Posted on

Содержание

основные характеристики и режимы работы

Однофазный трансформаторВ энергетической сфере деятельности используются первичные источники высокого переменного напряжения, однако в быту или на предприятиях необходимо значительно его снизить. Для этой цели применяются трансформаторы. Для полного понимания и грамотного применения напряжения в быту необходимо знать принцип действия однофазного трансформатора.

Общие сведения о трансформаторах

Значительно легче передавать переменный ток на большие расстояния, так как достигаются минимальные потери, связанные с величинами напряжения (U) и тока (I). Кроме того, для передачи не переменного, а постоянного I необходимо применять сложную электронику, которая основана на усилении параметров электричества. Основной частью этой технологии являются мощные транзисторы, которые требуют специального охлаждения, и главным критерием является цена. Использование трансформаторов, которые работают только от переменной величины тока, является оптимальным решением.

Назначение и устройство

Трансформатор (Т) — это специализированное электрическое устройство, которое работает только от переменного I и используется для преобразования значений входного U и I в необходимые значения этих величин, предусмотренных потребителем.

Как устроен однофазный трансформатор

Т является довольно примитивным устройством, однако в его конструкции есть некоторые особенности. Для понимания принципа действия однофазного трансформатора следует изучить его назначение и устройство. Устроен однофазный трансформатор следующим образом — он состоит из магнитопровода и обмоток.

Магнитопровод, или сердечник трансформатора, выполнен из ферромагнитного материала.

Ферромагнетики — это вещества, обладающие самопроизвольной намагниченностью. Это обусловлено тем, что атомы вещества обладают очень важными свойствами: постоянные спиновые и орбитальные моменты. Свойства ферромагнетиков зависят от температуры и действия магнитного поля. Для изготовления магнитопровода Т используются такие материалы: электротехническая сталь или пермаллой.

Электротехническая сталь содержит в своем составе большую массовую долю кремния (Si), которая под действием высокой температуры соединяется с атомами углерода ©. Этот тип используется во всех типах Т, независимо от мощности.

Однофазный трансформатор как работает

Пермаллой является сплавом, состоящим из никеля (Ni) и железа (Fe), и применяется только в маломощных трансформаторах.

Тип Т представляет собой катушки, состоящие из каркаса и провода, покрытого изоляционным материалом. Этот провод намотан на основание катушек, и количество витков зависит от параметров Т.

Количество катушек может быть 2 и более, оно зависит от конструктивной особенности электрического устройства и определяется сферой применения.

Принцип действия

Принцип работы однофазного трансформатора довольно простой и основан на генерации электродвижущей силы (ЭДС) в обмотках проводника, который находится в движущемся магнитном поле и сгенерирован при помощи переменного I. При прохождении электричества по обмоткам первичной катушки создается магнитный поток (Ф), который пронизывает и вторичную катушку. Силовые линии Ф благодаря замкнутой конструкции магнитопровода имеют замкнутую структуру. Для получения оптимальной мощности Т необходимо располагать катушки обмоток на близком расстоянии относительно друг друга.

Однофазный трансформатор из чего состоитИсходя из закона электромагнитной индукции происходит изменение Ф и индуцируется в первичной обмотке ЭДС. Эта величина называется ЭДС самоиндукции, а во вторичной — ЭДС взаимоиндукции.

При подключении потребителя к первичной обмотке Т в цепи появится электрическая энергия, которая передается из первичной обмотки через магнитопровод (катушки не связаны гальванически). В этом случае средством передачи электроэнергии служит только Ф. Трансформаторы по конструктивной особенности бывают различные. По достижению максимальной магнитной связи (МС) Т делятся на следующие типы:

  1. Сильная.
  2. Средняя.
  3. Слабая.

При слабой МС происходит значительная потеря энергии и Т такого типа практически не применяются. Основной особенностью таких Т являются незамкнутые сердечники.

Однофазный трансформатор для чего

Уровень средней МС достигается только при полностью замкнутом магнитопроводе. Одним из примеров такого Т является стержневой тип, у которого обмотки расположены на железных стержнях и соединены между собой накладками или ярмами. В результате такой конструкции получается полностью замкнутый сердечник.

Примером сильной МС является Т броневого типа, обмотки которого располагаются на одной или нескольких катушках. Эти обмотки расположены очень близко, благодаря чему и обеспечивается минимальная потеря электрической энергии. Магнитопровод полностью покрывает катушки, создавая более сильный Ф, который разбивается на 2 части. У трансформаторов такого типа потоки сцепления между обмотками практически равны.

Режимы работы

Т, как и любой вторичный источник питания, имеет определенные режимы работы. Режимы отличаются потреблением I. Существует 2 режима: холостого хода и нагрузки. При холостом ходе Т потребляет минимальное количество I, которое используется только на намагничивание и потери в обмотках на нагревание. Кроме того, происходит рассеивание магнитного поля. Ф создается I магнитодвижущей силы, которую генерирует первичная обмотка. В этом случае I холостого хода составляет 3−10% от номинального показателя (Iн).

Принцип действия однофазного трансформатораПри нагрузке во II обмотке появляется I, а значит — и магнитодвижущая сила (МДС). По закону Ленца: МДС II обмотки действует против МДС первичной обмотки. При этом ЭДС в первичной обмотке во время нагрузки Т равна U и прямо пропорциональна Ф. В этом случае получение k можно записать в виде: I1 / I2 = w2/w1 = 1/k.

Исходя из формул для расчета k, можно получить еще одно соотношение Т: e1 * I1 = e2 * I2 = 1.

Это соотношение показывает, что мощность, потребляемая первичной обмоткой, равна мощности, которую потребляет II обмотка при нагрузке. Мощность Т измеряется в вольт-амперах (ВА).

Основные параметры

Кроме того, следует отметить, что любой Т обладает некоторыми параметрами, которые и отличаются от других трансформаторов. К тому же, если понимать эти зависимости, то можно рассчитать и изготовить Т своими руками.

Связь между ЭДС, возникающей в обмотках Т, зависит от количества витков каждой из них. Исходя из того, что I и II обмотки пронизываются одним и тем же Ф, возможно вычислить следующее соотношение на основании общего закона индукции для мгновенных значений ЭДС:

  1. Однофазный трансформатор купитьДля первичной с количеством витков w1: e1 = — w1 * dФ/dt * E-8.
  2. Для вторичной с количеством витков w2: e2 = — w2 * dФ/dt * E-8.

Соотношение dФ/dt показывает величину изменения Ф за единицу времени. Значение потока Ф зависит от закона изменения переменного тока за единицу времени. Исходя из этих выражений получается следующая формула соотношения числа витков к ЭДС каждой обмотки:

e1/e2 = w1/w2.

Следовательно, можно сделать следующий вывод: индуцируемые в обмотках значения ЭДС также относятся к друг другу, как и число витков обмоток. Для более простой записи можно сопоставить значения e и U: e = U. Из этого следует, что e1 = U1 e2 = U2 и возможно получить еще одну величину, называемую коэффициентом трансформации (к): e1/e2 = U1/U2 = w1 / w2 = k. По коэффициенту трансформации Т делятся на понижающие и повышающие.

 однофазный трансформатор применение

Понижающим является Т, k которого меньше 1, и, соответственно, если к > 1, то он является повышающим. При отсутствии потерь в проводах обмоток и рассеивания Ф (они незначительны и ими можно пренебречь) вычислить основной параметр Т (k) достаточно просто. Для этого необходимо воспользоваться следующим простым алгоритмом нахождения k: найти соотношения U обмоток (если обмоток более 2, то соотношение нужно искать для всех обмоток).

Однако расчет k является только первым шагом для дальнейшего расчета или выявления неисправности на наличие короткозамкнутых витков.

Чтобы определить значения U, необходимо использовать 2 вольтметра, точность которых составляет около 0,2−0,5. Кроме того, для определения k существуют такие способы:

  1. По паспорту.
  2. Практически.
  3. Использование определенного моста (мост Шеринга).
  4. Прибором, предназначенным для этой цели (УИКТ).

Таким образом, принцип работы однофазного трансформатора основан на простом законе физики, а именно: если проводник с n количеством витков поместить в магнитное поле, причем это поле должно постоянно меняться с течением времени, то в витках будет генерироваться ЭДС. В этом случае справедливо и обратное утверждение: если в постоянное магнитное поле поместить проводник и осуществлять им движения, то в его обмотках начинает появляться ЭДС.

Однофазный трансформатор — устройство и принцип действия

Для того чтобы представить устройство и принцип действия однофазного трансформатора нужно посмотреть, как выглядит его схема. Если подключить первичную обмотку к источнику переменного напряжения U1, то по первичной обмотке  начнет протекать ток I0 (ток холостой хода) и  в ней будет возникать переменный магнитный поток усиливаемый сердечником. Этот магнитный поток индуцирует во вторичной обмотке  трансформатора ЭДС (электродвижущую силу самоиндукции) которая проходит сквозь ее витки.

Когда вы подключите к клеммам вторичной обмотки, какой либо потребитель электроэнергии допустим, это будет простая лапочка, то во вторичной обмотке  начнет протекать ток I2 вызванный ЭДС вторичной обмотки (U2) и лампочка загорится, так как через нее начнет протекать ток вторичной обмотки I2.

Когда трансформатор получил нагрузку измениться и ток первичной обмотки I1 который будет уже равен сумме токов холостого хода и тока первичной обмотки.

В этом заключается назначение трансформатора — в преобразовании напряжения, когда напряжение первичной обмотки может существенно отличаться на выходе от напряжения вторичной обмотки.

Что бы осуществилась трансформация одного напряжения в другое, служит стальной магнитопровод, на который наматывают витки первичной и вторичной обмотки. На схеме показан понижающий трансформатор 220/36 вольт, где на первичную обмотку подают 220В, а на вторичной образуется 36В.

В процессе работы могут возникать вихревые токи, которых бесполезно расходуют мощность трансформатора. Поэтому для уменьшения потерь на вихревые токи сердечник собирается из тонких пластин трансформаторной стали, толщина которых может быть от 0,5 до 0,35 мм изолируемых одна от другой посредством жаростойкого лака.

Трансформаторами в электротехнике называют такие электротехнические устройства, в которых электрическая энергия переменного тока от одной неподвижной катушки из проводника передается другой неподвижной же катушке из проводника, не связанной с первой электрически.

Звеном, передающим энергию от одной катушки другой, является магнитный поток, сцепляющийся с обеими катушками и непрерывно меняющийся по величине и по направлению.

Рис. 1.

На рис. 1а изображен простейший трансформатор, состоящий из двух катушек / и //, расположенных коаксиально одна над другой. К катушке / подводится переменный ток от генератора переменного тока Г. Эта катушка называется первичной катушкой или первичной обмоткой. С катушкою //, называемой вторичной катушкой или вторичной обмоткой, соединяется цепь приемниками электрической энергии.

Принцип действия трансформатора

Действие трансформатора заключается в следующем. При прохождении тока в первичной катушке / ею создается магнитное поле, силовые линии которого пронизывают не только создавшую их катушку, но частично и вторичную катушку //. Примерная картина распределения силовых линий, создаваемых первичною катушкою, изображена на рис. 1б.

Как видно из рисунка, все силовые линии замыкаются вокруг проводников катушки /, но часть их на рис. 1б силовые линии 1, 2, 3, 4 замыкаются также вокруг проводников катушки //. Таким образом катушка // является магнитно связанной с катушкою / при посредстве магнитных силовых линий.

Степень магнитной связи катушек / и //, при коаксиальном расположении их, зависит от расстояния между ними: чем дальше катушки друг от друга, тем меньше магнитная связь между ними, ибо тем меньше силовых линий катушки / сцепляется с катушкою //.

Так как через катушку / проходит, как мы предполагаем, однофазный переменный ток, т. е. ток, меняющийся во времени по какому-то закону, например по закону синуса, то и магнитное поле, им создаваемое, также будет меняться во времени по тому же закону.

Например, когда ток в катушке / проходит через наибольшее значение, то и магнитный поток, им создаваемый, также проходит через наибольшее значение; когда ток в катушке / проходит через нуль, меняя свое направление, то и магнитный поток проходит через нуль, также меняя свое направление.

В результате изменения тока в катушке / обе катушки / и // пронизываются магнитным потоком, непрерывно меняющим свою величину и свое направление. Согласно основному закону электромагнитной индукции при всяком изменении пронизывающего катушку магнитного потока в катушке индуктируется переменная электродвижущая сила. В нашем случае в катушке / индуктируется электродвижущая сила самоиндукции, а в катушке // индуктируется электродвижущая сила взаимоиндукции.

Если концы катушки // соединить с цепью приемников электрической энергии (см. рис. 1а), то в этой цепи появится ток; следовательно приемники получат электрическую энергию. В то же время к катушке / от генератора направится энергия, почти равная энергии, отдаваемой в цепь катушкой //. Таким образом электрическая энергия от одной катушки будет передаваться в цепь второй катушки, совершенно не связанной с первой катушкой гальванически (металлически). Средством передачи энергии в этом случае является только переменный магнитный поток.

Изображенный на рис. 1а трансформатор весьма несовершенен, ибо между первичной катушкой / и вторичной катушкой // магнитная связь невелика.

Магнитная связь двух обмоток, вообще говоря, оценивается отношением магнитного потока, сцепляющегося с обеими обмотками, к потоку, создаваемому одной катушкой.

Из рис. 1б видно, что только часть силовых линий катушки / замыкается вокруг катушки //. Другая часть силовых линий (на рис. 1б — линии 6, 7, 8) замыкается только вокруг катушки /. Эти силовые линии в передаче электрической энергии от первой катушки ко второй совершенно не участвуют, они образуют так называемое поле рассеяния.

Для того чтобы увеличить магнитную связь между первичной и вторичной обмотками и одновременно уменьшить магнитное сопротивление для прохождения магнитного потока, обмотки технических трансформаторов располагают на совершенно замкнутых железных сердечниках.

Первым примером выполнения трансформаторов может служить схематически изображенный на рис. 2 однофазный трансформатор так называемого стержневого типа. У него первичные и вторичные катушки c1 и с2 расположены на железных стержнях а — а, соединенных с торцов железными же накладками b — b, называемыми ярмами. Таким образом два стержня а, а и два ярма b, b образуют замкнутое железное кольцо, в котором и проходит магнитный поток, сцепляющийся с первичной и вторичной обмотками. Это железное кольцо называется сердечником трансформатора.

Рис. 2.

Вторым примером выполнения трансформаторов может служить схематически изображенный на рис. 3 однофазный трансформатор так называемого броневого типа. У этого трансформатора первичные и вторичные обмотки с, состоящие каждая из ряда плоских катушек, расположены на сердечнике образуемом двумя стержнями двух железных колец а и б. Кольца а и б, окружая обмотки, покрывают их почти целиком как бы бронею, поэтому описываемый трансформатор и называется броневым. Магнитный поток, проходящий внутри обмоток с, разбивается на две равные части, замыкающиеся каждое в своем железном кольце.

Рис.3

Применением железных замкнутых магнитных цепей у трансформаторов добиваются значительного снижения потока рассеяния. У таких трансформаторов потоки, сцепляющиеся с первичною и вторичною обмотками, почти равны друг другу. Предполагая, что первичная и вторичная обмотки пронизываются одним и тем же магнитным потоком, мы можем на основании общего закола индукции для мгновенных значений электродвижущих сил обмоток написать выражения:

В этих выражениях w1 и w2 — числа витков первичной и вторичной обмоток, a dФt — величина изменения пронизывающего катушки магнитного потока за элемент времени dt, следовательно есть скорость изменения магнитного потока. Из последних выражений можно получить следующее отношение:

т. е. индиктируемые в первичной, и вторичной катушках / и // мгновенные электродвижущие силы относятся друг к другу так же, как числа витков катушек. Последнее заключение справедливо не только по отношению к мгновенным значениям электродвижущих сил, но и к их наибольшим и действующим значениям.

Электродвижущая сила, индуктируемая в первичной, катушке, будучи электродвижущей силой самоиндукции, почти целиком уравновешивает приложенное к той же катушке напряжение. Если через E1 и U1 обозначить действующие значения электродвижущей силы первичной катушки и приложенного к ней напряжения, то можно написать:

Электродвижущая сила, индуктируемая во вторичной катушке, равна в рассматриваемом случае напряжению на концах этой катушки.

Если, аналогично предыдущему, через E2 и U2 обозначить действующие значения электродвижущей силы вторичной катушки и напряжения на ее концах, то можно написать:

Следовательно, приложив к одной катушке трансформатора некоторое напряжение, можно на концах другой катушки получить любое напряжение, стоит только взять подходящее отношение между числами витков этих катушек. В этом и заключается основное свойство трансформатора.

Отношение числа витков первичной обмотки к числу витков вторичной обмотки называется коэффициентом трансформации трансформатора. Коэффициент трансформации мы будем обозначать kт.

Следовательно можно написать:

Трансформатор, у которого коэффициент трансформации меньше единицы, называется повышающим трансформатором, ибо у него напряжение вторичной обмотки, или так называемое вторичное напряжение, больше напряжения первичной обмотки, или так называемого первичного напряжения. Трансформатор, у которого коэффициент трансформации больше единицы, называется понижающим трансформатором, ибо у него вторичное напряжение меньше первичного.

Видео: КАК УСТРОЕН ТРАНСФОРМАТОР. КАК ПРОВЕРИТЬ ИСПРАВНОСТЬ ТРАНСФОРМАТОРА

Виды конструкций однофазных трансформаторов

конструкция магнитопроводов трансформатора

Конструкция однофазного трансформатора может быть выполнены стержневого типа так и броневого или тороидального.

конструкция стержневого трансформатораконструкция стержневого трансформатора

Однофазный двух обмоточный трансформатор стержневого типа, представляет собой два стержня на которые располагаются обе обмотки. Объединяет эти стрежни, стальное ярмо, на котором и происходит соединение магнитных потоков двух обмоток.

конструкция стержневого трансформатора

Тип однофазного броневого трансформатора  представляет собой один стержень (сердечник), который как бы бронируется, защищается с обеих сторон ярмом от внешних механических воздействий. Магнитный поток проходящий по ярму броневого  меньше в два раз чем в стержне, поэтому ярма делают в два раза меньше, уменьшая тем самым габаритные размеры и вес.

 

Сборка трансформатора

Собирают магнитопроводы трансформаторов встык или в нахлест.

сборка трансформатора в нахлестку1- пластины Ш-образного профиля, 2 — пластины прямоугольного профиля, 3 — стержневые шпильки

Сборка внахлест пластины сердечника выполняют одна за другой укладывая их плотно в разных точках разреза полос. Монтаж и демонтаж такого трансформатора более трудоемок, но зато это позволяет сильно уменьшить магнитное сопротивление, снижает реактивные потери на вихревые токи и нагрев стали.

ленточный магнитопроводленточный магнитопровод

Существуют также и ленточные магнитопроводы которые делают из холоднокатаной стали как стержневого типа так броневого типа. Магнитная проницаемость трансформаторной холоднокатаной стали больше чем у горячекатаной, но только при направлении которая совпадает с направлением проката стали. В связи с этим такие трансформаторы собирают внахлестку, уже из лент разной длины (пакеты) и затем соединяют вместе предварительно пропитывая для изоляции жаростойким лаком. Особенность такого трансформаторов, что они обязательно требуют установки изоляционной прокладки на месте стыка двух магнитопроводов или изоляцией лаком. Это предотвращает замыкания пластин, в результате чего не возникает чрезмерный нагрев сердечника трансформатора токами вихревыми. Такой нагрев может приводить к плавлению стали в одну сплошную массу.

Мощные силовые трансформаторы часто делают только стержневыми так у них проще выполнить изоляцию обмоток высшего напряжения от низшего.
Трансформаторы малой мощности, сетевые трансформаторы  делаю из броневого магнитопровода. Обмотки у броневых  трансформаторов располагаются на одном стержне, а не отдельно одна  от другой. Как правило, первичная обмотка располагается ближе к сердечнику, а вторичная мотается поверх первой. Токи первичной и вторичной обмотки маломощного трансформатора невелики, так что усиленной изоляцией можно пренебречь.

Номинальная мощность, напряжение и ток

Любой трансформатор имеет расчетные показатели в виде номинальной мощности P и его напряжение вторичной и первичной обмотки U1 и U2, а также токи I1 и I2 при номинальном токе нагрузки I наг.

Номинальная мощность трансформатора – это мощность, отдаваемая всеми его вторичными обмотками P при нормальной расчетной нагрузки. Измеряют вольтамперах и киловольтамперах.

Активная мощность — эта мощность учитывающая активные потери на нагрев, механическую энергию и т.п. выраженную в Ваттах (Вт) или КилоВаттах (кВт).
Сечение проводов обмотки рассчитывается с учетом не активной мощности, а всей полной мощности трансформатора, учитывая токи протекающие в каждой обмотке.

Для трансформаторов малой мощности не имеет значение расчета удельной поверхности охлаждения. Такие трансформаторы охлаждаются естественной циркуляцией окружающего воздуха.

Мощные силовые трансформаторы изготовляют с масляным охлаждением, с металлическими баками, наполненными трансформаторным маслом. Для усиления охлаждения мала на поверхности приваривают стальные трубы (радиаторы). Чаще всего используют пассивное охлаждение баков масляных трансформаторов.

Видео: Подключение 3-х однофазных трансформаторов в трехфазную сеть

41. Назначение и область применения трансформаторов. Устройство и принцип действия однофазного трансформатора.

Трансформатор (от лат. transformo — преобразую) — статическое (не имеющее подвижных частей) устройство по преобразованию переменного тока одного напряжения в переменный ток другого напряжения при неизменной частоте без существенных потерь мощности, основанное на принципе электромагнитной индукции. Применение: 1. электросети в связи с необходимостью передачи электрической энергии на большие расстояния (рис. 1.1). Экономически выгодно передавать энергию при высоких напряжениях и малых токах (требуется меньшее сечение проводов). 2. источник питания — Для питания разных узлов электроприборов. Другие применения: 1.Разделительные трансформаторы. Нулевой провод электросети имеет контакт с «землёй», поэтому при одновременном касании человеком фазового провода и заземлённого предмета тело человека замыкает электрическую цепь, что создает угрозу поражения электрическим током. Если же прибор включён в сеть через трансформатор, касание прибора одной рукой вполне безопасно, поскольку вторичная цепь трансформатора никакого контакта с землёй не имеет. 2. Измерительные трансформаторы. Применяют для измерения очень больших или очень маленьких переменных напряжений и токов в цепях РЗиА. 3. Импульсные трансформаторы (ИТ). Основное применение заключается в передаче прямоугольного электрического импульса. Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью.

Устройство и принцип действия однофазного трансформатора. На стержнях магнитопровода, размещаются изолировано друг от друга и от стержня две обмотки с числом витков W и Wсоответственно. Обмотка, к которой подводится электрическая энергия из сети, называется первичной. Обмотка, в которой включается потребитель – вторичной. В зависимости от напряжения различают обмотку высшего напряжения и низшего. Трансформатор работает на принципе электромагнитной индукции: переменный ток , проходя по первичной обмотке, создаёт в магнитопроводе переменный магнитный поток Ф, который пронизывает одновременно витки обеих обмоток. При изменении потока во времени в витках индуцируется ЭДС. Поэтому вторичная обмотка может рассматриваться как источник напряжения . Если эту обмотку замкнуть на сопротивление нагрузки Z, то в ней потечёт ток .Из принципа действия трансформатора ясно, что он может работать только на переменном токе. При постоянном напряжении и токе магнитный потокФ не будет изменятся во времени, а значит не будет индуцировать ЭДС E.Однофазные трансформаторы бывают двухобмоточные и многообмоточные (одна первичная и несколько вторичных).Мгновенные значение индуктированной ЭДС одного витка может быть найдено по формуле: . то есть синусоидален.

42. Режим холостого хода трансформатора

Под холостым ходом трансформатора понимается режим его работы при разомкнутой вторичной обмотке. Первичная обмотка трансформатора подключена к источнику переменного напряжения. Ток i первичной обмотки создает переменное магнитное поле, намагничивающее сердечник трансформатора. Магнитный поток в трансформаторе разделим на две части: основной магнитный поток Ф, замыкающийся в сердечнике, и поток рассеяния Ф1S, замыкающийся частично по воздуху. W1 — число витков первичной обмотки,W2— число витков вторичной обмотки; R1 — активное сопротивление первичной обмотки.

Основной магнитный поток изменяется по синусоидальному закону ,  Напряжение на первичной катушке имеет три слагаемых: падение напряжения, напряжение, уравновешивающее трансформаторную ЭДС, напряжение, уравновешивающее ЭДС рассеяния. По второму закону Кирхгофа для первичной обмотки,откуда.это уравнение в комплексной форме, гдеиндуктивное сопротивление рассеяния первичной обмотки. На рис. изображена векторная диаграмма трансформатора, работающего в режиме холостого хода. Векторы трансформаторных ЭДСиотстают на 90° от вектора основного магнитного потока. Вектор напряженияпараллелен вектору тока, а векторопережает вектор токана 90°. Вектор напряжения на зажимах первичной обмотки трансформатораравен геометрической сумме векторов —,,.  На рис2. изображена схема  замещения трансформатора,  соответствующая уравнению  XЭ — индуктивное сопротивление, пропорциональное реактивной мощности, затрачиваемой на создание основного магнитного потока.  В режиме холостого хода.  Коэффициент трансформации.

K00K20ER

1. Однофазный трансформатор: назначение и область применения.

2. Однофазный трансформатор: устройство, принцип действия, коэффициент трансформации.

3. Уравнения электрического и магнитного состояний трансформатора.

1. Однофазный трансформатор: назначение и область применения.

Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения той же частоты.

Назначение трансформатора отражено в его определении.

Трансформаторы находят очень широкое применение в электрических сетях, являясь неотъемлемой частью энергосистемы. Передача электрической энергии по линиям электропередач осуществляется при высоких напряжениях — до 500 кВ и выше (до 1150 кВ), т.к. при этом для передачи той же мощности требуется меньший ток, а это ведет к снижению потерь в проводах. Поэтому на подстанциях с помощью трансформаторов на передающей стороне повышают напряжение, а на приемной снижают. Такие трансформаторы называются силовыми. Кроме того существуют измерительные трансформаторы, сварочные и др. В электронных устройствах трансформаторы часто используют для гальванического разделения цепей.

Трансформаторы также относятся к электрическим машинам, хотя в прямом смысле они не относятся (не имеют движущихся частей). Однако основные соотношения между величинами, характеризующими рабочий процесс трансформатора, применимы и к электрическим машинам.

2. Однофазный трансформатор: устройство, принцип действия, коэффициент трансформации.

Рассмотрим устройство трансформатора:

На замкнутом магнитопроводе, выполненном из магнитомягкой листовой стали, расположены две (или более) катушки (обмотки). К одной из обмоток подводится электрическая энергия от источника переменного тока. Эта обмотка называется первичной. От другой, вторичной, обмотки с числом витков W2 энергия отводится к приемнику. Все величины, относящиеся к этим обмоткам (токи, напряжения, мощности и т.п.) называются соответственно первичными или вторичными.

Под действием переменного напряжения U1, подведенного к первичной обмотке, в ней возникает ток I1, а в сердечнике возбуждается соответственно изменяющийся магнитный поток Ф. Этот поток пересекает витки

обеих обмоток трансформатора и индуктирует в них ЭДС:

;

В каждый момент времени отношение этих ЭДС пропорционально отношению количества витков обмоток:

Если цепь вторичной обмотки замкнута, то под действием ЭДС Е2

возникает ток I2.

При синусоидальном изменении напряжения питания U1 с частотой f поток в магнитопроводе Ф оказывается практически синусоидальным. Действующие значения ЭДС в обмотках можем найти по формуле:

E1 = 4,44 W1 f Фm;

E2 = 4,44 W2 f Фm.

Отношение этих ЭДС

принято называть коэффициентом трансформации. Приближенно можно принять, что ЭДС обмоток равны напряжениям на их зажимах, т.е.

Полученное равенство характеризует основное назначение трансформатора — преобразование одного напряжения в другое, большее или меньшее.

Цепи высшего и низшего напряжения электрически изолированы друг от друга и связаны лишь магнитным потоком, замыкающимся в сердечнике трансформатора. Преобразование электрической энергии в трансформаторе сопровождается весьма малыми потерями энергии: величина КПД при номинальной нагрузке изменяется в пределах 0,96 — 0,996 в зависимости от мощности трансформатора. Этим объясняется исключительно большое распространение трансформаторов в современной технике.

Однофазный трансформатор с ферромагнитным сердечником был предложен выдающимся русским изобретателем П.Н.Яблочковым в 1876 г.

3. Уравнения электрического и магнитного состояний

трансформатора.

Представим трансформатор в упрощенном виде. Пренебрежем потоками рассеяния и активным сопротивлением обмоток:

Фs1 = 0; Фs2 = 0; R1 = 0; R2 = 0.

Такой трансформатор называется идеальным трансформатором.

Для идеального трансформатора по второму закону Кирхгофа можно записать уравнения электрического состояния обмоток:

;

Согласно закону электромагнитной индукции можно записать:

где — потокосцепление, = Li.

Возьмем отношение:

Это уравнение отражает важнейшее свойство идеализированного трансформатора преобразовывать напряжение без искажения формы.

Так как на W1 подается переменное напряжение, то

Выразим «е» через «Ф«:

так как

Получили амплитудное значение ЭДС:

Найдем действующее значение ЭДС:

По аналогии для вторичной обмотки:

Эти уравнения для идеализированного трансформатора используются при анализе электрических процессов в трансформаторе.

Теперь учтем наличие потоков рассеяния Фs1 и Фs2 и активное сопротивление обмоток R1 и R2. Запишем с учетом этих величин уравнение по второму закону Кирхгофа для первичной и вторичной обмоток трансформа-

тора:

Параметр представляет собой падение напряжения на индуктивности и в комплексной форме записывается как j X1 I1.

Перейдем к комплексным значениям параметров:

U1 = — E1 + j X1 I1 + R1 I1 = — E1 + I1 (R1 + j X1) = — E1 + I1 Z1

Получили уравнение электрического состояния первичной обмотки

трансформатора в комплексной форме.

Для вторичной обмотки

Получили уравнение электрического состояния для вторичной обмотки трансформатора.

Трансформатор — электромагнитное устройство. Для него справедлив закон полного тока:

где Н — напряженность магнитного поля,

lср — длина средней магнитной линии сердечника.

Рассмотрим 2 режима работы: холостой ход и режим номинальной нагрузки.

Для холостого хода:

Для номинальной нагрузки:

Правые части уравнений неизменны, поэтому приравниваем между собой левые части:

Поделим каждый член на W1 и частично преобразуем

,

где I10 — ток холостого хода или намагничивающий ток,

— приведенный ток вторичной обмотки.

Знак » — » в уравнении отражает размагничивающее действие тока I2.

Таким образом, ток первичной обмотки можно представить как сумму двух токов: приведенный ток вторичной обмотки I2| плюс намагничивающий ток I10.

Еслт сердечник идеален, то

I10 = 0 и 0 = I1 W1 + I2 W2

Таким образом, трансформация тока осуществляется без искажения формы:

расчет параметров, назначение и режимы работы

Содержание статьи:

Действующее в электрической сети напряжение 220 Вольт в том виде, в котором оно поступает в квартиру, непригодно для работы большинства электронных устройств. Для приведения его к удобному типу для питания бытовой аппаратуры требуются специальные преобразователи, называемые трансформаторами. С их помощью удается понизить величину питающего напряжения до нужного значения, а затем выпрямить его.

Общие сведения о трансформаторах

Трансформатор ТМГ-2500/6/0.4

В качестве преобразователей эти устройства традиционно применяются для приведения к приемлемому виду мощностей, пересылаемых по высоковольтным линиям. Для «переброски» на огромные расстояния подходят только сверхвысокие напряжения, при которых ток может иметь приемлемую величину.

Если попытаться передать энергию хотя бы на сотню километров в виде привычного напряжения 380 Вольт – для доставки до потребителя нужной мощности потребуется ток величиной в миллионы Ампер.

Для ее рассеяния нужен провод толщиной примерно с человеческое тело, что на практике реализовать невозможно. Поэтому на генерирующей электричество стороне с помощью другого (повышающего) трансформатора его значение поднимается до 110-ти кВ. В таком виде использовать электроэнергию распределения по жилым строениям и производственным объектам нельзя. Поэтому после доставки по ВВ в распределительных станциях 110 кВ понижаются до 10(6) кВ.

Отсюда они поступают в районные трансформаторные подстанции, где в местном понижающем трансформаторе приобретают свой окончательный вид 380 (220) Вольт. При таких значениях потенциалов энергию легко удается транспортировать по подземному кабелю или воздушному проводу СИП до конечного потребителя. Поэтому однофазный трансформатор играет большую роль в жизни человека.

Назначение и устройство

Любой трансформатор 220 Вольт однофазный представляет собой электрическое устройство, работающее только в цепях переменного тока. С его помощью входное напряжение преобразуется в нужную величину (чаще всего оно уменьшается). При этом ток, отбираемый от вторичной обмотки, возрастает, поскольку мощность предается практически без потерь. Отсюда следует, что основное назначение этого прибора – получить нужное для решения задач напряжение, а затем использовать его в конкретных целях.

Составить более полное представление поможет знакомство с конструкцией трансформатора, который состоит из следующих основных элементов:

  • сердечник из ферромагнитных материалов;
  • первичная и вторичная катушка, размещенная на изолированном каркасе;
  • защитный кожух (этот элемент у ряда моделей отсутствует).

В некоторых образцах вместо ферромагнетиков применяются электротехническая сталь или пермаллой. Выбор определенного типа материала сердечника зависит от области использования самого изделия.

Принцип действия

Действие электромагнитных потей трансформатора

Принцип работы однофазного трансформатора основан на законе, согласно которому действующее в витке переменное э/м поле наводит ЭДС в расположенном рядом проводнике. Явление названо законом электромагнитной индукции Фарадея, который первым обнаружил этот интересный эффект. Для его обоснования ученый разработал целую теорию, которая легла в основу работы большинства современных электротехнических устройств и агрегатов.

Основные ее положения:

  • при прохождении тока через виток провода вокруг него формируется магнитный поток, захватывающий все такие же витки, расположенные рядом;
  • под воздействием этого потока в них наводится ЭДС, по форме изменений совпадающая с исходным полем;
  • при наличии в нем ферромагнетика действие этого эффекта усиливается.

Все эти принципы заложены в основу действия современного трансформаторного изделия. При подключении к вторичной обмотке нагрузки рабочая цепь замыкается, а энергия практически без потерь передается потребителю.

Режимы работы

Подобно любым преобразовательным устройствам трансформатор имеет два режима работы:

  • так называемый «холостой ход»;
  • режим нагрузки.

При холостом ходе устройство работает без нагрузки и потребляет минимум мощности, рассеиваемой только в первичной обмотке. Ток в ней также минимален и составляет обычно не более 3-10% от значения, наблюдаемого при подключенной нагрузке. Во втором случае в витках вторичной обмотки начинает течь ток, величина которого обратно пропорциональна количеству витков в катушке.

В понижающем трансформаторе напряжение в ней ниже, а ток – больше. В этом режиме мощность в нагрузку передается с учетом теплового рассеяния в сердечнике трансформатора.

Основные параметры

При рассмотрении параметров преобразователей напряжения и тока важно отметить коэффициент трансформации k, определяемый как I1/I2 = w2/w1 = 1/k. Здесь w2 и w1 – число витков во вторичной и первичной обмотках соответственно. Помимо этого, учитываются и такие его характеристики, как размер окна сердечника, в котором размещаются катушки.

Еще одним параметром, характеризующим передаточные свойства однофазного двухобмоточного трансформатора по напряжению, является тот же коэффициент трансформации k, величина которого для понижающего прибора меньше 1. И наоборот, если к > 1 – это изделие является повышающим трансформатором. При отсутствии потерь в проводах обмоток и рассеивания потока вычислить этот показатель очень просто. Для этого удобнее всего воспользоваться простым алгоритмом расчета: k= U2/U1. Если вторичных обмоток несколько, указанный параметр следует определять для каждой из них в отдельности.

Виды трансформаторов и их применение

Виды трансформаторов

По конструктивным особенностям сердечника известные образцы однофазных трансформаторов подразделяются на стержневые, кольцевые и броневые изделия. По форме используемого в них магнитопровода они могут быть:

  • Ш-образными;
  • Тороидальными;
  • П-образными.

Каждая из этих форм подходит для определенных целей, связанных с необходимостью получения заданных передаточных характеристик.

По величине максимально достижимой магнитной связи (МС) трансформаторы делятся на изделия с сильным, средним и слабым взаимодействием. Эти характеристики в значительной мере зависят от конструкции самого изделия и вида его сердечника.

Однофазный трансформатор востребован в тех областях, где нужно согласовать две силовые цепи с электрической развязкой каждой из них.

Эксплуатация изделий

При эксплуатации однофазных преобразующих устройств особое внимание обращается на безопасное обращение с ними, что объясняется высоким напряжением, присутствующим на первичных обмотках. Также важно учитывать следующие моменты, касающиеся правил установки и включения трансформаторов в электрические схемы:

  • чтобы избежать выхода обмоток из строя (выгорания), следует защищать вторичные цепи от КЗ;
  • важно следить за тепловым режимом сердечника и обмоток и, если потребуется, предусмотреть их охлаждение.

Уход за однофазным трансформатором сводится к стандартным процедурам, которые предусмотрены положениями действующих нормативов.

Устройство и принцип действия однофазного трансформатора

Однофазный трансформатор состоит из замкнутого сердечника (магнитопровода) и обмоток. Для уменьшения потерь энергии от вихревых токов сердечник набирается из отдельных листов электротехнической стали, изолированных друг от друга лаковой плёнкой. С целью уменьшения величины воздушных зазоров (для уменьшения магнитного сопротивления на пути основного магнитного потока) он собирается «внахлёстку» (шихтованием). Вертикальные части сердечника называются стержнями, а горизонтальные – ярмами.

Обмотки трансформатора выполняются из медного изолированного провода и располагаются на стержнях сердечника. Обмотку, подключённую к источнику питания называют первичной и все величины, относящиеся к ней, снабжают индексом «1» (U1, I1, P1 и т.д.), а обмотку, к которой подключают приёмники, называют вторичной и все величины, относящиеся к ней, снабжают индексом «2» (U2, I2, P2 и т.д.).

Передача электрической энергии из первичной обмотки трансформатора во вторичную осуществляется посредством переменного магнитного поля. В первичной обмотке происходит преобразование электрической энергии, потребляемой из сети, в энергию магнитного поля, а в вторичной – преобразование энергии магнитного поля в электрическую энергию, отдаваемую нагрузке.

В общем случае U1 U2. При U2 > U1– трансформатор называется повышающим; при U1 < U2– понижающим.

Трансформатор, имеющий две обмотки (одну первичную и одну вторичную) называется двухобмоточным. С тремя и более обмотками называется трехобмоточным или многообмоточным.

Обмотка, присоединенная к сети с более высоким напряжением, называется обмоткой высшего напряжения (ВН). Обмотка, присоединённая к сети меньшего напряжения, называется обмоткой низшего напряжения (НН). Обмотка низшего напряжения располагается ближе к стержню сердечника, её охватывает обмотка ВН.

Условное графическое обозначение и электромагнитная схема двухобмоточного трансформатора изображена на рис. 4.4.Начала и концы обмоток ВН и НН обозначают соответственно буквами A-X и a-x.

Принцип действия основан на законе элекромагнитной индукции.

При подключении первичной обмотки (рис. 4.4) к источнику синусоидального напряженияu1, в ней возникает ток i1, создающий магнитодвижущую силу f1=wi1. М.д.с. возбуждает основной переменный магнитный поток Ф, замыкающийся по магнитопроводу и пронизывающий витки обоих обмоток, и магнитный поток рассеяния первичной обмотки Фσ1, который замыкается частично по сердечнику, а частично по воздуху и сцеплён только с витками первичной обмотки. Направление магнитного потока определяют по правилу правого винта

Поток Ф индуцирует в обмотках переменные ЭДС:

в первичной обмотке ЭДС самоиндукции ;

во вторичной обмотке ЭДС взаимоиндукции ,

где w,w2- числа витков первичной и вторичной обмоток.

Действующие значения этих э.д.с. определяются по формулам

E1=4,44w1m, E2=4,44w2m,

где Фm – амплитудное значение основного магнитного потока.

Э.д.с. е1 уравновешивает основную часть напряжения источника питанияu1, а э.д.с. е2создает напряжениеu2на выходных зажимах трансформатора

u1 = -e1,u2 =e2.

Отношение э.д.с. обмотки ВН к э.д.с. обмотки НН называется коэффициентом трансформации трансформатора и обозначается буквой К. Считая первичную обмотку обмоткой ВН, а вторичную обмотку обмоткой НН, получим

.

При подключении нагрузки к выходным зажимам трансформатора во вторичной обмотке возникает ток i2, величина которого определяется величиной сопротивления нагрузки, а начальная фаза характером нагрузки (активная, индуктивная, емкостная). Во вторичной обмотке возникает м.д.с.f2=w2i2, которая действует против м.д.с. первичной обмоткиf1=wi1. Результирующий магнитный поток создается намагничивающей силой, которая равна векторной сумме м.д.с. первичной и вторичной обмоток.

Всякое изменение тока нагрузки приводит к такому изменению тока i1в первичной обмотке, чтобы общая м.д.с. () оставалась неизменной. Таким образом, результирующий магнитный поток трансформатора всегда остается постоянным и не зависит от нагрузки.

В трансформаторе происходит преобразование не только переменных напряжений, но и токов.

Чтобы получить связь между токами первичной и вторичной обмоток, запишем уравнение магнитного состояния для магнитной цепи рис. 4.1

,

где — длина средней линии магнитопровода.

В современных трансформаторах для изготовления сердечника магнитопровода применяют холоднокатаную электротехническую сталь, в которой необходимая величина магнитной индукции достигается при незначительной величине напряженности поля. Поэтому амплитуда магнитного напряжения на несколько порядков меньше амплитуд м.д.с.иобмоток трансформатора при его нагрузке.

Тогда ,

откуда .

Если перейти от мгновенных к действующим значениям токов и напряжений, то можно записать

и

откуда

То есть в идеализированном трансформаторе энергия из первичной обмотки полностью передается во вторичную и далее в приемник, хотя обмотки трансформатора не связаны электрически, а имеют только магнитную связь.

При увеличении тока нагрузки i2м.д.с. вторично обмоткитакже увеличивается. Эта м.д.с., как видно из выражения, стремится ослабить поток Ф. Уменьшение потока приводит к уменьшению э.д.с. е1, нарушению электрического равновесия е1= -u1и росту токаi1в первичной обмотке. Равенство е1= -u1восстанавливается с увеличением токаi1, когда рост м.д.с.скомпенсирует рост м.д.с..

Изменение нагрузки трансформатора, то есть тока i2, приводит к соответствующему изменению тока i1, так что выполняется закон сохранения энергии и обеспечивается баланс мгновенных мощностейp1=p2 илиu1i1 = u2i2.

Однофазный трансформатор. Принципы работы. Основные параметры

Устройство, состоящее из двух или нескольких индуктивно связанных катушек, называется трансформатором.

Трансформатор — это электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения. Наибольшее распространение получили однофазные и трехфазные трансформаторы.

Принцип действия трансформатора основан на явлении взаимной индукции. Простейший однофазный трансформатор состоит из двух катушек, расположенных на ферромагнитном сердечнике. (рис. 3.3.1)

рис. 3.3.1

Обмотка, к которой подключен источник энергии, называется первичной, а обмотка, к которой подключается нагрузка, называется вторичной.

При подключении первичной катушки к источнику переменного тока по ней потечет ток I1, который создает магнитный поток ф. Часть этого потока пересекает витки вторичной катушки, индуцируя в ней ЭДС взаимной индукции. Так как вторичная катушка замкнута на нагрузку, то по вторичной цепи потечет ток I2.

Таким образом, энергия от источника за счет магнитной связи между катушками передается в нагрузку.

Основными параметрами трансформатора являются: коэффициент трансформации, коэффициент полезного действия и мощность потерь.

Коэффициентом трансформации называется отношение количества витков первичной обмотки к количеству витков вторичной обмотки.

Если , то трансформатор называется понижающим (U1 U2), а если n 1 — то повышающим.

U2 — напряжение на первичной обмотке;

U2 — напряжение на вторичной обмотке;

W1 – число витков первичной катушки;

W2 — число витков вторичной катушки

 

Коэффициент полезного действия (КПД) называется отношение полезной мощности, выделяемой в нагрузке, к затраченной мощности, потребляемой от источника, выраженное в процентах.

Р1 – полезная мощность, выделяемая в нагрузке;

Р2 – затраченная мощность, потребляемая от источника;

Рсм = Рчистер + Рвихр.токи

Рм1 – мощность тепловых потерь в первичной катушке;

Рм2 — мощность потерь во вторичной катушке;

Рсм – мощность потерь в сердечнике, обусловленная потерями на гистерезис и вихревые токи.

Общие потери – это разность мощностей источника и потребителя энергии.

в понижающем трансформаторе

в повышающем трансформаторе

При расчете трансформаторов и аппаратуры с их использованием применяют схему замещения приведенного «трансформатора», в которой элементы электрической схемы учитывают физические процессы, происходящие в реальном трансформаторе.

Вопросы для самопроверки

1. Что называется трансформатором?

2. На чем основан принцип действия трансформатора?

3. Приведите схему однофазного трансформатора?

4. Что называется коэффициентом трансформации?

5. Какой трансформатор называется понижающим, а какой – повышающим?

6. Как определяется КПД трансформатора?

7. Из чего складываются потери трансформатора?

 

 

Тема №2: Электрические машины [Яцкевич]

Устройство и принцип действия машин постоянного тока.

Машина постоянного тока состоит из двух основных частей: подвижной и неподвижной. Неподвижная часть — индуктор представляет собой электромагнит, имеющий одну или несколько пар полюсов. Он состоит из станины, полюсов и обмоток возбуждения, расположенных на полюсах. Под действием постоянного тока, протекающего по обмоткам возбуждения, полюса намагничиваются. Таким образом, создается магнитный поток машины.

Вращающаяся часть машины — якорь состоит из вала, сердечника и обмотки якоря, соединенной с коллектором. Якорная обмотка через коллекторные пластины и прилегающие к ним контактные щетки соединяется с внешней электрической цепью.

Когда якорь генератора вращается каким-либо двигателем, в обмотке якоря, пересекающей магнитный поток полюсов, индуктируется э.д.с. Начальный ток возбуждения в параллельной обмотке возникает под действием небольшой э.д.с., которая индуктируется за счет остаточного магнитного потока, после чего происходит «самовоз­буждение» генератора.

 



Дата добавления: 2016-11-29; просмотров: 12476;


Похожие статьи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *