Posted on

Содержание

Принцип работы и устройство автомобильного генератора

Генератор  входит в электрическую систему любого автомобиля. Его задача – преобразование механической работы в электроэнергию, необходимую для питания всех электрических систем. Автомобильный генератор должен отвечать следующим условиям:

  1. Его характеристики должны быть подобраны так, чтобы при любом режиме движения они позволяли превышать прогрессивную разрядку аккумулятора.
  2. Выдаваемое напряжение должно оставаться стабильным в широком диапазоне частоты вращения генератора, чтобы не повредить устройства бортовой сети автомобиля.

генератор
Принцип работы генератора и его конструктивные узлы одинаковы на всех автомобилях, эти устройства различаются только выходными параметрами, размерами и надежностью, которая зависит от качества изготовления.

Теоретические основы

Работа генератора переменного тока основана на явлении электромагнитной индукции. Если взять катушку с проводом и присоединить к ней гальванометр (чувствительный амперметр для фиксации малых значений силы тока), замкнув проводник, и поднести к ней магнит, в ней возникнет электрический ток, что и покажет гальванометр.   

катушка, магнит и гальванометр

При этом учитывайте, что ток возникает в тех случаях, когда магнит движется, причем, при его приближении ток идет в одну сторону, а при удалении – в другую, что и фиксирует стрелка гальванометра. Из этого можно сделать выводы об условиях, необходимых для возникновения электрического тока:

  • требуется замкнутый проводник с большим количеством витков;
  • он должен попасть в переменное магнитное поле, которое нарастает при приближении магнита и уменьшается при его удалении;
  • ток, возникший при увеличении магнитного поля, будет противоположен току, возникающему при его уменьшении.

Чтобы обеспечить постоянное изменение магнитного поля, пронизывающего катушку с проводником, его можно просто вращать, добившись изменения направления тока, равного частоте вращения магнита, поскольку к ней будут поочередно приближаться то южный, то северный полюс магнита. Эта принципиальная система и лежит в основе устройства генератора переменного тока.

Конструкция и принципы функционирования  

Устройство генератора автомобиля намного сложнее, чем принципиальная схема, воспроизводящая суть явления электромагнитной индукции. Из специальных стальных пластин набирается конструкция с пазами, в которые укладываются катушки с проводниками, соединяемые в единую электрическую цепь. Это называется обмоткой статора, если внутри нее начать вращения магнита, на контактах его цепи появится напряжение. Величина этого напряжения будет напрямую зависеть от силы магнита и скорости его вращения.

статор автогенератора с обмоткой

Устройство ротора

Чтобы избавиться от этого негативного эффекта, ведь автомобильный генератор переменного тока должен выдавать напряжения в строго определенных параметрах, вместо постоянного магнита в статор устанавливают электромагнит. Он представляет собой стальной сердечник с намотанным медным проводом, через который пропускается электрический ток. В этом случае сердечник превращается в магнит, сила которого зависит от величины тока, пропускаемого через провод. Обмотка подключается к аккумулятору через медные кольца и графитовые щетки, один контакт через замок зажигания присоединяется к плюсовой клемме, а второй – через массу к минусовой. Для придания магнитному полю нужного направления обмотка помещается в шестиполюсные сердечники. Этот элемент называется ротор и помещается вовнутрь сердечника.

ротор со щетками

При замыкании цепи через ключ зажигания через обмотку проходит электрический ток, сердечник намагничивается, создавая достаточно мощное магнитное поле. Но, поскольку работа генератора основана на явлении электромагнитной индукции, ротор должна вращать сторонняя сила. Для этого он присоединяется к коленчатому валу двигателя. Ось ротора устанавливается на  подшипники на передней и задней крышках генератора, чтобы он мог свободно вращаться.

В заднюю крышку монтируется узел со щетками и реле регулятора напряжения генератора, а также диодный мост, к которому подключена обмотка статора. Диодный мост в генераторе нужен, чтобы преобразовать переменный ток, получаемого на статоре в постоянный.

автомобильный генератор в сборе с выводом на диодный мост

Принцип работы диодного моста состоит в том, что группа диодов, находящихся в нем, пропускает ток только в одном направлении, выравнивая его характеристики, в результате на выходе получается постоянный ток с напряжением 12 В, который подается на выводной контакт. Щетки поджимаются мягкими пружинками к кольцам ротора для поддержания постоянного контакта. 

Интегральный регулятор напряжения, который устанавливается сверху на щеткодержатель, снижает ток от замка зажигания, что приводит к снижению напряжения в обмотке статора при увеличение оборотов двигателя и частоты вращения ротора.

Получение электрического тока

Назначение генератора – в обеспечении всех электрических систем автомобиля энергией. Чтобы в обмотке статора появился электрический ток, ротор должен создавать переменное магнитное поле, вращаясь внутри статора. Для этого используется энергия вращения коленчатого вала двигателя.

подключение генератора

На вал ротора устанавливают клинообразный шкив, надежно закрепленный гайкой. Он соединяется с подобным шкивом на коленвале ременной передачей. Ранее для этого использовался вспомогательный ролик, теперь же используется только два шкива с поликлиновым ремнем. Ротор, вращаясь вместе с валом двигателя, создает магнитное поле, на статоре возбуждается напряжение, питающее все элементы системы автомобиля.

На современных автомобилях в шкиве ротора появилась обгонная муфта генератора. Она позволяет существенно продлить срок службы этого устройства и его приводного ремня. При разгоне и торможении, на холостом  ходу, двигатель работает под различными нагрузками, поэтому частота вращения коленчатого вала будет отличаться. Если он резко замедляется, то вал генератора будет по инерции пытаться вращаться с прежней скоростью, что приведет к рывку на ремне и негативно скажется на механическом состоянии всей системы. При постоянном повторении такой ситуации ремень очень скоро, как правило, через 20 тыс. км, просто разорвется.

Обгонная муфта в шкиве генератора состоит и внутренней и внешней обоймы. Внешняя присоединена через ремень к коленвалу, а внутренняя – к валу ротора. В момент резкого замедления вала она проскальзывает и ротор продолжает вращаться по инерции, в то же время подклинивающие элементы не дают ей проскальзывать, когда частота вращения вала увеличивается. В этом устройство и принцип действия генератора постоянного тока на автомобиле схожи с обычным велосипедом, когда при вращении педалей заднее колесо раскручивается, а при их остановке продолжает вращаться по инерции. Теперь ремни генераторов ходят по 100 тыс. км и более.

Реле регулятора напряжения

Интегральный регулятор напряжения необходим, чтобы в бортовую сеть подавалось напряжение, соответствующее ее номинальным параметрам. Устройство простейшего генератора таково, что при увеличении частоты вращения скорость изменения магнитного потока ротора пропорционально увеличивается, как и выходное напряжение. Если этим процессом не управлять, то напряжение достигнет той величины, при которой все бортовые системы выйдут из строя.

Принцип работы реле регулятора генератора состоит в том, что при увеличении частоты вращения статора, оно через специальный датчик, присоединенный к цепи статора, отслеживает опасное увеличение напряжения. При помощи механической или электронной системы управления контактами, реле уменьшает ток, подаваемый на обмотку ротора, в результате чего увеличение частоты компенсируется снижением силы магнитного поля, и значение напряжения остается в норме.

Видео: Как работает генератор простыми словами

Заключение

Устройство и принцип работы автомобильного генератора практически не отличается от других установок подобного типа, кроме наличия диодного моста, выравнивающего переменное напряжение. Кроме того, на крупных установках требуется дополнительное устройство, которое называется возбудитель генератора.

Среди распространенных поломок этого устройства – обрыв ремня, о чем просигнализирует индикатор разрядки аккумулятора, который будет гореть при движении. Чтобы избежать этой проблемы, требуется периодически проверять его натяжку, для чего нужно просто нажать на ремень и посмотреть в инструкции по эксплуатации, на сколько миллиметров он должен вжиматься.

Иногда из строя выходят щетки или реле регулятора, которые меняются единым узлом. Если при работающем моторе отключить клемму аккумулятора, высок риск выхода из строя (пробой) диодного моста, который тоже нужно будет заменить.

Электрический генератор — Википедия

Электрогенераторы в начале XX века. Гиндукушская ГЭС, на реке Мургаб, бывшая во время ввода в эксплуатацию мощнейшей в Российской империи. Сделано в Венгрии: Компания Ганц, 1909 год.[1] Фотография Прокудина-Горского, 1911 год. У этого термина существуют и другие значения, см. Генератор.

Электри́ческий генера́тор — устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

Динамо-машина Йедлика[править | править код]

В 1827 венгерский физик Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершён между 1853 и 1856 годами) и стационарная, и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.

Диск Фарадея[править | править код]

В 1831 году Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределённых по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.

Динамо-машина[править | править код]

Динамо-машины больше не используются для выработки электроэнергии из-за их размеров и сложности коммутаторов. Эта большая приводимая в действие ременной передачей сильноточная динамо-машина выдавала ток 310 ампер и напряжение 7 вольт или 2170 ватт, когда вращалась с частотой 1400 об/мин.

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Её работа основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Ипполит Пикси в 1832 году.

Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.

Динамо-машина состоит из статора, который создаёт постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создаётся одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.

Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока в сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.

Обратимость электрических машин

Русский учёный Э. Х. Ленц ещё 1833 году указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если её питать током, и может служить генератором электрического тока, если её ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 году Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 году парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжёлый постоянный магнит, чтобы в двух проволочных катушках, укреплённых неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжён устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 году, был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 года) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851—1867) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863 году.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением даёт ток и тогда, когда его запускают из состояния покоя. В 1866—1867 годах ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870 году бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретённый ещё в 1860 году А. Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укреплённый на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводился с помощью металлических щёток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 году демонстрировались две одинаковые машины Грамма, соединённые проводами длиной 1 километр. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух принципов:

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Другие электрические генераторы, использующие вращение[править | править код]

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.

МГД генератор[править | править код]

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД. МГД генератор является обратимым устройством, то есть может быть использован и как двигатель.

Электромеханические индукционные генераторы[править | править код]

Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.

E=−dΦdt{\displaystyle E=-{\frac {d\Phi }{dt}}} — устанавливает связь между ЭДС и скоростью изменения магнитного потока Φ{\displaystyle \Phi } пронизывающего обмотку генератора.

Классификация электромеханических генераторов[править | править код]

  • По типу первичного двигателя:
  • По виду выходного электрического тока:
  • Вид соединения обмоток:
    • С включением обмоток звездой
    • С включением обмоток треугольником
  • По способу возбуждения
    • С возбуждением постоянными магнитами
    • С внешним возбуждением
    • С самовозбуждением
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением

Для чего нужен генератор в системе электрообеспечения авто

Каждый автомобиль оснащается бортовой электрической сетью, которая выполняет многие функции – запуск силовой установки при помощи электростартера, создание искрового разряда для воспламенения горючей смеси (бензиновые моторы), обеспечение светозвуковой сигнализацией и освещением, повышение комфортабельности в салоне и еще ряд других. Но тот же стартер, лампы и приводные двигатели являются потребителями электричества и для того, чтобы их обеспечить электроэнергией в авто имеется два источника электрического тока – аккумулятор и генератор.

АКБ обеспечивает бортовую сеть авто энергией до того момента, пока силовая установка не запуститься. Особенностью аккумуляторной батареи является то, что она электрический ток не вырабатывает, а всего лишь удерживает его в себе и при надобности отдает. Поэтому использовать только аккумулятор невозможно, поскольку он попросту со временем разрядится, то есть отдаст всю накопленную энергию. И произойдет это быстро, если часто запускать мотор, поскольку стартер является одним из самых сильных потребителей в бортовой сети.

Назначение

Содержание статьи

Чтобы после запуска силовой установки восстановить заряд аккумулятора, а также обеспечить энергией все остальные электроприборы, используется генератор. Этот электрический элемент, в отличие от аккумулятора вырабатывает электричество, при этом делать он это может постоянно. Но для выработки электротока необходима механическая работа – вращение одной из составляющих частей генератора – ротора.

Поэтому пока мотор не запущен, генератор не способен выработать энергию, и бортовая сеть запитывается только от аккумулятора.

Генератор – этот тот же электродвигатель, но работа его выполняется с точностью до наоборот. Если в эл. двигатель подается энергия, чтобы получить механическое действие – вращение ротора, то у генератора – вращение обеспечивает выработку электрической энергии.

Если по-простому, то принцип действия генератора таков: при вращении ротора он образует магнитное поле, воздействующее на обмотку статора, из-за чего в ней появляется электрический ток, который и используется для питания бортовой сети.

Но имеются и определенные нюансы в работе данного элемента бортовой сети. Современный автомобильный генератор является трехфазным и обеспечивает на выходе переменный ток, который не подходит для электрообеспечения бортовой сети авто, поскольку в ней используется постоянный ток. К тому же, генератор должен вырабатывать электроэнергию с определенными показателями, чтобы не нанести вред потребителям. Поэтому в данный прибор включен ряд элементов дополнительного оснащения.

Устройство генератора для автомобиля

Генератор в разрезе

Итак, основными элементами генератора являются:

  1. ротор – подвижная составляющая
  2.  статор – неподвижная.

Ротор – это вал, на котором располагается обмотка возбуждения, две полюсные половины, образующие полюсную систему и контактные кольца. Основная задача обмотки возбуждения – создание магнитного поля. Но для достижения данного эффекта на нее нужна подача электрического тока небольшого значения. Пока двигатель не запущен ток для возбуждения поля берется от аккумулятора. После запуска  и достижения определенных оборотов, на обмотку начинает уже подаваться ток, выработанный генератором, то есть прибор переходит в режим самостоятельного возбуждения.

Обмотка возбуждения помещена между двух полюсных половинок. Эти половинки изготовлены методом штамповки, что позволило сформировать на них по 6 клювообразных выступов, которые размещены поверх обмотки.

Контактные кольца нужны для подачи электрического тока на обмотку. К этим кольцам подходят выводы обмотки возбуждения.

Дополнительно на роторе располагаются шкив привода, вентилятор охлаждения и подшипники качения.

Статор предназначен для получения переменного тока, который образуется из-за воздействия магнитного поля ротора. Состоит он из двух частей – сердечника и обмоток. Сердечник представляет собой пакет, собранный из листовой стали. В нем сделаны пазы, в которые укладываются обмотки — три штуки (три фазы). Укладка их производится петлевым или волновым методом. При этом они объединены между собой по одной из таких схем – «звезда» или «треугольник».

Схема «звезда» сводится к тому, что одни концы каждой из обмоток соединены в одной точке, а другие концы являются выводами. В «треугольнике» же соединение обмоток выполнено по кольцу – первая обмотка подсоединена ко второй, вторая – к третьей, третья – к первой. Точки соединения обмоток и являются выводами.

Ротор помещается внутрь статора, а тот в свою очередь зажимается между двумя крышками корпуса. В этих же крышках имеются и посадочные места под подшипники ротора. В передней крышке (та, что со стороны шкива) проделаны вентиляционные отверстия.

В задней же крышке размещены остальные необходимые элементы:

  • блок щеток;
  • диодный мост, он же выпрямительный блок;
  • регулятор напряжения.

Блок щеток предназначен для передачи электрического тока на обмотку возбуждения. Для этого данный блок включает в свою конструкцию две подпружиненные графитные щетки, размещенные в корпусе. Пружины поджимают эти щетки к контактным кольцам, но жесткого соединения между ними нет.

Диодный мост обеспечивает преобразование переменного тока в постоянный. Конструкция его включает шесть диодов, установленных в теплоотводящие пластины. На каждую из обмоток статора приходится по два диода – «плюс» и «минус».

Регулятор напряжения – элемент, обеспечивающий поддержание выходного напряжения в строго заданном диапазоне. Дело в том, что от оборотов мотора зависит количество и параметры вырабатываемой энергии. АКБ же очень «чувствительна» к подаваемому на нее напряжению. Если оно будет недостаточным, то у аккумулятора будет недозаряд, а при избытке его – перезаряд. И то, и другое приводит к значительному снижению ресурса АКБ. На современных авто используются полупроводниковые электронные регуляторы, которые зачастую выполнены заодно с блоком щеток.

Как работает автомобильный генератор

Теперь о том, как все функционирует. При включении зажигания на обмотку возбуждения подается напряжения через блок щеток и контактные кольца, из-за чего вокруг нее появляется магнитное поле. Поскольку ротор после запуска мотора постоянно вращается, и магнитное поле его обмотки вместе с ним. Это поле воздействует на обмотки статора, из-за чего на их выводах появляется электрический переменный ток, который подается на выпрямительный блок. На выходе из него идет уже постоянный ток, который поступает на регулятор напряжения. Часть его подается на щетки для обеспечения режима самовозбуждения, остальное же идет на подзарядку АКБ и запитку потребителей.

Регулировка выходного напряжения регулятором организована достаточно просто. Поскольку он связан с блоком щеток, то он просто меняет напряжение, подаваемое на обмотку возбуждения, что в свою очередь сказывается на магнитном поле и на количестве вырабатываемой энергии. Еще одна особенность работы регулятора – термокомпенсация. Она сводится к тому, напряжение, подаваемое на аккумулятор, меняется от температуры. При низкой температуре напряжение – повышенное, но по мере возрастания температурного показателя напряжение будет снижаться.

Видео: Быстрая проверка ГЕНЕРАТОРА не устанавливая на авто

Основные неисправности

Генератор имеет вполне надежную конструкцию, но и у него бывают неисправности. Их можно поделить на механические и электрические.

Экспертный обзор почему генератор не дает зарядку в этой статье https://topmekhanik.ru/generator-ne-daet-zaryadku/

  1. Механические неисправности обычно появляются из-за износа, которому подвержены подшипники, щетки, приводной ремень и шкив. Обычно эти поломки выявить несложно, поскольку все они сопровождаются появлением сторонних шумов или писка со стороны генератора. Устраняются эти неисправности обычно заменой изношенного элемента.
  2. Электрических неисправностей больше – обрыв или замыкание обмоток ротора или статора, пробой диодов, выход из строя регулятора. Эти неисправности как выявить, так и устранить более сложно. При этом электрические неисправности до момента выявления могут негативно повлиять на АКБ. К примеру, неисправный регулятор обеспечивает постоянный перезаряд батареи. Признаков при этом никаких особенных не будет, а выявить неисправность можно только путем замера выходного напряжения из генератора. Но до момента выявления поломки регулятора он может уже нанести непоправимый вред аккумулятору.

Все электрические неисправности, помимо обрыва и замыкания, обычно устраняются заменой неисправного элемента. Что же касается проблем с обмотками, то они исправляются перемоткой.

Чтобы избежать проблем с генератором, необходимо периодически оценивать состояние его привода, подшипников, щеток, а также проводить замеры выходного напряжения.

О принципе работы синхронных генераторов: устройство и конструкция ротора

Электрогенератор (альтернатор) электротока переменного типа предназначается для процедуры преобразования кинетической и потенциальной энергии в электроэнергию. Ротор такой машины приводится в движение, а именно вращается, от двигателя первичного типа, в роли которого могут выступать ДВС (топливные двигатели), электродвигатели, турбины.

Внешний вид производственной синхронной генерирующей машины переменного тока модели СГС-14-100-6

Внешний вид производственной синхронной генерирующей машины переменного тока модели СГС-14-100-6

Если альтернатор переменного тока характеризуется тем, что частота вращения его ротора совпадает с частотой вращения магнитного поля, то такие машины называются синхронными. Произвести расчет частоты вращения можно по формуле:

n = 60*f/p, где:

  • f – частота тока в электросети;
  • p – количество пар статорных полюсов.

Часто многие неосведомленные в области электроустановок люди задаются вопросом о том, какой принцип работы синхронного генератора.

Принцип работы СГ

Конструкция генерирующей машины переменного тока достаточна проста. Статор и ротор – это основные компоненты синхронного генератора (СГ).

Принцип действия синхронного генератора на основе взаимодействия магнитных полей статора и ротора

Принцип действия синхронного генератора на основе взаимодействия магнитных полей статора и ротора

Синхронный альтернатор, в основном, вырабатывает электроэнергию тогда, когда ротор синхронного генератора движется по кругу вместе с магнитным полем, линии которого встречаются в неподвижной обмотке статора. Поле образуется посредством возбуждения дополнительным устройством, например:

  • вспомогательным генератором;
  • аккумулятором;
  • разнообразными энергетическими преобразователями;
  • и другими энергоисточниками.

Стоит отметить, что процесс преобразования энергий в СГ может происходить и по-другому – вращающееся части проводникового элемента могут располагаться в обездвиженном магнитном поле. В этом случае возникает трудность токосъема через щеточно-коллекторный узел электрической машины, какой соединяет ротор с цепями ее неподвижной части. Для генераторных машин невысокой мощности подобная схема может успешно применяться. Зачастую она встречается в установках передвижного типа.

В рассматриваемом генераторе продуцируется электродвижущая сила (ЭДС), расчет которой совершается по формуле:

e = 2*π*B*l*w*Dn, где:

  • π – константа;
  • B – индукция магнитного поля;
  • l – длина паза статорного элемента;
  • w – число витков в обмотке статорного компонента;
  • Dn – диаметр статора внутри.

Электроэнергетика с такими устройствами построена, в основном, на электронапряжении в диапазоне 15 000-40 000 В. Энергообмен через коллектор альтернатора затруднителен. К тому же обмоточная катушка подвижного типа подвергается ударным нагрузкам большой силы и вращательным движениям с попеременной скоростью, что формирует проблематику с изоляционной составляющей. По этой причине якорные элементы производят обездвиженными, так как именно через них пропускается основная масса энергии.

Мощность устройства-возбудителя обычно не превосходит 4-5% от совокупной производительной мощности синхронного генератора – это дает возможность пропускать электроток через динамический узел.

Для информации. В механизмах переменного тока малой мощности (до нескольких кВт) роторный элемент изготавливается с магнитными деталями постоянного типа (ферритовыми, неодимовыми, полимерными магнитопластами и другими). В них не нужно устанавливать подвижные контакты, однако из-за этого существуют трудности с регулировкой выходного напряжения.

Устройство СГ

Статор СГ имеет почти такое же устройство и принцип функционирования, как и у асинхронного варианта. Его железные компоненты компилируются из стальных пластин (сталь применяется электротехнического назначения), которые отделаются друг от друга слоями изоляции. Обмотка переменного электротока располагается в его пазах. Провода обмоток отделяются друг от друга изолирующим слоем и закрепляются надежно, так как через них вводится нагрузка. Ротор может исполняться без выпирающих полюсов либо с ярко выраженными полюсами.

На заметку. Наибольшую популярность имеет трехфазный синхронный генератор, применяемый во многих областях жизнедеятельности человека и предприятий. Однофазные варианты обычно применяется в быту.

Основные типы СГ: а – с ротором, у которого выступают полюса; б – с не явно полюсным ротором

Основные типы СГ: а – с ротором, у которого выступают полюса; б – с не явно полюсным ротором

Синхронные генераторы с явно полюсным ротором производятся для тихоходных машин, к примеру, для установок с гидротурбинами. А СГ с не явно полюсными роторами подходят для механизмов переменного тока, вращающихся с высокой скоростью.

Синхронные генерирующие устройства могут работать в двух режимах: двигательном либо генерирующем переменный электроток. Здесь важно то, какой метод охлаждения применяется, так как генерация чего-либо всегда более требовательна. В основном, на вал монтируются крыльчатки, какие охлаждают ротор с двух сторон воздухом, проходящем через фильтрующий элемент. Потоки воздуха в такой системе охлаждения вращаются одни и те же. При работе СГ в усиленном режиме подобная система нежелательна.

Важно! Эффективнее при высоких нагрузках применять в качестве охлаждающего агента водород, какой более чем в 14 раз легче воздуха.

Внутреннее устройство СГ переменного тока

Внутреннее устройство СГ переменного тока

Обмотки рассматриваемого генератора отводятся концами на его распредкоробку. Трёхфазная машина имеет иное соединение обмотки – отвод совершается звездой или треугольником.

Преимущественно все синхронные генерирующие устройства поддерживают синусоидальное переменное электронапряжение. Этого можно достичь посредством изменения формы наконечников на полюсах и особым месторасположением витков в пазах не явно полюсного ротора.

Реакция якоря

В обмотках статорного элемента при присоединении выхода с наружной нагрузкой начинает протекать электроток. Образующееся при этом силовое магнитное поле совмещается с полем, что формируется роторным элементом. Такое взаимодействие полей именуется реакцией якоря.

Реакция якоря в СГ при разнородных видах нагрузки

Реакция якоря в СГ при разнородных видах нагрузки

При активной нагрузке электроток и ЭДС имеют одни и те же фазы. Предельная сила электротока проявляется в тот момент, когда полюса роторного элемента находятся на противоположной стороне от якорных обмоток. Главный магнитный поток и второстепенный поток, который формируется во время реакции якоря, перпендикулярны друг другу, а при сопоставлении формируют увеличенный итоговый поток, что увеличивает в тот момент ЭДС.

Нагрузка индуктивного вида, имея потоки, направленные навстречу друг к другу, наоборот, приводит к значительному снижению электродвижущей силы.

Нагрузка емкостного типа вызывает совмещение потоков, движущихся в одну сторону, итог – увеличение ЭДС.

Любое повышение нагрузки увеличивает влияние реакции якоря на выходное электронапряжение, которое из-за этого изменяется в ту или иную сторону, что крайне нежелательно в электросетях. Практично такой процесс можно контролировать: просто изменять возбудитель, что снизит уровень влияния реакции якоря на главное силовое поле.

Режимы работы СГ

Нормальный режим работы СГ можно охарактеризовать любым числом рабочих периодов, какой угодно длительности, при которых главные параметры не выходят за диапазон допустимых значений. При таком режиме работы допустимы отклонения электронапряжения на выходе и частоты в пределах 4-5% и 2,5% от номинального значения, коэффициентов мощности и тому подобные. Допуски на отклонения задаются нормативными документами и определяются нагревом машин либо же гарантируются фирмой-производителем.

Бытовой топливный синхронный генератор отечественного производства, модель «Интерскол ЭБ-5500» на 5,5 кВт

Бытовой топливный синхронный генератор отечественного производства, модель «Интерскол ЭБ-5500» на 5,5 кВт

Нормальные рабочие режимы недопустимы для долгого функционирования устройства при таких обстоятельствах, как перевозбуждение или недовозбуждение, переход в режимы асинхронного типа, перегрузки. На возникновение таких обстоятельств влияют следующие отклонения в электросети:

  • неравномерность фазной загрузки;
  • короткое замыкание;
  • нагрузки попеременного действия.

Стоит отметить, что на нормальное функционирование механизма воздействует подключенная к нему электросеть, в которой любые нарушения работоспособности отдельно взятых источников потребления вызывают искажение формы и несимметрию электросигнала.

Диаграмма мощностей СГ

Диаграмма мощностей СГ

Важно! Длительная работа генерирующего энергию устройства допустима при разнице токов на фазах турбогенератора до 10% и водяных генераторов, синхронных компенсирующих машин до 15-20%.

Искривление синусоиды на СГ может случаться из-за высокомощных преобразователей, выпрямляющих устройств и прочих.

Необходимо учесть, что нормальное функционирование синхронных устройств возможно только при качественной работе охлаждающей системы. Так, при затратах охлаждающего агента в объеме более 70% от номинального значения, должна срабатывать предупреждающая сигнализация о том, что устройство нужно отключить от сети, в противном случае может произойти выход оборудования из строя. Когда расход охлаждающего агента уменьшается на 50%, то устройство должно разгрузиться порядка двух минут, после чего отключиться за максимум четыре минуты.

Характерные черты СГ

СГ обладают нижеследующими характерными чертами:

  • при нулевой нагрузке (холостом ходе), когда якорная обмотка находится в не замкнутом виде, задается зависимость электродвижущей силы от электротоков возбуждения, а также устанавливается значение уровня намагничивания сердечников генератора;
  • выходное электронапряжение зависит от нагрузочных электротоков – этот признак является внешней характеристикой СГ;
  • регулировочные характеристики синхронной машины проявляются в зависимости возбуждающих электротоков от нагрузочных аналогов при поддерживании установленных параметров на выходе в автоматическом режиме.

Синхронные генераторы нашли широкое применение в промышленности и энергообеспечении, так как имеют простую конструкцию, понятный принцип работы и могут выдерживать кратковременные перегрузки.

Для правильной эксплуатации и проведения ремонтных работ над СГ переменного тока необходимо знать их принцип работы (одинаковое по частоте вращение ротора и магнитного поля) и устройство. Эти знания пригодятся инженерам производственных предприятий и специалистам в области энергетики, а также обычным людям, которые используют подобную технику в бытовых целях.

Видео

Генератор сигналов — Википедия

Генератор сигналов — это устройство, позволяющее получать сигнал определённой природы (электрический, акустический и т. д.), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.). Генераторы широко используются для преобразования сигналов, для измерений и в других областях. Состоит из источника (устройства с самовозбуждением, например, усилителя, охваченного цепью положительной обратной связи) и формирователя (например, электрического фильтра).

  • По форме выходного сигнала:

Существуют также генераторы более сложных сигналов, таких, как телевизионная испытательная таблица

  • По частотному диапазону:
    • Низкочастотные
    • Высокочастотные
  • По принципу работы:
  • По назначению:

Большинство генераторов являются преобразователями постоянного тока в переменный ток. Маломощные генераторы строят на однотактных усилительных каскадах. Более мощные однофазные генераторы строят на двухтактных (полумостовых) усилительных каскадах, которые имеют больший КПД и позволяют на транзисторах той же мощности построить генератор с приблизительно вдвое большей мощностью. Однофазные генераторы ещё большей мощности строят по четырёхтактной (полномостовой) схеме, которая позволяет приблизительно ещё вдвое увеличить мощность генератора. Ещё большую мощность имеют двухфазные и трёхфазные двухтактные (полумостовые) и четырёхтактные (полномостовые) генераторы.

Генераторы гармонических колебаний[править | править код]

Блок схема генератора

Генератор гармонических колебаний представляет собой усилитель с положительной обратной связью. Термин положительная обратная связь означает, что фазовый сдвиг в петле обратной связи близок к 2π{\displaystyle 2\pi }, т. е. цепь обратной связи не инвертирует сигнал.

2\pi LC-генератор с перекрёстными связями. В этом генераторе синусоидальность выходного сигнала обеспечивается колебательным контуром в стоках транзисторов.

Необходимыми условиями для возникновения гармонических незатухающих колебаний с малыми искажениями синусоиды являются:

  1. петлевой сдвиг фазы равен 360°,
  2. обратная связь резонансная или квазирезонансная, как, например, в генераторе с мостом Вина, или сам усилитель является частотноизбирательным (резонансным).
  3. петлевое усиление точно равно 1,
  4. рабочая точка усилительного каскада находится на его линейном или приблизительно линейном участке.

Пояснения необходимости 2-го и 3-го условий.

Если петлевое усиление ниже 1 — то колебания затухают. Если петлевое усиление больше 1 — то колебания нарастают до физического ограничения, так, амплитуда выходного напряжения усилителя не может быть больше напряжения питания[4], при таком ограничении форма синусоидального напряжения искажается.

Примером структур с положительной обратной связью может служить мультивибратор, или иные релаксационные генераторы, но в таких схемах применены частотно-неизбирательные обратные связи и усилители, поэтому генерируемые ими колебания далеки от синусоидальных.

В 1887 году Генрих Герц на основе катушки Румкорфа изобрёл и построил искровой генератор электромагнитных волн.

В 1913 году Александр Мейснер (Германия) изобрёл электронный генератор Мейснера на ламповом каскаде с общим катодом с колебательным контуром в выходной (анодной) цепи с трансформаторной положительной обратной связью на сетку.[5]

В 1914 году Эдвин Армстронг (США) запатентовал электронный генератор на ламповом каскаде с общим катодом с колебательным контуром во входной (сеточной) цепи с трансформаторной положительной обратной связью на сетку.

В 1915 году американский инженер из Western Electric Company Ральф Хартли, разработал ламповую схему известную как генератор Хартли, известную также как индуктивная трёхточечная схема («индуктивная трёхточка»). В отличие от схемы А. Мейсснера, в ней использовано автотрансформаторное включение контура. Рабочая частота такого генератора обычно выше резонансной частоты контура.

В 1919 году Эдвин Колпитц изобрёл генератор Колпитца на электронной лампе с подключением к колебательному контуру через ёмкостной делитель напряжения, часто называемый «ёмкостная трёхточка».

В 1932 году американец Гарри Найквист разработал теорию устойчивости усилителей, которая также применима и для описания устойчивости генераторов. (Критерий устойчивости Найквиста-Михайлова).

Позже было изобретено множество других электронных генераторов.

Устойчивость генераторов складывается из двух составляющих: устойчивость усилительного каскада по постоянному току и устойчивость генератора по переменному току.

Фазовый анализ генератора Мейснера[править | править код]

Генераторы «индуктивная трёхточка» и «ёмкостная трёхточка» могут быть построены как на инвертирующих каскадах (с общим катодом, с общим эмиттером), так и на неинвертирующих каскадах (с общей сеткой, с общим анодом, с общей базой, с общим коллектором).

Каскад с общим катодом (с общим эмиттером) сдвигает фазу входного сигнала на 180°. Трансформатор, при согласном включении обмоток, сдвигает фазу ещё на приблизительно 180°. Суммарный петлевой сдвиг фазы составляет приблизительно 360°. Запас устойчивости по фазе максимален и равен почти ± 90°. Таким образом генератор Мейснера относится, с точки зрения теории автоматического управления (ТАУ), к почти идеальным генераторам. В транзисторной технике каскаду с общим катодом соответствует каскад с общим эмиттером.

Фазовый анализ LC-генератора с СR положительной обратной связью[править | править код]

Colpitts ob.jpg Fazowaja diagramma2.jpg

LC-генераторы на каскаде с общей базой наиболее высокочастотны, применяются в селекторах каналов почти всех телевизоров, в гетеродинах УКВ приёмников. Для гальванической развязки в цепи положительной обратной связи с коллектора на эмиттер стоит CR-цепочка, которая сдвигает фазу на 60°. Генератор работает, но не на частоте свободных колебаний контура, а на частоте вынужденных колебаний, из-за этого генератор излучает две частоты: большую — на частоте вынужденных колебаний и меньшую на частоте свободных колебаний контура. При первой итерации две частоты образуют четыре: две исходные и две суммарноразностные. При второй итерации четыре частоты производят ещё большее число суммарноразностных частот. В результате, при большом числе итераций получается целый спектр частот, который в приёмниках смешивается с входным сигналом и образует ещё большее число суммарноразностных частот. Затем всё это подаётся в блок обработки сигнала. Кроме этого, запас устойчивости работы по фазе этого генератора составляет +30°. Чтобы уменьшить шунтирование контура каскадом применяют частичное включение контура через ёмкостной делитель, но при этом происходит дополнительный перекос фазы. При одинаковых ёмкостях дополнительный перекос фазы составляет 45°. Суммарный петлевой сдвиг фазы 60°+45°=105° оказывается больше 90° и устройство попадает из области генераторов в область дискриминаторов, генерация срывается. При оптимально рассчитанном емкостном делителе запас устойчивости по фазе составляет менее 30°.

Генератор Мейснера на каскаде с общей базой, с частичным включением контура без перекоса фазы.

Meisner bez perekosa fazy.jpg Fazowaja diagramma1.jpg

Если в «ёмкостной трёхточке» на каскаде с общей базой в цепи положительной обратной связи вместо CR-цепочки включить трансформатор со встречным включением обмоток, то петлевой сдвиг фазы составит около 360°. Генератор станет почти идеальным. Чтобы уменьшить шунтирование контура каскадом и не внести дополнительного перекоса фазы, нужно применить частичное включение контура без дополнительного перекоса фазы через два симметричных отвода от катушки индуктивности. Такой генератор излучает одну частоту и имеет наибольший запас устойчивости по фазе (± 90°).

Далеко не полный список устройств, в которых применяются генераторы сигналов:

  • Устройства связи — радиоприемники (гетеродин в супергетеродинных радиоприёмниках), телевизионные приемники, мобильные телефоны, приёмопередатчики, аппаратура передачи данных и др.
  • Цифровая и вычислительная техника обязательно содержит генератор тактовых импульсов.
  • Импульсные источники питания, инверторы, источники бесперебойного электропитания.
  • Измерительные приборы — осциллографы, измерительные вольтметры, амперметры и др.
  • Медицинское оборудование — электрокардиографы, томографы, рентгенографы, электронные тонометры, аппараты для ультразвукового исследования (УЗИ), физиотерапевтические приборы и др.
  • Эхолоты.
  • Бытовая техника — программируемые стиральные машины, СВЧ-печи, посудомоечные машины и др.

Устройства, имеющие в своём составе генератор сигналов, потенциально способны создавать электромагнитные помехи другим электронным устройствам, поэтому при их разработке и эксплуатации приходится учитывать вопросы электромагнитной совместимости.

  • Шамшин И. Г., История технических средств коммуникации. Учеб. пособие., 2003. Дальневосточный Государственный Технический Университет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *