Posted on

Содержание

Теплопроводность стеклопакетов: сравнительная таблица | Dacha.news

Насколько двойной стеклопакет эффективнее одинарного? Имеет ли смысл установка K и i-стекол? Играет ли роль толщина воздушной прослойки и заполнение аргоном? И какая между всем этим разница?

Все ответы в одной простой таблице.

Для удобства сравнения за базовый уровень был взят обычный однокамерный стеклопакет с четырехмиллиметровыми стеклами и межстекольным расстоянием в 16 мм. Также в таблицу добавлены сравнительные значения шумоизоляции стеклопакетов и разница в стоимости.

Сравнительная таблица эффективности стеклопакетов

Формула стеклопакета
(«к» — К-стекло, «а» — аргон)
 Толщина, ммНа сколько «теплее», %На сколько «тише», %На сколько дороже, %Сопр. теплопер., м2*С/ВтЗвукоизол., дБА
4 — 6 — 414-15%-16%
0,308
30
4 — 8 — 416-9%-13%0,3330
4 — 10 — 418-4%-10%0,34730
4 — 12 — 420-1%-6%0,35830
4 — 16 — 4240,36130
4 — 14 — 4220%-3%0,36230
4 — 6 — 4к147%46%0,38630
4к — 6 — 4к1411%107%0,430
4 — 8 — 4к1624%49%0,44630
4 — 6 — 4 — 6 — 42425%32%39%0,45234
4к — 8 — 4к1630%111%0,46930
4 — 6а — 4к14
31%
66%0,47230
4 — 8 — 4 — 8 — 42837%41%46%0,49535
4 — 10 — 4к1838%52%0,49830
4к — 6а — 4к1439%127%0,530
4 — 9 — 4 — 9 — 43042%41%49%0,51235
4 — 16 — 4к2445%62% 0,52430
4 — 12 — 4к2046%55%0,52630
4 — 6 — 4 — 6 — 4к2446%32%101%0,52634
4 — 10 — 4 — 10 — 43247%52%52%0,52936
4 — 14 — 4к2247%59%0,52930
4к — 10 — 4к1847%114%0,53230
4 — 8а — 4к1651%69%0,54630
4 — 12 — 4 — 12 — 43654%62%59%0,55537
4к — 16 — 4к2455%124%0,55930
4 — 14 — 4 — 14 — 44055%74%65%0,56138
4к — 12 — 4к2057%117%0,56530
4к — 14 — 4к2257%120%0,56530
4к — 8а — 4к1664%131%0,59230
4 — 10а — 4к1867%72%0,60230
4 — 8 — 4 — 8 — 4к2868%41%108%0,60635
4 — 6 — 4к — 6 — 4к2468%32%163%0,60634
4 — 16а — 4к
2469%82%0,6130
4 — 14а — 4к2271%79%0,61730
4 — 12а — 4к2072%75%0,62130
4 — 9 — 4 — 9 — 4к3078%41%111%0,64135
4 — 6а — 4 — 6а — 4к2478%32%121%0,64134
4к — 10а — 4к
18
85%134%0,66730
4к — 16а — 4к2485%143%0,66730
4 — 10 — 4 — 10 — 4к3287%52%114%0,67636
4к — 14а — 4к2288%140%0,6830
4к — 12а — 4к2090%137%0,68530
4 — 12 — 4 — 12 — 4к36101%
62%
120%0,72537
4 — 8 — 4к — 8 — 4к28101%41%169%0,72535
4 — 8а — 4 — 8а — 4к28104%41%127%0,73535
4 — 9а — 4 — 9а — 4к30115%41%131%0,77535
4 — 6а — 4к — 6а — 4к24115%32%203%0,77534
4 — 10а — 4 — 10а — 4к 32125%52%134%0,81336
4 — 10 — 4к — 10 — 4к32131%52%176%0,83336
4 — 12а — 4 — 12а — 4к36137%62%140%0,85537
4 — 12 — 4к — 12 — 4к36154%62%182%0,91737
4 — 8а — 4к — 8а — 4к28157%41%209%0,926
35
4 — 10а — 4к — 10а — 4к32192%52%216%1,05336
4 — 12а — 4к — 12а — 4к36218%62%222%1,14937

Пояснения и условные обозначения:
В графе «формула стеклопакета» указана толщина в миллиметрах его «составляющих», где 4-миллиметровые стекла отделяют друг от друга воздушные прослойки (камеры), заполненные обычным воздухом или аргоном (где указана литера «а»).

К-стекло – энергосберегающее низкоэмиссионное стекло, отличающееся от обычного специальным прозрачным покрытием из оксидов металлов InSnO2. Данное покрытие отражает тепловое длинноволновое излучение обратно в помещение. Если величина излучательной способности простого стекла составляет 0,84, то у К-стекла обычно около 0,2. Это значит, что К-стекло возвращает в помещение примерно 70% теплового излучения, которое на него попадает. Одновременно К-стекло способно защитить помещение от нагрева в жаркую солнечную погоду, также отражая большую часть тепловых волн.

Существует еще более эффективное низкоэмиссионное i-стекло (их нет в таблице). Оно примерно в полтора раза эффективнее К-стекла и имеет величину излучательной способности до 0,04.

 

В статье использована информация ЧП «ОТ-информ».

 

Также вам может быть интересно:
— Сравнение теплопотерь домов из разного материала

Загрузка. ..

Таблица теплопроводности стеклопакетов — Строй журнал artikagroup.ru

Сопротивление теплопередаче стеклопакета

Насколько эффективно окна будут выполнять теплозащитную функцию, профессионалы устанавливают при помощи специальных расчетов. Качество теплоизолирующих свойств стеклопакета, в соответствии с ГОСТ 26602.1-99, 24866-99 определяет такой показатель, как сопротивление теплопередаче [R0].

Как проводится измерение показателя (сопротивления теплопередаче коэффициента R0)

Потери тепла иногда количественно определяются с точки зрения теплосопротивления стеклопакета или коэффициента сопротивления теплопередаче R0. Это значение, обратное коэффициенту теплопередачи U. R = 1/U (при переводе Европейских коэффициентов U в Российские R0 не следует забывать, что наружные температуры, используемые для расчетов, сильно отличаются).

В свою очередь, коэффициент теплопередачи U, характеризует способность конструкции передавать тепло. Физический смысл ясен из его размерности. U = 1 Вт/м2С – поток тепла в 1 Ватт, проходящий через кв. метр остекление при разнице температуры (снаружи и внутри) в 1 градус по Цельсию (В Европейских странах коэффициент теплопроводности остекления рассчитывается согласно EN 673). Чем меньше получаемое в результате число, тем лучше теплоизоляционная функция светопрозрачной конструкции.

В результате этот показатель характеризует не только конкретную функцию теплозащиты, но и качество всего производственного процесса, и качество готового продукта. Эту величину рекомендуется держать под контролем и измерять регулярно — и на различных этапах изготовления, и, с особой тщательностью, на готовых образцах продукции.

Как показатель влияет на выбор стеклопакета?

В каждом регионе, а также в крупных городах нашей страны действуют определенные строительные нормы, в которых указаны требуемые показатели R0тр для стеклопакета строительного назначения. В первую очередь, на них должны ориентироваться застройщики. Но практика показывает, что эти правила соблюдаются далеко не всегда. Поэтому для удобства выбора оконных конструкций STiS мы подготовили специальную таблицу с указанием сопротивления стеклопакетов теплопередаче. Ознакомившись с ней, вы можете убедиться, насколько высоко качество нашей продукции по этому показателю, а также определиться с подходящей конструкцией для остекления своего помещения.

Формула стеклопакета 1Приведенное сопротивление теплопередаче, м2×°С/Вт
4М1-12-4М10,30
4М1-Аг12-4М10,32
4M1-16-И40,59
4M1-Ar16-И40,66
4M1-10-4M1-10-4M10,47
4M1-12-4M1-12-4M10,49
4M1-Ar10-4M1-Ar10-4M10,49
4M1-Ar12-4M1-Ar12-4M10,52
4M1-12-4M1-12-И40,68
4M1-16-4M1-16-И40,72
4M1-Ar6-4M1-Ar6-И40,64
4M1-Ar10-4M1-Ar10-И40,71
4M1-Ar12-4M1-Ar12-И40,75
4М1-Аr16-4М1-Аr16-И40,80
4SPGU-14S-4M1-14S-4M1 Теплопакет ® 2.00,82
4SPGU-16S-4M1 Теплопакет ® 2.00,57

Приведенное сопротивление теплопередаче для стеклопакетов указано с учетом всех технологических и производственных особенностей наших продуктов – использования мультифункциональных и низкоэмиссионных стекол, заполнения междустекольного пространства аргоном — газом с низкой теплопроводностью, применения в конструкциях фирменной теплой дистанционной рамки, специальных герметизирующих материалов, солнцезащитного, энергосберегающего покрытий и иных прогрессивных элементов и комплектующих.

    Расшифровку обозначений формул стеклопакета можно посмотреть здесь.

Какой стеклопакет теплее

▼ Теплопроводность стеклопакетов

По этому пункту распыляться сильно не будем, достаточно будет вставить таблицу из «Державних Стандартів України ДСТУ Б В.2.7-107-2001 (ГОСТ 24866-99) со всеми коэффициентами.

Оптические и теплотехнические характеристики стеклопакетов

Стандарт EN 673 устанавливает метод расчета коэффициента теплопередачи Ug в центральной точке остекления, т.е. не учитывает влияние краевого эффекта дистанционной рамки, увеличивающего потери тепла.

▼ Пластиковая дистанционная рамка «теплый край»

Новейшей разработкой в области улучшения теплоизоляции остекления фасадов является дистанционная рамка «теплый край». Вместо алюминиевой или стальной дистанционной рамки используется пластиковая дистанция (которая может армироваться металлом). Теплопроводность пластмассы намного меньше, чем у стали или алюминия, поэтому пластиковая дистанционная рамка уменьшает потери тепла в краевой зоне стеклопакета.

Использование дистанционной рамки “теплый край» практически не изменяет показатель Ug стеклопакета (согласно EN 673, этот показатель измеряется в центре стеклопакета), но влияет на показатель Uw, характеризующий теплопотери окна в целом (стекло + дистанционная рамка + рама оконного блока).

▼ Показатели теплоизоляции стеклопакетов и требования строительных норм Украины

Таблица 1 — Минимально допустимое значение сопротивления теплопередаче ограждающей конструкции жилых и общественных зданий, Rq min, м 2 ·К/Вт

Вид ограждающей конструкции

Значение Rq min, для температурной зоны

Окна, балконные двери, витрины, витражи, светопрозрачные фасады

* Для домов усадебного типа и домов до 4х этажей включительно

В случае реконструкции зданий, проводящейся с целью их термомодернизации, допускается принимать значение Rq min согласно табл.1 с коэффициентом 0,8.

Таблица 2 — Минимально допустимое значение сопротивления теплопередаче ограждающих конструкций промышленных зданий, Rq min , м 2 · К/Вт

Вид ограждающей конструкции и тепловлажностный режим эксплуатации зданий

Значение Rq min, для температурной зоны,
м 2 К/Вт

Окна и зенитные фонари зданий:- с сухим и нормальным режимом

— с влажным и мокрым режимом

— с излишками тепла (более 23 Вт/м 3 )

▼ Инертные газы в стеклопакете

Дальнейшее улучшение было достигнуто заменой воздуха (l = 0.025 Вт/(м·K), r = 1.23 кг/м³, при 10°C – стандартные условия по EN 673) газом, имеющим более низкую теплопроводность и большую объемную массу, что снижает конвекцию (затрудняет перемешивание).

Инертные газы имеют низкий коэффициент теплопередачи, значение Ug между 0.2 и 0.3 Вт/(м²K), и используются только в стеклопакетах, имеющих стекла с покрытием.

На практике, главным образом используется аргон (l = 0.017 Вт/(м·K), r = 1.70 кг/м³) и иногда криптон (l = 0.009 Вт/(м·K), r = 3.56 кг/м³).

Убеждать кого-то использовать стеклопакет, наполненный газом или нет, не стану. Тут уж Вы сами решайте — доверять новым технологиям или нет! По правилам, камеру наполняют на 90-95% . В год потери этого самого газа составляют не более 2%, т.е. пройдет около 19-20 лет прежде, чем в Вашем стеклопакете останется 50% от изначального объема. После чего можно снова произвести дозакачку на производстве. Надеюсь, что через 15 лет для дозакачивания не придется вынимать стеклопакеты и вести их на завод.

Чувство комфорта в любом помещении зависит не только от окружающей температуры, но также и от близости холодных поверхностей. Человеческое тело с температурой (кожи) приблизительно 28°C, отдает тепло, когда приближается к холодным поверхностям, таким как остекление с плохой теплоизоляцией. Возникает дискомфортное чувство холода. Использование энергоэффективного остекления не только ограничивает потери тепла, но и уменьшает чувство дискомфорта, вызванное близостью холодных поверхностей

Примечания

Низкоэмиссионные свойства стекла относятся к длинноволновому инфракрасному излучению; и напротив, почти не влияют на солнечное излучение. Следовательно, применяя энергоэффективный стеклопакет, можно улучшить теплоизоляцию и одновременно обеспечить высокий уровень поступления солнечной энергии.

Для обеспечения высоких показателей теплоизоляции и солнцезащиты одновременно, следует использовать другие типы покрытий, сочетающих эти две функции.

Об этих покрытиях расскажем Вам в следующих подтемах.

Коэффициент сопротивления теплопередачи стеклопакетов

Чтобы зимой и летом у вас в доме всегда был оптимальный климат, вам нужно установить на окнах качественные стеклопакеты. Это позволит сэкономить потребление электрической энергии на:

Важно учитывать все критерии выбора подходящих для вас стеклопакетов. Почему при выборе стеклопакетов нужно знать их коэффициент теплопередачи?

Если рассматривать понятие теплопередачи, то она представляет собой передачу теплоты от одной среды к другой. При этом температура в той, которая отдает тепло выше, чем во второй. Весь процесс осуществляется сквозь конструкцию между ними.

Коэффициент теплопередачи стеклопакета выражается количеством тепла ( Вт), проходящем через м2 с разницей температур в двух средах 1 градус: Ro (м2. ̊С/Вт) – это значение действует на территории Российской Федерации. Оно служит для правильной оценки теплозащитных свойств строительных конструкций.

Расчет коэффициента теплопроводности

К или коэффициент теплопроводности выражается количеством тепла в Вт, проходящим через 1 м2 ограждающей конструкции с разницей температур в обеих средах 1 градус по шкале Кельвина. А измеряется он в Вт/м2.

Теплопроводность стеклопакета показывает, насколько эффективными изоляционными свойствами он обладает. Маленькое значение k означает небольшую теплопередачу и, соответственно, незначительную потерю тепла через конструкцию. В то же самое время теплоизоляционные свойства такого стеклопакета являются достаточно высокими.

Однако упрощенный пересчет k в величину Ro (k=1/Ro) не может считаться правильным. Это связано с разницей применяемых методик измерения в РФ и других государствах.(2)·°С/ВтМатериал переплетаДерево или ПВХАлюминий1Двойное остекление в спаренных переплетах0.4–2Двойное остекление в раздельных переплетах0.44–3Тройное остекление в раздельно-спаренных переплетах0.560.464Однокамерный стеклопакет ( два стекла ) :обычного (с расстоянием между стекол 6 мм)0.31–с И – покрытием (с расстоянием между стекол 6 мм)0.39–обычного (с расстоянием между стекол 16 мм)0.380.34с И – покрытием (с расстоянием между стекол 16 мм)0.560.475 Двухкамерный стеклопакет ( три стекла ):oбычного (с расстоянием между стекол 8 мм)0.510.43oбычного (с расстоянием между стекол 12 мм)0.540.45с И – покрытием одно из трёх стекол0.680.52

*Основные ( популярные ) типы стеклопакетов выделены красным цветом.

Технические характеристики стеклопакетов

Количество камер изделия влияет на теплосопротивление стеклопакета даже, если стекла имеют одинаковую толщину. Чем больше в конструкции предусмотрено камер, тем она будет более теплосберегающей.

Последние современные конструкции отличают более высокие теплотехнические характеристики стеклопакетов. Чтобы добиться максимального значения сопротивления теплопередаче, современные компании-производители оконной индустрии заполнили камеры изделий с помощью специального наполнения инертными газами и нанесли на поверхность стекла низкоэмиссионного покрытие.

Надежные компании-производители светопрозрачных конструкций ставят коэффициент сопротивления теплопередаче стеклопакета в зависимость не только от качества самой конструкции, но и от применения особых технологических операций в процессе изготовления продукции, например, нанесения специального магнетронного, солнцезащитного и энергосберегающего покрытия на поверхность стекла, специальных технологий герметизации, заполнения междустекольного пространства инертными газами и т.п.

Перенос тепла в такой современной конструкции между стеклами происходит благодаря излучению. Эффективность сопротивления теплопередачи при этом увеличивается в 2 раза, если сравнивать данную конструкцию с обычной. Покрытие, обладающее теплоотражающими свойствами, способно намного снизить теплообмен лучей, происходящий между стеклами. Используемый для заполнения камер аргон позволяет уменьшить теплопроводность с конвекцией в прослойке между стеклами.

В результате газовое наполнение вместе с низкоэмиссионным покрытием увеличивают сопротивление теплопередаче стеклопакетов на 80%, если сравнивать их с обычными стеклопакетами, которые не являются энергосберегающими.

Тенденции, наметившиеся в оконной индустрии

Стеклопакет, занимающий не менее 70% от оконной конструкции, был усовершенствован, чтобы максимально снизить теплопотери через него. Благодаря внедрению в производство новых разработок, на рынке появились селективные стекла, имеющие специальное покрытие:

  • К-стекло, характеризующееся твердым покрытием;
  • i-стекло, характеризующееся мягким покрытием.

На сегодняшний день все больше потребителей предпочитают стеклопакеты с i-стеклами, теплоизоляционные характеристики которых выше, чем у К-стекол в 1,5 раза. Если обратиться к данным статистики, то продажи стеклопакетов с нанесенными теплосберегающими покрытиями увеличилось до 70% от объема всех продаж в США, до 95% в Западной Европе, до 45% в России. А значения коэффициента сопротивления теплопередаче стеклопакетов варьируется от 0.60 до 1.15 м2 *0СВт.

Dacha.news

Насколько двойной стеклопакет эффективнее одинарного? Имеет ли смысл установка K и i-стекол? Играет ли роль толщина воздушной прослойки и заполнение аргоном? И какая между всем этим разница?

Все ответы в одной простой таблице.

Для удобства сравнения за базовый уровень был взят обычный однокамерный стеклопакет с четырехмиллиметровыми стеклами и межстекольным расстоянием в 16 мм. Также в таблицу добавлены сравнительные значения шумоизоляции стеклопакетов и разница в стоимости.

Сравнительная таблица эффективности стеклопакетов

Формула стеклопакета
(«к» — К-стекло, «а» — аргон)
Толщина, ммНа сколько «теплее», %На сколько «тише», %На сколько дороже, %Сопр. теплопер., м 2 *С/ВтЗвукоизол., дБА
4 — 6 — 414-15%-16%0,30830
4 — 8 — 416-9%-13%0,3330
4 — 10 — 418-4%-10%0,34730
4 — 12 — 420-1%-6%0,35830
4 — 16 — 4240,36130
4 — 14 — 4220%-3%0,36230
4 — 6 — 4к147%46%0,38630
4к — 6 — 4к1411%107%0,430
4 — 8 — 4к1624%49%0,44630
4 — 6 — 4 — 6 — 42425%32%39%0,45234
4к — 8 — 4к1630%111%0,46930
4 — 6а — 4к1431%66%0,47230
4 — 8 — 4 — 8 — 42837%41%46%0,49535
4 — 10 — 4к1838%52%0,49830
4к — 6а — 4к1439%127%0,530
4 — 9 — 4 — 9 — 43042%41%49%0,51235
4 — 16 — 4к2445%62%0,52430
4 — 12 — 4к2046%55%0,52630
4 — 6 — 4 — 6 — 4к2446%32%101%0,52634
4 — 10 — 4 — 10 — 43247%52%52%0,52936
4 — 14 — 4к2247%59%0,52930
4к — 10 — 4к1847%114%0,53230
4 — 8а — 4к1651%69%0,54630
4 — 12 — 4 — 12 — 43654%62%59%0,55537
4к — 16 — 4к2455%124%0,55930
4 — 14 — 4 — 14 — 44055%74%65%0,56138
4к — 12 — 4к2057%117%0,56530
4к — 14 — 4к2257%120%0,56530
4к — 8а — 4к1664%131%0,59230
4 — 10а — 4к1867%72%0,60230
4 — 8 — 4 — 8 — 4к2868%41%108%0,60635
4 — 6 — 4к — 6 — 4к2468%32%163%0,60634
4 — 16а — 4к2469%82%0,6130
4 — 14а — 4к2271%79%0,61730
4 — 12а — 4к2072%75%0,62130
4 — 9 — 4 — 9 — 4к3078%41%111%0,64135
4 — 6а — 4 — 6а — 4к2478%32%121%0,64134
4к — 10а — 4к1885%134%0,66730
4к — 16а — 4к2485%143%0,66730
4 — 10 — 4 — 10 — 4к3287%52%114%0,67636
4к — 14а — 4к2288%140%0,6830
4к — 12а — 4к2090%137%0,68530
4 — 12 — 4 — 12 — 4к36101%62%120%0,72537
4 — 8 — 4к — 8 — 4к28101%41%169%0,72535
4 — 8а — 4 — 8а — 4к28104%41%127%0,73535
4 — 9а — 4 — 9а — 4к30115%41%131%0,77535
4 — 6а — 4к — 6а — 4к24115%32%203%0,77534
4 — 10а — 4 — 10а — 4к32125%52%134%0,81336
4 — 10 — 4к — 10 — 4к32131%52%176%0,83336
4 — 12а — 4 — 12а — 4к36137%62%140%0,85537
4 — 12 — 4к — 12 — 4к36154%62%182%0,91737
4 — 8а — 4к — 8а — 4к28157%41%209%0,92635
4 — 10а — 4к — 10а — 4к32192%52%216%1,05336
4 — 12а — 4к — 12а — 4к36218%62%222%1,14937

Пояснения и условные обозначения:
В графе «формула стеклопакета» указана толщина в миллиметрах его «составляющих», где 4-миллиметровые стекла отделяют друг от друга воздушные прослойки (камеры), заполненные обычным воздухом или аргоном (где указана литера «а»).

К-стекло – энергосберегающее низкоэмиссионное стекло, отличающееся от обычного специальным прозрачным покрытием из оксидов металлов InSnO2. Данное покрытие отражает тепловое длинноволновое излучение обратно в помещение. Если величина излучательной способности простого стекла составляет 0,84, то у К-стекла обычно около 0,2. Это значит, что К-стекло возвращает в помещение примерно 70% теплового излучения, которое на него попадает. Одновременно К-стекло способно защитить помещение от нагрева в жаркую солнечную погоду, также отражая большую часть тепловых волн.

Существует еще более эффективное низкоэмиссионное i-стекло (их нет в таблице). Оно примерно в полтора раза эффективнее К-стекла и имеет величину излучательной способности до 0,04.

В статье использована информация ЧП «ОТ-информ».

Таблицы теплопроводимости материалов (металлы, бетон, гранит, дерево и др.)

Взято из: «Примеры и задачи по курсу процессов и аппаратов химической технологии» /под ред. Романкова. Приложение.
Н.И. Кошкин, М.Г. Ширкевич. Справочник по элементарной физике // Издание девятое, М.: «Наука», 1982 г.

Коэффициент теплопроводности металлов

МеталлВт/(м•К)
Алюминий209,3
Бронза47-58
Железо74,4
Золото312,8
Латунь85,5
Медь389,6
Платина70
Ртуть29,1
Серебро418,7
Сталь45,4
Свинец35
Серый
чугун
50
Чугун62,8

Коэффициент теплопроводности других материалов

МатериалВлажность
массовая доля %
Вт/(м•К)
Бакелитовый
лак
0,29
Бетон
с каменным щебнем
81,28
Бумага
обыкновенная
Воздушно-сухая0,14
Винипласт0,13
ГравийВоздушно-сухая0,36
Гранит3,14
Глина15-200,7-0,93
Дуб
(вдоль волокон)
6-80,35-0,43
Дуб
(поперек волокон)
6-80,2-0,21
Железобетон81,55
КартонВоздушно-сухая0,14-0,35
Кирпичная
кладка
Воздушно-сухая0,67-0,87
Кожа>>0,14-0,16
Лед2,21
Пробковые
плиты
00,042-0,054
Снег
свежевыпавший
0,105
Снег
уплотненный
0,35
Снег
начавший таять
0,64
Сосна
(вдоль волокон)
80,35-0,41
Сосна
(поперек волокон)
80,14-0,16
Стекло
(обыкновенное)
0,74
Фторопласт-30,058
Фторопласт-40,233
Шлакобетон130,698
Штукатурка6-80,791

Коэффициент теплопроводности асбеста и пенобетона при различных температурах

a=576кг/м3, ρп=400кг/м3,λ, Вт/(м•К))

Материал-18oС0oС50oС100oС150oС
Асбест0,150,180,1950,20
Пенобетон0,10,110,110,130,17

Коэффициент теплопроводности жидкости Вт/(м•К) при различных температурах

Материал0oС50oС100oС
Анилин0,190,1770,167
Ацетон0,170,160,15
Бензол0,1380,126
Вода0,5510,6480,683
Масло
вазелиновое
0,1260,1220,119
Масло
касторовое
0,1840,1770,172
Спирт
метиловый
0,2140,207
Спирт
этиловый
0,1880,177
Толуол0,1420,1290,119
Запись опубликована автором admin в рубрике Полезные материалы. Добавьте в закладки постоянную ссылку.

Таблица теплопроводности строительных материалов: коэффициенты

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов

Что такое теплопроводность?

Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

Что влияет на величину теплопроводности?

Тепловая проводимость любого материала зависит от множества параметров:

  1. Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
  2. Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
  3. Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.

Теплопроводность, плотность и водопоглощение некоторых строительных материалов

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.

Теплопроводность готового здания. Варианты утепления конструкций

При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

  • стены – 30%;
  • крышу – 30%;
  • двери и окна – 20%;
  • полы – 10%.

Теплопотери неутепленного частного дома

При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

  1. Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
  2. Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.

Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

Таблица теплопроводности строительных материалов: коэффициенты

В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.

Таблица коэффициента теплопроводности строительных материалов:

Таблица теплопроводности строительных материалов: коэффициенты

Теплопроводность строительных материалов (видео)

ОЦЕНИТЕ
МАТЕРИАЛ Загрузка… ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

СМОТРИТЕ ТАКЖЕ

REMOO В ВАШЕЙ ПОЧТЕ

Коэффициент сопротивления теплопередачи стеклопакетов — таблица и определение

Чтобы зимой и летом у вас в доме всегда был оптимальный климат, вам нужно установить на окнах качественные стеклопакеты. Это позволит сэкономить потребление электрической энергии на:

  • кондиционирование;
  • отопление.

Важно учитывать все критерии выбора подходящих для вас стеклопакетов. Почему при выборе стеклопакетов нужно знать их коэффициент теплопередачи?

Если рассматривать понятие теплопередачи, то она представляет собой передачу теплоты от одной среды к другой. При этом температура в той, которая отдает тепло выше, чем во второй. Весь процесс осуществляется сквозь конструкцию между ними.

Коэффициент теплопередачи стеклопакета выражается количеством тепла ( Вт), проходящем через м2 с разницей температур в двух средах 1 градус: Ro (м2. ̊С/Вт) – это значение действует на территории Российской Федерации. Оно служит для правильной оценки теплозащитных свойств строительных конструкций.

Расчет коэффициента теплопроводности

К или коэффициент теплопроводности выражается количеством тепла в Вт, проходящим через 1 м2 ограждающей конструкции с разницей температур в обеих средах 1 градус по шкале Кельвина. А измеряется он в Вт/м2.

Теплопроводность стеклопакета показывает, насколько эффективными изоляционными свойствами он обладает. Маленькое значение k означает небольшую теплопередачу и, соответственно, незначительную потерю тепла через конструкцию. В то же самое время теплоизоляционные свойства такого стеклопакета являются достаточно высокими.

Однако упрощенный пересчет k в величину Ro (k=1/Ro) не может считаться правильным. Это связано с разницей применяемых методик измерения в РФ и других государствах. Производитель представляет потребителям показатель теплопроводности только в том случае, если продукция прошла обязательную сертификацию.(2)·°С/ВтМатериал переплетаДерево или ПВХАлюминий1Двойное остекление в спаренных переплетах0.4–2Двойное остекление в раздельных переплетах0.44–3Тройное остекление в раздельно-спаренных переплетах0.560.464Однокамерный стеклопакет ( два стекла ) :обычного (с расстоянием между стекол 6 мм)0.31–с И – покрытием (с расстоянием между стекол 6 мм)0.39–обычного (с расстоянием между стекол 16 мм)0.380.34с И – покрытием (с расстоянием между стекол 16 мм)0.560.475 Двухкамерный стеклопакет ( три стекла ):oбычного (с расстоянием между стекол 8 мм)0.510.43oбычного (с расстоянием между стекол 12 мм)0.540.45с И – покрытием одно из трёх стекол0.680.52

*Основные ( популярные ) типы стеклопакетов выделены красным цветом.

Технические характеристики стеклопакетов

Количество камер изделия влияет на теплосопротивление стеклопакета даже, если стекла имеют одинаковую толщину. Чем больше в конструкции предусмотрено камер, тем она будет более теплосберегающей.

Последние современные конструкции отличают более высокие теплотехнические характеристики стеклопакетов. Чтобы добиться максимального значения сопротивления теплопередаче, современные компании-производители оконной индустрии заполнили камеры изделий с помощью специального наполнения инертными газами и нанесли на поверхность стекла низкоэмиссионного покрытие.

Надежные компании-производители светопрозрачных конструкций ставят коэффициент сопротивления теплопередаче стеклопакета в зависимость не только от качества самой конструкции, но и от применения особых технологических операций в процессе изготовления продукции, например, нанесения специального магнетронного, солнцезащитного и энергосберегающего покрытия на поверхность стекла, специальных технологий герметизации, заполнения междустекольного пространства инертными газами и т.п.

Перенос тепла в такой современной конструкции между стеклами происходит благодаря излучению. Эффективность сопротивления теплопередачи при этом увеличивается в 2 раза, если сравнивать данную конструкцию с обычной. Покрытие, обладающее теплоотражающими свойствами, способно намного снизить теплообмен лучей, происходящий между стеклами. Используемый для заполнения камер аргон позволяет уменьшить теплопроводность с конвекцией в прослойке между стеклами.

Дополнительно: Чем отличается энергосберегающий стеклопакет от обычного

В результате газовое наполнение вместе с низкоэмиссионным покрытием увеличивают сопротивление теплопередаче стеклопакетов на 80%, если сравнивать их с обычными стеклопакетами, которые не являются энергосберегающими.

Тенденции, наметившиеся в оконной индустрии

Стеклопакет, занимающий не менее 70% от оконной конструкции, был усовершенствован, чтобы максимально снизить теплопотери через него. Благодаря внедрению в производство новых разработок, на рынке появились селективные стекла, имеющие специальное покрытие:

  • К-стекло, характеризующееся твердым покрытием;
  • i-стекло, характеризующееся мягким покрытием.

На сегодняшний день все больше потребителей предпочитают стеклопакеты с i-стеклами, теплоизоляционные характеристики которых выше, чем у К-стекол в 1,5 раза. Если обратиться к данным статистики, то продажи стеклопакетов с нанесенными теплосберегающими покрытиями увеличилось до 70% от объема всех продаж в США, до 95% в Западной Европе, до 45% в России. А значения коэффициента сопротивления теплопередаче стеклопакетов варьируется от 0.60 до 1.15 м2 *0С\Вт.

СНиП 23-02 Расчетные теплотехнические показатели металлов и стекла. Сталь, Чугун, Аллюминий, Медь, Стекло. Теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость.


Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Материалы — свойства, обозначения / / Строительные материалы. Физические, механические и теплотехнические свойства.  / / СНиП 23-02 Расчетные теплотехнические показатели металлов и стекла. Сталь, Чугун, Аллюминий, Медь, Стекло. Теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость.

Расчетные теплотехнические показатели металлов и стекла. Сталь, Чугун, Аллюминий, Медь, Стекло. Теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость.

Металлы и стекло

Материал Характеристики материалов в сухом состоянии Расчетные коэффициенты (при условиях эксплуатации по СНиП 23-02)
плот-
ность,
кг/м3
удельная тепло-
емкость, кДж/(кг°С)
коэффи-
циент тепло-
провод-
ности,
Вт/(м°С)
массового отношения влаги в материале, % теплопро-
водности,
Вт/(м°С)
тепло-
усвоения
(при периоде
24 ч), Вт/(м2°С)
паропро-
ницае-
мости,
мг/(мчПа)
А Б А Б А Б А, Б
Сталь стержневая арматурная (ГОСТ 10884, ГОСТ 5781) 7850 0.482 58 0 0 58 58 126.5 126.5 0
Чугун (ГОСТ 9583) 7200 0.482 50 0 0 50 50 112.5 112.5 0
Алюминий (ГОСТ 22233, ГОСТ 24767) 2600 0.84 221 0 0 221 221 187.6 187.6 0
Медь (ГОСТ 931, ГОСТ 15527) 8500 0.42 407 0 0 407 407 326 326 0
Стекло оконное (ГОСТ 111) 2500 0.84 0.76 0 0 0.76 0.76 10.79 10.79 0



Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.
TehTab.ru

Реклама, сотрудничество: [email protected]

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями.

Стеклопакет и коэффициент сопротивления теплопередачи.

14.01.2016

Мы уже не один раз рассказывали о том, какие возможные  решения различных проблем предлагает современное окно. И, как правило, многие из этих проблем решаются с помощью стеклопакета.

Тепло дома – это важная составляющая комфортного проживания.  И, безусловно, основная задача окна – это сохранить тепло  в вашем доме. Сегодня все чаще мы слышим об улучшении энергоэффективности, энергосбережении и тому подобном.    Поэтому для думающего  хозяина важно рационально использовать свои средства.  Выбирая окно, особенно при наличии индивидуального отопления, важно понимать, что  поставив, например, энергосберегающий стеклопакет,  вы заметно сэкономите. 

 

Так, при сравнении, например, устаревшего двухкамерного стеклопакета с обычными стеклами(4-10-4-10-4)  и однокамерного стеклопакета с одним низкоэмиссионным(4-16-4И*)  видно, что показатели сопротивления теплопередачи выше у однокамерного энергосберегающего стеклопакета( 0,53>0,47). При этом удельный вес меньше. Соответственно конструкция будет легче  и энергоэффективнее.

 

Стеклопакет

Толщина стеклопакета, мм

Удельный вес, кг/м2

Коэффициент сопротивления теплопередачи, М2°С/Вт *

4-16-4

24

20

0,36

4-16Ar-4И*

24

20

0,65

4С-16Ar-4И*

24

20

0,65

6-14-4

24

25

0,32

6-14Ar-4И*

24

25

0,64

4-10-4-10-4

32

30

0,54

4-10Ar-4-10Ar-4И*

32

30

0,71

6-10-4-8-4

32

35

0,46

6-10Ar-4-8Ar-4И*

32

35

0,69

4-16-4-12-4

40

30

0,51

4-16Ar-4-12Ar-4И*

40

30

0,75

6-14-4-12-4

40

35

0,50

6-14Ar-4-12Ar-4И*

40

37

0,74

Используя более одного  энергосберегающего стекла или комбинируя низкоэмиссионные стекла с мультифцнкциональными, выбирая  заполнение камер стеклопакета инертным газом (аргоном) мы можем добиться показателя коэффициента сопротивления теплопередачи более 1.

Конечно,  энергосберегающее стекло дороже  обычного, однако окно быстро окупится в результате экономии на отоплении.  Тем не менее, напомним, что,  для жилых помещений  рекомендовано устанавливать двухкамерные стеклопакеты.

Кроме того, в компании «Русские Окна» вы можете приобрести энергосберегающие(мультифункциональные) окна по цене обычных до 31 января 2016 года.

В Европе уже давно на государственном уровне существуют соответствующие требования по энергоэффективности зданий, в том числе и окон. В России также был предложен  законопроект о необходимости контроля и приведения в соответствие жилых зданий по показателям теплосбережения. В 2016 году планируется его вступление в силу.

Исходя из всего вышесказанного, можно сделать простой вывод  — правильно подобранный стеклопакет/окно позволит Вам не только сохранить тепло в доме, но и уменьшить траты на отоплении.

Выбирая окна и стеклопакеты компании «Русские окна» вы получаете не только индивидуальный подход и качественный продукт,  но и разумную  экономию!

Ждем Вас в наших офисах продаж!

Теплопроводность

63

9007 9007 34,7000 9007 900000057
Материал Теплопроводность
(кал / сек) / (см 2 C / см)
Теплопроводность
(Вт / м K) *
Алмаз 1000
Серебро 1,01 406,0
Медь 0,99 385,0
Золото 314
Латунь… 109,0
Алюминий 0,50 205,0
Железо 0,163 79,5
Сталь 50,2
Меркурий 8,3
Лед 0,005 1,6
Стекло обычное 0,0025 0.8
Бетон 0,002 0,8
Вода при 20 ° C 0,0014 0,6
Асбест 0,0004 0,08 0,08
Стекловолокно 0,00015 0,04
Кирпич изоляционный 0,15
Кирпич красный 0,6
Пробковая плита 0,00011 0,04
Войлок 0,0001 0,04
Каменная вата ) 0,033
Полиуретан 0,02
Дерево 0,0001 0,12-0,04
Воздух при 0 ° C 0,024
Гелий (20 ° C) 0,138
Водород (20 ° C) 0,172
Азот (20 ° C) 0,0234
Кислород (20 ° C) 0,0238
Аэрогель кремнезема 0,003

* Большая часть от Янга, Хью Д., Университетская физика, 7-е изд.Таблица 15-5. Значения для аэрогеля алмаза и диоксида кремния из Справочника по химии и физике CRC.

Обратите внимание, что 1 (кал / сек) / (см 2 C / см) = 419 Вт / м K. Имея это в виду, два приведенных выше столбца не всегда совпадают. Все значения взяты из опубликованных таблиц, но не могут считаться достоверными.

Значение 0,02 Вт / мК для полиуретана можно принять как номинальное значение, которое определяет пенополиуретан как один из лучших изоляторов. NIST опубликовал программу численного приближения для расчета теплопроводности полиуретана на сайте http: // cryogenics.nist.gov/NewFiles/Polyurethane.html. Их расчет для полиуретана, наполненного фреоном, плотностью 1,99 фунт / фут 3 при 20 ° C дает теплопроводность 0,022 Вт / мК. Расчет для полиуретана с наполнителем CO 2 плотностью 2,00 фунт / фут 3 дает 0,035 Вт / мК.

Указатель

Таблицы

Ссылка
Young
Ch 15.

Теплопроводность — выбранные материалы и газы

Теплопроводность — это свойство материала, которое описывает способность проводить тепло.Теплопроводность можно определить как

«количество тепла, передаваемого через единицу толщины материала в направлении, перпендикулярном поверхности единицы площади — из-за градиента единичной температуры в условиях устойчивого состояния»

Теплопроводность единицами измерения являются [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.

См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, диоксида углерода и воды

Теплопроводность для обычных материалов и продуктов:

(газ) листов—66 (газ)

63 0,15

9037 )

63

66 Углеродистая сталь06 9007
Теплопроводность
k —
Вт / (м · К)

Материал / вещество Температура
25 o C
(77 o F)
7 C 125 o
(257 o F)
225 o C
(437 o F)
Acetals 0.23
Ацетон 0,16
Ацетилен (газ) 0,018
Акрил 0,2 0,2 0,2 0,0333 0,0398
Воздух, высота 10000 м 0,020
Агат 10,9
Спирт 0.17
Глинозем 36 26
Алюминий
Алюминий Латунь 121
0,0249 0,0369 0,0528
Сурьма 18,5
Яблоко (85.6% влаги) 0,39
Аргон (газ) 0,016
Асбестоцементная плита 1) 0,744
цемент 0,166
Асбестоцемент 1) 2,07
Асбест в рыхлой упаковке 1) 0.15
Асбестовая плита 1) 0,14
Асфальт 0,75
0,07
Слои битума / войлока 0,5
Говядина постная (влажность 78,9%) 0.43 — 0,48
Бензол 0,16
Бериллий
Висмут 8,1 8,1
0,02
Весы котла 1,2 — 3,5
Бор 25
Латунь000
00010 — 0,20
Кирпич плотный 1,31
Кирпич пожарный 0,47
Кирпич изоляционный 0,15 9037 Кирпич общий 0,6 -1,0
Кирпичная кладка плотная 1,6
Бром (газ) 0,004
бронза
Коричневый 0.58
Масло (влажность 15%) 0,20
Кадмий
Силикат кальция Углерод 0,05

63

Двуокись углерода (газ) 0,0146
Окись углерода 0,0232
Чугун
хлопок, целлюлоза и регенерированная древесина.23

Ацетат целлюлозы, формованный, лист

0,17 — 0,33
Нитрат целлюлозы, целлулоид 0,12 — 0,21
Цемент, строительный раствор 1,73
Керамические материалы
Мел 0.09
Древесный уголь 0,084
Хлорированный полиэфир 0,13
Никель (газ) Хром (газ) 16,3
Хром
Оксид хрома 0,42
Глина от сухой до влажной 0.15 — 1,8
Глина, насыщенная 0,6 — 2,5
Уголь 0,2
Кобальт
Кобальт 903 содержание) 0,54
Кокс 0,184
Бетон легкий 0,1 — 0,3
Бетон средний 0.4 — 0,7
Бетон, плотный 1,0 — 1,8
Бетон, камень 1,7
7
Кориан (керамический наполнитель) 1.06
Пробковая плита 0,043
Пробка повторно гранулированная 0.044
Пробка 0,07
Хлопок 0,04
Вата 0,029 0,029 0,029
Мельхиор 30% 30
Алмаз 1000
Диатомовая земля (Sil-o-cel)
Диатомит 0,12
Дуралий
Земля, сухая 1,5
11,6
Моторное масло 0,15
Этан (газ) 0.018
Эфир 0,14
Этилен (газ) 0,017
Эпоксид 0,35 0,350 9007 Фтор (газ) Стекло, стекло 9000

63 0,142

63 0,12

2 .582
Перья 0,034
Войлок 0,04
Стекловолокно 0.04
Волокнистая изоляционная плита 0,048
Древесноволокнистая плита 0,2
Огненно-глиняный кирпич 500 0,0254
Пеностекло 0,045
Дихлордифторметан R-12 (газ) 0.007
Дихлордифторметан R-12 (жидкий) 0,09
Бензин 0,15
Стекло 0,18
Стекло, жемчуг, насыщенный 0,76
Стекло, окно 0.96
Стекловата Изоляция 0,04
Глицерин 0,28
Золото 9000
Графит 168
Гравий 0,7
Земля или почва, очень влажная зона 1.4
Земля или почва, влажная зона 1.0
Земля или почва, сухая зона 0,5
Земля или почва, очень сухая зона 0,33
Гипсокартон 0,17
Волос 0,05
ДВП высокой плотности 0.15
Лиственные породы (дуб, клен ..) 0,16
Хастеллой C 12
Гелий (газ) Гелий (газ) 12,6% влажности) 0,5
Соляная кислота (газ) 0,013
Водород (газ) 0,168
) Сероводород.013
Лед (0 o C, 32 o F) 2,18
Инконель 15
9037 слиток железа
Изоляционные материалы 0,035 — 0,16
Йод 0,44
Иридий 147
Железо
Капок-изоляция 0,034
Керосин 0,15
Криптон (газ) 0,0088 0,0088 0,0088 , сухой 0,14
Известняк 1,26 — 1,33
Литий
Магнезиальная изоляция (85%) 0.07
Магнезит 4.15
Магний
Магниевый сплав 70-145 900
Ртуть, жидкость
Метан (газ) 0,030
Метанол 0.21
Слюда 0,71
Молоко 0,53
Изоляционные материалы из минеральной ваты, шерстяные одеяла .. 0,040003 0,04
Монель
Неон (газ) 0,046
Неопрен 0.05
Никель
Оксид азота (газ) 0,0238
Азот (газ) 0,024 0,024 0,024 9000 Оксид азота
Нейлон 6, Нейлон 6/6 0,25
Масло для машинной смазки SAE 50 0,15
Оливковое масло 0.17
Кислород (газ) 0,024
Палладий 70,9
Бумага 9000ax7 0,05 0,0503 0,05
02 9000bck 159 9000 9000 9000 сырой 900 900 (туф)5 — 2,5 9037 материя 907

63 0,055

Торф 0,08
Перлит, атмосферное давление 0,031
Перлит, вакуум 0.00137
Фенольные литые смолы 0,15
Фенолформальдегидные формовочные смеси 0,13 — 0,25
Пек 0,13
Карьерный уголь 0.24
Штукатурка светлая 0,2
Штукатурка металлическая 0,47
Штукатурка песочная 0,71 0,71 дерево 9007
Пластилин 0,65 — 0,8
Пластмассы вспененные (изоляционные материалы) 0.03
Платина
Плутоний
Фанера 0,13
0,13
Полиэтилен низкой плотности, PEL 0,33
Полиэтилен высокой плотности, PEH 0.42 — 0,51
Полиизопрен натуральный каучук 0,13
Полиизопреновый каучук 0,16
Полиметилметакрилат 0,1 — 0,22
Полистирол вспененный 0,03
Полистирол 0.043
Пенополиуритан 0,03
Фарфор 1,5
Калий 1000
Пропан (газ) 0,015
Политетрафторэтилен (ПТФЭ) 0,25
Поливинилхлорид, ПВХ 0.19
Стекло Pyrex 1.005
Кварц минеральный 3
Радон (газ) 0,003303 0,003303 0,0033 905 Рений
Родий
Порода, твердая 2-7
Порода, пористая
Изоляция из минеральной ваты 0,045
Канифоль 0,32
Каучук, пористая резина 0,045 0,045 натуральная 0,13
Рубидий
Лосось (влажность 73%) 0,50
Песок сухой 0.15 — 0,25
Песок влажный 0,25 — 2
Песок насыщенный 2-4
Песчаник 1,7 Опилки 0,08
Селен
Овечья шерсть 0,039
Аэрогель кремнезема 0.02
Кремниевая литьевая смола 0,15 — 0,32
Карбид кремния 120
Кремниевое масло 9037
Шлаковая вата 0,042
Сланец 2,01
Снег (температура <0 o C) 0.05 — 0,25
Натрий
Хвойные породы (пихта, сосна ..) 0,12
Почва, глина 1,1
0,15 — 2
Почва, насыщенная 0,6 — 4

Припой 50-50

50 0.07

Пар, насыщенный

0,0184
Пар низкого давления 0,0188
Стеатит Сталь
Сталь, нержавеющая
Изоляция из соломенных плит, сжатая 0,09
Пенополистирол 0.033
Диоксид серы (газ) 0,0086
Сера кристаллическая 0,2
Сахар 0,0873 — 0,22 0,0872 0,087 — 0,22 0,087 — 0,22
Смола 0,19
Теллур 4,9
Торий
Древесина, ольха 0.17
Древесина, ясень 0,16
Лес, береза ​​ 0,14
Лес, лиственница 0,12 9037 0,12 9037
Древесина дубовая 0,17
Древесина осина 0,14
Древесина осина 0.19
Древесина, бук красный 0,14
Древесина, сосна красная 0,15
Орех 0,15
0,15
Олово
Титан
Вольфрам
Uranium Uranium021
Вакуум 0
Гранулы вермикулита 0,065
0,606
Вода, пар (пар) 0,0267 0,0359
Пшеничная мука 0.45
Белый металл 35-70
Древесина поперек волокон, белая сосна 0,12
Древесина поперек волокон, балка Древесина поперек волокон, сосна желтая, древесина 0,147
Древесина дуба 0,17
Шерсть, войлок 0.07
Древесная вата, плита 0,1 — 0,15
Ксенон (газ) 0,0051
Цинк 900бес 9007 900бес 900 плохо для здоровья человека, когда крошечные абразивные волокна попадают в легкие, где они могут повредить легочную ткань. Это, по-видимому, усугубляется курением сигарет, в результате чего возникают мезотелиома и рак легких.

Пример — кондуктивная теплопередача через алюминиевый бак по сравнению с кастрюлей из нержавеющей стали

Кондуктивная теплопередача через стенку ванны может быть рассчитана как

q = (k / s) A dT (1)

или, альтернативно,

q / A = (к / с) dT

где

q = теплопередача (Вт, БТЕ / ч)

A = площадь поверхности (м 2 , фут 2 )

q / A = теплопередача на единицу площади (Вт / м 2 , БТЕ / (ч фут 2 ))

k = теплопроводность ( Вт / мК, БТЕ / (ч фут ° F) )

dT = t 1 — t 2 = разница температур ( o C, o F)

с = толщина стены (м, фут)
9026 7

Калькулятор теплопроводности

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

s = толщина стенки (м, фут)

A = площадь поверхности (м 2 , фут 2 )

dT = t 1 — t 2 = разница температур ( o C, o F)

Примечание! — общая теплопередача через поверхность определяется «общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от

Кондуктивная теплопередача через алюминиевую стенку горшка толщиной 2 мм — разность температур 80
o C

Теплопроводность алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C)

= 8600000 (Вт / м 2 )

= 8600 (кВт / м 2 )

Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм — разница температур 80
o C

Теплопроводность нержавеющей стали 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C)

= 680000 (Вт / м 2 )

= 680 (кВт / м 2 )

Теплопроводность обычных материалов

В этой статье представлены данные теплопроводности для ряда распространенных материалов . Теплопроводность измеряет способность материала пропускать тепло через проводимость.

Теплопроводность измеряет способность материала пропускать тепло через проводимость. Теплопроводность материала сильно зависит от состава и структуры. Вообще говоря, плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, плохо проводят тепло.

Теплопроводность материалов требуется для анализа сетей теплового сопротивления при изучении теплопередачи в системе.

Дополнительную информацию см. В статье «Значения теплопроводности для других металлов и сплавов».

В следующих таблицах показаны значения теплопроводности для обычных веществ.

Асбест 9000 9000 Стекло 2080 934 934 934 9344 %0003 0 0,026 0,07 9000 9000 9000 9000
Материал Температура
Теплопроводность
Температура
Теплопроводность
9000 почвы и земля 0.600 68 0,347
Гравий 20 2,50 68 1,44
Недра (Влажность 8% по весу) 20 0,900 68 0,520
Грунт, сухой песчаный 20 0,300 68 0,173
влажный песок (Влажность 8%) 20 0,600 68 0,347
Строительные материалы
Кирпич (здание) 20 0.720 68 0,416
Кирпич (глинозем) 430 3,10 806 1,79
Клинкеры (цемент) 20 9000 20 9000 20 9000 Бетон, тяжелый 20 1,30 68 0,751
Бетон, изоляция 20 0,207 68 0,120
418 68 0,242
Стекло 20 0,935 68 0,540
Дерево 20 0,170 68 68
0 0,160 32 0,092
100 0,190 212 0,110
200 0.210 392 0,121
Силикат кальция 20 0,046 68 0,027
Пробка 30 0,043 0,043 0,042 68 0,024
Магнезия 85% 20 0,070 68 0,040
Магнезит 200 200 392 2,20
Слюда 50 0,430 122 0,248
Rockwool 20 0,034 0,034 0,034 Резина 20 0,130 68 0,075
Твердая резина 0 0,150 32 0,087
Опилки 20052 68 0,030
Уретановая пена (жесткая) 20 0,026 68 0,015
Прочие твердые частицы
1,329
Графит 0 151 32 87,2
Кожа человека 20 0,370 68 0.214
Жидкости
Уксусная кислота, 50% 20 0,350 68 0,202
Ацетон 30 0,1703 30 0,1703 20 0,170 68 0,098
Бензол 30 0,160 86 0,092
Хлорид кальция, 30% 30550 86 0,318
Этанол, 80% 20 0,240 68 0,139
Глицерин 60% 20

67

0,3803 20

67

0,3803 Глицерин, 40% 20 0,450 68 0,260
Гептан 30 0,140 86 0,081
0,081
68 4,93
28 8,36 82 4,83
Кислота серная, 90% 30 0,360 86 30 0,430 86 0,248
Вода 20 0,613 68 0,354
30 0.620 86 0,358
60 0,660 140 0,381
Газы
Воздух 0 0,024 0,024 0,024 68 0,015
100 0,031 212 0,018
Диоксид углерода 0 0,015 32 0 .0007009
Этан 0 0,018 32 0,010
Этилен 0 0,017 32 0,010
0,088
Водород 0 0,170 32 0,098
Метан 0 0,029 32 0.017
Азот 0 0,024 32 0,014
Кислород 0 0,024 32 0,014
212 0,014
Статья создана: 5 ноября 2013 г.
Теги статьи

Коэффициент теплопроводности — обзор

2.5 Обнаружение и анализ тепловых свойств

Что касается тепловых свойств наноматериалов, физические величины, требующие характеризации, включают коэффициент теплопроводности, удельная теплоемкость, тепловое расширение, термическая стабильность и температура плавления.

Когда тонкопленочный слой материала достигает определенной толщины, эффект границ зерен будет оказывать все более значительное влияние на теплопроводность. Кроме того, коэффициент теплопроводности перпендикулярно пленке имеет тенденцию к уменьшению с уменьшением толщины пленки.

Теоретические предсказания и экспериментальные результаты подтвердили, что наноструктурированные материалы имеют значения удельной теплоемкости намного выше, чем у обычных объемных материалов. Наноматериалы имеют сравнительно хаотичное распределение атомов по структуре, которая имеет больший объем по сравнению с объемными аналогами.Таким образом, энтропийные вклады из-за этой некристаллической поверхности вносят гораздо больший вклад в удельную теплоемкость, чем средние крупнокристаллические материалы, что приводит к увеличению удельной теплоемкости.

Нанокристаллы почти в два раза больше средних кристаллов по коэффициенту теплового расширения, причем увеличение t в основном связано с составом кристаллических границ. Основной инструмент для измерения коэффициента теплового расширения материалов известен как анализатор теплового расширения, но он также известен как термодилатометрический анализатор или термомеханический анализатор .Анализ коэффициента теплового расширения материалов может дать представление о молекулярном движении, структурных изменениях и поведении при тепловом расширении. Для решения таких проблем, как термическое соединение различных материалов при производстве полупроводниковых устройств, анализатор теплового расширения является лучшим инструментом для анализа.

Точка плавления — это температура, при которой материал переходит из твердого состояния в жидкость. Для кристаллических объектов существует четкая точка плавления; однако некристаллические объекты имеют плохо определенную температуру плавления.Температура может увеличиваться до значения, при котором небольшое количество атомов в общей структуре начинает двигаться одновременно с жидким поведением. Эта температура известна как температура стеклования ( T г ). При температуре ниже T г стекломатериал находится в твердом состоянии; при температурах выше T г это переохлажденная жидкость. Выражаясь в механических терминах, если температура ниже T г , то произойдет упругая деформация; если температура выше Т г , то начинается вязкостная (жидкая) деформация.

Температура термического разложения — это значение, при котором связи материала могут быть нагреты до разорванного состояния и диссоциированы на другие вещества.

Для пластифицированных некристаллических или аморфных наноматериалов температура стеклования и температура термической диссоциации, отличные от точки плавления, также являются очень важными тепловыми свойствами. Таблица 2.4 показывает температуру плавления нескольких видов материалов в разных масштабах.

Таблица 2.4. Точка плавления нескольких материалов в разных масштабах

555
Тип материала Размер частиц: диаметр (нм) или общее количество атомов Точка плавления (K)
Au Обычные сыпучие материалы 1340
300 нм 1336
100 нм 1205
20 нм 800
2 нм 600
500 480
Pb Обычные сыпучие материалы 600
30–45 583
CdS нм ≈910
1.5 нм ≈600
Cu Обычные сыпучие материалы 1358
20 нм ≈312

Термические свойства наноматериалов обычно обнаруживаются и анализируются с помощью термографического анализа (TGA) и производная термогравиметрии (DTG).

TGA может обеспечить непрерывное измерение, основанное на изменении веса материалов в процессе нагрева во время измерения.В частности, изменения массы отслеживаются как функция температуры с заданной температурной скоростью и могут быть соотнесены с потерями массы и тепловыми переходами в материале. Одновременно можно проводить дифференцированное лечение. А именно, запись изменений качества составляет метод измерения DTG.

С помощью TGA (или DTG) можно определить ряд термических свойств материалов, например температуру старения во время пиролиза и динамику старения, поведение при старении при разных температурах и в различных газовых средах, упаковочные материалы IC, используемые в процесс изготовления исполняемых полупроводниковых устройств, гибких печатных плат и стеклянных подложек, керамических подложек и других компонентов анализа.

В коллоидной системе соответствующие термические свойства частиц также включают, среди прочего, броуновское движение, баланс диффузии и седиментации.

При броуновском движении среднее смещение частицы X¯ может быть выражено как:

X¯ = RTN0Z3πηr

где R — постоянная идеального газа, T — абсолютная температура, N 0 — постоянная Авогадро, Z — интервал времени наблюдения, η — вязкость дисперсионной среды, r — радиус частицы.

Броуновское движение оказывает существенное влияние на природу коллоидных частиц. Броуновское движение — важный фактор, который может повлиять на стабильность дисперсной системы коллоидных частиц. Из-за броуновского движения осаждение коллоидных частиц происходит не из-за гравиметрических сил, а из-за коллоидной агрегации, вызванной столкновениями между частицами, что приводит к осаждению.

Явление диффузии связано с переносом массы, который возникает из-за броуновского движения частиц (броуновское движение) при наличии градиента концентрации.Чем крупнее частицы и чем меньше тепловая скорость, тем менее заметной становится диффузия. Обычно коэффициент диффузии используется для измерения скорости диффузии. Это физическое количество материала, указывающее на диффузионную способность.

В коллоидной системе коэффициент диффузии D можно выразить как:

D = RTN0⋅16πηr

Здесь R — постоянная идеального газа, T — абсолютная температура, N 0 — постоянная Авогадро, η — вязкость дисперсионной среды, r — радиус частицы.

Поскольку коэффициент диффузии коррелирует со средним смещением, полученный коэффициент диффузии D можно также выразить как:

D = X¯22Z

Здесь Z — это определенный интервал времени наблюдения, а X¯ — среднее смещение частицы при броуновском движении. В таблице 2.5 показан коэффициент диффузии золя, образующегося из наночастиц золота, при 291 К.

Таблица 2.5. Коэффициент диффузии золя, образующегося из частиц нано-Au при 291 K

Размер частиц нано-Au (нм) Коэффициент диффузии (109 м 2 / с)
1 0 .213
10 0,0213
100 0,00213

Когда частицы, взвешенные в жидкости, показывают скорость осаждения, равную скорости диффузии, система достигает состояния равновесия, а именно равновесия седиментации. . В состоянии седиментационного равновесия концентрация коллоидных частиц подчиняется закону распределения Гаусса.

Закон распределения Гаусса для коллоидных частиц может быть выражен как:

n2 = n1e − N0RT⋅43r3 (ρp − ρ0) (x2 − x1) g

Здесь n 1 и n 2 — концентрация частиц в поперечном сечении на высоте x 1 и x 2 соответственно, R — постоянная идеального газа, T — абсолютная температура, A — Константа Авогадро, r — радиус частицы, ρ0 — плотность коллоидных частиц, ρp — плотность дисперсионной среды, г — ускорение свободного падения.

Теплопроводность стекла

Теплопроводность стекла составляет около

к = 1 Вт / м. К

Стекло представляет собой некристаллическое аморфное твердое вещество, которое часто бывает прозрачным и широко используется в практических, технологических и декоративных целях, например, в оконных стеклах. Стекло состоит из песка и других минералов, которые плавятся при очень высоких температурах, образуя материал, который идеально подходит для самых разных целей. Поскольку это аморфный твердый материал, имеет невысокую теплопроводность .Его теплопроводность составляет около к = 1 Вт / мК.

Пример — тепловой поток через окно

Основной источник потерь тепла в доме — окна. Рассчитайте скорость теплового потока через стеклянное окно размером 1,5 м x площадью 1,0 м и толщиной 3,0 мм, если температура на внутренней и внешней поверхностях составляет 14,0 ° C и 13,0 ° C соответственно. Рассчитайте тепловой поток через это окно.

Решение:

На данный момент мы знаем температуры на поверхности материала.Эти температуры определяются также условиями внутри и снаружи дома. В этом случае тепло течет через стекло от более высокой внутренней температуры к более низкой наружной температуре. Воспользуемся уравнением теплопроводности:

Мы предполагаем, что теплопроводность обычного стекла k = 0,96 Вт / м · К.

Тогда тепловой поток будет:

q = 0,96 [Вт / м.K] x 1 [K] / 3,0 x 10 -3 [м] = 320 Вт / м 2

Суммарные потери тепла через это окно будут:

q убыток = q.A = 320 x 1,5 x 1,0 = 480 Вт

Теплопроводность неметаллов

Для неметаллических твердых тел , k определяется в первую очередь k ph , которое увеличивается по мере уменьшения частоты взаимодействий между атомами и решеткой. Фактически, решеточная теплопроводность является доминирующим механизмом теплопроводности в неметаллах, если не единственным. В твердых телах атомы колеблются около своего положения равновесия (кристаллической решетки). Колебания атомов не независимы друг от друга, а довольно сильно связаны с соседними атомами.Регулярность расположения решетки имеет важное влияние на k ph , при этом кристаллические (хорошо упорядоченные) материалы, такие как кварц , имеют более высокую теплопроводность, чем аморфные материалы, такие как стекло. При достаточно высоких температурах k ph ∝ 1 / T.

кванта кристаллического колебательного поля называются « фононами ». Фонон — это коллективное возбуждение в периодическом, упругом расположении атомов или молекул в конденсированных средах, таких как твердые тела и некоторые жидкости.Фононы играют важную роль во многих физических свойствах конденсированных сред, таких как теплопроводность и электропроводность. Фактически, для кристаллических неметаллических твердых тел, таких как алмаз, k ph может быть довольно большим, превышая значения k, связанные с хорошими проводниками, такими как алюминий. В частности, алмаз имеет самую высокую твердость и теплопроводность (k = 1000 Вт / м · К) из всех сыпучих материалов.

Артикул:

Теплопередача:
  1. Основы тепломассообмена, 7-е издание.Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
  2. Тепломассообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
  3. Основы тепломассообмена. К. П. Котандараман. New Age International, 2006, ISBN: 9788122417722.
  4. Министерство энергетики, термодинамики, теплопередачи и потока жидкости США. Справочник по основам DOE, том 2 из 3, май 2016 г.

Ядерная и реакторная физика:

  1. Дж.Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Эддисон-Уэсли, Рединг, Массачусетс (1983).
  2. Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную инженерию, 3-е изд., Прентис-Холл, 2001, ISBN: 0-201-82498-1.
  3. В. М. Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
  4. Гласстон, Сесонске. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
  5. W.S.C. Уильямс.Ядерная физика и физика элементарных частиц. Clarendon Press; 1 издание, 1991 г., ISBN: 978-0198520467
  6. Г. Р. Кипин. Физика ядерной кинетики. Аддисон-Уэсли Паб. Co; 1-е издание, 1965 г.
  7. Роберт Рид Берн, Введение в эксплуатацию ядерного реактора, 1988.
  8. Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам DOE, том 1 и 2. Январь 1993 г.
  9. Пауль Ройсс, нейтронная физика. EDP ​​Sciences, 2008. ISBN: 978-2759800414.

Advanced Reactor Physics:

  1. К.О. Отт, В. А. Безелла, Введение в статику ядерных реакторов, Американское ядерное общество, пересмотренное издание (1989 г.), 1989 г., ISBN: 0-894-48033-2.
  2. К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
  3. Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
  4. Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.

См. Выше:

Теплопроводность

10 лучших теплопроводящих материалов

Теплопроводность — это мера способности материала пропускать через него тепло. Материалы с высокой теплопроводностью могут эффективно передавать тепло и легко забирать тепло из окружающей среды. Плохие теплопроводники сопротивляются тепловому потоку и медленно извлекают тепло из окружающей среды. Теплопроводность материала измеряется в ваттах на метр на градус Кельвина (Вт / м • К) в соответствии с S.I (Международная система) руководящие принципы.

10 лучших измеренных теплопроводных материалов и их значения приведены ниже. Эти значения проводимости являются средними из-за разницы в теплопроводности в зависимости от используемого оборудования и среды, в которой были получены измерения.

Материалы теплопроводящие

  1. Бриллиант — 2000 — 2200 Вт / м • K

    Алмаз является ведущим теплопроводным материалом и имеет измеренные значения проводимости в 5 раз выше, чем у меди, самого производимого металла в Соединенных Штатах.Атомы алмаза состоят из простой углеродной основы, которая представляет собой идеальную молекулярную структуру для эффективной теплопередачи. Часто материалы с простейшим химическим составом и молекулярной структурой имеют самые высокие значения теплопроводности.

    Diamond — важный компонент многих современных портативных электронных устройств. Их роль в электронике — способствовать рассеиванию тепла и защищать чувствительные части компьютера. Высокая теплопроводность алмазов также оказывается полезной при определении подлинности камней в ювелирных изделиях.Добавление небольшого количества алмаза в инструменты и технологии может сильно повлиять на свойства теплопроводности.

  2. Серебро — 429 Вт / м • K

    Серебро — относительно недорогой и распространенный теплопроводник. Серебро входит в состав многих бытовых приборов и является одним из самых универсальных металлов из-за его ковкости. 35% серебра, производимого в США, используется для производства электрических инструментов и электроники (US Geological Survey Mineral Community 2013).Вспомогательный продукт серебра, серебряная паста, пользуется все большим спросом из-за его использования в экологически чистых источниках энергии. Серебряная паста используется в производстве фотоэлементов, которые являются основным компонентом солнечных батарей.

  3. Медь — 398 Вт / м • K

    Медь — наиболее часто используемый металл для производства токопроводящих приборов в США. Медь имеет высокую температуру плавления и умеренную скорость коррозии. Это также очень эффективный металл для минимизации потерь энергии при передаче тепла.Металлические кастрюли, трубы для горячей воды и автомобильные радиаторы — все это приборы, в которых используются проводящие свойства меди.

  4. Золото — 315 Вт / м • K

    Золото — редкий и дорогой металл, который используется в особых проводящих целях. В отличие от серебра и меди, золото редко тускнеет и может выдерживать большие количества коррозии.

  5. Карбид кремния — 270 Вт / м • K

    Карбид кремния — это полупроводник, состоящий из сбалансированной смеси атомов кремния и углерода.При изготовлении и сплавлении кремний и углерод соединяются, образуя чрезвычайно твердый и прочный материал. Эта смесь часто используется в качестве компонента автомобильных тормозов, турбинных машин и стальных смесей.

  6. Оксид бериллия– 255 Вт / м • K

    Оксид бериллия используется во многих высокопроизводительных деталях для таких приложений, как электроника, поскольку он обладает высокой теплопроводностью и является хорошим электрическим изолятором.

  7. Алюминий — 247 Вт / м • K

    Алюминий обычно используется в качестве экономичной замены меди.Хотя алюминий не такой проводящий, как медь, его много, и с ним легко работать из-за его низкой температуры плавления. Алюминий является важным компонентом светильников L.E.D (светоизлучающих диодов). Медно-алюминиевые смеси набирают популярность, поскольку они могут использовать свойства как меди, так и алюминия и могут производиться с меньшими затратами.

  8. Вольфрам — 173 Вт / м • K

    Вольфрам имеет высокую температуру плавления и низкое давление пара, что делает его идеальным материалом для приборов, которые подвергаются воздействию высоких уровней электричества.Химическая инертность вольфрама позволяет использовать его в электродах, являющихся частью электронных микроскопов, без изменения электрических токов. Он также часто используется в лампах и как компонент электронно-лучевых трубок.

  9. Графит 168 Вт / м • K

    Графит — это распространенная, недорогая и легкая альтернатива другим углеродным аллотропам. Его часто используют в качестве добавки к полимерным смесям для улучшения их теплопроводных свойств. Батареи — знакомый пример устройства, использующего высокую теплопроводность графита.

  10. Цинк 116 Вт / м • K

    Цинк — один из немногих металлов, которые можно легко комбинировать с другими металлами для создания металлических сплавов (смеси двух или более металлов). 20% цинковых приборов в США состоят из цинковых сплавов. При цинковании используется 40% производимого чистого цинка. Цинкование — это процесс нанесения цинкового покрытия на сталь или железо, которое предназначено для защиты металла от атмосферных воздействий и ржавчины.

Список литературы

Мохена, Т.К., Мочане, М. Дж., Сефади, Дж. С., Мотлунг, С. В., и Андала, Д. М. (2018). Теплопроводность полимерных композитов на основе графита. Влияние теплопроводности на энергетические технологии. DOI: 10.5772 / intechopen.75676

Оксид бериллия Получено с https://thermtest.com/materials-database#Beryllium-Oxide

База данных материалов Thermtest. https://thermtest.com/materials-database

Автор: Каллиста Уилсон, младший технический писатель на Thermtest

Таблица 6 Теплопроводность, удельная теплоемкость и плотность

Бетон

Газобетонная плита

0.160

840

500

Литой бетон (плотный)

1,400

840

2100

Литой бетон (легкий)

0,380

1000

1200

Литой бетон

1.130

1000

2000

Бетонный блок (тяжелый)

1,630

1000

2300

Бетонный блок (средний)

0,510

1000

1400

Бетонный блок (легкий)

0.190

1000

600

Павиур из бетона

0,960

840

2000

Пеношлак

0,250

960

1040

Блок из пенобетона

0,240

1000

750

Огнеупорный изоляционный бетон

0.250

837

1050

Вермикулит агрегат

0,170

837

450

Бетонная плитка

1,100

837

2100

Сушеный заполнитель для тяжелого бетона — CC01

1.310

837

2243

Тяжелый бетонный невыдержанный заполнитель — CC11

1,802

837

2243

Тяжелый бетонный невыдержанный заполнитель — HF-C12

1,730

837

2243

Легкий бетон — 80 фунтов — CC21

0.36

837

1282

Легкий бетон — 30 фунтов — CC31

0,130

837

481

Легкий бетон — 40 фунтов — HF-C14

0,173

837

641

Легкий бетон — HF-C2

0.380

837

609

Тяжелый бетонный блок — пустотелый — CB01

0,812

837

1618

Тяжелый бетонный блок — с бетонным заполнением — CB02

1,310

837

2234

Тяжелый бетонный блок — наполненный перлитом — CB03

0.384

837

1650

Тяжелый бетонный блок — бетон с частичным заполнением — CB04

1.011

837

1826

Тяжелый бетонный блок — бетон и перлит с наполнителем — CB05

0,825

837

1842

Бетонный блок средней плотности — пустотелый — CB21

0.519

837

1218

Бетонный блок средней плотности — с бетонным заполнением — CB22

0,771

837

1842

Бетонный блок средней плотности — с перлитом — CB23

0,262

837

1250

Бетонный блок средней плотности — бетон с частичным заполнением — CB24

0.572

837

1426

Бетонный блок средней плотности — бетон и перлит с наполнителем — CB25

0,431

837

1442

Легкий бетонный блок — пустотелый — CB41

0,384

837

1041

Легкий бетонный блок — заполненный бетоном — CB42

0.639

837

1666

Легкий бетонный блок — наполненный перлитом — CB43

0,220

837

1073

Легкий бетонный блок — бетон с частичным заполнением — CB44

0,486

837

1250

Легкий бетонный блок — бетон и перлит с наполнителем — CB45

0.360

837

1266

Гравий, постельные принадлежности и т. Д.

Каменная крошка

0.960

1000

1800

Гравий

0,360

840

1840

Грунт на гравийной основе

0,520

184

2050

Постельное белье из плитки

1,400

650

2100

Изоляционные материалы

Плита Eps

0.035

1400

25

Кремний

0,180

1004

700

Одеяло из стекловолокна

0,040

840

12

Стекловолоконная плита

0,035

1000

25

Плита из минерального волокна

0.035

1000

30

Фенольная пена

0,040

1400

30

Полиуретановая плита

0,025

1400

30

Уф-пена

0,040

1400

10

Плита из древесной шерсти

0.100

1000

500

Вермикулитовый изоляционный кирпич

0,270

837

700

Огнеупорный изоляционный бетон

0,250

837

1050

Стекловата

0.040

670

200

Thermalite — высокая прочность

0,190

1050

760

Thermalite ‘Turbo’

0,110

1050

480

Thermalite ‘Shield’ / ‘Smooth Face’

0.170

1050

650

Siporex

0,120

1004

550

P.V.C

0,160

1004

1379

Полистирол

0,030

1380

25

Твердая резина

0.150

1000

1200

Доска Cratherm

0,050

837

176

Уф-пена Два

0,030

1764

30

Уф-пена Два

0,030

1764

30

Облицовка из легкого металла

0.290

1000

1250

Плотный утеплитель Eps Slab (пенополистирол)

0,025

1400

30

Ячеистое стекло

0,050

800

136

Стекловолокно — органическое соединение

0.036

1000

100

Расширенный перлит — органическая связка

0,052

1300

16

Расширенный каучук — жесткий

0,032

1700

72

Ячеистый полиуретан

0.023

1600

24

Клеточный полиизоцианурат

0,023

900

32

Cellular Phenolic — Минеральное волокно со связующим на основе смолы

0,042

700

240

плита волокна цемента — измельченная древесина с связующим веществом цемента оксисульфида магнезии

0.082

1300

350

Вермикулит вспученный

0,068

1300

120

Войлок и мембрана — Войлок — HF-E3

0,190

1674

1121

Войлок и мембрана — Отделка — HF-A6

0.415

1088

1249

Минеральная вата / волокно — Батт — IN01

0,043

837

10

Минеральная вата / волокно — наполнитель — IN11

0,046

837

10

Минеральная вата / волокно — наполнитель — IN12

0.046

837

11

Целлюлозный наполнитель — IN13

0,039

1381

48

Изоляционная плита — HF-B2

0,043

1381

48

Изоляционная плита — HF-B5

0.043

837

32

Предварительно формованная минеральная плита — IN21

0,042

711

240

Пенополистирол — IN31

0,035

1213

29

Вспененный полиуретан — IN41

0.023

1590

24

Формальдегид мочевины — IN51

0,035

1255

11

Обшивка изоляционной плиты — IN61

0,055

1297

288

Изоляционная плита для черепицы — IN63

0.058

1297

288

Изоляционная плита Обшивка основания гвоздя — IN64

0,064

1297

400

Предварительно формованная изоляция крыши — IN71

0,052

837

256

Металл

Сталь

50.000

480

7800

Медь

200,000

418

8900

Алюминий

160,000

896

2800

Облицовка из легкого металла

0,290

1000

1250

Стальной сайдинг — HF-A3

44.970

418

7690

Штукатурка

Штукатурка (плотная)

0.500

1000

1300

Гипс (легкий)

0,160

1000

600

Гипсокартон

0,160

840

950

Перлитный гипсокартон

0.180

837

800

Гипсовая штукатурка

0,420

837

1200

Перлитовая штукатурка

0,080

837

400

Вермикулит штукатурка

0.200

837

720

Штукатурка потолочная

0,380

840

1120

Цементная штукатурка

0,720

800

1860

Перлитовая штукатурка

0,220

1300

720

Перлитовая штукатурка — песчано-заполнитель

0.810

800

1680

Цементная штукатурка — с песчаным заполнителем — CM03

0,721

837

1858

Гипсокартон / гипсовая плита — HF-E1

0,160

837

801

Гипсовый гипс легкий заполнитель — GP04

0.230

837

721

Гипсовая штукатурка — песчаный заполнитель — GP06

0,819

837

1682

Стяжки и штукатурки

Внешний рендеринг

0.500

1000

1300

Стяжка

0,410

840

1200

Гранолитная штукатурка / стяжка

0,870

837

2085

Штукатурка — HF-A1

0,721

837

2659

Пески, камни и почвы

Каменная крошка

0.960

1000

1800

Гравий

0,360

840

1840

Грунт на гравийной основе

0,520

184

2050

Песчаник

1,830

712

2200

Гранит (красный)

2.900

900

2650

Мрамор (белый)

2,770

802

2600

Культивируемая песчаная почва 12,5% D.W. Влажность

1,790

1190

1800

Культивируемая песчаная почва 25,0% D.W. Влага

2,220

1480

2000

Культурная глиняная почва 12,5% D.W. Влажность

1,180

1250

1800

Культурная глиняная почва 25,0% D.W. Влажность

1,590

1550

2000

Культурная торфяная почва 133% D.W. Влага

0,290

3300

700

Культурная торфяная почва 366% D.W. Влажность

0,500

3650

1100

Сухой известняковый грунт

1,490

840

2180

Лондонская глина

1.410

1000

1900

Почва

1,729

837

1842

Камень — ST01

1,802

837

2243

Камень — HF-A3

1,435

1674

881

Терраццо — TZ01

1.802

837

2243

Плитка

Глиняная плитка

0.840

800

1900

Бетонная плитка

1,100

837

2100

Сланцевая плитка

2,000

753

2700

Пластиковая плитка

0,500

837

1950

Резиновые плитки

0.300

2000

1600

Пробковая плитка

0,080

1800

530

Асфальт / асбестовая плитка

0,550

837

1900

P.V.C. / Асбестовая плитка

0.850

837

2000

Плитка потолочная

0,056

1000

380

Штукатурка потолочная

0,380

840

1120

Облицовка из легкого металла

0.290

1000

1250

Акустическая плитка — Минеральное ДВП

0,050

800

290

Акустическая плитка — AC01

0,057

1339

288

Акустическая плитка — HF-E5

0.061

2142

480

Плитка из полой глины — 1 ячейка — CT01

0,498

837

1121

Плитка из полой глины — 2 ячейки — CT03

0,571

837

1121

Плитка из полой глины — 3 ячейки — CT06

0.692

837

1121

Глиняная плитка — HF-C1

0,571

837

1121

Асфальтоукладчик — Глиняная плитка — CT11

1,802

837

1922

Сланец — SL01

1.442

1464

1602

Древесина

Деревянные полы

0.140

1200

650

Фанера (легкая)

0,150

2500

560

Фанера (тяжелая)

0,150

1420

700

Деревянные блоки

0.140

1200

650

Плита из древесной шерсти

0,100

1000

500

Оргалит (средний)

0,080

2000

600

Оргалит (стандартный)

0.130

2000

900

Сосна (влажность 20%)

0,140

2720

419

Пробковая доска

0,040

1888

160

ДСП

0,150

2093

800

Обшивка

0.140

2000

650

Дуб (Радиальный)

0,190

2390

700

Пробковая плитка

0,080

1800

530

Фанера — PW01

0,115

1213

545

Мягкое дерево — WD01

0.115

1381

513

Твердая древесина — WD11

0,158

1255

721

Дерево — HF-B7

0,121

837

593

Фанера — Дугласская пихта

0,120

1200

540

Гонт Древесина — WS01

0.115

1255

513

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2025 © Все права защищены и охраняются законом.