Принцип работы трансформатора постоянного тока и напряжения
Для того чтобы увеличить или уменьшить постоянный потенциал применяют соответствующий трансформатор. Этот преобразователь имеет магнитопровод, который выполнен как магнитная система, а в его пазах находятся обмотки (первичная и вторичная) и их коммутаторы. Последние – это включенные управляемые полупроводниковые вентили.
Для преобразования постоянного потенциала одной величины в другую применяют вращающееся магнитное поле, оно создается в обвивке (первичной).
Большой трансформатор постоянного тока
Это производят переключением вентилей и подачей импульсов тока на электроды, которые передвинуты по отношению друг к другу на определенный угол (зависит от того сколько секций имеет трансформатор постоянного тока), а в результате уменьшаются потери, массогабаритные значения и увеличивается надежность и КПД.
Где применяют такие приборы
Они позволяют повысить тот потенциал, который вырабатывает источник переменного электричества, установленный на электростанции, и передают его на большое расстояние, при этом напряжение бывает высоким (от 110 до 1150 кВ). Этим уменьшают потерю энергии, и возможно применять провода меньшего сечения.
Передаваемое напряжение от высоковольтной линии снижают, применив преобразователи до 600, 380, 220 и 127 В. На таких показателях работают бытовые приборы в жилых домах и промышленные — на производствах.
Трансформаторы применяют и на подстанциях, здесь они необходимы для того чтобы уменьшить напряжение, которое подают к контактному двигателю или вспомогательной цепи.
Такие аппараты бывают тяговыми, лабораторными и др., но все они считаются силовыми. Их применяют для подключения электроприборов, электросварки и др. Трансформаторы имеют одну- , три фазы, две- и множество обмоток.
Как работает этот аппарат
Рассмотрим принцип работы трансформатора, который основан на таком явлении, как электромагнитная индукция. Самый простой аппарат имеет стальной магнитопровод и две обвивки, которые изолированы и не связаны друг с другом электрически. К первичной обвивке подают переменную эл.энергию, а к вторичной, через выпрямитель, подключают потребителей.
Для работы тягового аппарата осуществляют связь управляющей размагничивающей обмотки с потенциалом генератора. Источником питания является вторичная обмотка распределяющего трансформатора, в цепь которого входят аппараты постоянного напряжения. Они и регулируют величину электричества в главной обмотке, которая зависима от потенциала тягового генератора.
По принципу работы трансформатор постоянного потенциала это простой магнитный усилитель, который имеет две обвивки — рабочую и управляющую обмотки, причем последняя (управляющая) не имеет обратной связи.
Трехфазный понижающий трансформатор
Этот аппарат состоит из двух сердечников, имеющих тороидальную форму. Их изготовляют из пермаллоя (сплав, имеющий ферромагнитные свойства), это лента имеет толщину 0,2 мм. На сердечниках имеется катушка с обмоткой (употребляют только медный провод с сечением 1мм). Все залито эпоксидной смолой или подобной смесью, которая не дает влаге попасть внутрь, и обеспечивает долгую и надежную эксплуатацию трансформатору.
Если хотят установить преобразователь на тепловоз, то применяют для этого угольники и стягивают их шпильками. Обвивку управления аппарата стабильного потенциала включают на выходы генератора, пропуская его через резистор. Исходя из этого, сила тока преобразователя, всегда прямо пропорциональна ампиражу тягового агрегата. Поэтому электричество в рабочих обмотках всегда пропорционально не только напряжению генератора, но и току подмагничивания.
Значит, при увеличении вольтажа генератора, на ту же величину растет ток, выходящий из преобразователя со стабильным напряжением. А так как в цепи автоматики используют слабое электричество, то максимальный трансформаторный ампираж на выходе не будет выше 3 А.
Аппарат для стабильного электричества и трансформатор постоянного напряжения идентичны, только первый без управляющей обмотки. Для того чтобы его подмагнитить через дырочки сердечника проходит гибкий провод. По нему проводят ток от двух двигателей, при его росте, увеличивается подмагничивание и растет электричество обвивки на выходе.
Отсюда, можно сделать вывод, что ток, образующийся в рабочей цепи преобразователя прямо пропорционален сумме этой же величины, но двух электрических двигателей (тяговых). В рабочей цепи преобразователя электричество может иметь максимальную величину, которая составит до 3 А.
Вместо заключения
Аппарат, работающий на стабильном токе, может преобразовывать ток большого значения в пропорциональную слабую величину, которую можно использовать для того чтобы автоматически регулировать напряжение генератора (тягового).
Статья была полезной? Оцени и поделись ей в соц. сетях:Loading …
Советуем почитать по теме:
устройство, принцип работы и схема подключения
В статье читатель узнает, что такое трансформатор тока, где они применяются. Мы постараемся дать краткую характеристику видам и типам устройства, объясним принцип действия. Также предлагаем ознакомиться с видеороликом в конце текста для лучшего понимания материала.
Без такого привычного устройства современный мир был бы невозможен в том виде, каком мы к нему привыкли. Его задача – помочь передавать энергию на большие расстояния. Тех, кто дочитает материал до конца, ждет приятный бонус: файл с книгой о трансформаторах тока Афанасьева А.А. По любым вопросам не стесняйтесь писать в комментариях, опытные эксперты будут рады вам помочь.
Опорные трансформаторы тока.
Что это за устройство
Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник.
Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают: стержневыми, броневыми или тороидальными. Все три типа трансформаторов имеют похожие характеристики, и надежность, но отличаются друг от друга способом изготовления.
В трансформаторах стержневого типа обмотка намотана на сердечник, а в трансформаторах стержневого типа обмотка включается в сердечник. В трансформаторе стержневого типа обмотки хорошо видны, а из сердечника видна только нижняя и верхняя часть.
Сердечник броневого трансформатора скрывает в себе практически всю обмотку. Обмотки трансформатора стержневого типа расположены горизонтально, в то время как это расположение в броневом трансформаторе может быть как вертикальным, так и горизонтальным. Независимо от типа трансформатора, в его состав входят такие три функциональные части: магнитная система трансформатора (магнитопровод), обмотки, а также система охлаждения.
Схематичный рисунок опорного трансформатора тока.
Это устройство, первичная обмотка которого последовательно включена в рабочую цепь, а вторичная служит для проведения измерений. Подобные устройства используются не только в лабораториях для оценки величин. Истинное место трансформаторов тока возле электростанций, где они помогают контролировать режимы, внося коррективы в процесс эксплуатации оборудования.
Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.
Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.
Тем, кому будет интересно почитать, материал в тему: малоизвестные факты о двигателях постоянного тока.
Область применения
Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.
Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Трансформаторы тока принято классифицировать по роду тока. Измеряемое напряжение различается по роду. Для проведения измерений в цепи постоянного тока используется нарезка сигнала на импульсы. Напрямую трансформация невозможна:
- для переменного тока;
- для постоянного тока.
По назначению: мы уже сказали, что часто трансформаторы тока применяются для измерений (к примеру, кВт ч). Называют системы, где требуется защитить персонал для повышения безопасности.
Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования. Трансформаторы делят в зависимости от назначения. Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. В зависимости от выполняемых функций различают следующие виды:
- измерительные — подающее ток на приборы измерения и контроля;
- защитные — подключаемые к защитным цепям;
- промежуточные — используется для повторного преобразования.
Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.
Принцип работы устройства
Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток, выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.
После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.
Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток. Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:
- W1, W2 — количество витков первичной и вторичной обмоток соответственно;
- U1, U2 — входное и выходное напряжения соответственно.
Обмотки могут быть расположены либо в виде отдельных катушек, либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией.
Микротрансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги. Подробнее принцип работы трансформатора тока рассмотрен в видеоролике:
Вкратце принцип работы и устройство трансформатора тока заключается в подаче питания от источника электричества. Наиболее актуальным является использование для снижения первичных показателей тока до величины, применяемой в измерительных и защитных цепях, сигнализации и управления.
Во вторичной обмотке отмечаются показатели тока 5 А или 1 А. Измерительные устройства подключаются к вторичной обмотке, а к первичной подключается цепь, в которой измеряют ток. Для расчета тока во второй обмотке используют показания в первичной обмотке и делят на коэффициент трансформации.
Режимы работы трансформатора
Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены.
Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.
В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора.
Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.
Схема режима работы трансформатора тока.
Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны.
Поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения. Для трансформатора в режиме активной нагрузки справедливо равенство:
U_2/U_1 =N_2/N_1
где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке.
Если U2> U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.
Интересный материал для ознакомления: что такое трехфазный двигатель и как он работает.
Виды и типы трансформаторов
Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на несколько видов.
- Автотрансформаторы.
- Импульсные трансформаторы.
- Разделительный трансформатор.
- Пик-трансформатор.
Стоит выделить способ классификации трансформаторов по способу их охлаждения. Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.
Сравнительные характеристики различных видов трансформаторов.
Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели, где в качестве теплообменного вещества используется вода или жидкий диэлектрик.
Кроме того, производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией. Трансформаторы тока имеют три основных вида. Наиболее применяемые из них:
- Сухие.
- Тороидальные.
- Высоковольтные (масляные, газовые).
У сухих трансформаторов первичная обмотка без изоляции. Свойства тока во вторичной обмотке зависят от коэффициента преобразования.
Тороидальные исполнения трансформаторов устанавливают на шины или кабели. Поэтому первичная обмотка для них не нужна, в отличие от обычных трансформаторов напряжения и тока. Первичный ток протекает по шине, которая проходит в центре трансформатора. Он дает возможность вторичной обмотке фиксировать показатели тока.
Такие трансформаторы тока редко используются для замера параметров тока, так как их надежность и точность измерений оставляет желать лучшего. Они чаще используются для дополнительной защиты от короткого замыкания.
Характеристики трансформаторов
К основным техническим характеристиками трансформаторов можно отнести:
- уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
- способ преобразования: повышающий, понижающий;
- количество фаз: одно- или трехфазный;
- число обмоток: двух- и многообмоточный;
- форму магнитопровода: стержневой, тороидальный, броневой.
Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.
Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.
Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).
Принцип работы трансформатора тока.
Параметры трансформаторов тока
При выборе для работы в тандеме с трёхфазным счётчиком первым делом обращают внимание на коэффициент трансформации. Ряд значений стандартизирован, и нужно выбирать приборы, способные работать в паре. Выше говорилось, что в иных случаях коэффициент трансформации возможно менять, и нужно этим пользоваться.
Помимо рабочего напряжения роль играет ток в первичной обмотке (исследуемой сети). Понятно, что с ростом увеличивается нагрев, и однажды токонесущая часть может сгореть. Это требование не столь актуально для трансформаторов без первичной обмотки. Номинальный вторичный ток обычно равен 1 либо 5 А, что служит критерием для согласования с сопрягаемыми устройствами.
Полагается обращать внимание на сопротивление нагрузки в цепи измерения. Вряд ли найдётся счётчик, выбивающийся из общего ряда, но нужно контролировать момент. В противном случае не гарантируется точность показаний. Коэффициент нагрузки обычно не ниже 0,8.
Это уже касается измерительных приборов, с индуктивностями в составе. ГОСТ нормирует значение в вольт-амперах. Для получения сопротивления в омах требуется поделить цифру на квадрат тока вторичной обмотки.
Интересно почитать: однофазные асинхронные двигатели на службе человечества.
Предельные режимы работы обычно характеризуются током электродинамической стойкости, возникающим при коротком замыкании. В паспорте пишут значение, при котором прибор проработает сколь угодно долго без выхода из строя.
В условиях короткого замыкания ток столь силен, что начинает оказывать механическое воздействие. Порой вместо тока электродинамической стойкости указывается кратность его к номинальному.
Остаётся лишь произвести операцию умножения. Указанный параметр не касается приборов без первичной обмотки. Вдобавок определяется ток термической стойкости, который трансформатор выдерживает без критического перегрева. Этот вид устойчивости способен выражаться кратностью.
Отличие трансформатора тока от трансформатора напряжения
Одним из некоторых отличий является способ создания изоляции между двумя обмотками. Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.
Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки. В этом и заключается назначение трансформаторов, измеряющих ток, а также отличие от трансформатора напряжения по условиям работы.
Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии. Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.
Заключение
Надеемся, что теперь вам полностью понятен принцип работы трансформаторов тока. Предлагаем скачать файл с книгой о трансформаторах тока Афанасьева А.А., в котором подробно рассмотрены все нюансы работы с трансформаторами тока. Если хотите регулярно узнавать новую информацию по этой теме, а также по теме металлоискателей и радиодеталей: подписывайтесь на нашу группу в социальной сети «Вконтакте».
Для этого вам необходимо будет перейти по следующей ссылке https://vk.com/electroinfonet. Там можно не только узнавать различного рода полезную информацию, но еще и задавать вопросы и получать на них подробные ответы. В завершение хочу поблагодарить источники, откуда мы черпали информацию:
kuhnileona.ru
vashtehnik.ru
Постоянный и переменный ток. Значение трансформаторов.
Без электричества и электрических приборов уже попросту невозможно представить современный мир. Всё к чему мы так привыкли: освещение, бытовые приборы, компьютеры, телевизоры – так или иначе связано с электропитанием. Однако, стоит отметить, что одни приборы работают от переменного тока, а другие – питаются от источников постоянного тока.
Постоянным током называют ток, который в течение некоторого промежутка времени не меняет своего направления и величины. Таким образом, постоянный ток имеет постоянное напряжение и силу тока.
Постоянный ток используется:
- для передачи электроэнергии на высоковольтных линиях электропередач (например, 500кV). Это связано с тем, что если применять переменный ток того же напряжения, с учетом амплитудных значений напряжений и их перепада, то такие напряжения могут превышать величину напряжения постоянного тока в несколько раз. Использование переменного тока в высоковольтных проводах приведет к дополнительным тратам на изоляционные материалы, что значительно увеличит стоимость ЛЭП;
- в контактных сетях электрического транспорта – троллейбусов и трамваев – до 3000V;
- в сетях до 1000V для электродвигателей с тяжелыми условиями пуска – прокатные станы, центрифуги, и др.
- для электросетей до 500V, используемых для грузоподъемных механизмов – подъемных электрических кранов;
- в качестве источника питания различных переносных бытовых приборов – фонарики, аудиоприёмники, диагностические приборы, мультиметры, мобильные телефоны.
Стоит отметить, что в условиях тяжелого пуска – т.е. если пусковой момент высок, а требуется плавное регулирование скорости, тягового усилия и пускового момента – применяются двигатели постоянного тока. Таковыми, например, являются двигатели элетротранспорта, электрических мельниц, центрифуг.
Постоянный ток, чаще всего можно встретить в различных элементах питания – аккумуляторах и батарейках. Скажем, в автомобилях используется аккумуляторы постоянного тока напряжением 12V; для строительной техники – экскаваторов, бульдозеров, и др. используются аккумуляторы, имеющие напряжение в 24V. Аккумулятор мобильного телефона автора статьи – постоянного тока напряжением 3,7V.
Каждый источник постоянного тока имеет две клеммы или разъема, обозначаемые как плюс (+) и минус (-). Считается, что постоянный ток движется от плюсовой клеммы (+) к минусовой(-), при этом, между ними можно подключить оборудование (например лампочку). На рисунке 1 представлена схема работы постоянного тока с подключенной лампой.
Рис 1. Схема работы постоянного тока с подключенной лампой
На самом деле, процессы, протекающие в электросети постоянного тока происходят очень быстро, и изобразить их в реальном времени не представляется возможным.
Схематично, действие постоянного тока в простейшей сети, многократно замедленное, представлено на рисунке 2. Оно дает наиболее полное представление о процессах, происходящих в сети постоянного тока.
Рис 2. Схема действия постоянного тока в простейшей сети
Переменный ток – это ток, который за определенный промежуток времени, меняет свое направление. Частота смены направления измеряется в герцах. 1 герц (Гц)– означает, что за одну секунду совершен полный цикл смены направления (туда-обратно). В Европейских странах, в том числе и в России, в бытовых электросетях используется однофазный переменный ток, имеющий частоту 50Гц, т.е. меняющий своё направление 100 раз в секунду.
Таким образом, за одну секунду через нить лампы, горящей на обычном письменном столе, ток проходит 50 раз в одном направлении и пятьдесят раз в обратном (Рисунок 3).
Рис 3. Схема работы переменного тока с подключенной лампой
В американских и канадских электросетях используется переменный ток с частотой в 60 Гц, вместо общепринятого переменного тока с частотой в 50 Гц.
Также, как источник постоянного тока имеет две клеммы – плюсовую и минусовую, источник однофазного переменного тока имеет две клеммы или разъема, называемые «фаза» и «ноль».
Кстати, переменный ток в домашней розетке называется однофазным, как раз из-за наличия одного разъема «фаза» (рисунок 4). Величина напряжения переменного однофазного тока равна 220V.
Рис 4. Схема действия переменного тока в простейшей сети
Как видно из схемы замедленного действия однофазного переменного тока в простейшей сети, переменный ток действует следующим образом: переменный ток начинает движение из «фазы» в сторону «нуля», доходит до него, останавливается, и затем, движется в обратном направлении.
Особенностями переменного однофазного тока являются:
- Среднее значение силы переменного тока за период равняется нулю.
- Переменный ток за период меняет не только направление движения, но и свою величину.
- Действующее значение силы переменного тока – это сила такого постоянного тока, при которой средняя мощность, которая выделяется в проводнике в цепи переменного тока, равна мощности, которая выделяется в том же проводнике в цепи постоянного тока. Когда говорят о токах и напряжении в сети переменного тока, имеют в виду их действующие значения.
Действующее напряжение сети переменного тока в обыкновенной бытовой розетке составляет напряжение в сети 220 вольт.
Широкое применение переменного тока в технике и для бытовых нужд вызвано тем, что, переменный ток легко трансформируется. Напряжение в сети переменного тока может быть легко повышено или понижено при помощи специального устройства – трансформатора.
Трансформатор — электромагнитное устройство, которое преобразует посредством электромагнитной индукции переменный ток таким образом, что напряжение в сети уменьшается либо увеличивается в несколько раз без изменения частоты, и практически без потери мощности.
Для преобразования напряжения переменного тока в сторону уменьшения (например, силовые трансформаторы с 10 000V городских сетей до 220V домашней сети) применяются понижающие трансформаторы. Для преобразования напряжения сетей в сторону повышения – повышающие трансформаторы.
Трансформаторы напряжения — устройство, принцип работы, расчет и характеристики
Трансформатор — устройство для преобразования величины напряжения переменного тока. Работа трансформатора основывается на законе электромагнитной индукции.
Ток, протекающий по одной из обмоток, вызывает возникновение переменного магнитного поле в сердечнике, а оно наводит ЭДС в остальных обмотках.
Именно наличие переменного магнитного поля создает условия для работы трансформатора. На постоянном токе трансформатор работать не может. В случае подключения трансформатора к источнику постоянного напряжения, переменное магнитное поле не создается, следовательно нет причины для образования ЭДС.
В таком случае ток первичной обмотки определяется только ее омическим сопротивлением.
Трансформатор преобразует напряжение при сохранении частоты и баланса мощностей на входе и выходе с учетом КПД. Также при помощи трансформаторов осуществляется гальваническая развязка по цепям питания.
Большинство электронной аппаратуры требует питания, отличного от напряжения сети. В большинстве случаев это напряжение значительно ниже и может иметь несколько различных значений.
Трансформатор с несколькими вторичными обмотками позволяет выполнить максимально простое преобразование величины напряжения с той оговоркой, что питающее напряжение переменное.
В случае необходимости преобразовывать постоянное напряжение, приходится сначала преобразовывать его в переменное, что требует определенных схемотехнических решений. В таком случае использование трансформаторов оправдано только наличием гальванической развязки между обмотками.
УСТРОЙСТВО ТРАНСФОРМАТОРА НАПРЯЖЕНИЯ
Основные узлы, которые входят в трансформатор это сердечник и обмотки. Сердечники трансформаторов бывают двух типов — броневые и стержневые. Для работы с низкочастотными напряжениями, в том числе и 50 Гц применяются стержневые магнитопроводы. В свою очередь они подразделяются на:
- Ш-образные;
- П-образные;
- тороидальные.
Для изготовления сердечника используется специальное трансформаторное железо. От качества железа во многом зависят параметры трансформатора, такие как ток холостого хода (ТХХ) и КПД. Сердечник набирается из тонких листов железа, изолированных друг от друга слоем окиси или лака. Это делается для того, чтобы уменьшить потери в сердечнике за счет вихревых токов.
Как Ш-образный, так и П-образный сердечники могут собираться из отдельных пластин, а могут быть использованы уже готовые половинки, сделанные из навитых на специальную оправку сплошных лент железа, поклеенных и разрезанных на две части — витые сердечники. Такие сердечники называются ПЛ.
У каждого из типов свои достоинства и недостатки:
- Наборные сердечники.
- Наиболее часто используются для сборки магнитопровода произвольного сечения, которое ограничивается только шириной пластин. Следует иметь ввиду, что наилучшие параметры имеют трансформаторы с поперечным сечением сердечника, близким к квадратному.
Недостатки — необходимость в плотном стягивании, повышенное магнитное поле рассеивания трансформатора и низкий коэффициент заполнения окна катушки (реальная площадь металла в сердечнике меньше геометрических размеров из-за неплотного прилегания пластин).
- Витые.
- Собираются еще проще, поскольку весь сердечник состоит из двух частей для П-образного магнитопровода и четырех для Ш-образного. Характеристики значительно лучше, чем у наборного магнитопровода. Недостатки — соприкасающиеся поверхности должны иметь минимальный зазор во избежание ослабления магнитного поля.
При ударах пластины половинок зачастую отслаиваются и их очень трудно совместить для плотного прилегания. Существует только определенный ряд размеров магнитопроводов.
- Тороидальные.
- Представляют собой кольцо, свитое из ленты трансформаторного железа Имеют самые лучшие характеристики из всех типов сердечников, минимальный ТХХ и практически полное отсутствие магнитного поля рассеивания.
Основной недостаток — сложность намотки, особенно проводов большого диаметра.
Классический трансформатор имеет одну первичную обмотку и одну или несколько вторичных. Обмотки изолируются друг от друга для исключения вероятности между обмоточного пробоя. Как первичная, так и вторичные обмотки могут иметь отводы.
В Ш-образных трансформаторах все обмотки наматываются на центральном стержне, а в П-образном первичная может размещаться на одном стержне, а вторичная на другом. Гораздо чаще обмотки делятся пополам и наматываются на обеих стержнях. Затем обе половины обмоток соединяются последовательно.
Такая намотка улучшает характеристики трансформатора и сокращает количество провода для обмоток.
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Основные характеристики трансформатора:
- входное напряжение;
- значения выходных напряжений;
- мощность;
- напряжение и ток холостого хода.
Отношение напряжений на первичной и вторичной обмотках представляет собой коэффициент трансформации. Он зависит только от соотношения количества витков в обмотках и остается постоянным в любых режимах работы.
Мощность трансформатора зависит от сечения сердечника и диаметра проводов в обмотках (соответственно — допустимого тока). Мощность со стороны первичной обмотки всегда равна сумме мощностей вторичных за вычетом потерь в обмотках и сердечнике.
Напряжение холостого хода — это напряжение на вторичных обмотках без нагрузки. Разница между ним и напряжением под нагрузкой характеризует потери в обмотках за счет сопротивления провода. Таким образом, чем толще проводники в обмотках, тем меньше будут потери и меньше разница в напряжениях.
Величина тока холостого хода зависит, в основном от качества сердечника. В идеальном трансформаторе ток, проходящий через первичную обмотку, создает переменное магнитное поле в сердечнике, которое, в свою очередь, за счет магнитной индукции создает ЭДС противоположного направления.
Индуцированная ЭДС компенсирует подаваемое напряжение и ТХХ равен нулю. В реальных условиях, за счет потерь в сердечнике, величина ЭДС всегда меньше первичного напряжения, в результате чего возникает ТХХ. Для уменьшения тока для изготовления сердечника нужен материал высокого качества, между пластинами должен отсутствовать немагнитный зазор.
Последнему требованию в максимальной степени соответствуют тороидальные сердечники — в них немагнитный зазор отсутствует.
РАСЧЕТ ТРАНСФОРМАТОРА НАПРЯЖЕНИЯ
Как показывает опыт и практика, точный расчет трансформатора напряжения себя не оправдывает. Точность нужна только при определении количества витков для получения нужного коэффициента трансформации. Диаметр проводов обмоток должен соответствовать или превосходить минимально допустимому по условиям нагрева.
Общая последовательность расчета трансформатора такова:
- определение мощности трансформатора;
- подбор сердечника с сечением максимально близкого к расчетному, но не меньше его;
- определение количества витков катушек, приходящихся на один вольт напряжения;
- расчет количества витков для каждой обмотки;
- расчет сечения проводов обмоток.
Мощность трансформатора определяется суммированием мощностей всех обмоток за исключением первичной. Для каждой из них — это произведение напряжения на максимальный ток потребления. Для расчета сечения сердечника нужна габаритная мощность трансформатора, которая учитывает КПД.
Рассматриваемые трансформаторы имеют КПД от 70% при мощности до 150 Вт и до 90 % при большей мощности. Таким образом, чтобы получит габаритную мощность нужно мощность вторичных обмоток умножить на коэффициент 1.3 — 1.1.
Площадь поперечного сечения можно найти как квадратный корень из габаритной мощности. Имея значение площади можно подобрать из таблиц готовый сердечник. Если планируется разборный, то исходя из размеров имеющихся пластин можно вычислить необходимую толщину набора. Как уже говорилось выше, сечение должно быть близким к квадрату.
Наибольшие затруднения вызывает нахождение числа витков. Для этого нужно сначала рассчитать сколько витков должно приходиться на один вольт напряжения. Это значение будет различаться в зависимости от площади сечения сердечника. Следует иметь ввиду, что при одинаковом сечении у магнитопроводов разных типов это значение также будет различно.
Можно воспользоваться следующей формулой: N = К/S,
где N — количество витков на вольт, S — площадь сечения сердечника в см2, K — коэффициент, зависящий от материала и типа сердечника.
Значение коэффициента К:
- для наборных сердечников — 60;
- для типов ПЛ — 50;
- для тороидальных сердечников 40.
Как видим, количество витков у тороидального трансформатора будет минимальным. Умножая число витков на вольт на требуемое напряжение каждой обмотки, получим значение количества витков. Для компенсации потерь напряжения, количество витков вторичных обмоток нужно увеличить на 5%.
У мощных трансформаторов (более 150 Вт) этого делать не нужно.
Сечение проводов также определяется по упрощенной формуле: 0.7√I, где I — ток обмотки.
Провод нужно брать ближайшего к расчетному сечения (можно больше, но не меньше).
В случае сомнений по поводу того, поместится ли провод в обмотке, можно посчитать, сколько витков уложится в один слой и определить количество слоев и их общую толщину для каждой из обмоток. Это справедливо только для Ш-образных и П-образных трансформаторов.
В тороидальных количество витков в каждом последующем случае будет меньше, чем в предыдущем за счет уменьшения внутреннего диаметра.
© 2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Трансформатор напряжения — Википедия
Антирезонансный трансформатор напряженияТрансформа́тор напряже́ния — одна из разновидностей трансформатора, предназначенная не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.
Используется в измерительных цепях, преобразуя высокое напряжение линий электропередач генераторов в удобное для измерения низковольтное напряжение.
Кроме того, применение трансформатора напряжения позволяет изолировать низковольтные измерительные цепи защиты, измерения и управления от высокого напряжения, что, в свою очередь, позволяет использовать более дешёвое оборудование в низковольтных сетях и удешевляет их изоляцию.
Так как трансформатор напряжения не предназначен для передачи через него мощности, основной режим работы трансформатора напряжения — режим холостого хода.
Измерительный трансформатор напряжения по принципу выполнения мало отличается от силового понижающего трансформатора. Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. В результате изготовления должен быть достигнут необходимый класс точности: по амплитуде и углу. Трехфазные трансформаторы напряжения с выведенными нулевыми выводами выполняются на пятистержневом магнитопроводе, чтобы при коротком замыкании на стороне высокого напряжения суммарный магнитный поток замыкался по стали сердечника (при замыкании по воздуху возникает большой ток, приводящий к перегреву трансформатора). Трёхфазные трансформаторы с трёхстрежневым магнитопроводом исходя из вышеуказанных причин не имеют внешних нулевых выводов и не применяются для регистрации «замыканий на землю». Чем меньше нагружена вторичная обмотка трансформатора напряжения (то есть чем ближе режим к режиму холостого хода либо, другими словами, чем больше сопротивление цепи вторичной обмотки), тем фактический коэффициент трансформации Кт ближе к номинальному значению. Это особенно важно при подключении ко вторичной цепи измерительных приборов, так как коэффициент трансформации влияет на точность измерений. В зависимости от нагрузки один и тот же трансформатор напряжения может работать в разных классах точности: 0,5; 1; 3.
- Заземляемый трансформатор напряжения — однофазный трансформатор напряжения, один конец первичной обмотки которого должен быть наглухо заземлён, или трёхфазный трансформатор напряжения, нейтраль первичной обмотки которого должна быть наглухо заземлена (трансформатор с ослабленной изоляцией одного из выводов — однофазный ТН типа ЗНОМ или трёхфазные ТН типа НТМИ и НАМИ).
- Незаземляемый трансформатор напряжения — трансформатор напряжения, у которого все части первичной обмотки, включая зажимы, изолированы от земли до уровня, соответствующего классу напряжения.
- Каскадный трансформатор напряжения — трансформатор напряжения, первичная обмотка которого разделена на несколько последовательно соединённых секций, передача мощности от которых к вторичным обмоткам осуществляется при помощи связующих и выравнивающих обмоток.
- Ёмкостный трансформатор напряжения — трансформатор напряжения, содержащий ёмкостный делитель.
- Двухобмоточный трансформатор — трансформатор напряжения, имеющий одну вторичную обмотку напряжения.
- Трёхобмоточный трансформатор напряжения — трансформатор напряжения, имеющий две вторичные обмотки: основную и дополнительную.
При наличии нескольких вторичных обмоток в трехфазной системе основные соединяются «в звезду», образуя выходы фазных напряжений a, b, c и общую нулевую точку о, которая обязательно должна заземляться для предотвращения последствий пробоя изоляции со стороны первичной обмотки (на практике чаще всего заземляется фаза «b» обмотки НН трансформатора напряжения). Дополнительные обмотки обычно соединяются по схеме «разомкнутый треугольник» с целью контроля напряжения нулевой последовательности. В нормальном режиме это напряжение находится в пределах 1-3 В за счет погрешности обмоток, резко возрастая при аварийных ситуациях в цепях высокого напряжения, что дает возможность простого подключения быстродействующих устройств релейной защиты и автоматики (для цепей с изолированной нейтралью — обычно на сигнал). Для регистрации земли в сети необходимо заземление нулевого вывода обмотки ВН трансформатора напряжения (для прохождения гармоник нулевой последовательности).
Особенности работы трансформаторов напряжения регламентируются главой 1.5 Правил устройства электроустановок. Так, нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений. Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25 % номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5 % при питании от трансформаторов напряжения класса точности 1,0. Для обеспечения этого требования допускается применение отдельных кабелей от трансформаторов напряжения до счетчиков. Потери напряжения от трансформаторов напряжения до счетчиков технического учета должны составлять не более 1,5 % номинального напряжения.
Особенности работы ТН в сетях с изолированной и заземлённой нейтралями[править | править код]
В сетях с заземлённой нейтралью при замыкании на землю напряжение повреждённой фазы около места замыкания уменьшается до нуля, вектор 3U0{\displaystyle 3U_{0}} получается сложением векторов фазных напряжений (сложение фазных векторов, расположенных 120° относительно друг от друга), и следовательно напряжение 3U0{\displaystyle 3U_{0}} возрастает до фазного напряжения.
В сетях с изолированной нейтралью при замыкании на землю все фазные напряжения (относительно нулевой точки) остаются без изменения, но относительно земли фазные напряжения увеличиваются до линейного, при этом трансформируясь во вторичную обмотку (при обязательном заземлении нулевой точки первичной обмотки ТН) они геометрически суммируются. При этом вектора этих напряжений расположены друг относительно друга на 60°, то 3U0=3Ub=3Uc{\displaystyle 3U_{0}={\sqrt {3}}U_{b}={\sqrt {3}}U_{c}}, где Ub{\displaystyle U_{b}},Uc{\displaystyle U_{c}} — напряжения неповреждённых фаз относительно земли. Поскольку напряжения неповреждённых фаз относительно земли увеличились до 3{\displaystyle {\sqrt {3}}}, то 3U0=3Uf{\displaystyle 3U_{0}=3U_{f}}, то есть 3U0{\displaystyle 3U_{0}} возрастает до утроенного значения фазного напряжения относительно нуля.
Исходя из вышеуказанных особенностей у ТН для работы в сетях с заземлённой нейтралью дополнительная обмотка выполняется на 100 В, а для сетей с изолированной нейтралью 100/3 В.
Трансформаторы напряжения в сетях с изолированной нейтралью могут входить в феррорезонанс с паразитными ёмкостями распределительных сетей (особенно это нежелательное явление характерно для кабельных сетей), что может приводить к их отказу. Для предотвращения порчи трансформаторов напряжения в результате феррорезонанса разработаны антирезонансные трансформаторы напряжения типа НАМИ.
Параметры трансформатора напряжения[править | править код]
На шильдике трансформатора напряжения указываются следующие параметры:
- Напряжение первичной обмотки.
- Напряжение основной вторичной обмотки: для однофазных ТН равно 100 В, для трёхфазных фазное напряжение вторичной обмотки 100/3{\displaystyle {\sqrt {3}}} В.
- Напряжение дополнительной вторичной обмотки: для сетей с заземлённой нейтралью 100 В, для сетей с изолированной нейтралью 100/3 В.
- Номинальная мощность трансформатора, в ВА, в соответствии с классом точности.
- Максимальная мощность трансформатора, в ВА.
- Напряжение короткого замыкания, в процентах.
Отечественные трансформаторы напряжения имеют следующее буквенные обозначения:
- Н — трансформатор напряжения;
- Т — трёхфазный;
- О — однофазный;
- С — сухой;
- М — масляный;
- К — каскадный либо с коррекцией;
- А — антирезонансный;
- Ф — в фарфоровом корпусе;
- И — контроль Изоляции;
- Л — в литом корпусе из эпоксида;
- ДЕ — с ёмкостным делителем напряжения;
- З — с заземляемой первичной обмоткой.
- В. Н. Вавин Трансформаторы напряжения и их вторичные цепи М., «Энергия», 1977
- ГОСТ 18685-73. Трансформаторы тока и напряжения. Термины и определения
- Правила устройства электроустановок. Издание седьмое.
Трансформатор
Трансформатор постоянного тока
Использование: для преобразования постоянного напряжения одного уровня в постоянное напряжение другого уровня. Трансформатор содержит магнитопровод, выполненный в виде магнитной системы электромашинного типа, в пазах которого размещены первичная и вторичная силовые обмотки в виде секций и управляемые полупроводниковые коммутаторы первичной и вторичной обмоток, выполненные в виде прямо и обратно включенных управляемых полупроводниковых вентилей. Преобразование напряжения в трансформаторе происходит за счет вращающегося магнитного поля, создаваемого в первичной обмотке при подаче постоянного входного напряжения, путем переключения прямо и обратно включенных вентилей коммутаторов подачей токовых импульсов на управляемые электроды, сдвинутые относительно друг друга на угол, определяемый числом секций трансформатора. Технический результат заключается в уменьшении потерь, массогабаритных показателей, а также увеличении кпд и надежности. 1 ил.
Изобретение относится к электротехнике и предназначено для преобразования постоянного напряжения одной величины в постоянное напряжение другой величины.
Такая задача решается путем достаточно сложного применения системы устройств, в которую входят: источник питания постоянного напряжения, автономный инвертор напряжения, силовой трансформатор, полупроводниковый выпрямитель, сглаживающий фильтр, стабилизатор напряжения, регулятор и система управления (см. Основы промышленной электроники под ред. проф. В.Г. Герасимова. M. 1978, стр. 178-212). Система преобразователей, реализующих изменение постоянного напряжения одной величины в постоянное напряжение другой величины, подробно приведена в работе И. М. Чиженко, В.С. Руденко, В.И. Сенько. Основы преобразовательной техники. М. 1974, стр. 221-223. Однако такое техническое решение имеет ряд существенных недостатков. Гармоники напряжений и токов, генерируемые системой преобразователей, загружают сеть, вызывают потери, снижающие кпд устройства. Помехи, вызываемые этими гармониками, оказывают вредное воздействие на окружающую электро- и радиоаппаратуру и установки различного назначения. Система преобразователя, состоящая из многих каскадов или блоков, потребляет из питающей энергетической сети большое количество реактивной мощности, негативно влияющей на основные технико-экономические показатели всего устройства в целом. Наличие большого количества элементов, входящих в блоки и каскады системы преобразователя, снижают обилую надежность последнего. Наконец, такая система преобразования постоянного напряжения одного уровня в постоянное напряжение другого уровня обладает большими массогабаритными показателями, требующими затрат полезной площади и ухудшающими его транспортировку, а также увеличивающими стоимость ремонтно-профилактических работ. Задачей, на решение которой направлено настоящее изобретение, является устранение указанных недостатков, т.е. уменьшение потерь, массогабаритных показателей, а также увеличение кпд и надежности устройства. Указанная цель достигается тем, что трансформатор постоянного тока содержит магнитопровод, выполненный в виде магнитной системы электромашинного типа, в пазах которого размещены первичная и вторичная силовые обмотки в виде секций, а переключающие элементы выполнены в виде коммутаторов первичной и вторичной обмоток, состоящих из управляемых полупроводниковых вентилей, размещенных между первичной обмоткой и токопроводящими шинами, выполненными кольцеобразными и подключенными к зажимам входного напряжения и, соответственно, между вторичной обмоткой и токопроводящими шинами, выполненными кольцеобразными и подключенными к зажимам выходного напряжения, при этом в коммутаторе первичной обмотки катоды прямо включенных и аноды обратно включенных вентилей соединены между собой и подключены к секциям первичной обмотки, а аноды прямо включенных и катоды обратно включенных вентилей соединены с токопроводящими шинами, подключенными соответственно к положительному и отрицательному зажимам входного напряжения, в коммутаторе вторичной обмотки аноды прямо включенных и катоды обратно включенных вентилей соединены между собой и подключены к секциям вторичной обмотки, а катоды прямо включенных и аноды обратно включенных вентилей соединены с токопроводящими шинами, подключенными соответственно к отрицательному и положительному зажимам выходного напряжения. Сущность изобретения поясняется чертежом, где представлена электрическая схема трансформатора постоянного тока, который состоит из первичной силовой обмотки 1, разделенной на N отдельных секций 2 (в данном случае N=6), размещенных в пазах магнитопровода, выполненного в виде магнитной системы электромашинного типа, и вторичной силовой обмотки 3, аналогично разделенной на N отдельных секций 4, также размещенных в пазах магнитопровода. Секции 2 первичной силовой обмотки и секции 4 вторичной силовой обмотки соединены в обеих силовых обмотках между собой последовательно. К секциям 2 присоединен управляемый полупроводниковый коммутатор УПК-I, состоящий из прямо включенных 5-10 и обратно включенных 11-16 полупроводниковых вентилей, в качестве которых используются GTO — запираемые тиристоры. Аналогично, к секциям 4 присоединен управляемый полупроводниковый коммутатор УПК-II, также состоящий из прямо включенных 17-22 и обратно включенных 23-28 полупроводниковых вентилей — GTO — запираемых тиристоров. Как первичная силовая обмотка 1, так и вторичная силовая обмотка 3 трансформатора выполнены замкнутыми. Аноды прямо включенных вентилей 5-10 УПК-I присоединены к кольцеобразной токопроводящей шине 29, соединенной с положительным зажимом постоянного входного напряжения U1. Катоды обратно включенных вентилей 11-16 присоединены к кольцеобразной токопроводящей шине 30, соединенной с отрицательным зажимом входного напряжения U1. Катоды прямо включенных вентилей 5-10 последовательно соединены с анодами обратно включенных вентилей 11-16 и подсоединены к точкам соединения секций 2 первичной обмотки 1 трансформатора (А, В, С, D и т.д.). Аналогичным образом устроена цепь вторичного управляемого коммутатора УПК-II. Здесь аноды прямо включенных вентилей 17-22 и катоды обратно включенных вентилей 23-28 последовательно соединены между собой и подсоединены к точкам соединения секций 4 вторичной обмотки 3 трансформатора. Катоды прямо включенных вентилей 17-22 присоединены к кольцеобразной токопроводящей шине 31, соединенной с отрицательным зажимом постоянного выходного напряжения U2. Аноды обратно включенных вентилей 23-28 присоединены к кольцеобразной токопроводящей шине 32, соединенной с положительным зажимом выходного напряжения U2. Работа трансформатора постоянного тока осуществляется с помощью вращающегося магнитного поля, создаваемого в первичной обмотке 1 трансформатора, путем последовательного переключения прямых 5-10 и обратных 11-16 управляемых вентилей коммутатора УПК-I, при поступлении токовых импульсов на управляемые электроды этих вентилей, подаваемых с системы управления. В первом интервале времени токовые импульсы подаются на диаметрально расположенные прямо включенный 5 и обратно включенный 14 вентили УПК-I первичной силовой обмотки 1 трансформатора и они открываются. Все остальные вентили первичной обмотки при этом закрыты. Первичный ток проходит от положительного зажима входного напряжения U1 через токопроводящую жилу 29, вентиль 5 и в точке А разветвляется на две параллельные ветви А и В, возвращаясь через вентиль 14 к отрицательному зажиму входного напряжения U1 через токопроводящую шину 30. Точки А и В определяют пространственное направление магнитного поля трансформатора. Это магнитное поле первичной обмотки 1 индуктирует в параллельных ветвях вторичной обмотки 3 трансформатора эдс. Синхронно с импульсами, поступающими на вентили 5 и 14, на прямо включенный вентиль 17 и обратно включенный вентиль 26 УПК-II вторичной обмотки 3 поступают аналогичные токовые импульсы системы управления и они открываются. Все остальные вентили вторичной обмотки 3 при этом также закрыты. Под действием индуктируемой во вторичной обмотке трансформатора эдс в ней протекает вторичный ток, создающий выходное напряжение U2. Цепь вторичного тока: вентиль 17, токопроводящая шина 31, отрицательный зажим выходного постоянного напряжения U2, положительный зажим выходного постоянного напряжения U2, токопроводящая шина 32, вентиль 26, вторичная обмотка 3 трансформатора. Через интервал времени t: где и — угловая частота импульса управления, на диаметрально расположенные соседние вентили 6 и 15 УПК-I первичной обмотки 1 и вентили 18 и 27 УПК-II вторичной обмотки 3 подаются токовые импульсы системы управления и они открываются. Вентили 5 и 14 УПК-I первичной обмотки 1 и вентили 17 и 26 УПК -II вторичной обмотки 3 при этом закрываются. Все остальные вентили УПК-I и УПК-II по прежнему закрыты. В этом интервале времени цепь первичного тока: положительный зажим входного напряжения U1, токопроводящая шина 29, точка С, две параллельные ветви С и D, точка D, вентиль 15, токопроводящая шина 30, отрицательный зажим входного напряжения U1. Цепь вторичного тока: вторичная обмотка 3, вентиль 18, токопроводящая шина 31, отрицательный зажим выходного напряжения U2, положительный зажим U2, токопроводящая шина 32, вентиль 27, вторичная обмотка 3 трансформатора. Пространственное направление магнитного поля определяется в этом случае точками С и D, которые смещены относительно точек А и В по окружности на угол . На этот угол магнитное поле первичной обмотки 1 трансформатора повернуто в пространстве. В третьем интервале времени открываются вентили 7 и 16 УПК-I и вентили 19 и 28 УПК-II, а вентили 6 и 15 УПК-I и 18 и 27 УПК-II закрываются. Все остальные вентили, как и в предыдущих интервалах времени, закрыты. Магнитное поле первичной обмотки 1 трансформатора сдвигается в пространстве еще на угол . Таким образом, через N интервалов времени магнитное поле сделает один оборот, равный , в течение времени где fи — частота подаваемых на управляющие электроды вентилей импульсов, формируемых системой управления. Угловая скорость вращения магнитного поля равна мп = и = 2fи. Процентное колебание напряжения можно оценить выражением,
при
N=6 — U%=7,2
N=8 — U%=4
N=10 — U%=2,5
Предлагаемый трансформатор постоянного тока предназначен для использования в энергосистемах, энергетических сетях и линиях электропередач, кабелях постоянного тока с разным уровнем напряжения и позволит за счет уменьшения потерь, массогабаритных показателей, а также увеличения кпд и надежности этих систем и устройств существенно улучшить их технико-экономические показатели.
Формула изобретения
РИСУНКИ
Рисунок 1Трансформатор: назначение, принципы работы и правила подключения
Автор Даниил Леонидович На чтение 9 мин. Просмотров 945 Опубликовано
Свойства магнитного поля изучаются учеными давно. Впервые электромагнитную индукцию описал Майкл Фарадей. А именно как появляется прочная электромагнитная взаимосвязь в обмотках при создании переменного тока в первой катушке. Во вторичной же катушке повышается напряжение, но мощность и частота остаются прежними. Конечно, несведущему человеку в электричестве сложно понять конструкцию, принцип действия, предназначение трансформатора. Однако, это неотъемлемый прибор с установкой во многих сферах: радиотехника, электроэнергетика.
Трансформаторы напряжения: назначение и принцип действия
Трансформатор – электрическое устройство. Преобразует переменный ток одного напряжения в электрический ток другого напряжения. Частота, согласно явлению электромагнитной индукции, остается неизменной.
Состоит статический трансформатор из:
- первичной и вторичной обмотки;
- сердечника.
Применяется устройство в разных схемах питания и электроприборах. Передает электроэнергию на большие расстояния и:
- снижает потери энергии;
- уменьшает площадь сечения проводов ЛЭП.
Разновидности прибора:
- повышающий;
- понижающий;
- силовой;
- вращающийся;
- импульсный;
- разделительный;
- согласующий.
Понижающий трансформатор применяется в быту. Именно через него проходит и поступает ток в домашние розетки с мощностью 220 Вт.
Силовой агрегат в составе из сердечника и нескольких обмоток преобразует напряжение в электроцепи по принципу электромагнитной индукции. Также значение напряжения переменного тока без изменений его частоты. Применяется для распределения и передачи электрической энергии. Напряжение в обмотках – свыше 300 кВ. Мощность – от 4 кВ до 200000 кВА.
Справка! Трансформатор служит для понижения либо повышения переменного напряжения. Основой является ферромагнитный сердечник. В дополнение для бесперебойной работы – обмотки, изоляция, магнитопровод, система охлаждения.
Обмотки выполнены из изолированных медных проводов прямоугольного сечения. Между их слоями находятся пустоты для циркуляции охлаждающего масла. Роль которого – отбирать тепло у обмоток, передавать через радиаторные трубки в окружающую среду.
Принцип действия устройства основан на:
- изменении магнитного потока;
- создании электромагнитной индукции при прохождении через обмотку;
- подаче напряжения на первичную обмотку;
- воспроизведении магнетизма электрическим током, изменяющимся во времени.
Переменный ток, протекая по первичной обмотке, начинает создавать в магнитопроводе магнитный ток. Постепенно приводит к потоку во всех обмотках, преобразуя гальваническую развязку (переменное напряжение), но без видоизменения частоты.
Стоит знать! Действие прибора основано на электромагнитной индукции. За счет переменного тока образуется магнитное переменное поле вокруг проводника, видоизменяется в электродвижущую силу. Напряжение на выходе полностью зависит от используемого (понижающего, повышающего) трансформатора. Коэффициент ЭДС в обмотках прямо пропорционален количеству витков.
Для чего нужен трансформатор напряжения?
Трансформатор напряжения – универсальное устройство. Передает и распределяет энергию.
Используются в:
- электроустановках;
- блоках питания;
- агрегатах передачи электроэнергии;
- устройствах обработки сигналов;
- источниках питания приборов.
Силовой трансформатор с большим напряжением применяется для:
- подачи энергии в электросети на электростанциях;
- повышения напряжения генератора, линии электропередач;
- снижения напряжения, доходящего до потребительского уровня.
Трехфазный прибор со специальной системой охлаждения используется в электросетях. Сердечник в составе – общий для всех 3-ех фаз.
Область применения сетевого трансформатора – источники электропитания, узлы электроприборов с разным напряжением. Импульсные агрегаты незаменимы для радиотехнических, электронных устройств. Сначала выпрямляют переменное напряжение в блоках питания. Далее за счет инвертора преобразуют высокочастотные импульсы, стабилизирующие постоянное напряжение.
Трансформаторы входят в состав многих схем питания для обеспечения минимального уровня высокочастотных помех. Например, разделительные установки предотвращают угрозу поражения электрическим током для человека. Ведь включение бытовых приборов в сеть через трансформатор становится безопасным.
Вторая цепь у прибора будет изолирована от контактов с землей, если конечно, речь идет о заземлении электрического оборудования. Измерительные силовые приборы применяются в схемах генераторов переменного тока. Количество фаз у генератора из трансформатора должно совпадать для достижения стабильного напряжения на выходе.
Согласующие трансформаторы незаменимы для электронных устройств с высоким входным сопротивлением и высокочастотных линий, но с разным сопротивлением нагрузки.
Как работает трансформатор напряжения?
Приборы преобразуют энергию источника в необходимый коэффициент напряжения. Работают исключительно при переменном напряжении с постоянной частотой. В основе работы – электромагнитная индукция как явление, срабатываемое при изменении во времени магнитного потока, порождении ЭДС в обмотках.
Работа трансформатора начинается в первичной обмотке, где сердечник создает магнитный поток. Далее задействуется переменный ток, намагничивает сердечник, повышает индуктивность первичной обмотки, препятствует нарастанию тока на выводах обмотки напряжения. Если первичная обмотка отдает магнитный поток, то вторичная принимает его, изменяет с определенной скоростью, пронизывая все ветки и создавая ЭДС.
Напряжение на ветках в полной мере зависит от быстроты изменения магнитного потока в сердечнике. Хотя получается одинаковым на ветках первичной и вторичной обмотки благодаря прохождению через них одного и того же магнитного потока.
Он в свою очередь создает вокруг себя электрическое поле в сердечнике, некий вихрь с воздействием на электроны, начиная толкать их в определенную сторону.
Справка! Если сказать проще, то принцип работы трансформатора напряжения основан на возбуждении напряжения во второй обмотке за счет возникшего переменного тока в магнитопроводе.
Чем отличается трансформатор тока от трансформатора напряжения?
Источником питания для трансформатора тока является непосредственно ток. Если он не будет проходить через обмотки, тот агрегат быстро выйдет из строя. Питание для трансформатора напряжения – источники напряжения и он также не будет функционировать при повышенных нагрузках тока.
Отличие между устройствами в разных электрических величинах и схемах включения.
Измерительные трансформаторы напряжения и тока
Приборы с работой под высоким напряжением нуждаются в периодическом измерении.
Для чего этих целей в помощь – измерительные устройства, которые:
- снижают величину напряжения до нужного уровня;
- обеспечивают гальваническую развязку измерительному оборудованию от цепей с повышенной опасностью.
Номинальная мощность, напряжение и ток
Номинальная – мощность, с которой трансформатор работает в определенном классе точности и в соответствии с ГОСТом. Выражается в вольтах, амперах. Незначительные отклонения мощности допускаются, но не выше нормированных величин.
Важно! Во избежание повышения погрешности вторичной нагрузки суммарное потребление обмоток измерительных приборов и реле не должно быть более номинальной мощности трансформатора. Узнать номинальную мощность можно в паспорте к агрегату либо на щитке.
Порог номинального напряжения у трансформатора – 10кВ.
Разница в зависимости от мощности электроприборов составляет для:
- питания электроприемников – 3-6,3кВ;
- крупногабаритных электродвигателей – до 1000В.
Мощность трехфазного трансформатора вычитается по формуле: – S=квадратный корень цифры 3 UIU—номинальное междуфазное напряжение, В; / — ток в фазе, А. Коэффициенты рабочих токов в обмотках при рабочем состоянии трансформатора не должны быть выше номинальных Хотя кратковременные перегрузки в масляных и сухих агрегатах до определенных пределов (2,5 -3%) приемлемы.
Закон Фарадея
По закону электромагнитной индукции во вторичной обмотке создается ЭДС напряжение. Вычисляется по формуле – U2 = −N2*dΦ/dt.
Справка! Фарадея – основной закон электродинамики. Гласит о том, что генерируемая электродвижущая сила равняется скорости изменения магнитного потока, но взятой со знаком минус. Именно Майкл Фарадей сделал открытие, когда в ходе экспериментов объявил, что электродвижущая сила начинает появляться в проводнике только при изменении магнитного поля. Величина этой силы прямо пропорциональна скорости изменения магнитного поля.
Все факты содержатся в одном уравнении. Однако, знак минус в законе – правило Ленца, указывающее на возникновение индукционного электрического тока при изменении магнитного поля в проводнике. Действие тока направлено на магнитное поле, начинающего противодействовать изменению магнитного потока.
Правило Ленца не подчиняется законам электродинамики, ведь индукционный ток появляется как в обмотках, так и в сплошных металлических блоках.
Уравнения идеального трансформатора
В таком трансформаторе силовые линии проходят через все ветки первичной, вторичной обмотки. Значит, отсутствуют вихревые потоки и потери энергии. Магнитное поле изменяется, но порождает идентичную ЭДС во всех витках, поэтому становится прямо пропорциональным их общему числу.
Энергия при поступлении из первичной цепи трансформируется в магнитное поле, далее поступает во вторичной цепи.
Формула уравнения идеального трансформатора – P1 = I1 • U1 = P2 = I2 • U2:
- R1 – коэффициент поступающей мощности из первой цепи на трансформатор;
- R2 – коэффициент преобразованной мощности с поступлением во вторичную цепь.
Если повысить напряжение на концах вторичной обмотки, то снизится уровень тока первичной цепи. Согласно уравнению – U2/U1 = N2/N1 = I1/I2 преобразование сопротивления одной цепи к сопротивлению другой возможно только при умножении величины на квадрат отношения.
Как правильно подключить
Во всех тонкостях электрики сложно разобраться простому человеку, но при использовании трансформатора понижающего типа в быту важно понимать, как происходит процесс подключения.
Бывает, что возникает потребность подключения агрегата сразу на нескольких потребителей.
Стоит знать:
- При подключении трансформатора сразу на несколько потребителей важно учитывать количество выходных клемм.
- Общая потребляемая мощность для жильцов должна быть идентичной мощности трансформатора либо немного ниже. По мнению специалистов, идеальный второй показатель выше первого – на 20%.
- Подключается агрегат через электрическую проводку, размер которой не должен быть слишком большим. Достаточно 2 м при монтаже светодиодного освещения во избежании потери мощности.
- Суммарная мощность электроприборов не должна быть выше мощности трансформатора.
Если посмотреть на схему подключения понижающего трансформатора, то видно, что монтируется между распределительной коробкой мощностью 220 Вт и лампами накаливания. Провода из распредкоробки подключаются непосредственно к выключателю.
Подключение трансформатора напряженияДополнительная информация! Стоит изначально определять правильное место установки электрического понижающего трансформатора. Нельзя его усердно прятать от посторонних глаз, ведь доступ для демонтажа либо замены должен быть свободным. При этом потребляемая мощность – не ниже мощности трансформатора, иначе процесс монтажа проводить запрещено.
При подключении важно, чтобы совпадали все уравнения, касающиеся модели прибора. Также существенное значение имеет фазировка, если в одну цепь подключается сразу несколько приборов параллельно. Во избежание больших потерь мощности фазы должны быть правильно соединены между собой с образованием замкнутого контура. При несовпадении фаз начнет расти нагрузка и падать мощность. Может произойти короткое замыкание.
Важно! Смотрите на фото, как выглядит упрощенный вид трансформатора.
Трансформатор – электромагнитный аппарат. Повышает либо понижает напряжение переменного тока. Он лишен подвижных частей. Значит, является статическим. По размерам бывает с трехэтажное здание либо миниатюрное, помещаемое в руку. В составе – сердечник и несколько обмоток с расположением на магнитопроводе. Хотя может содержать всего одну обмотку без сердечника.
При работе трансформатора срабатывает принцип электромагнитного взаимодействия. Переменный ток подается на первичную обмотку, меняет направление дважды за цикл. Значит, что вокруг обмотки образуется магнитное поле, но ежесекундно исчезает. Вторичная обмотка – проводник электромагнитного взаимодействия. Там же индуцируется напряжение.
Конечно, простому человеку сложно понять конструкцию, назначение прибора. Для познания можно просто разобрать, прозвонить, подключить или демонтировать в домашних условиях.