для транспортировки на значительные расстояния. Эта доля составляет около 30% от всей произведенной электроэнергии.
Выпрямители тока
Двухтактная схема
В устройствах низкого напряжения используют однофазный двухтактный выпрямитель с нулевым отводом обмотки. Это дает возможность снизить потери и количество диодов в два раза. Однако при этом коэффициент использования трансформатора намного ниже, размеры прибора больше, в отличие от однофазного устройства.
Обязательным компонентом такого прибора является трансформатор, у которого имеется две низковольтные обмотки. По сути дела, подключение к средней точке делает выпрямитель двухфазным, так как образуются две ЭДС, которые равны между собой по значению, а направлены в разные стороны. В результате схема подключения заключается в том, что равные напряжения на выходе обмотки сдвинуты от средней точки по фазе на 180 градусов.
К анодам диодных вентилей присоединены вторичные обмотки, на которых напряжение находятся в противофазе, вследствие чего ток по диодам протекает по очереди в определенных полупериодах напряжения.
Отличием прибора со средней точкой от простого исполнения является протекание выпрямленного тока в обоих полупериодах. Но каждая половина обмотки нагружена током в одном полупериоде. Подмагничивание сердечника отсутствует, так как магнитные силы направлены во встречном направлении.
Мостовая схема
Характерна повышенным коэффициентом применения трансформатора. Вследствие этого, ее использование целесообразно в устройствах высокой мощности с напряжением на выходе в сотни вольт. Пульсации в такой схеме аналогичны предыдущей схеме.
Действие мостовой схемы практически не имеет отличий от предыдущей схемы, кроме того, что используются два вентиля вместо одного. Они соединены по последовательной схеме. Для полупериода применяется полностью вся обмотка. Это увеличивает эффективность применения трансформатора.
Преимуществом схемы моста является пониженное обратное напряжение, малые размеры, высокий коэффициент использования трансформатора. К недостатку можно отнести значительное падение напряжения на вентилях.
Напряжение на выходе при активной нагрузке представлено в виде однополярных полуволн. Это возникает из-за поочередного открывания диодов.
По аналогии кривых udдля приборов со средней точкой и мостовых схем, работают такие же формулы напряжений:
Вследствие этого пульсации остаются такими же. Ток Id разделяется на равные части между вентилями. Обратное напряжение на два непроводящих диода подается в одно время на диапазоне проводимости других диодов, его наибольшая величина вычисляется амплитудой напряжения u2:
Нагрузочный ток проходит в обоих полупериодах как во вторичной обмотке. Действующий ток вторичной обмотки вычисляется:
Это объясняется тем, что ток синусоидальный. Поэтому трансформатор выполнен с одной вторичной обмоткой.
Если учесть, что трансформатор оснащен одной вторичной обмоткой, то габаритная мощность двух обмоток одинакова, а суммарная габаритная мощность Sгаб совпадает с мощностью первичной обмотки, которая рассматривалась выше, и равна 1,23 Рd.
Выпрямительный диодный мост в различных источниках изображают по-разному. Чаще всего это делают упрощенно.
Диодный мост
Такую условность применяют для упрощения внешнего вида схемы. Диодная сборка состоит из четырех диодов с равными характеристиками. Они расположены в одном корпусе, что является технологичным решением. Такая сборка занимает незначительное место на монтажной плате.
В последнее время популярны селеновые и кенотронные выпрямители тока, которые применяются для радиоаппаратуры. В выпрямительных мостах все больше используют полупроводниковые диоды на основе германия.
Трехфазные выпрямители тока
Приборы, способные выпрямлять 3-фазное напряжение переменного тока, имеют трансформатор с первичной обмоткой, состоящей из 3-х отдельных обмоток, соединенных по схеме треугольника или звезды. Схема выпрямляющего устройства для трехфазной сети используется чаще всего для подключения нагрузки большой и средней мощности.
По методу подключения диодов к выходной обмотке схемы разделяют на мостовые с изолированной нулевой точкой, и нулевые со средней точкой обмотки.
Применяя специальные схемы подключения вторичной обмотки и выпрямителя, в общем, получают выпрямленное напряжение с количеством импульсов, кратным трем, за один период. При повышении количества импульсов в напряжении на выходе прибора, можно значительно уменьшить габариты фильтрующих элементов. 3-фазные выпрямители тока создают равномерную нагрузку на линию питания, и имеют повышенный процент использования трансформатора.
Трехфазная нулевая схема
В такую схему включен трансформатор. Выводы обмоток по схеме подключены к анодам трех диодов. Потребляющая нагрузка соединена с общей точкой катодов диодов.
На диаграмме показано действие идеального 3-фазного выпрямителя, имеющего среднюю точку на выходной обмотке, подключенную к нагрузке. В такой идеальной схеме, где не учитывается индуктивность обмоток, а вентили считаются идеальными, при переходе тока между вентилями, их коммутация осуществляется мгновенно, и в любое время ток проходит по одному диоду, имеющему самый большой потенциал.
В трехфазном устройстве выпрямления, нагрузочный ток со средней точки обмотки образуется фазным напряжением этой обмотки. За один период напряжения по каждой вторичной обмотке один раз проходит ток одной полярности. При этом диапазон проводимости одного вентиля равен 120 градусам.
Открытый диод подает напряжение соответствующей фазы к потребляющей нагрузке. В итоге на нагрузку действует импульсное однополярное напряжение, которое является участком напряжений фаз вторичных обмоток, и имеющее тройные импульсы за один период.
Достоинства
- Малое количество вентилей.
- Незначительное падение напряжения на диодах, вследствие чего возможно применение этой схемы для выравнивания низких напряжений при высоких мощностях более 0,5 киловатт.
- Высокая частота импульсов выходного напряжения, так как имеется три частоты на трех фазах сети. Иногда это дает возможность применять такую схему без фильтрации.
Недостатки
- Повышенное обратное напряжение на вентилях.
- Малый коэффициент использования трансформатора из-за эффекта подмагничивания.
Однако такие недостатки нулевой схемы не ограничивают использовать выпрямители тока в определенных областях, и нашли определенную популярность.
Трехфазная мостовая схема
Позволяет наилучшим образом использовать трансформатор по его мощности, имеет малое обратное напряжение на вентилях и повышенную частоту импульсов выходного напряжения. Мостовая 3-фазная схема стала популярной в широком интервале мощностей и напряжений.
Выпрямители тока по мостовой трехфазной схеме имеется мост выпрямления, состоящий из шести диодов, соединенных двумя группами последовательно. Одна из групп – катодная, так как диоды соединены катодами, а вторая анодная. Питание на нагрузку подается от точек соединения анодов и катодов диодов. Обмотки допускается соединять треугольником или звездой.
Каждая группа вентилей устройства работает по принципу, подобному схеме прибора со средней точкой, на выходе среднее напряжение повышается в 2 раза.
Если рассматривать отличия двух последних схем, то в схеме со средней точкой нагрузочный ток создается фазным напряжением, в отличие от мостовой схемы, в которой ток нагрузки создается при воздействии линейного напряжения. Здесь нагрузочный ток проходит по двум диодам: одному с максимальным потенциалом анода по отношению к нулевой точке, другому – с минимальным потенциалом катода. Другими словами, в состоянии проводимости будут такие два вентиля моста, которые имеют максимальное линейное напряжение в сторону проводимости.
За один период напряжения осуществляется шесть коммутаций диодов, поэтому схема функционирует в шесть тактов. Такую схему называют шестиимпульсной. В результате выходное напряжение выпрямителя содержит шестикратные импульсы, однако угол проводимости отдельного диода равен углу 120 градусов.
График тока вторичной обмотки зависит от токов двух диодов, подключенных к этой фазе. Один из диодов состоит в анодной группе, а другой – в катодной. Выходной ток переменный, с промежутком между пульсациями 60 градусов, при закрытых двух диодах этой фазы. Подмагничивания сердечника в этой схеме нет.
Похожие темы:
Выпрямители переменного тока
Содержание:
- Принцип работы выпрямителя тока
- Однополупериодные выпрямители
- Работа двухполупериодных выпрямителей
- Как происходит выпрямление переменного тока
В электрических сетях используется преимущественно переменный ток, питающий большинство промышленных и бытовых потребителей. Однако существует немало электрических устройств – магнитофонов, приемников и других приборов, основой которых служат полупроводники или лампы. Для их работы требуется только постоянный ток. Кроме того, он используется во многих заводских производственных процессах.
Преимущественная выработка переменного тока связана с удобством его трансформации в разные значения напряжений. Другим положительным моментом считается передача переменного тока по ЛЭП с минимальными потерями. Поэтому все необходимые преобразования выполняют выпрямители переменного тока, позволяющие получить необходимое напряжение, обеспечивающее нормальную работу электрических приборов.
Принцип работы выпрямителя тока
Основной функцией выпрямителя тока является преобразование переменного напряжения в постоянное. Принцип работы этих устройств основан на свойствах переменного тока, величина и направление которого изменяются во времени.
Согласно стандартного значения изменение направления тока в сети составляет 50 раз в течение одной секунды. Такое колебание является частотой и составляет 50 герц или периодов. То есть значение электротока в определенный период достигает нулевой отметки, а затем постепенно набирает максимальное значение. Этот процесс постоянно повторяется и протекает в периодической форме. Значение тока постоянно изменяется в соответствии с синусоидальным законом.
Основная задача выпрямителя заключается в получении устойчивого постоянного напряжения, не изменяющего своей величины и направления. Сам процесс выпрямления заключается в работе вентиля, пропускающего ток лишь в одном направлении. В результате односторонней проводимости вентиля, прохождение тока через него осуществляется исключительно в положительные полупериоды. Во время отрицательных периодов ток в цепи отсутствует.
При наличии положительной полуволны, сопротивление в вентиле минимальное, что обеспечивает свободное прохождение тока. Отрицательная полуволна подвергается значительному сопротивлению, задерживается и не проходит через вентиль. В результате включения вентиля в цепь, переменный ток будет полностью отсутствовать. Изменения оставшегося в цепи тока будут касаться только его величины, а направление останется неизменным. Это так называемый первичный или пульсирующий ток. С его помощью можно зарядить аккумулятор, но, он не годится для питания, например, радиоэлектронной аппаратуры. Необходимо выполнить процедуру сглаживания, чтобы пульсирующий ток превратился в постоянный. С этой целью используется специальный фильтр.
В качестве такого фильтра используется конденсатор с большой емкостью. Выпрямляемый ток сглаживается или фильтруется за счет зарядки конденсатора током, идущим от вентиля. В результате, создается определенный запас электроэнергии. При уменьшении тока, проходящего через вентиль и падении напряжения на нагрузке в конце каждого положительного полупериода, происходит отдача конденсатором накопленной энергии.
Однополупериодные выпрямители
Далеко не все фильтры способны полностью избавить ток от резких пульсаций. Для этих целей требуются более совершенные фильтры, обеспечивающие на нагрузке лишь незначительные пульсации постоянного тока. Такие пульсации не оказывают решающего влияния на основные функции электронного устройства, получающего питание через выпрямитель.
К наиболее простым приборам относится однополупериодный выпрямитель. Основным принципом его работы является использование для выпрямления только положительных полупериодов. Выпрямленный ток и сетевое напряжение имеют одинаковую частоту пульсаций. Поэтому для их сглаживания в однополупериодном выпрямителе должен применяться хороший фильтр. С помощью данных устройств осуществляется питание аппаратуры с потреблением незначительного тока. В случае возрастания токовых значений, необходимо использовать более сложные фильтры.
Работа двухполупериодных выпрямителей
Более широкое распространение получили двухполупериодные выпрямители переменного тока, с использованием сразу двух вентилей. Течение тока в нагрузке происходит всегда в одном направлении.
Схема выпрямления действует следующим образом. В определенное время на одном из выводов вторичной обмотки трансформатора напряжение будет положительным по отношению к другому выводу. Ток проходит через первый вентиль с небольшим сопротивлением, после этого он идет по нагрузке к средней точке вторичной обмотки. Такое положение будет сохраняться весь положительный полупериод. Когда ток не первом выводе трансформатор изменится, напряжение станет отрицательным. Прохождения тока через первый вентиль не будет в связи с его большим сопротивлением. Второй конец обмотки будет с положительным напряжением, и ток начнет проходить по второму вентилю, нагрузке с выходом к средней точке вторичной обмотки трансформатора.
Данная схема выпрямления тока позволяет использовать два полупериода напряжения. Высокая частота пульсаций значительно облегчает фильтрацию выпрямленного напряжения.
Как происходит выпрямление переменного тока
Выпрямители тока: принцип работы, схема
Выпрямитель — это устройство, которое создано для преобразования тока. Многие модели устанавливаются с фильтрами. Сфера применения выпрямителей очень широкая. Они активно используются в блоках питания, подстанциях, а также сварочных аппаратах.
В первую очередь модели делятся по фазам. Существуют двухфазные, а также трехфазные модификации. Мостовые устройства изготавливаются исключительно для преобразователей. По мощности выделяют силовые элементы, а также модели сигналов. По наличию устройств стабилизации они делятся на полноволновые, неполноволновые, двухпериодные и трансформаторные модификации. Для того чтобы разобраться в выпрямителях, необходимо рассмотреть схему обычной модели.
Схема выпрямителя
Схема выпрямителя тока включает в себя проводники с различной проводимостью тока. Также в устройствах используются каналы. Электронные вентили устанавливаются различной чувствительности. Если рассматривать мостовые модификации, то у них применяются стабилитроны. Также на рынке представлены диодные устройства.
Принцип действия
Принцип работы выпрямителя основывается на преобразовании тока. Осуществляется данный процесс за счет изменения частоты. Для этого в устройстве имеется электронный вентиль. Для стабилизации процесса преобразования используются каналы. Чтобы избежать проблем с отрицательной полярностью, устанавливаются стабилитроны. Непосредственно подключение устройства осуществляется через проводники.
Силовые устройства
Выпрямители тока данного типа используются в различных блоках питания. Наиболее часто их можно встретить в персональных компьютерах. Схема устройства предполагает использование векторного транзистора. Если рассматривать двухканальную модификацию, то подключение осуществляется через расширитель.
В некоторых устройствах используются тетроды. Если рассматривать трехканальные элементы, то они рассчитаны для блоков питания на 20 В. В данном случае тетроды никогда не применяются. Принцип работы выпрямителей построен на изменении частоты. Многие модификации продаются с электронными вентилями. Если говорить про параметры, то чувствительность устройства колеблется в районе 23 мВ. Непосредственно проводимость тока у моделей не превышает 2 мк.
Принцип работы выпрямителей сигналов
Выпрямители сигналов работают от обратной связи. Использоваться модели могут только в сети с переменным током. Если рассматривать устройства на 12 Вт, то следует отметить, что фильтры применяются только полудуплексного типа. Также стандартная схема выпрямителя подразумевает использование транзистора с ресивером.
У моделей на три канала обязательно используются триггеры. Данные устройства устанавливаются через изоляторы. Выходное напряжение у моделей, как правило, не превышает 20 В. Силовая электроника у выпрямителей позволила решить проблему с перепадами напряжения за счет установки диодных мостов.
Мостовые устройства
Мостовые выпрямители продаются для блоков питания и преобразователей. Действуют устройства в сети с переменным током. Непосредственно изменение частоты осуществляется за счет работы расширителя. Указанный элемент в выпрямителе играет роль проводника. В некоторых случаях он устанавливается с изоляторами. По системе защиты мостовые выпрямители довольно сильно отличаются.
Если рассматривать модификации на три канала, то у них используются триггеры. Данные элементы могут устанавливаться с обкладкой и без нее. Модификации на четыре канала встречаются очень редко. Показатель проводимости тока у выпрямителей не превышает 40 мк. В данном случае чувствительность устройства равняется 2,5 мк.
Двухфазные модификации
Двухфазные выпрямители тока производятся для транспортных средств. Работают модели по принципу изменения частоты. Осуществляться этот процесс может за счет расширителя либо триггера. Наиболее часто модели встречаются без тетродов. Параметр предельной перегрузки у модификаций не превышает 6 А. Фильтры используются, как правило, проводного типа.
Если рассматривать модификации на три канала, то у них есть двухразрядный триггер. Показатель его чувствительности составляет не более 3 мк. В свою очередь, выходное напряжение максимум равняется 35 В. Силовая электроника у двухфазных устройств дала возможность решить проблему с перегрузками напряжения благодаря использованию диодных мотов.
Трехфазные модели
Трехфазный выпрямитель встретить можно только в трансформаторных подстанциях. Работают устройства от высоковольтной чети. В данном случае принцип работы модели построен то резком увеличении частоты. Параметр выходного напряжения при этом остается неизменными. Выпускаются модели на три и четыре канала. Подсоединение у них происходит через проводники.
Трехфазный выпрямитель на три канала выпускается с тетродами. В некоторых случаях для стабилизации процесса преобразования применяются расширители. Если говорить про выпрямители на четыре канала, то важно отметить, что они производятся всегда с усилителями. В данном случае показатель проводимости тока лежит в пределах 70 мк. Чувствительность выпрямителя равняется не более 4,2 мВ.
Полноволновые устройства
Полноволновый выпрямитель напряжения тока работает за счет смены полярности на расширителях. Транзисторы, как правило, используются открытого типа. Подходят данные устройства для преобразователей на 20 и 30 В. Непосредственно параметр чувствительности у них равняется 3 мВ. В свою очередь, проводимость тока находится в районе 4,5 мк.
Если говорить про модификации на три канала, то они устанавливаются только в блоки питания с усилителями. Фильтры для выпрямителей подходят в основном расширительного типа. Если говорить про устройства на четыре канала, то у них показатель проводимости тока лежит в районе 3 мк. Для трансформаторных подстанций модели не подходят.
Неполноволновые модификации
Неполноволновые выпрямители тока отличаются отсутствием электронного вентиля. Выпускаются элементы только с двумя каналами. Непосредственно подсоединение модификации осуществляется через контакты. Изоляторы используются как с обкладкой, так и без нее. В некоторых случаях применяются усилители.
Также важно отметить, что устанавливаются выпрямители данного типа в контроллерах. Параметр выходного напряжения у них, как правило, не превышает 30 В. В среднем чувствительность устройств составляет 75 мВ. В данном случае проводимость тока зависит от типа используемых фильтров.
Однопериодные модификации
Однопериодные выпрямители тока производятся для различных ресиверов. Отличительной чертой элементов принято считать высокий параметр проводимости тока. Работают устройства от обратной полярности. Выпускаются модели на два и три канала. Если рассматривать первый вариант, то важно отметить, что проводники используются с обкладкой. В данном случае расширители устанавливаются редко. Параметр проводимости тока у выпрямителей колеблется в районе 3 мк.
Если говорить про устройства на три канала, то они всегда выпускаются с тетродами. Также схема модификации подразумевает использование модуляторов. Для низкочастотных ресиверов указанные выпрямители подходят идеально. В данном случае чувствительность составляет не более 60 мВ.
Схема двухпериодных устройств
Двухпериодный выпрямитель тока 220 В производится для преобразования тока от приводных устройств. В данном случае процесс происходит за счет изменения частоты напряжения. Расширители у моделей используются, как правило, отрытого типа. Если говорить про модификации на два канала, то у них применяются распределительные фильтры. В некоторых случаях устанавливаются триггеры. Для подключения устройств к приводным установкам необходимы транзисторы полевого типа. Выпускаются они с различной емкостью. Как правило, на рынке представлены модификации на 20 пФ.
Особенности трансформаторных устройств
Трансформаторный выпрямитель (преобразователь электрической энергии) способен работать в сети с постоянным и переменным током. В данном случае триггеры используются трехразрядного типа. Для подключения устройств применяются проводники. Встретить трансформаторные выпрямители можно на подстанциях. Данные устройства рассчитаны на высокое выходное напряжение.
Система защиты у них устанавливается с хроматическими фильтрами. В данном случае параметр чувствительности лежит в пределах 80 мВ. Для приводных механизмов указанные устройства не подходят однозначно. Показатель приводимости тока у них равняется 20 мк. Триггеры для цепей подбираются как открытого, так и закрытого типа. В среднем параметр пороговой перегрузки находится на уровне 5 А.
Модели с умножением напряжения
Выпрямители данного типа на сегодняшний день активно используются в преобразователях. Стандартная схема модификации включает в себя вентиль, а также транзисторы. В среднем показатель их емкости равняется 2 пФ. Непосредственно проводимость тока составляет не более 3 мк.
Если говорить про модификации на два канала, то у них используются расширители. Устанавливаются они как открытого, так и закрытого типа. Во многих моделях есть регуляторы. Если говорить про выпрямители на четыре канала, то они производятся с модуляторами. Для их работы используются различные триггеры. Чаще всего они встречаются трехразрядного типа.
Модификации с гальванической развязкой
Устройства с гальванической развязкой работают по принципу понижения частоты. Подключаются они только от сети с переменным током. В данном случае транзисторы устанавливаются на 20 пФ. Непосредственно показатель чувствительности равняется 88 мВ. Если говорить про модификации на три канала, то у них применяются импульсные модуляторы. Во многих моделях есть защитные системы, которые помогают справляться с перегрузами. Фильтры используются с лучевыми тетродами.
Электронные выпрямители их виды и характеристика — Студопедия.Нет
Одним из основных источников энергии в быту и в промышленноти является электрический ток. Электрический ток бывает двух видов: постоянный и переменный. Переменный ток имеет следующие преимущества перед постоянным:
1.Переменный ток в промышленном масштабе легче получить, так как генераторы переменного тока имеют более простое техничекое устройство, чем генераторы постоянного тока ( динамомашины ).
2. Переменный ток легко транспортировать на любые расстояния без значительных потерь энергии.
При необходимости переменный ток может быть преобразован в постоянный ток с помощью электронного устройства, который называется выпрямителем.
Электронный выпрямитель — это электротехническое устройство для преобразования переменного тока в постоянный.
Структурная схема выпрямителя:
1 2 4 5
1.Трансформатор — необходим для повышения или понижения входного перенменного напряжения до необходимого уровня и изоляции аппарата от входной электрической сети.
2.Выпрямляющие элементы ( вентили )- это ламповые или полупроводниковые диоды, которые подключаются ко вторичной обмотке трансформатора и служат для преобразования переменного тока в пульсирующий.. Все выпрямляющие элементы обладают односторонней проводимостью.
3.Сглаживающий фильтр — применяется для понижения пульсации выпрямленного напряжения и тока. Это совокупность резисторов ,катушек индуктивности и конденсаторов.
4.Стабилизатор — поддерживает постоянным амплитуду выпрямленного напряжения и тока на выходе выпрямителя. Стабилизатор делает эти характеристики независимыми от колебания напряжения в электрической сети на входе выпрямителя. Иногда стабилизатор ставят сразу перед трансформатором — стабилизатор входного напряжения.
Технические характеристики выпрямителей.
Если в качестве выпрямляющего элемента используется двухэлектродная лампа (кенотрон), выпрямитель называется ламповым. Если полупроводниковый диод – полупроводниковым.
Если выпрямляется один полупериод входного напряжения, выпрямитель называется однополупериодным. Если оба полупериода – двухполупериодным.
При выпрямленном напряжении на выходе меньше 500 вольт выпрямитель называется низковольтным. Если напряжение на выходе больше 500 вольт, выпрямитель высоковольтный.
Электрические характеристики выпрямителей.
1. Входное переменное напряжение и ток.
1. Выходное напряжение и ток.
2. Коэффициент пульсации Kp = Uп / Ucp.
Uп – амплитуда переменной составляющей выпрямленного напряжения.
Uср – среднее значение выпрямленного напряжения.
Кр – коэффициент пульсации выпрямленного напряжения.
Пусть график выходного напряжения на выходе выпрямителя имеет следующий вид. Рассчитаем коэффициент пульсации для данного случая.
U
Umax
Uср
Umin
0 t
По определению:
Uп = ( Umax – Umin ) / 2
Uср = ( Umax + Umin ) / 2
Kp = Uп / Ucp = ( Umax – Umin ) / ( Umax + Umin )
Вопрос 11
Выпрямителем называется статическое устройство, предназначенное для преобразования электрической энергии переменного тока в постоянный 1. Необходимость в таком преобразовании возникает, когда питание потребителя осуществляется постоянным током, а источником электрической энергии является источник переменного тока, например промышленная сеть частотой 50 Гц.
Процесс выпрямления осуществляется непосредственно вентильными элементами схемы выпрямления и заключается в том, что нагрузка циклически переключается с одной фазы источника переменного напряжения на другую. В настоящее время разработано и применяется на практике много схем выпрямителей однофазного и трехфазного тока. Выбор той или иной схемы определяется свойствами применяемых вентилей и условиями работы выпрямителя. Например, в выпрямительных агрегатах для зарядки аккумуляторных батарей, где требуются небольшие значения выпрямленного напряжения (24—48 В), наиболее приемлемыми оказались схемы однофазного выпрямления с вентилями на небольшие значения L/0gp. При выпрямлении высоких напряжений (до 1000— 1500 В) часто приходится прибегать к последовательному соединению вентилей или применять диоды на большие значения L/0gp. Следовательно, применение в таком выпрямителе трехфазной нулевой схемы выпрямления на кремниевых диодах позволит затратить меньшее число вентилей (три вместо четырех), получить более высокий КПД и снизить габариты выпрямителя (см. § 6).
Учитывая вышесказанное, рассмотрим работу основных схем выпрямления однофазного и трехфазного тока, предполагая вначале для простоты расчетов параметров и облегчения понимания физической сущности процессов в элементах схем, что выпрямитель работает на активную нагрузку и состоит из идеальных вентилей и трансформаторов, в которых можно пренебречь падениями напряжения, а также обратными токами вентилей, индуктивностями и намагничивающим током трансформатора.
Основными элементами, параметры которых подлежат расчету в схемах выпрямления, являются вентильные элементы и трансформатор. Исходными данными при расчете служат выпрямленные напряжения Ud и ток ld, а также действующее значение напряжения питающей сети Ux.
1 По ГОСТ 23414-79 для названия таких устройств допускается также применять термин «преобразователь». 34
Устройство и основные элементы выпрямителей. Выпрямитель представляет собой электрический агрегат, который состоит в общем случае из следующих основных элементов (рис. 15): силового трансформатора 1. служащего для получения заданного напряжения на выходе выпрямителя, а также для электрического разделения цепи выпрямленного тока с питающей сетью, что необходимо при заземленной нагрузке; блока вентилей 2, соединенных по определенной схеме и обеспечивающих протекание тока в цепи нагрузки в одном направлении, в результате чего переменное напряжение преобразуется в пульсирующее; сглаживающего фильтра 3, который ослабляет пульсации выпрямленного напряжения в цепи нагрузки 4. Если выпрямитель управляемый, то в него входит еще узел 6, содержащий систему управления вентилями. Для защиты выпрямителя от повреждений при аварийных режимах в его схему может входить блок защиты и сигнализации 5, а для поддержания с определенной точностью значения Uвых при изменениях напряжения питающей сети Uc и сопротивления нагрузки RH — стабилизатор напряжения или тока.
В некоторых случаях в схеме выпрямителя могут отсутствовать отдельные элементы, например фильтр 3 при работе выпрямителя на нагрузку индуктивного характера или силовой трансформатор 1 в случае бестрансформаторного включения выпрямителя, что может иметь место в мостовых схемах выпрямления.
В зависимости от количества выпрямленных полупериодов питающего напряжения схемы выпрямления подразделяются на одно полупериодные и двухпопупериодные. По числу фаз первичной обмотки трансформатора выпрямители делятся на однофазные и трехфазные.
Выпрямители однофазного тока. При небольшой мощности нагрузки (до нескольких сотен ватт) преобразование переменного тока в постоянный осуществляют с помощью однофазных выпрямителей, питающихся от однофазной сети переменного тока. Такие выпрямители предназначены для питания постоянным током различных устройств промышленной электроники, обмоток возбуждения двигателей постоянного тока небольшой и средней мощности и т.д.
Рис. 15. Структурная схема (а) и кривые напряжений (б) выпрямителя
Сущность процесса выпрямления рассмотрим на примере простейшей однофазной однотактной схемы выпрямления. В этой схеме (рис. 16 ,з) трансформатор имеет одну вторичную обмотку, напряжение и2 которой изменяется по синусоидальному закону и2 = Umax2 sincor. Ток в цепи нагрузки проходит только в положительные полупериоды, когда точка а вторичной обмотки, к которой присоединен анод вентиля VI, имеет положительный потенциал относительно точки Ь, к которой через нагрузку присоединен катод. В результате напряжение и2 оказывается приложенным к резистору R^. через который начинает протекать ток нагрузки.
Индекс d используется для обозначения элементов, токов и других величин на стороне постоянного тока.
Рис. 16. Однофазные выпрямители
а — однополупериодная схема; б — двухполупериодная схема; виг—, диаграммы напряжений и токов на элементах схем выпрямления
Недостатки этой схемы выпрямления следующие: плохое использование трансформатора, большое обратное напряжение на вентилях, большой коэффициент пульсации выпрямленного напряжения. Достоинства выпрямителя: простота схемы и питающего трансформатора; применяется только один вентиль или одна группа последовательно соединенных вентилей.
Данная схема широко применяется для снятия квалификационных параметров силовых диодов и тиристоров, когда в испытуемом вентиле обеспечиваются однополупериодный синусоидальный прямой ток и синусоидальное обратное напряжение.
Двухполупериодная однофазная схема со средней точкой представлена на рис. 16,6. Схема состоит из трансформатора Т, имеющего одну первичную и две последовательно соединенные вторичные обмотки с выводом общей (нулевой) точки у этих обмоток. Коэффициент трансформации п определяется отношением Ui/U2, где иг — напряжение каждой из вторичных обмоток (фазные напряжения), сдвинутые относительно друг друга на 180°.
Свободные концы вторичных обмоток а и b присоединяются к анодам вентилей VI и V2, катоды которых соединяются вместе. Нагрузка Rвключается между катодами вентилей, которые являются положительным полюсом выпрямителя, и нулевым выводом О трансформатора, который служит отрицательным полюсом.
Вентили в этой схеме, как и вторичные обмотки трансформатора, работают поочередно, пропуская в нагрузку ток при положительных значениях анодных напряжений и2а и и2Ь (рис. 16,г), в качестве которых обычно принимают направления, совпадающие с проводимостями вентилей.
Действительно, при изменении напряжения в точках а и b по закону и2 = Uzmsin ш в тот полупериод, когда напряжение в обмотке Оа положительно, ток проводит вентиль VI, анод которого положителен по отношению к катоду, связанному через резистор Rd с точкой О вторичных обмоток. Анод вентиля V2, так же как вывод b обмотки Ob, в этот полупериод отрицателен по отношению к нулевому выводу О и, следовательно, тока не пропускает. Вентиль V1 будет находиться во включенном (проводящем) состоянии до тех пор, пока ток /в1, протекающий через него, не станет равным нулю (момент времени Г]).
В следующий полупериод (интервал времени f,_ t2 на рис. 16,г) когда напряжения на первичной и вторичной обмотках трансформатора изменяют свою полярность на обратную, ток будет пропускать вентиль V2. В результате к нагрузке Rd будет теперь приложено напряжение и2Ь, а ток id будет равен току /в2 вентиля V2. Вентиль V1 выключится, так как к нему будет приложено обратное напряжение ^обр. Спустя полупериод, начиная с момента времени t2, процесс повторяется: ток будет проводить вентиль VI, а вентиль V2 выключится и т.д.
Ток id в нагрузке все время течет в одном направлении — от катодов вентилей к нулевой точке О вторичных обмоток трансформатора, и на резисторе Rd появляется выпрямленное пульсирующее напряжение ud, содержащее постоянную и переменную составляющие.
Для однофазной нулевой схемы справедливы следующие соотношения между напряжениями, токами и мощностями в отдельных элементах выпрямителя.
Среднее значение выпрямленного напряжения
Ud = 0,91/2. (11)
где U2 — действующее значение напряжения на вторичной полуобмотке, U2 = 1,11 Ud. (12)
Для рассматриваемой схемы частота первой гармоники пульсаций fn(1) =2fc при частоте питающей сети fc = 50 Гц составляет 100 Гц. Подставляя в (19) т = 2. определяем коэффициент пульсации: q = 0.67, т.е. амплитуда первой гармоники ud для данной схемы составляет 67% Ud.
Однофазная мостовая схема состоит из трансформатора Тс двумя обмотками и четырех диодов VI — V4, соединенных по схеме моста (рис. 17,з). К одной диагонали моста (точки 1,3) присоединяется вторичная обмотка, а в другую (точки 2, 4) включается нагрузка Rd. Общая точка катодов вентилей VI и V2 является положительным полюсом выпрямителя, а отрицательным—точка связи анодов вентилей V3 и V4.
Вентили в этой схеме работают парами поочередно. В положительный полупериод напряжения иг, соответствующая полярность которого обозначена без скобок, проводят ток вентили VI и V3, а к вентилям V2 и V4 прикладывается обратное напряжение, и они закрыты. В отрицательный полупериод напряжения иг будут проводить ток вентили V2 и V4, а вентили VI и V3 закрыты и выдерживают обратное напряжение ио6р = = иг.
Далее указанные процессы периодически повторяются. Диаграммы токов и напряжений на элементах схемы (рис. 17,в) будут такими же, как для однофазного двух полу периодного выпрямителя со средней точкой.
Рис. 17. Однофазный мостовой выпрямитель
в — схема включения; б и в — временные диаграммы напряжений и токов на элементах схемы
Ток id в нагрузке проходит все время в одном направлении — от соединенных катодов диодов V1 и V2 к анодам диодов V3 и V4. Ток /2 во вторичной обмотке трансформатора (рис. 17,6) меняет свое направление каждые полпериода и будет синусоидальным. Постоянной составляющей тока во вторичной обмотке нет. Следовательно, не будет подмагничивания сердечника трансформатора постоянным магнитным потоком. Ток ii в первичной обмотке трансформатора также синусоидальный.
Однофазная мостовая схема:
Амплитуда обратного значения на вентилях в 2 раза меньше, чем в нулевой схеме.
Вдвое меньше напряжение (число витков) вторичной обмотки трансформатора при одинаковых значениях напряжения Ud.
Трансформатор имеет обычное исполнение, так как нет вывода средней точки на вторичной обмотке.
Расчетная мощность трансформатора на 25% меньше, чем в нулевой схеме, следовательно, меньше расходуется меди и железа, меньше будут размеры и масса.
Данная схема выпрямителя может работать и без трансформатора, если напряжение сети (Д подходит по значению для по лучения необходимого напряжения Ud и не требуется изоляции цепи выпрямленного тока от питающей сети.
Выпрямители трехфазного тока. Питание постоянным током потребителей средней и большой мощности производится от трехфазных выпрямителей, применение которых снижает загрузку вентилей по току, уменьшает коэффициент пульсации и повышает частоту пульсации выпрямленного напряжения, что облегчает задачу его сглаживания. Для лучшего уяснения принципа выпрямления трехфазного тока и режимов работы элементов выпрямителей вначале рассмотрим трехфазную схему с нулевым выводом.
Рис. 18. Трехфазный выпрямитель с нулевой точкой: в — схема соединения обмоток трансформатора и вентилей; б — г — диаграммы напряжений и токов на элементах
Из временной диаграммы на рис. 18,6 видно, что напряжения игд, и2Ь и и2с сдвинуты по фазе на одну треть периода (773, или 120°) и в течение этого интервала напряжение одной фазы выше напряжения двух других фаз относительно нулевой точки трансформатора. Ток через вентиль /в, связанную с ним вторичную обмотку и нагрузку будет протекать в течение той трети периода, когда напряжения в данной фазе больше, чем в двух других. Работающий вентиль прекращает проводить ток тогда, когда потенциал его анода становится ниже общего потенциала катодов, и к нему прикладывается обратное напряжение.
Переход тока от одного вентиля к другому (коммутация тока) происходит в момент пересечения кривых фазных напряжений (точки а, б, в и г на рис. 18,6). Выпрямленный ток id проходит через нагрузку /?£/ непрерывно (рис. 18,в).
Напряжение ud на выходе выпрямителя в любой момент времени равно мгновенному значению напряжения той вторичной обмотки, в которой вентиль открыт, и выпрямленное напряжение представляет собой огибающую верхушек синусоид фазных напряжений игф трансформатора Т.
При изменении вторичного напряжения иг по синусоидальному закону ток /2 каждой из фаз на участке проводимости вентилей будет также синусоидальным
(21)
Следовательно, анодный ток /в будет иметь форму прямоугольника с основанием Т/3, ограниченного сверху отрезком синусоиды. На рис. 18,г изображен ток фазы а. токи фаз b и сизображаются подобными кривыми, сдвинутыми на 120 относительно друг друга.
Для трехфазной нулевой схемы выпрямления характерны следующие соотношения между напряжениями, токами и мощностями в отдельных элементах выпрямителя.
Среднее значение выпрямленного напряжения при холостом ходе (когда на выходе выпрямителя включен только вольтметр)
(22)
где Сзф — действующее значение фазного напряжения на вторичной обмотке трансформатора.
Выпрямленное напряжение ud содержит постоянную составляющую U(j и наложенную на нее переменную составляющую U^.—, имеющую трехкратную частоту по отношению к частоте сети. Коэффициент пульсаций напряжения на выходе выпрямителя
Трехфазная мостовая схема выпрямления. Выпрямитель в данной схеме состоит их трансформатора, первичные и вторичные обмотки которого соединяются в звезду или треугольник, и шести диодов, которые разделены на две группы (рис. 19,з):
катодную, или нечетную (диоды VI, V3 и V5), в которой электрически связаны катоды вентилей и общий вывод их является положительным полюсом для внешней цепи, а аноды присоединены к выводам вторичных обмоток трансформатора;
анодную, или четную (диоды V2, V4 и V6), в ко торой электрически связаны между собой аноды вентилей, а катоды соединяются с анодами первой группы. Общая точка связи анодов является отрицательным полюсом для внешней цепи. Нагрузка подключается между точками соединения катодов и анодов вентилей, т.е. к диагонали выпрямленного моста.
Катодная группа вентилей повторяет режим работы трехфазной нулевой схемы. В этой группе вентилей в течение каждой трети периода работает вентиль с наиболее высоким потенциалом анода (рис. 19,6). В анодной группе в данную часть периода работает тот вентиль, у которого катод имеет наиболее отрицательный потенциал по отношению к общей точке анодов.
Вентили катодной группы открываются в момент пересечения положительных участков синусоид (точки а, б, в и г на рис. 19,6), а вентили анодной группы — в момент пересечения отрицательных участков синусоид (точки к, л, м и н). Каждый из вентилей работает в течение одной трети периода (Т/3, или 2 я/3).
При мгновенной коммутации тока в трехфазной мостовой схеме в любой момент времени проводят ток два вентиля — один из катодной, другой из анодной группы, при этом любой вентиль одной группы работает поочередно с двумя вентилями другой группы, соединенными с разными фазами вторичной обмотки (рис. 19,г и д). Иными словами, проводить ток будут те два накрест лежащих вентиля выпрямительного моста, между которыми действует в проводящем направлении наибольшее линейное напряжение и2п.
Рис. 19. Трехфазная мостовая схема выпрямителя:
а — схемр соединения элементов; 6 — е — временные диаграммы напряжений и токов
Таблица 1. Основные электрические параметры схем выпрямителей при активно-индуктивной нагрузке
Например, на интервале времени t\—t2 ток проводят вентили V1, V6. на интервале t2—t3 — вентили VI, V2, на интервале f3—Г„ — вентили V3, V2 и т.д. Таким образом, интервал проводимости каждого вентиля составляет 4> = 27г/3, или 120° (рис. 19,е), а интервал совместной работы двух вентилей равен я/3, или 60°. За период напряжения питания Г = 2ir происходит шесть переключений вентилей (шесть тактов), в связи с чем такую схему выпрямления часто называют шестипульсной.
Следует отметить, что нумерация вентилей в данной схеме не носит случайный характер, а соответствует порядку их вступления в работу при условии соблюдения фазировки трансформатора, указанной на рис. 19,з. Через каждую фазу трансформатора ток /2 будет проходить в течение 2/3 периода: 1/3 периода- положительный и 1/3 — отрицательный. Ток id в нагрузке все время проходит в одном направлении. Контур тока нагрузки при открытых вентилях VI и V6 показан на схеме рис. 19,з тонкой черной линией.
В течение рабочего интервала времени одновременно протекают токи во вторичных обмотках, расположенных на разных стержнях магнитной системы (см. токи /2а и i2b на рис. 19,з), при этом через две первичные обмотки, расположенные на тех же стержнях, также протекают токи. Намагничивающие силы от токов /»i и /2 на каждом из стержней в этом случае уравновешиваются, и однонаправленный поток Ф0 не возникает, что является одним из существенных достоинств данной схемы.
Выпрямленное напряжение ud в этой схеме описывается верхней частью кривых междуфазных (линейных) напряжений (рис. 19,в). Частота пульсаций кривой иj равна 6/,, коэффициент пульсаций напряжения на выходе выпрямителя
(30)
Обратное напряжение на закрытом вентиле определяется разностью потенциалов его катода и анода. Ординаты кривой «обр Для вентиля VI показаны на рис. 19,6 штриховкой, на рис. 19,е кривая иобр изображена полностью. Максимальное значение обратного напряжения на вентиле в трехфазной мостовой схеме равно амплитуде линейного напряжения вторичной обмотки трансформатора, т.е. Цэбрmax = v2* U2 л. При открытом состоянии двух вентилей выпрямительного моста другие четыре вентиля закрыты приложенным к ним обратным напряжением. Выпрямленный ток id при работе на чисто активную нагрузку полностью повторяет кривую напряжения ud (см. черную кривую на рис. 19,в).
Соотношения между напряжениями и токами в трехфазной мостовой схеме приведены на табл. 1.
Шестифазная схема со средней точкой представлена на рис. 20.а. Питание схемы осуществляется через трехобмоточный трансформатор Т, на каждом стержне которого расположены три обмотки: по одной первичной, которые соединены в треугольник и подключены на ~ Uc. и две одинаковые вторичные обмотки, соединенные в шестифазную звезду с нулем. Начала обмоток обозначены точками. При этом вторичные обмотки / подключены к анодам диодов V1, V3 и I/5 началами, а обмотки // подключены к анодам диодов V4, \/6 и V2 концами. В результате такого соединения звезды фазных напряжений иа1, иь.. ис1 и иа2.иЬ2, ис2 смещены относительно друг друга на 180 (рис. 20,6), а векторы напряжений соседних фаз — на 60°.
Как и в трехфазной нулевой схеме (см. рис. 18,а), в любой момент времени в шестифазной схеме будет открыт тот вентиль, потенциал анода которого в данный момент выше, чем у других вентилей. Как видно изрис. 20,в, на котором изображены синусоиды вторичных фазных напряжений Цгф, в интервале f,—12 открыт вентиль VI, в интервалах t2—t3 и t^—t^ — вентили V2 и V3 и далее — в соответствии с порядковыми номерами вентилей. Коммутация тока с вентиля на вентиль происходит в моменты пересечения синусоид фазных напряжений вторичных обмоток трансформатора Т.
Кривая выпрямленного напряжения ud в этой схеме описывается верхней частью синусоид фазных напряжений и2 ф. Частота пульсаций кривой ud по отношению к частоте сети (]) = = 6/с, коэффициент пульсаций напряжения на выходе выпрямителя
Обратное напряжение на закрытом вентиле определяется разностью потенциалов его катода и анода. Из рис. 20,в видно, что для вентиля VI потенциал катода по отношению к нулевой точке изменяется по огибающей синусоид фазных напряжений, а потенциал анода — по кривой фазного напряжения uaJ (на рис. 20,в кривые этих напряжений показаны соответственно черной и синей линиями). Ординаты кривой ообр для вентиля VI показаны штриховкой.
Рис. 20. Шестифазный выпрямитель со средней точкой: а — схема соединения элементов; б — векторная диаграмма напряжений обмоток трансформатора; в — е — временные диаграммы напряжений и токов
Трехфазная схема с нулевой точкой:
Схема простая. Число вентилей в 2 раза меньше, чем в мостовой или шестифазной нулевых схемах.
Меньше потери в вентилях, так как в данной схеме ток id протекает через один диод, а в мостовой — последовательно через два диода.
Трехфазная мостовая схема:
Обратное напряжение, прикладываемое к вентилям, в 2 раза меньше, чем в трехфазной и шестифазной нулевых схемах, и вентили следует выбирать на напряжение, близкое к Ud
Напряжение (число витков) вторичной обмотки вдвое меньше, чем в трехфазной, и в 1,73 раза, чем в шестифазной нулевых схемах, но сечение провода соответственно в 1,41 и в 2 раза больше.
Нет вынужденного намагничивания сердечника трансформатора и нормальное исполнение обмоток.
Габаритная мощность трансформатора на 30% меньше, чем в трехфазной, и на 48% меньше, чем в шестифазной нулевых схемах, ток первичной обмотки имеет форму синусоиды.
Схема допускает соединение первичных и вторичных обмоток трансформатора звездой и треугольником. Она может быть применена и без трансформатора.
Шестифазная нулевая схема:
При соединении первичной обмотки трансформатора в треугольник поток вынужденного намагничивания практически не возникает.
Частота основной гармоники переменной составляющей выпрямленного напряжения, как и в мостовой схеме, в 2 раза выше, а коэффициент пульсации напряжения ud почти в 4,5 раза меньше, чем в трехфазной нулевой схеме.
Преимущества трехфазной схемы с нулевой точкой проявляются в случае, если главным требованием является простота выпрямителя или используется блок трех вентилей с общим катодом.
При применении полупроводниковых вентилей преимущества имеет мостовая схема, которая может работать непосредственно от сети, если напряжение Ut подходит по значению для получения нужного Ud и не требуется изоляция от питающей сети цепи выпрямленного тока.
Шестифазная схема с нулевой точкой в связи с наличием трансформатора с двумя вторичными обмотками уступает мостовой схеме. Однако для выпрямителей на низкое напряжение (около 100 В) и большой ток (500—1000 А) целесообразно применять шестифазную схему, так как нагрузочный ток в этой схеме
проходит через вентиль в течение 1/6 периода, а в трехфазны.схемах — в течение 2/3 периода, следовательно, среднее значение тока вентиля для шестифазной схемы будет в 2 раза меньше, чем для трехфазных схем выпрямления.
Это обстоятельство позволяет уменьшить число установленных вентилей и получить более высокий КПД выпрямителя (см. § 6) на значительный ток ом, когда /в,ср> ‘п и в трехфазных схемах приходится использовать более мощные вентили либо применять параллельное соединение вентилей в плече выпрямителя. Например, при токе нагрузки ном = 210 А, имеющем прямоугольную форму, в трехфазной схеме предельный ток вентилей будет равен /п = 1,1-210/3 = 77 А, а в шестифазной /п = = 1,41-210/6=49,4 А. Следовательно, для первой схемы выпрямления нужно применить вентили на 100, а для второй — на 50 А.
Вопрос 12
Выпрямитель напряжения: виды и функции выпрямителей
В качестве преобразователя электрической энергии чаще всего используется выпрямитель напряжения. Это устройство имеет механическую, полупроводниковую или электровакуумную основу и преобразует входной переменный электрический ток в постоянный на выходе. В большинстве выпрямителей создаются, в основном, не постоянный ток и напряжение, а однонаправленные пульсирующие токи, которые впоследствии сглаживаются с помощью специальных фильтров.
Основная функция выпрямителей
Существуют устройства, которые, наоборот, выполняют обратное действие. Они преобразуют постоянные токи и напряжения в переменные, и носят название инверторов. Получается, что инвертор и выпрямитель представляют собой два разных вида одного и того же электрического устройства.
Выпрямители используются для получения постоянного электрического тока. Они применяются в установках железнодорожного и городского транспорта на электрической тяге, при электролизе, для питания промышленного оборудования, а также для возбуждения генераторов на электростанциях.
Виды выпрямителей
В настоящее время, кроме ртутных выпрямителей, широко применяются выпрямители на полупроводниковой и кремниевой основе. Кроме того, происходит постепенное внедрение тиристорных выпрямителей. Большинство установок для выпрямления имеют большую мощность. Их соединение с питающей сетью осуществляется с помощью специальных трансформаторов. Для установок малой мощности используется трехфазная схема, имеющая нулевой вывод.
Широко применяются выпрямители в блоках питания, входящих в состав электронной и радиоаппаратуры. Это обусловлено тем, что во многих ситуациях используется переменный ток, тогда как вся аппаратура рассчитана электроток с постоянным напряжением.
В автомобилях электрический ток вырабатывается с помощью генератора переменного тока. Однако, вся бортовая аппаратура рассчитана на постоянный ток, для получения которого используются полупроводниковые или электромеханические выпрямители.
Выпрямитель напряжения является незаменимым при использовании в сварочных аппаратах с постоянным током. Он основан на мостовых схемах, состоящих из выпрямительных диодов из кремния большой мощности. В отличие от переменного, постоянное сварочное напряжение позволяет сильнее нагревать дугу возле ее положительного полюса. Это позволяет производить сварочные работы в щадящем режиме тогда, когда это необходимо, а при резке металла электродуговой сваркой происходит значительная экономия электродов.