Posted on

Содержание

Системы защитного заземления TNC, TNCS, TNS, TT, IT

 

Стандарт Стандарт ПУЭ 1.7, EN60950, IEC60364
Схемы электроснабжения нагрузки TNC, TNCS, TNS, TT, IT

 

TNC – Нейтраль и PE («земля») объединены вместе везде в системе в единую щину PEN.
Neutral and PE (protected earth conductor) are combined throughout the system.

 

TNS – Нейтраль соединена с землёй трансформатора, но не соединена с землёй (PE) где-нибудь ещё в системе. PE приходит на объект от трансформатора отдельно и может быть соединена с местной землёй.

Neutral is earthed at the transformer but is not bonded to earth or the PE elsewhere. PE is carried to the site from the transformer and bonded to site earth.

 

TNCS – Общая в начале шина PEN затем разъеделяется на 2 отдельных проводника: N (нейтраль) и PE (защищённую шину земли). Стандарт США – разновидность данного. Нейтраль заземлена на трансформаторе.

TNCS splits the combined PEN into a separate neutral and PE at service entry (U.S. practice is a variation of this). The neutral is earthed at the transformer.

TT – Нейтраль заземлена на трансформаторе. Местная Земля – PE (объект-потребитель) не связана с нейтралью. Между землёй трансформатора и землёй потребителя (PE) соединений нет.

Neutral is earthed at the transformer. The PE originates at site but is not bonded to the neutral. There is no interconnection between PE and transformer earth.

 

IT – Нейтраль трансформатора не заземлена (или заземлена через сопротивление с высоким импедансом).

The transformer is unearthed (or earthed through high impedance). The PE originates at site but is not bonded to a service conductor; no conductor in this system is designated as ‘neutral’ (standard IT system).

Разновидности IT системы:

  • A) проводник «N / Нейтраль» отсутствует в системе (стандартная счистема IT).
  • B) проводник «N / Нейтраль» есть в системе.

Нейтраль на потребителе также не заземлена (или заземлена через сопротивление с высоким импедансом).

Для обоих случаев возможны разновидности:

  • I) Местная Земля – PE (объект-потребитель) отсутствует. Потребитель использует PE от трансформатора.
  • II) Местная Земля – PE (объект-потребитель) есть. Потребитель может использовать местную Землю или Землю трансформатора. Эти Земли могут быть как соединены так и не соединены.

Главное требование системы IT – незаземлённая или импедансно-заземлённая нейтраль трансформатора.

 

 

Термины / сокращения:

  • T – Terra / Земля (лат. terra, франц. terre)
  • N – Neutral / Нейтраль
  • C – Combined / Совмещённый
  • S – Separated / Отдельный
  • I – Isolated / Изолированный (франц. terre isolee)
  • PE – Protected Earth conductor / Защищённая шина Земли
  • PEN – Protected Earth + Neutral conductor / единая шина объединяющая Нейтраль (N) и Землю (PE)

 

 

Различные стандарты СИСТЕМ ЗАЗЕМЛЕНИЯ

Трём системам заземления дан официальный статус посредством стандарта (IEC 60364) который подразделяется на большое число национальных стандартов.

 

Системы TN

Основные принципы схемы TN:

  • Нейтраль трансформатора заземлена, поэтому корпуса нагрузок (подключенные к заземлению PE или PEN трансформатора) оказываются гальванически соединены с нейтралью.
  • Нагрузка не имеет местного заземления.

Существующие варианты схемы TN:

  • TNC – «Земля» и нейтраль объединены в 1 проводнике (PEN) (C = Combined).
  • TNS – «Земля» и нейтраль разъединены (PE и N) (S = Separate).
  • TNCS = TNC+TNS Объединённые вначале «Земля» и нейтраль затем разъединяются (CS = Combined then Separate). То-есть TNC преобразуется в TNS.

Система TNS не может существовать перед системой TNC.

 

Система TNС (TN-C). Нарушение изоляции в системе TNC

Общие замечания:

В системе TNC, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Однако этого может привести к возникновению пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Cистема имеет самый низкий уровень безопасности так как УЗО корректно установить невозможно.

Несмотря на опасность система продолжает использоваться в России в т.ч. на госпредприятиях. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:

b_300_0_16777215_0___images_stories_reference_tech-articles_protection-systems_101.png

Рис.1. Нарушение изоляции в системе TNC

Возможные варианты:

  • Человек коснулся фазного проводника и «Земли» одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус (на «Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус (на «Землю»).

 

Система TNS (TN-S). Нарушение изоляции в системе TNS

Общие замечания:

В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Максимальная степень безопасности может быть достигнута путём установки УЗО. Система является самой распространённой в мире. В России введена как стандарт.

Степень безопасности TNS выше чем TNC по следующим причинам (П1, П2):

  • П1) защитные автоматы в TNS при срабатывании могут размыкать цепь полностью (как нейтраль так и фазы), защитная шина «Земли» PE продолжает при этом выполнять свои функции. В то время, как и в системе TNC при аварии могут быть разомкнуты только фазы.
  • П2) Защитный проводник «Земля» PE выполняет только свои функции, то есть служит заземлением. В то время как в системе TNC защитный проводник выполняет сразу две функции:  заземления и нейтрали, что может привести к проблемам, например: нагрузка (ПК) будет «зависать» от помех из-за некачественного заземления, так как на заземляющем проводнике возникают наводки (помехи), вызванные текущим по нему току нагрузки.

Подробные замечания:

b_300_0_16777215_0___images_stories_reference_tech-articles_protection-systems_102.png

Рис.2. Нарушение изоляции в системе TNS

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

 

Система TNСS (TN-C-S). Нарушение изоляции в системе TNСS

Общие замечания:

В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Система защиты имеет средний уровень безопасности, так как установив УЗО можно добиться достаточно высокой степени безопасности, но при этом остаётся проблема некачественного заземления из-за использования объединённой шины PEN.

Используется достаточно часто в России. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:

b_500_0_16777215_0___images_stories_reference_tech-articles_protection-systems_103.png

Рис.3. Нарушение изоляции в системе TNCS

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

 

Система TT

Основные принципы схемы TT:

  • Нейтраль трансформатора заземлена.
  • «Земля» / корпус нагрузки также заземлены.
  • «Земля» трансформатора не связана кабелем с землёй нагрузки / потребителя (PE).

 

Нарушение изоляции в системе TT

Общие замечания:

Степень безопасности зависит от сопротивления между «Землей» трансформатора ТП и «Землей» потребителя. Если это сопротивление низкое, безопасность такая же как в TNS с УЗО. Если это сопротивление высокое, безопасность системы снижается, так как УЗО может не сработать.

Установка УЗО является общепринятой в системе TT. Данная система в России используется редко.

Подробные замечания:

b_300_0_16777215_0___images_stories_reference_tech-articles_protection-systems_104.png

Рис.4. Нарушение изоляции в системе TT

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

Показана стандартная схема ТТ с УЗО. Ток пробоя (нарушения) изоляции фазных проводов и нейтрального провода ограничен сопротивлением (импедансом) участка между «Землей» трансформатора и «Землей» потребителя.

Защита обеспечена Устройством защитного отключения (УЗО): повреждённый блок / участок отключается устройством УЗО как только порог тока ΔI УЗО помещённого перед данным блоком / участком будет превышен током утечки / пробоя изоляции (на землю) IL:

IL > ΔI

IL = UL / RL – ток пробоя / утечки / leakage

Условие надёжной работы УЗО:

R (CD) << 220 В / ΔI; для УЗО с ΔI=30мА: R (CD) << 7кОм.

R(AB) =RL – сопротивление повреждённого участка (между точкой токоведущего проводника из которого произошла утечка на «землю» и «Землей»).

U(AB) =UL – разность потенциалов между точкой токоведущего проводника (из которого произошла утечка на «землю») и «Землей» (напряжение пробоя).

R(CD) – сопротивления между «Землей» трансформатора ТП и «Землей» потребителя.

Если R(CD) мало (в норме), то при нарушении изоляции срабатывание УЗО будет обеспечивать безопасное отключение аварийного участка и свидетельствовать, что это место подлежит ремонту.

Если R(CD) велико (не в норме) и УЗО работать не будет, то первое нарушение изоляции не приведёт к удару током, но отсутствие сработавшего УЗО не позволит обнаружить аварию и сделать своевременный ремонт, а второй пробой приведёт к аварии.

 

Система IT (Изолированная нейтраль)

Основные принципы схемы IT:

  • Нейтраль трансформатора НЕ заземлена. Но не заземлена только теоретически. Фактически она заземлена посредством паразитных ёмкостей кабелей и / или принудительно через высокое сопротивление около 1.5 кОм («импедансно-заземлённая нейтраль»).
  • Земля/корпус нагрузки заземлены.

 

Нарушение изоляции в системе IT

Подробные замечания:

b_500_0_16777215_0___images_stories_reference_tech-articles_protection-systems_105.png

Рис.5а. Одиночный пробой / нарушение изоляции в системах IT

b_500_0_16777215_0___images_stories_reference_tech-articles_protection-systems_106.png

Рис.5б. Двойной пробой / нарушение изоляции в системах IT

 

Если происходит первое нарушение изоляции на фазном проводнике, в месте нарушения развивается и протекает небольшой ток (между токоведущим проводником и «Землей»), обусловленный паразитными емкостями кабелей (и / или дополнительным принудительным высоким сопротивление ZN Нейтраль-«Земля») (см. рис. 5а). Контактная разность потенциалов (напряжение пробоя) U(A1B1) = UL1 при этом достигает всего нескольких вольт и не опасно (ток также не опасен):

IL1 = UФ / Rлинии

UL1 = RL1 * IL1

Первое нарушение изоляции не опасно в IT! То есть человек безопасно может коснуться одновременно фазы и «Земли »в IT.

RL1 – сопротивление повреждённого участка (между точкой токоведущего проводника из которого произошла утечка на землю и «Землей».

Rлинии – сопротивление линии, включающее паразитные емкостные сопротивления кабелей RП и принудительное высокое разрядное сопротивление Нейтраль-«Земля» ZN (если установлено).

UL1 – разность потенциалов между точкой токоведущего проводника (из которого произошла утечка на землю) и «Землей» (напряжение пробоя).

Uф – фазное напряжение трансформатора

IL1 – ток пробоя / утечки / leakage.

 

Если происходит второе нарушение изоляции на другом фазном проводнике, в то время как первое нарушение ещё не устранено (см. рис. 5б), контактная разность потенциалов второго места нарушения (напряжение пробоя) равна UL2 = √3*UФ-UL1 может быть велика и опасна.

При малых сопротивлениях первого и второго повреждённых участков (RL1, RL2) значительный ток утечки может протекать по проводнику, соединяющему «земли» первого и второго повреждённого участков (корпуса нагрузок):

IL1 = IL2 = √3*UФ / (RL1 + RL2)

Второе нарушение изоляции опасно в IT!

Корпуса нагрузок приобретают потенциалы, обусловленные этим током. Таким образом, если КЗ на 1 участке не опасно то последующее КЗ на 2 участке так же опасно, как и в системах TN. Поэтому необходимо УЗО.

 

Обозначения:

  • UL1 (UL2) – напряжение пробоя первого (второго) повреждённого участка.
  • UФ – фазное напряжение трансформатора.
  • IL1 (IL2) – ток пробоя/утечки 1 участка (2 участка).
  • RL1 (RL2) – сопротивление 1 (2) повреждённого участка.

Совместное использование автоматов токовой защиты и УЗО обеспечивают в данных случаях необходимую защиту. В этом случае по безопасности система IT сравнима с TNS с УЗО, то есть срабатывание УЗО (аварийный участок отключается) свидетельствует о том, что произошло первое нарушение изоляции и позволяет его своевременно устранить.

Для надёжного срабатывания УЗО требуется установка принудительного сопротивления ZN (Нейтраль-«Земля») обычно не более 1500 Ом. Без этого сопротивления первый пробой нельзя обнаружить (и своевременно устранить), если в системе других устройств нет (кроме УЗО и токовых автоматов – см. ниже).

Кроме этих возможностей, только система IT позволяет ещё сильнее повысить безопасность.

Дополнительно повысить степень защищённости можно установкой ПМИ / PIM (постоянного мониторинга изоляции / датчика изоляции). ПМИ представляет собой высокоомный амперметр (или вольтметр, подключенный параллельно ZN), включаемый так же как и ZN между Нейтралью и «Землей» ТП.

ПМИ позволяет:

  • Точно фиксировать серьёзные пробои фаза – «Земля», вплоть до КЗ.
  • Постоянно фиксировать состояние изоляции проводников в системе (медленное старение и ухудшение параметров изоляционного материала).

В отличие от остальных систем (TN, TT), это позволяет обнаружить первое нарушение изоляции, но не отключать аварийный участок (так как в IT первое нарушение изоляции не опасно), а довести работу на нём до конца, и только после ее завершения произвести штатное отключение и ремонт изоляции. Это особенно важно, например, для больниц и др. мест где важно не столько своевременно автоматически «отрубить» аварийную цепь, сколько заранее устранять все неисправности и исключать возможности внезапного неконтролируемого автоматического отключения цепей. Поэтому система IT введена во многих странах как стандарт для госпиталей, сооружений связанных с проводящими средами (водой, землёй и др.), например, корабли, метро и др. мест требующих повышенной безопасности.

Таким образом под повышенной безопасностью системы IT понимается возможность безопасно обнаруживать и устранять аварии изоляции всех проводников в системе.

В IT системе установка токовых автоматов обязательна. УЗО устанавливаются в зависимости от особенностей нагрузок и применяемых ZN и ПМИ.

Кроме этого, сами защитные цепи ПМИ дополнительно защищаются, например, на ТП с помощью разрядника или блока защиты от выбросов напряжения (surge limiter, surge suppresor).

 

 

Обозначения:

  • SCPD (Short-Circuit Protection Device) – автомат защиты от короткого замыкания, токовый автомат, автоматический выключатель с термомагнитным расцепителем. Автомат размыкает цепь, если ток в цепи превысил паспортный номинальный ток автомата.
  • RCD (Residual Current Devices) – УЗО, устройство защитного отключения, устройство разностного тока или более точное название: устройство защитного отключения, управляемое дифференциальным (остаточным) током, сокращенно УЗО−Д) или выключатель дифференциального тока (ВДТ) или защитно-отключающее устройство (ЗОУ) – механический коммутационный аппарат, который при достижении (превышении) дифференциальным током заданного значения вызывает размыкание цепи нагрузки.
  • PIM (permanent insulation monitor) – ПМИ постоянный мониторинг изоляции / датчик изоляции.
  • ZN optional impedance – дополнительное принудительное сопротивление Нейтраль-Земля на ТП.
  • Surge Limiter (surge suppresor, surge arrestor) – разрядник или блок защиты от выбросов напряжения или блок защиты от перенапряжения.

 

Внимание!

Все вышеприведённая информация относится к защите пользователя, имеющего доступ только к изолированным проводам и электрооборудованию в защитном корпусе.

Пожалуйста помните, что более глубокое проникновение в электрооборудование может быть опасно для жизни, даже при самых безопасных системах заземления, при использовании автоматов, УЗО, датчиков изоляции и т.п.

Примеры тяжёлой опасности для человека:

 

Пример 1

Установлены: Любая система заземления. Любые устройства защиты в цепях переменного тока. ИБП 100 кВА – батареи в батарейном кабинете всегда под напряжением (в том числе. при отключенном ИБП) и опасны.
ВНИМАНИЕ! ВЫСОКОЕ ПОСТОЯННОЕ НАПРЯЖЕНИЕ!

 

Пример 2

Система IT. Есть автомат. Есть УЗО. Есть датчик изоляции. Есть изолированный коврик. Имеется любое устройство, например, электромотор, стабилизатор, ИБП 100 кВA. Касание (одновременное) человеком фазы и нейтрали или двух фаз на клеммной панели (или соответствующих проводов с нарушенной изоляцией) этого устройства опасно
ВНИМАНИЕ! ВЫСОКОЕ ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ!

(УЗО не сработает, если человек находится на изолирующем коврике!)

 

Пример 3

Так же поражение человека может случиться вообще без касания им проводников под током, например гаечный ключ уроненный на клеммы сборки аккумуляторов 100 А·ч может сгореть как предохранитель с опасной световой вспышкой и поражая окружающее пространство брызгами металла.

 

Внимание!

Для обеспечения полной безопасности необходимо ещё 4 дополнительных условия:

  1. Разработчик оборудования принял меры по обеспечению высокого уровня безопасности оборудования и его обслуживания.
  2. Инженер, работающий с оборудованием, принял меры по обеспечению высокого уровня безопасности проводимых работ.
  3. Окружающая среда в норме, например, температура, влажность в норме и нет опасности прорыва соседней водопроводной трубы и т.д.
  4. Часы наработки оборудования не превысили опасный предел (вопрос времени).

 

Система заземления TN-C | Заметки электрика

Здравствуйте, уважаемые гости и читатели сайта «Заметки электрика».

Начинаю серию статей про системы заземления. И сегодня Вашему вниманию я представляю статью на тему системы заземления TN-C.

Для чего же нужно знать про системы заземления?

Да все очень просто. Когда мы приобретаем квартиру, дачу или дом (коттедж), мы сталкиваемся с многочисленными вопросами в области электричества. В ответ же слышим разносторонние ответы от специалистов. Кто-то советует провести монтаж контура заземления, другие дают совет по занулению электрооборудования, а третьи вообще говорят все оставить как есть.

Как же понять — кто прав, а кто нет? Какого мнения стоит придерживаться?

Впредь чтобы не возникало подобных вопросов, мы с Вами подробно и поочередно познакомимся со всеми системами заземления.

Система заземления TN-C

Самая старая и распространенная система заземления, которая существовала в нашей стране очень долгое время и, к сожалению, продолжает существовать — это система TN-C.

Заземление в такой системе выполнено следующим образом: контур заземления (другими словами заземляющее устройство ЗУ) выполнен на трансформаторной подстанции ТП, питающей наш дом.

Нулевой проводник соединен с контуром заземления и приходит к потребителю одним проводом (PEN) в качестве защитного и рабочего проводника. Нулевой проводник в данной системе так и называется — PEN проводник.

Для наглядности приведу схему этажного щита на 3 квартиры на примере жилого дома.

 

Электропроводка в таком случае выполняется кабелями с двумя жилами (фаза, PEN) при однофазном питании квартиры или с четырьмя жилами (А,В,С, PEN) при трехфазном питании.

В розетках отсутствуют контакты защитного заземления. Если корпус электрооборудования (электрический прибор, корпус щитка или сборки) соединим с PEN проводником, то такая защита будет называться занулением.

 

Достоинства системы TN-C

Система TN-C обладает всего одним достоинством — электромонтаж такой системы относительно прост и является дешевым.

Недостатки системы заземления TN-C

А вот про недостатки поговорим подробнее.

В этой системе заземления существует угроза поражения людей электрическим током, что приводит к плачевным ситуациям. Вот пример несчастного случая на производстве, можете ознакомиться с ним.

Если Вам специалист-электрик рекомендует провести электромонтаж с системой заземления TN-C, то сразу же отказывайтесь от такого электрика.

Система заземления TN-C. Что делать? Как исправить?

Уважаемые, потребители электрической энергии. В данной ситуации отчаиваться не стоит, т.к. при реконструкции (модернизации) и вновь монтируемых объектах устанавливать систему TN-C строго запрещено!!!

Энергоснабжающим организациям, обслуживающим электрические сети наших домов, необходимо (рекомендовано) систему TN-C перевести на систему заземления TN-C-S или  TN-S, путем модернизации схем электроснабжения. Но в связи с отсутствием финансовых средств, энергоснабжающие организации делают проще. Они на вводе в дом устанавливают повторное заземление нулевого проводника. А далее производят разделение PEN проводника на два отдельных проводника:

  • нулевой рабочий проводник N
  • защитный проводник PE

Более подробно об этом Вы можете прочитать в статье про разделение PEN проводника.

Если Вы не представляете как самостоятельно определить систему заземления Вашей квартиры или дома, то пригласите специалистов электролаборатории.

P.S. А у Вас какая система заземления используется в Вашей квартире?

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Базовые системы заземления. Их устройство и назначение

Системы заземления, как и другие системы, имеют свои разновидности. Каждая из этих разновидностей имеет свои достоинства и, соответственно, недостатки.

Системы заземления TN-C

Все линии электропередач, которые идут от трансформаторных подстанций до вводно-распределительных устройств ВРУ, в нашей стране выполняются в четырехпроводном варианте (три провода это фазы, а четвертый PEN – совмещенный нулевой проводник). Такая схема от подстанции до ВРУ условно называют TN-C.

В домах и сетях старой постройки проводник PEN не расщеплялся, а так и использовался в виде PEN. То есть, для однофазных потребителей шло всего два провода (фаза L и PEN), а для трехфазных четыре – (три фазы L1, L2, L3, PEN).

Расшифровывается TN-C так:

Т – (от латинского terra) заземленная нейтраль, означает, что нейтральный провод источника питания связан непосредственно с землей;

N – (от итальянского neutre ) обозначает что источник питания заземлен, а потребители могут заземлятся только через PEN проводник;

С – означает, что функции нулевого рабочего и нулевого защитного проводника совмещены в одном PEN (с английского combined).

Схема такой системы показана ниже:

Система заземления TN-C

К плюсам такой системы заземления можно отнести ее простоту и экономичность. Но минусов в ней гораздо больше. А именно, отсутствие отдельного заземляющего провода PE. В жилых домах с такой системой электропитания отсутствует заземление. При использовании TN-C применяют зануление, что является не лучшим решением.

TN-C является устаревшей. Используется она, практически, только в домах старой постройки, и ее не рекомендуют использовать при проектировании и строительстве новых домов.

Система заземления TN-S

При проектировании и монтаже современных сетей электроснабжения жилых зданий применяют модель типа TN-S, когда проводник PEN расщепляется при вводе в здание (ВРУ) на два проводника:

  • Рабочий нулевой N;
  • Защитный нулевой PE;

Расщепление PEN проводника в ВРУ

Где а) схема расщепления, б) наглядное представление.

В этой системе к потребителю уже пойдет не два провода, как в TN-C, а три для однофазных потребителей (L, PE, N), а для трехфазных пять (L1, L2, L3, N, PE). Такая схема, начиная с ВРУ, и заканчивая конечным потребителем электрической энергии условно называют TN-S, где T и N смотри выше, а S – (от английского separated) означает что защитный нулевой PE и нулевой рабочий N проводники расщеплены.

Схема такой реализации заземления показана ниже:

Система заземления TN-S

Достоинством TN-S является высокий уровень безопасности при ее применении. Рекомендована при строительстве новых зданий, хорошо защищает человека, оборудование и защиту зданий.

Недостаток – стоимость, так как требует прокладки от трансформаторной подстанции пяти кабелей для трехфазных сетей и трех для однофазных, что несколько увеличивает ее стоимость. Поэтому очень широкого распространения данная система не получила.

Система заземления TN-C-S

Поскольку TN-S довольно дорогостоящая, а TN-C устаревшая, то решили совместить  достоинства TN-S и TN-C и таким образом создать комбинированную систему из двух ранее рассмотренных. Она получила название TN-C-S – здесь нулевой и рабочий проводники объединяют  в один PEN. Он идет от источника питания до ввода в здание (TN-C). После ввода в здание проводник PEN расщепляют на нулевой рабочий проводник N и нулевой защитный PE. Также нужно помнить, что после того, как произведено расщепления, такую систему необходимо повторно заземлить при вводе в здание!

К достоинствам можно отнести то, что TN-C-S технически довольно легко выполнима. Также довольно легко осуществить переход от TN-C к TN-C-S.

Недостатком будет то, что при модернизации от TN-C к TN-C-S необходимо модернизировать стояки в подъездах.

Схема приведена ниже:

Система заземления TN-C-S

Система с заземленной нейтралью ТТ

ТТ – это система, где нейтраль, принадлежащая источнику питания глухо заземляется, а вот открытые проводящие части заземляются отдельно, при помощи специального заземляющего устройства, которое электрически независимо от нейтрали.

Расшифровывается ТТ как:

Т – заземленная нейтраль, связь нейтрали источника электрической энергии с землей непосредственна;

Т – открытые проводящие части заземлены. Это значит, что заземление проводится локально (по месту) независимо от нейтрали.

Схема показана ниже:

sistema-zazemleniya-s-zazemlennoj-nejtralyu-tt

Достоинством такого заземления будет то, что контур заземления РЕ абсолютно не зависит от нейтрального провода N. Что при его разрушении на подстанции или на пути от подстанции к потребителю абсолютно не повлияет на контур РЕ.

Но есть и минусы, а именно – требуется более сложный контур молниезащиты, что бы избежать появления пиков между N и РЕ. Также в данной системе автоматическому выключателю довольно сложно отследить КЗ на корпус, так как при местном заземлении сопротивление его  довольно велико.

Более того, ПУЭ рекомендует систему ТТ как дополнительную, при условии, что подводящая линия не может удовлетворить требования TN-C-S по механической защите РЕ и повторному заземлению. Также в электроустановках, в которых при касании возможен непосредственный контакт с землей или же с заземленными металлическими элементами.

Также нужно помнить, что при использовании ТТ необходимо обязательно применять УЗО. Как правило, в таких системах применяют вводное УЗО имеющее уставку 100 – 300 мА и отслеживающее КЗ между РЕ и фазой. После него устанавливают  УЗО персональные для конкретных цепей с токами уставки 10-30 мА.

Система с изолированной нейтралью IT

В IT нейтраль физически не имеет контакта с землей или имеет, но через устройства имеющие большое сопротивление, а токопроводящие элементы системы при этом заземляются.

Расшифровывается IТ как:

I – (от английского isolation) изолированная нейтраль;

Т – обозначает наличие локального (местного) заземления частей электроустановок;

В таких системах ток утечки на корпус или землю будет довольно низким и не окажет влияния на работу оборудования.

Применяют IT в установках специального назначения, с повышенными требованиями к надежности и безопасности (например, в больницах для реализации аварийного электроснабжения).

Система заземления с изолированной нейтралью IT

что это и как выполнить?

Эта статья снова посвящена заземлению. Система заземления TN-C-S считается достаточно популярной на сегодняшний день. Принцип системы TN-C-S достаточно прост и он основывается на том, что PEN проводник должен разделяться в определенном месте. К потребителю он приходит двумя отдельными проводниками:
– Нулевой рабочий проводник N.
– Защитный проводник PE.

В этой системе заземления вы также можете устанавливать розетки, которые имеют клеммы заземления. Защитный проводник PE необходимо соединить с корпусом электрооборудования. Нулевой проводник N служит для того чтобы передавать электроэнергию потребителям. В этой статье вы найдете подробную информацию о том, как выполнить монтаж системы заземления TN-C-S.

Система заземления TN-C-S и разделение проводника

Система заземления типа tn c s предполагает в себе разделение PEN проводника в системе TN-C-S. Многие электромонтажники осуществляют разделение проводника на вводе в жилой дом.

Для того чтобы выполнить разделение PEN проводника вам необходимо чтобы ВРУ имели:

  • Нулевую шину.
  • Шину заземления PE.

Для выполнения этого процесса вам необходимо соединить PEN проводник с шиной заземления PE. Между шиной заземления PE и нулевой шиной N вам необходимо установить перемычку. Если вы выполняете эту систему, тогда вам необходимо знать отличия зануления от заземления.

Система заземления TN-C-S предполагает в себе то, что шину заземления PE вам необходимо будет соединить с контуром жилого дома.

Преимущества системы заземления TN-C-S

Система TN-C-S считается наиболее перспективной системой заземления. Основным преимуществом считается то, что схема системы заземления tn-c-s считается достаточно простой. Разобраться с ней может каждый. Посмотреть схему можно на фото ниже.

Это далеко не все ее преимущества. Ко второму преимуществу можно отнести то, что она имеет высокую безопасность. С ее помощью вы сможете защитить жизнь человека от поражения электрическим током. При установке этой системы также необходимо выполнить установку УЗО и систему уравнивания потенциалов.

Основные недостатки системы TN-C-S

Система заземления TN-C-S также может иметь и недостатки. Наиболее главный недостаток может возникнуть в случае обрыва проводника PEN. Если изоляция будет нарушена, тогда может возникнуть проблема напряжения электрических приборов. Впоследствии это может привести к повреждениям человека от тока. При необходимости вы можете выполнить систему уравнивания потенциалов.

Вывод

Если в ваших домах установлена система заземления TN-C, тогда вам следует задуматься о переходе на более новую и надежную систему TN-C-S. От этого перехода будет зависеть ваша безопасность. Система заземления TN-C-S должна выполняться только профессионалами.

Читайте также: контур заземления в частном доме.

Характеристика существующих ныне систем заземления



Характеристика существующих ныне систем заземления