Как выбрать тепловое реле для двигателя по мощности и току
Продолжительная работа механизма на максимуме вызывает перегрев обмоток и порчу изоляции, в результате чего происходит межвитковое замыкание, перерастающее в обширное выгорание полюсов двигателя и дорогостоящий ремонт. Чтобы этого не происходило, в цепь питания устанавливается реле, которое называют тепловым или «теплушкой». По цепи питания данный аппарат контролирует величину тока и при длительном отклонении от номинала установки, размыкает контакты, лишая питания цепь управления, размыкая пусковое устройство. В этой статье мы расскажем, как выбрать тепловое реле для двигателя по мощности и току.
Методика выбора
Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.
Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.
Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.
Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4.9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.
Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.
Что делать, если паспортные данные не известны?
Для этого случая рекомендуем использовать токовые клещи или мультиметр С266, конструкция которого также включает токоизмерительные клещи. С помощью данных приборов нужно определить ток мотора в работе, измерив его на фазах.
В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.
Кстати, недавно мы рассмотрели принцип действия и устройство тепловых реле, с чем настоятельно рекомендуем вам ознакомиться!
В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.
Напоследок рекомендуем просмотреть полезное видео по теме:
Надеемся, прочитав нашу статью, вам стало понятно, как выбрать тепловое реле для двигателя по номинальному току, а также мощности самого электродвигателя. Как вы видите, условия выбора аппарата не сложные, т.к. можно без формул и сложных вычислений подобрать подходящий номинал, используя таблицу!
Советуем также прочитать:
защита, выбор по мощности, таблица и номинальный ток, трехфазного
Тепловое реле используют для защиты асинхронных электродвигателей от токов перегрузкиВ современном мире, личные хозяйства или различные производства, подразумевают использование электродвигателей. Данные устройства, различают по многим параметрам. Но важно понимать, что обеспечить качественную работу данных устройств, можно только при использовании дополнительного оборудования в виде различных тепловых реле или пускателей.
Обеспечение защиты электродвигателей
На работу различных видов двигателей (синхронный или асинхронный), могут влиять некоторые условия. Поэтому для защиты электродвигателя, в схему подключения встраивают дополнительные устройства.
Тепловые реле представляют собой набор биметаллических расцепителей (по одному на каждую фазу), по которым протекает ток, оказывающий на пластины тепловое действие
- Защита от КЗ;
- От перегрузки;
- Тепловая (защита от перегрева).
В первую очередь, для корректной работы двигателей (однофазного или трехфазного) в определенных электросетях, необходимо определить, какое устройство лучше подойдет для защиты.
Обратите внимание! Устройство, установленное для защиты двигателя, должно отвечать правилам ПУЭ и отключать подачу электроэнергии к потребителю в автоматическом режиме.
Наряду со многими устройствами, данную функцию может выполнять простейший механизм в виде плавкой вставки. Соединение данных предохранителей, производится посредством специального выключателя.
Все электродвигатели, рассчитаны на определенный номинальный (рабочий) ток, поэтому, для защиты от токовых перегрузок, необходимо подобрать и рассчитать устройство, которое обеспечит данный вид защиты.
Данную работу выполняют плавкие предохранители, работающие с ручным выключателем. При непродолжительных нагрузках, предохранители продолжают работать, но при увеличении нагрузки, срабатывают незамедлительно.
Другим видом плавких предохранителей, являются устройства, быстро срабатывающие. Данные предохранители , способны выдерживать нагрузки до 500 % номинального тока. Использовать такие предохранители рекомендуется в сетях, не подверженных высоким переходным токам.
При условии, что пусковой ток электродвигателя достаточно высокий, для защиты используют предохранители, которые срабатывают на перегрузку с некоторой задержкой. Если время перегрузки превышает установленное, предохранитель размыкает цепь.
Тепловые реле для защиты электродвигателей: как выбрать
При работе двигателя, может выделяться достаточное количество тепла, которое приводит к разрушению изоляции обмотки и другим повреждениям. Для обеспечения защиты от воздействия тепла на электродвигатель, используют тепловое реле.
Как произвести выбор реле:
- По мощности;
- Номинальному току.
Основным фактором, определяющим правильный выбор теплового реле, является номинальный (рабочий) ток устройства (уставка). Для этого, на корпусе двигателя или в паспорте устройства, необходимо найти значение с обозначением – in.
Обратите внимание! Правилами ПУЭ прописано, что рабочий ток устройства определяется исходя из значений безопасности помещения.
Для правильного подбора, используется специальная таблица, в которой указаны все допустимые значения различных устройств, согласно которых производится расчет. Стоит отметить, что выбор значений защитного устройства, определяет и рабочая сеть (220 или 380 В). Например, на данном двигателе, могут указываться сразу два значения токов ( 220 – 5 А, и 380 – 2.9 А).
Предположим, необходимо осуществить выбор теплового реле, для двигателя, мощность которого составляет 1,1 кВт, при подключении к сети 380 Вольт.
В данном случае (in) двигателя равняется 2,8 А. При этом, стоит учитывать и допустимые значения теплового реле (125 % от значений двигателя), которое составляет 3,5 А. Таким образом, для обеспечения оптимальной защиты электродвигателя, лучше всего использовать устройство в котором диапазон рабочего тока регулируется в пределах от 2,5 до 4 Ампер.Бывает так, что данные электродвигателя неизвестны или не читаемы. В таком случае, можно воспользоваться специальными измерительными клещами.
Выбор магнитного пускателя для электродвигателя
Для своевременного включения и выключения электродвигателя, необходимо использования автоматического выключателя (автомата). Для этих целей используют два вида устройств.
Основной характеристикой теплового реле является зависимость времени срабатывания от тока нагрузки
Виды устройств:
- Контактор;
- Пусковое реле.
Стоит отметить, что в состав обычного контактора, входят только электромагнитная катушка и контактная группа. Что обеспечивает только включение и отключение подачи питания к электродвигателю. Поэтому различная аппаратура, может быть защищена от сгорания данным устройством.
Обратите внимание! Пусковое реле, обладает более широким спектром элементов, которые осуществляют защиту сразу по нескольким направлениям.
В состав пускателя, входит контактор, который является главным элементом схемы. В различных модификациях данных устройств, дополнительно могут устанавливаться и тепловое реле, которое срабатывает при определенных температурных перегрузках.
Стоит отметить, что некоторые модели пускателей, оснащаются двумя контакторами. Данные устройства, подходят для реверсивного управления электродвигателем.
Подбор устройства для двигателя или двигателя насоса производится согласно следующим параметрам: токовые нагрузки и мощность. Точные характеристики различных моделей, можно узнать на сайте производителя или у фирмы поставщика.
Основным параметром при выборе, является мощность устройства, величины которой варьируются от 0 до 6. Устройства с нулевой величиной, рассчитаны на мощность не превышающую 6 А, величина с маркировкой 6, предусматривает подключение устройства к оборудованию с мощностными показателями от 160 А.
Данные устройства, подразделяют и по нагрузке (индуктивная и малоиндуктивная), которые определяются напряжением в сети 220 или 380 Вольт.
Мощность пускателей, для различных машин, является необходимым условием при подборе. Так как при работе устройства с превышением допустимой мощности или при максимальном значении, увеличивается число срабатываний устройства.
Как подобрать электродвигатель: условия
В настоящее время, использование электродвигателей достаточно широко. Данные устройства, применяются в различном оборудовании (вентиляционные системы, насосные станции или электротранспорт). Для каждого вида машин, нужен правильный выбор и настройка двигателей.
Критерии выбора:
- Тип тока;
- Мощность устройства;
- Работа.
По типу электрического тока, электродвигатели разделяют на устройства, работающие на переменном и постоянном токе.
Обратите внимание! В настоящее время, использование двигателей работающих на переменном токе не сильно распространено.
Стоит отметить, что двигатели на постоянном токе, зарекомендовали себя с лучшей стороны, но из-за необходимости установки дополнительного оборудования для обеспечения их работы, требуются и дополнительные финансовые затраты.
Двигатели, работающие на переменном токе, нашли достаточно широкое применение. Их разделяют на два вида (синхронные и асинхронные).
Синхронные устройства, используют для оборудования, в котором важно постоянное вращение (генераторы и компрессоры). Отличаются и различные характеристики синхронных двигателей. Например, скорость вращения варьируется в пределах от 120 до 1000 оборотов в минуту. Мощность устройств достигает 10 кВт.
В промышленности, распространено использование асинхронных двигателей. Стоит отметить, что данные устройства обладают более высокими показателями вращения. Для их изготовления, в основном используют алюминий, что позволяется изготавливать легкие роторы.
Исходя из того, что во время работы двигатель, производит постоянное вращение различных устройств, необходимо правильно подбирать его мощность. Стоит отметить, что для различных устройств, существует специальная формула, согласно которой и производится выбор.
Определяющим фактором нагрузки на двигатели, является режим работы. Поэтому, выбор устройства производят согласно и данной характеристике. Существует несколько режимов работы, которые маркируются (S1 – S9). Каждый из девяти режимов, подходит для определенной работы двигателя.
Тепловое реле для электродвигателя (видео)
Используя данную информацию, вы с пониманием дела, сможете подойти к выбору электродвигателя для различных видов использования. Стоит отметить, что для обеспечения безопасности, необходима (электронная или механическая) релейная защита.
Добавить комментарий
Защита электродвигателей 380 В
Для выполнения защит электродвигателей с.н. 380 В используется как правило, встроенные в трехполюсные автоматические выключатели, с помощью которых электродвигатели подключены к сборкам 0,4 кВ, токовые первичные реле прямого действия (максимальные и тепловые расцепители), которые при срабатывании воздействуют на отключающий механизм автоматического выключателя.
В тех случаях, когда автоматические выключатели не обеспечивают необходимой чувствительности при однофазных или междуфазных КЗ, применяется выносная защита с реле тока косвенного действия.
Такая защита воздействует на независимый расцепить автоматического выключателя, и для нее в цепи электродвигателя уславливаются трансформаторы тока.
Для двигателей, перегружаемых по технологическим причинам, предусматривается выносная защита от перегрузки, включаемая на ток одной фазы. Защита действует с первой выдержкой времени на разгрузку механизма, со второй – на отключение двигателя.
Защита двигателей, питающихся от вторичных сборок 0,4 кВ, выполняется только с использованием максимальных и тепловых расцепителей автоматических выключателей этих двигателей.
Материал взят из типовой работы Атомэнергопроекта «Релейная защита элементов сети собственных нужд 6,3 и 0,4 кВ электростанций с турбогенераторами». 1987 г.
Поделиться в социальных сетях
Благодарность:
Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding».
Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.
Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.
Защита электродвигателя. Виды, схемы, принцип действия защиты электродвигателя.
Для чего нужна защита двигателя?
Для того чтобы избежать непредвиденных сбоев, дорогостоящего ремонта и последующих потерь из-за простоя электродвигателя, очень важно оборудовать двигатель защитным устройством.
Защита двигателя имеет три уровня:
• Внешняя защита от короткого замыкания установки. Устройства внешней защиты, как правило, являются предохранителями разных видов или реле защиты от короткого замыкания. Защитные устройства данного типа обязательны и официально утверждены, они устанавливаются в соответствии с правилами безопасности.
• Внешняя защита от перегрузок, т.е. защита от перегрузок двигателя насоса, а, следовательно, предотвращение повреждений и сбоев в работе электродвигателя. Это защита по току.
• Встроенная защита двигателя с защитой от перегрева, чтобы избежать повреждений и сбоев в работе электродвигателя. Для встроенного устройства защиты всегда требуется внешний выключатель, а для некоторых типов встроенной защиты двигателя требуется даже реле перегрузки.
Возможные условия отказа двигателя
Во время эксплуатации могут возникать различные неисправности. Поэтому очень важно заранее предусмотреть возможность сбоя и его причины и как можно лучше защитить двигатель. Далее приведён перечень условий отказа, при которых можно избежать повреждений электродвигателя:
• Низкое качество электроснабжения:
• Высокое напряжение
• Пониженное напряжение
• Несбалансированное напряжение/ ток (скачки)
• Изменение частоты
• Неверный монтаж, нарушение условий хранения или неисправность самого электродвигателя
• Постепенное повышение температуры и выход её за допустимый предел:
• недостаточное охлаждение
• высокая температура окружающей среды
• пониженное атмосферное давление (работа на большой высоте над уровнем моря)
• высокая температура рабочей жидкости
• слишком большая вязкость рабочей жидкости
• частые включения/отключения электродвигателя
• слишком большой момент инерции нагрузки (свой для каждого насоса)
• Резкое повышение температуры:
• блокировка ротора
• обрыв фазы
Для защиты сети от перегрузок и короткого замыкания при возникновении каких-либо из перечисленных выше условий отказа необходимо определить, какое устройство защиты сети будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания. На следующих страницах мы рассмотрим три типа плавких предохранителей с точки зрения их принципа действия и вариантов применения: плавкий предохранительный выключатель, быстродействующие плавкие предохранители и предохранители с задержкой срабатывания.
Плавкий предохранительный выключатель
Плавкий предохранительный выключатель — это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе. С помощью выключателя можно размыкать и замыкать цепь вручную, в то время как плавкий предохранитель защищает двигатель от перегрузок по току. Выключатели, как правило, используются в связи с выполнением сервисного обслуживания, когда необходимо прервать подачу тока.
Аварийный выключатель имеет отдельный кожух. Этот кожух защищает персонал от случайного контакта с электрическими клеммами, а также защищает выключатель от окисления. Некоторые аварийные выключатели оборудованы встроенными плавкими предохранителями, другие аварийные выключатели поставляются без встроенных плавких предохранителей и оснащены только выключателем.
Устройство защиты от перегрузок по току (плавкий предохранитель) должно различать перегрузки по току и короткое замыкание. Например, незначительные кратковременные перегрузки по току вполне допустимы. Но при дальнейшем увеличении тока устройство защиты должно срабатывать немедленно. Очень важно сразу предотвращать короткие замыкания. Выключатель с предохранителем — пример устройства, используемого для защиты от перегрузок по току. Правильно подобранные плавкие предохранители в выключателе размыкают цепь при токовых перегрузках.
Плавкие предохранители быстрого срабатывания
Быстродействующие плавкие предохранители обеспечивают отличную защиту от короткого замыкания. Однако кратковременные перегрузки, такие как пусковой ток электродвигателя, могут вызвать поломку плавких предохранителей такого вида. Поэтому быстродействующие плавкие предохранители лучше всего использовать в сетях, которые не подвержены действию значительных переходных токов. Обычно такие предохранители выдерживают около 500% своего номинального тока в течение одной четвёртой секунды. По истечении этого времени вставка предохранителя плавится и цепь размыкается. Таким образом, в цепях, где пусковой ток часто превышает 500% номинального тока предохранителя, быстродействующие плавкие предохранители использовать не рекомендуется.
Плавкие предохранители с задержкой срабатывания
Данный тип плавких предохранителей обеспечивает защиту и от перегрузки, и от короткого замыкания. Как правило, они допускают 5-кратное увеличение номинального тока на 10 секунд, и даже более высокие значения тока на более короткое время. Обычно этого достаточно, чтобы электродвигатель был запущен и плавкий предохранитель не открылся. С другой стороны, если возникают перегрузки, которые продолжаются больше, чем время плавления плавкого элемента, цепь также разомкнётся.
Время срабатывания плавкого предохранителя
Время срабатывания плавкого предохранителя — это время плавления плавкого элемента (проволоки), которое требуется для того, чтобы цепь разомкнулась. У плавких предохранителей время срабатывания обратно пропорционально значению тока — это означает, что чем больше перегрузки по току, тем меньше период времени для отключения цепи.
В общем, можно сказать, что у электродвигателей насосов очень короткое время разгона: меньше 1 секунды. В этой связи для электродвигателей подойдут предохранители с задержкой времени срабатывания с номинальным током, соответствующим току полной нагрузки электродвигателя.
Иллюстрация справа демонстрирует принцип формирования характеристики времени срабатывания плавкого предохранителя. Ось абсцисс показывает соотношение между фактическим током и током полной нагрузки: если электродвигатель потребляет ток полной нагрузки или меньше, плавкий предохранитель не размыкается. Но при величине тока, в 10 раз превышающей ток полной нагрузки, плавкий предохранитель разомкнётся практически мгновенно (0,01 с). На оси ординат отложено время срабатывания.
Во время пуска через индукционный электродвигатель проходит достаточно большой ток. В очень редких случаях это приводит к выключению посредством реле или плавких предохранителей. Для уменьшения пускового тока используются различные методы пуска электродвигателя.
Что такое автоматический токовый выключатель и как он работает?
Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает и замыкает цепь при заданном значении перегрузки по току. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого ущерба. Сразу же после возникновения перегрузки можно легко возобновить работу автоматического выключателя — он просто устанавливается в исходное положение.
Различают два вида автоматических выключателей: тепловые и магнитные.
Тепловые автоматические выключатели
Тепловые автоматические выключатели — это самый надёжный и экономичный тип защитных устройств, которые подходят для электродвигателей. Они могут выдержать большие амплитуды тока, которые возникают при пуске электродвигателя, и защищают электродвигатель от сбоев, таких как блокировка ротора.
Магнитные автоматические выключатели
Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный автоматический выключатель устойчив к изменениям температуры, т.е. изменения температуры окружающей среды не влияют на его предел срабатывания. По сравнению с тепловыми автоматическими выключателями, магнитные автоматические выключатели имеют более точно определённое время срабатывания. В таблице приведены характеристики двух типов автоматических выключателей.
Рабочий диапазон автоматического выключателя
Автоматические выключатели различаются между собой уровнем тока срабатывания. Это значит, что всегда следует выбирать такой автоматический выключатель, который может выдержать самый высокий ток короткого замыкания, который может возникнуть в данной системе.
Функции реле перегрузки
Реле перегрузки:
• При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.
• Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.
• Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.
IEC и NEMA стандартизуют классы срабатывания реле перегрузки.
Обозначение класса срабатывания
Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 — в течение 30 секунд и менее.
Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 — самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.
Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.
Сочетание плавких предохранителей с реле перегрузки
Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.
На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.
Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания.
Современные наружные реле защиты двигателя
Усовершенствованные наружные системы защиты двигателя также обеспечивают защиту от перенапряжения, перекоса фаз, ограничивают число включений/выключений, устраняют вибрации. Кроме того, они позволяют контролировать температуру статора и подшипников через датчик температуры (PT100), измерять сопротивление изоляции и регистрировать температуру окружающей среды. В дополнение к этому усовершенствованные наружные системы защиты двигателя могут принимать и обрабатывать сигнал от встроенной тепловой защиты. Далее в этой главе мы рассмотрим устройство тепловой защиты.
Наружные реле защиты двигателя предназначены для защиты трёхфазных электродвигателей при угрозе повреждения двигателя за короткий или более длительный период работы. Кроме защиты двигателя, наружное реле защиты имеет ряд особенностей, которые обеспечивают защиту электродвигателя в различных ситуациях:
• Подаёт сигнал прежде, чем возникает неисправность в результате всего процесса
• Диагностирует возникшие неисправности
• Позволяет выполнять проверку работы реле во время техобслуживания
• Контролирует температуру и наличие вибрации в подшипниках
Можно подключить реле перегрузки к центральной системе управления зданием для постоянного контроля и оперативной диагностики неисправностей. Если в реле перегрузки установлено наружное реле защиты, сокращается период вынужденного простоя из-за прерывания технологического процесса в результате поломки. Это достигается благодаря быстрому обнаружению неисправности и недопущению повреждений электродвигателя.
Например, электродвигатель может быть защищён от:
• Перегрузки
• Блокировки ротора
• Заклинивания
• Частых повторных пусков
• Разомкнутой фазы
• Замыкания на массу
• Перегрева (с помощью сигнала, поступающего от электродвигателя через датчик PT100 или терморезисторы)
• Малого тока
• Предупреждающего сигнала о перегрузке
Настройка наружного реле перегрузки
Ток полной нагрузки при определённом напряжении, указанном в фирменной табличке, является нормативом для настройки реле перегрузки. Так как в сетях разных стран присутствует различное напряжение, электродвигатели для насосов могут использоваться как при 50 Гц, так и при 60 Гц в широком диапазоне напряжений. В связи с этим в фирменной табличке электродвигателя указывается диапазон тока. Если нам известно напряжение, мы можем вычислить точную допустимую нагрузку по току.
Пример вычисления
Зная точную величину напряжения для установки, можно рассчитать ток полной нагрузки при 254 / 440 Y B, 60 Гц.
Данные отображаются в фирменной табличке, какпоказано в иллюстрации.
Вычисления для 60 Гц
Коэффициент усиления напряжения определяется следующими уравнениями:
Расчет фактического тока полной нагрузки (I):
(Значения тока для подключения по схеме «треугольник» и «звезда» при минимальных значениях напряжения)
(Значения тока для подключения по схеме «треугольник» и «звезда» при максимальных значениях напряжения)
Теперь с помощью первой формулы можно рассчитать ток полной нагрузки:
I для «треугольника»:
I для «звезды»:
Величины для тока полной нагрузки соответствуют допустимому значению тока полной нагрузки электродвигателя при 254 Δ/440 Y В, 60 Гц.
Внимание: наружное реле перегрузки электродвигателя всегда устанавливается на номинальное значение тока, указанное в фирменной табличке.
Однако если электродвигатели сконструированы с учётом коэффициента нагрузки, который затем указывается в фирменной табличке, напр., 1.15, заданное значение тока для реле перегрузки может быть увеличено на 15% по сравнению с током полной нагрузки или коэффициентом нагрузки в амперах (SFA — service factor amps), который, как правило, указывается в фирменной табличке.
Внутренняя защита, встраиваемая в обмотки или клеммную коробку
Для чего нужна встроенная защита двигателя, если электродвигатель уже оснащён реле перегрузки и плавкими предохранителями? В некоторых случаях реле перегрузки не регистрирует перегрузку электродвигателя. Например, в ситуациях:
• Когда электродвигатель закрыт (недостаточно охлаждается) и медленно нагревается до опасной температуры.
• При высокой температуре окружающей среды.
• Когда наружная защита двигателя настроена на слишком высокий ток срабатывания или установлена неправильно.
• Когда электродвигатель перезапускается несколько раз в течение короткого периода времени и пусковой ток нагревает электродвигатель, что в конечном счёте, может его повредить.
Уровень защиты, который может обеспечить внутренняя защита, указывается в стандарте IEC 60034-11.
Обозначение TP
TP — аббревиатура «thermal protection» — тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:
• Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)
• Число уровней и тип действия (2-я цифра)
• Категорию встроенной тепловой защиты (3-я цифра)
В электродвигателях насосов, самыми распространёнными обозначениями TP являются:
TP 111: Защита от постепенной перегрузки
TP 211: Защита как от быстрой, так и от постепенной перегрузки.
Обозначение | Техническая егрузка и ее варианты (1-я цифра) | Количество уровней и функциональная область (2-я цифра) | Категория 1 (3-я цифра) |
ТР 111 | Только медленно (постоянная перегрузка) | 1 уровень при отключении | 1 |
ТР 112 | 2 | ||
ТР 121 | 2 уровня при аварийном сигнале и отключении | 1 | |
ТР 122 | 2 | ||
ТР 211 | Медленно и быстро (постоянная перегрузка, блокировка) | 1 уровень при отключении | 1 |
ТР 212 | 2 | ||
ТР 221 ТР 222 | 2 уровня при аварийном сигнале и отключении | 1 | |
2 | |||
ТР 311 ТР 321 | Только быстро (блокировка) | 1 уровень при отключении | 1 |
2 |
Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.
Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.
Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.
Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.
Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке — маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.
Устройства тепловой защиты, встраиваемые в клеммную коробку
В устройствах тепловой защиты, или термостатах, используется биметаллический автоматический выключатель дискового типа мгновенного действия для размыкания и замыкания цепи при достижении определённой температуры. Устройства тепловой защиты называют также «кликсонами» (по названию торговой марки от Texas Instruments). Как только биметаллический диск достигает заданной температуры, он размыкает или замыкает группу контактов в подключённой схеме управления. Термостаты оснащены контактами для нормально разомкнутого или нормально замкнутого режима работы, но одно и то же устройство не может использоваться для двух режимов. Термостаты предварительно откалиброваны производителем, и их установки менять нельзя. Диски герметично изолированы и располагаются на контактной колодке.
Через термостат может подаваться напряжение в цепи аварийной сигнализации — если он нормально разомкнут, или термостат может обесточивать электродвигатель — если он нормально замкнут и последовательно соединён с контактором. Так как термостаты находятся на наружной поверхности концов катушки, то они реагируют на температуру в месте расположения. Применительно к трёхфазным электродвигателям термостаты считаются нестабильной защитой в условиях торможения или в других условиях быстрого изменения температуры. В однофазных электродвигателях термостаты служат для защиты при блокировке ротора.
Тепловой автоматический выключатель, встраиваемый в обмотки
Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.
Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик — примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).
Внутренняя установка
В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях — два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле — усилителя не требуется.
Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.
Принцип действия теплового автоматического выключателя
На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.
Подключение
Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.
Обозначение TP на графике
Защита по стандарту IEC 60034-11:
TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.
Терморезисторы, встраиваемые в обмотки
Второй тип внутренней защиты — это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.
В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.
Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.
Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх — по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.
Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, — происходит обесточивание контрольного реле.
Принцип действия терморезистора
Критические значения зависимости сопротивление/ температура для датчиков системы защиты электродвигателя определены в стандартах DIN 44081/ DIN 44082.
На кривой DIN показано сопротивление в датчиках терморезистора в зависимости от температуры.
По сравнению с PTO терморезисторы имеют следующие преимущества:
• Более быстрое срабатывание благодаря меньшему объёму и массе
• Лучше контакт с обмоткой электродвигателя
• Датчики устанавливаются на каждой фазе
• Обеспечивают защиту при блокировке ротора
Обозначение TP для электродвигателя с PTC
Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.
Соединение
На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.
Электродвигатели с защитой TP 111
Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.
Электродвигатели с защитой TP 211
Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.
Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.
Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле
Что такое тепловое реле и для чего оно нужно? Как подобрать тепловое реле или правильная защита электродвигателя от перегрузки
Продолжительная работа механизма на максимуме вызывает перегрев обмоток и порчу изоляции, в результате чего происходит межвитковое замыкание, перерастающее в обширное выгорание полюсов двигателя и дорогостоящий ремонт. Чтобы этого не происходило, в цепь питания устанавливается реле, которое называют тепловым или «теплушкой». По цепи питания данный аппарат контролирует величину тока и при длительном отклонении от номинала установки, размыкает контакты, лишая питания цепь управления, размыкая пусковое устройство. В этой статье мы расскажем, как выбрать тепловое реле для двигателя по мощности и току.
Методика выбора
Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.
Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.
Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.
Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4.9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.
Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.
Что делать, если паспортные данные не известны?
В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.
Кстати, недавно мы рассмотрели , с чем настоятельно рекомендуем вам ознакомиться!
В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.
Для защиты электродвигателей переменного и постоянного тока от сильного перегрева, который возникает из-за долговременной перегрузки, применяется тепловое реле перегрузки.
Принцип действия данного устройства состоит в том, что при длительном, сильном перегреве, биметаллические пластины, находящиеся внутри реле разогреваются, возникает деформация, которая и воздействует на блок-контакты. После чего блок-контакты, при помощи , полностью отключают электропитание потребителя.
Чтобы обеспечить гарантированную защиту электродвигателя не только от перегрузки тока, но и от перегрева необходимо осуществить оптимальную подборку теплового реле. В таком случае полностью исключается , заклинивание ротора, продолжительный затяжной пуск.
Всегда нужно помнить, что тепловое реле не обеспечивает защиту электродвигателя от короткого замыкания.
Как подобрать нужный вариант теплового реле
Подбор по значению тока производится исходя из запланированной нагрузки на электродвигатель. Поэтому реле должно выбираться таким образом, чтобы его ток был больше номинального значения тока электрического двигателя ориентировочно в 1,3-1,5 раза. Так будет обеспечена защита при наступлении перегрузки в пределах 25-30 %, продолжающейся 20-25 минут. Время нагревания электродвигателя целиком зависит от времени действия перегрузки тока.
При кратковременной перегрузке, происходит лишь нагрев обмотки двигателя, тогда как при длительной перегрузке нагревается вся его масса. В этих случаях время нагревания (постоянная нагрева) при кратковременной перегрузке составляет 10-15 минут, а при длительной — 40-60 минут. Поэтому тепловые реле применяют в тех случаях, когда электрическое устройство рассчитано на работу не менее 30 минут.
Время срабатывания полностью зависит от тока нагрузки. Также нужно учесть, что нагревательные элементы испытывают очень сильное воздействие от .
Рассмотрим зависимость работы от температуры окружающего воздуха
Здесь можно наблюдать прямую зависимость нагрева биметаллической пластинки от наружной температуры. Если температура увеличивается — ток срабатывания реле уменьшается. При значительном увеличении температуры необходимо провести дополнительную регулировку устройства. Можно подобрать соответствующую биметаллическую пластинку. Чтобы уменьшить влияние температуры на ток срабатывания, при регулировке нужно устанавливать наибольшую температуру срабатывания. Нормальная работа реле и защищаемого устройства наилучшим образом обеспечивается при расположении их в одном помещении.
В настоящее время производится большое количество разных видов реле. Для того, чтобы сделать правильный выбор, а затем установить и отрегулировать устройство лучше всего воспользоваться услугами квалифицированного электротехника.
Тепловое реле для электродвигателя
Здравствуйте, уважаемые посетители и гости сайта «Заметки электрика».
В этой статье я расскажу Вам про назначение, устройство, схему подключения теплового реле на примере LR2 D1314 от фирмы «Schneider Electric». Тепловой компонент рассматриваемого реле имеет номинальный ток 10 (А), а токовый диапазон уставок его составляет от 7 до 10 (А). Об остальных технических характеристиках поговорим чуть позже. А теперь давайте перейдем к определению и назначению теплового реле.
Как Вы уже знаете, тепловое реле, или другими словами реле перегрузки, устанавливается в схемах магнитного пускателя, как нереверсивного типа, так и реверсивного.
Более подробно об этом Вы можете ознакомиться здесь:
Назначение теплового реле
Тепловое реле — это электрический коммутационный аппарат, который предназначен для от токовой перегрузки недопустимой продолжительностью (например, при заклинивании ротора или механической его перегрузки), а также от обрыва любой из фаз питающего напряжения (по функции аналогично ).
Вот список самых распространённых (известных) серий тепловых реле: ТРП, ТРН, РТТ, РТИ (аналог LR2 D13), РТЛ.
О каждой серии тепловых реле я постараюсь написать отдельную статью, подписывайтесь на рассылку новостей сайта «Заметки электрика».
Прошу заметить, что тепловое реле не защищает электродвигатель от по причине того, что оно срабатывает с выдержкой времени, т.е. не мгновенно — это отчетливо можно увидеть по графику (кривой) срабатывания теплового реле. Для защиты двигателя от короткого замыкания в силовую цепь перед магнитным пускателем устанавливаются автоматические выключатели или предохранители.
Технические характеристики теплового реле LR2 D1314
Вот его внешний вид:
Вид сбоку:
Я уже говорил выше, что тепловое реле LR2 D1314 имеет к
устройство и принцип действия, подбор реле, тепловая защита от перегрузок
Длительная работа электродвигателя приводит к перегреву его обмоток, из-за чего они повреждаются. Поэтому требуется защита электродвигателя от перегрузок. Вследствие перегрева происходят межвитковые замыкания, выгорают полюса, имеют место иные негативные последствия, влекущие за собой дорогостоящий ремонт. Избежать проблем поможет включение в схему цепи питания однофазного или трехфазного двигателя теплового, обеспечивающего защиту от перегрева.
Действие теплового реле заключается в контроле над величиной тока; в случае продолжительного отклонения от номинальной величины происходит размыкание контактов, цепь управления в итоге остается без питания, и размыкается пусковое устройство. Тепловое реле защищает двигатель от заклинивания ротора, механических перегрузок, перекоса фаз, прочих аварийных ситуаций.
Принцип работы
Устройство включает в себя основной элемент — чувствительную биметаллическую пластину из сплава железа и никеля и сплава железа с латунью. Эти сплавы соединяются пайкой и имеют различные коэффициенты теплового расширения, говорящем о степени удлинения нагревающейся металлической пластины. Для латуни этот показатель составляет 18,7, а для сплава железо-никель — 1,5. Так, длина латунного элемента при нагревании увеличивается гораздо быстрее, благодаря чему происходит изгиб биметаллической пластины в ее сторону. На этом свойстве основывается работа любого теплового реле.
В корпусе устройства находятся:
- Толкатель.
- Пружина замыкающего контакта.
- Биметаллическая пластина с нагревательным элементом.
- Исполнительная пластина.
Температурный компенсатор состоит из регулировочного винта и пластины.
А также реле оснащено следующими элементами:
- Контакты.
- Эксцентрик.
- Движок уставки тока срабатывания.
- Кнопка возврата устройства в рабочее состояние.
Защита электродвигателя от перегрузок
Проводник нагревается от идущего по нему электротоку. С увеличением силы тока в проводнике с одинаковым поперечным сечением, увеличивается нагрев его, то есть возрастает нагрузка. В связи с этим, срабатывание происходит преимущественно из-за повышения температуры. Та же тепловая энергия нагревает биметаллическую пластину, под воздействием температуры изгибающуюся и соприкасающуюся через толкатель с исполнительной пластиной температурного компенсатора. Пластина расцепляет контакты в магнитном пускателе и в рабочее состояние приводит кнопку включения устройства.
Температурный компенсатор — это своеобразный противовес, который снижает влияние дополнительного нагрева под влиянием температуры окружающей среды. Пластина изгибается в обратную сторону, а величина изгиба регулируется специальным винтом.
Регулятор тока срабатывания или эксцентрик имеет шкалу на пять делений влево и пять — вправо, для соответствующего увеличения/уменьшения тока относительно центральной риски. Для регулирования тока срабатывания нужно выбрать требуемую величину зазора между толкателем и исполнительной пластиной. Изменение этой величины выполняется с помощью движка эксцентрика, который воздействует на пластину температурного компенсатора. После срабатывания устройства рекомендуется подождать некоторое время, чтоб тепловой расцепитель остыл. Электродвигатель тщательно осматривается, отыскивается причина срабатывания защиты.
Схема подключения
Подключение тепловых реле к контакторам осуществляется напрямую при помощи штыревых контактов. После подключения, в зависимости от силы тока, который протекает в цепи, регулируется уставка срабатывания колесом поворотного регулятора. Ток уставки обозначен на шкале рисками на корпусе прибора.
На панели управления есть кнопка TEST, помогающая проверить работоспособность реле имитацией срабатывания защиты. Красная кнопка STOP позволяет разомкнуть принудительно нормально замкнутый контакт. Питание, которое поступает на катушку контактора, при этом отключается, из-за чего отключается нагрузка. Приблизительно по такой схеме подключается и работает любое устройство.
Работа реле может протекать в ручном или автоматическом режиме, задаваемого поворотным переключателем RESET. В автоматическом режиме выключатель утапливается, а реле после срабатывания включается автоматически, после остывания биметаллической пластины. В ручной режим устройство переводится путем поворота против часовой стрелки переключателя.
Схема подключения с контактами замкнутыми нормально применяется для управления электродвигателем при помощи магнитного пускателя. К силовым контактам подключаются две фазы, третья же подключается к двигателю напрямую. В работе современных реле участвуют все три фазы с дополнительным нормально замкнутым контактом. При перегрузках этот контакт размыкается, благодаря чему разрывается цепь питания контактора.
Выбор реле
В условиях разнообразия электродвигателей и реле к ним, подбор устройства может вызвать затруднения. Чтобы произвести расчет по мощности перед подбором теплового реле для электродвигателя 380 В или иного двигателя, нужно следовать определенным рекомендациям. Главное требование ко всем устройствам — соответствие их номинала току оборудования, требующего защиты. Устройства тоже должны быть защищены от КЗ, с этой целью в схемах подключения используют предохранители.
Условия эксплуатации устройств и пределы их применения устанавливаются заранее. Если в системе защиты есть большая вероятность работы электродвигателя в аварийном режиме, не связанным с возрастанием потребления электричества, реле не обеспечит надежной защиты. С этой целью в обмотку статора двигателя включают элементы специальной тепловой защиты.
Реле выбирается с учетом его максимального рабочего тока, который не должен быть меньше номинального тока двигателя. Рекомендуется, чтоб установочный ток реле не особо превышал номинал электродвигателя.
Обратите внимание и на возможность регулировки тока с запасом в сторону увеличения и уменьшения. В таком случае защита будет более надежной и управляемой.
Тепловая защита электродвигателя | Полезные статьи
В процессе эксплуатации электродвигателя могут возникнуть неполадки, причиной которых являются тепловые перегрузки. Они появляются в результате пропадания одной из фаз, питающих двигатель. При этом ток в два раза превышает номинальный, что и приводит к перегреву обмотки статора. Еще одной причиной могут стать проблемы, в результате которых вал вращается с затруднением. Это происходит, когда электродвигатель работает под большой нагрузкой или выходят из строя подшипники. В результате перегрева разрушается изоляция обмотки статора, следствием чего становится короткое замыкание и выход оборудования из строя. Чтобы этого не произошло, используется тепловая защита двигателя, позволяющая своевременно обеспечить технику при появлении больших токов. Когда необходима тепловая защита электродвигателя. Сегодня тепловая защита электродвигателя устанавливается на всем промышленном оборудовании, на бытовой технике и электроинструментах. Она отлично зарекомендовала себя в следующих случаях:
- при неправильных процессах во время пуска или торможения двигателя;
- во время длительных перегрузок;
- при повышенной частоте включения;
- при значительных колебаниях напряжения электросети;
- во время обрыва фаз;
- при включении оборудования с заклиненным ротором;
- при заклинивании приводных механизмов оборудования.
Для надежной защиты используют тепловое реле для электродвигателя, автоматические выключатели, предохранители с магнитными пускателями, плавкие вставки. Максимальную эффективность дает комплексное использование этих элементов. Принцип действия теплового реле электродвигателя. Встроенная тепловая защита электродвигателя базируется на применении реле с биметаллической пластиной. Она состоит из двух частей, созданных из металлов с различным коэффициентом линейного расширения. Ток оказывает на пластину тепловое воздействие и в результате неравномерного расширения составных частей она изгибается. При определенной температуре, на которую настроено реле, изогнутая пластина достигает положение, при котором воздействует на защелку расцепителя. Это действие, усиленное пружиной, позволяет максимально быстро разъединить цепь. В обратное положение пластину можно вернуть нажатием предназначенной для этого кнопки. Конструкция и выбор теплового релеКонструкция тепловой защиты зависит от ее назначения, рабочего тока и способа установки реле. Производители выпускают сегодня тепловые реле как в составе автоматических выключателей и пускателей, так и в виде отдельных электроустановочных изделий. Есть возможность выбрать реле с ручным возвратом или с автоматическим самовозвратом в исходное положение.Выбор теплового реле для электродвигателя зависит от потребляемого тока. Регулируется величина срабатывания в небольшом диапазоне, поэтому подбирать реле нужно тщательно. Нагревается пластина при прохождении тока по специальной спирали, намотанной на пластину. При включении двигателя пусковой ток в несколько раз сильнее номинальной величины, но волноваться, что реле сработает не стоит. Нагревается пластина медленно и кратковременные мощные токи не успевают привести защиту в действие. Время срабатывания регулируется длиной токопроводящей спирали: чем оно больше, тем больше витков на пластине. В ряде случаев нагревательным элементом может выступить непосредственно биметаллическая пластина. Выбор реле производится либо по марке двигателя, на который она будет установлена, либо по специальным таблицам, учитывающим номинальный ток.