Posted on

Температура кипения фреона в кондиционере, его закачка и утечки

Содержание статьи:

Охлаждение в холодильной машине происходит за счет теплопоглощения при кипении жидкости (фреона) – газообразного вещества, являющегося не только основным функциональным элементом, но и частью смазочного материала для компрессора вместе с маслом.

Он не имеет цвета, запаха и практически не способен воспламеняться, за исключением его прямого контакта с открытым пламенем при температуре не менее 900°C.

Чтобы в холодильной установке происходил непрерывный цикл преобразований хладона (испарение и конденсация), важно поддерживать нормальное давление в системе, благодаря которому будет оставаться допустимая температура закипания хладагента.

Температура кипения фреона в кондиционере совершенно не равна привычным показателям, при которых кипит та же вода. В данном случае она зависит от давления окружающей среды. Чем оно выше, тем выше ее показатели, и наоборот, чем ниже давление, тем ниже ее параметры. Но они всегда имеют низкие значения.

Разные типы фреонов, отличающиеся физическими свойствами и химическим составом, имеют разные температуры кипения в кондиционере при остальных одинаковых условиях. В холодильных установках чаще применяют хладагенты R-22, R-134a, R-407, R-410a. Последний считается наиболее безопасным, так как не представляет угрозу для окружающей среды и человека. Но его применение в кондиционере увеличивает цену на устройство.

Данная ниже таблица температур кипения фреонов разных типов в кондиционерах – это часть таблицы, которой пользуются монтажники при заправке или дозаправке холодильных машин. Это своего рода замена линейке зависимости температуры кипения от давления, используемой на производстве или в сервисных центрах. Приведенные значения нормальной температуры подразумевают нормативное атмосферное давление в 0,1 МПа.

Тип фреонаНормальная температура кипения, °C
Критическое давление, МПа
Критическая температура кипения, °C
R-22-40,854,98696,13
R-410a-51,534,92672,13
R-134a-26,54,06101,5
R-407-43,84,6386,0

Чрезмерное нагревание хладона может вызвать выброс опасных для здоровья человека веществ и разрежение в испарителе.

Утечка фреона в кондиционере

баллоны с хладоном

баллоны с хладоном

Для кондиционера является нормой утечка фреона на 4-7% от общей массы за год. Восполнение потерь в среднем требуется проводить раз в полтора или два года. Если межблочные магистрали смонтированы некачественно, то через плохо сделанные вальцовочные соединения хладагент выходит в большем количестве. Тогда может пойти речь о закачке фреона в кондиционер в полном объеме или о возникновении предварительной необходимости восполнять потери.

При игнорировании проблемы прибор постепенно начинает работать на пределах своих возможностей, вследствие чего происходит поломка компрессора, который попросту перестает смазываться.

Как определить утечку

признак утечки хладагента

признак утечки хладагента

Специалисту несложно определить, есть ли утечка фреона из кондиционера, но сам пользователь тоже должен знать некоторые признаки потерь основного рабочего вещества. Насторожить должны:

  • на местах стыковок хладотрассы и клапанов наружного модуля появляются заметные иней или наледь;
  • сильно снижается качество охлаждения;
  • при включении сплит-системы пахнет гарью;
  • под кранами можно заметить подтеки масла – оно и дает неприятный запах;
  • темнеет компрессорная теплоизоляция;
  • прибор отключается и на дисплее высвечиваются коды ошибок.

При обнаружении каких-либо признаков утечки фреона из кондиционера следует сразу отключить устройство от питания и вызвать мастера.

Специалист через манометрическую станцию подключит баллон с азотом, перекроет порты и запустит в систему избыточное давление. Он должен сразу же обмылить трубы и предполагаемые места утечки. Если появился свист, и в каком-то месте мыльный раствор запузырился, то именно там и есть отверстие, через которое уходит газ. Таким образом определяется утечка фреона из кондиционера, после чего начинается устранение неполадок.

Вместо мыльного раствора можно использовать специальную концентрированную жидкость, которую загоняют в контур, а потом просвечивают ультрафиолетовым осветительным прибором возможные места потерь хладагента.

Есть ли еще способы того, как определить утечку фреона из кондиционера бытового назначения? Для одного из них понадобится особый прибор – электронный течеискатель, который оснащается гибким зондом с чувствительным сенсором – он позволяет добраться до самых трудных мест.

Определить недостаточное количество фреона в старт-стоповом кондиционере можно также с помощью термометра, который подносят к выходящему из вентилятора воздуху. Если показатели не выходят за установленные нормы в 5-8°C, то восполнение газа не нужно.
Если причина потерь заключается в негерметичности межблочных соединений, то мастер приступит к пайке труб и последующей дозаправке прибора рабочим веществом.

Заправка и дозаправка кондиционера фреоном

набор инструментов для заправки

набор инструментов для заправки

Как происходит заправка кондиционеров фреоном, и чем она отличается от дозаправки?

Дозаправка – это частичное восполнение потерянного объема хладагента. Она может понадобиться при утечке или при профилактической заправке. Ее также осуществляют при увеличении трассы во время монтажа. В среднем заводской объем закаченного хладона рассчитан на 5 метров трассы. Если происходит увеличение ее длины, то требуется дозаправка кондиционера фреоном из расчета 30 гр на метр магистрали.

Для бытовых кондиционеров с фреоном R-22 и ему подобных применяют способ дозаправки, а для систем с хладоном R-410a используют только метод полной заправки. Этот газ состоит из смеси химических веществ с разной степенью летучести, которые испаряются совершенно неравномерно, следовательно, состав оставшегося вещества сильно меняется.

Полная заправка – это восполнение всего объема газа в холодильном устройстве. Она необходима при заправке бытовых кондиционеров фреоном после переезда, когда предварительно весь хладагент был спущен, или при восполнении объема хладона, имеющего сложный компонентный состав.

Выпуск фреона из кондиционера

Прежде чем закачать фреон в кондиционер при полной заправке, из него необходимо выпустить оставшийся газ. Как правильно слить фреон с кондиционера, и какие инструменты понадобятся для этого?

Некоторые мастера не видят ничего страшного в том, чтобы просто ослабить гайки на внешнем блоке и стравить все в атмосферу, считая небольшое количество хладагента для окружающей среды безопасным. В чистом виде он на самом деле безвреден, но делать так не стоит. Для его выпуска из кондиционера необходимо иметь станцию по сбору фреона, которая врезается в систему кондиционирования при помощи специального штуцера и откачивает весь газ из нее.

Далее производят вакуумирование, и только после этого подключают баллон с фреоном и производят его закачку в кондиционер по необходимой норме.

Сколько нужно фреона

В разных холодильных системах находится разное количество хладагента. То, сколько в кондиционере может быть фреона, зависит от холодопроизводительности агрегата. В среднем его объем составляет в стандартных сплитах от 700-800 грамм, а в мощных установках коммерческого или промышленного назначения более килограмма.

Требуемый объем указывается производителем на шильдике, представляющем собой металлическую табличку на внутреннем корпусе сплита. Он помогает определить, сколько фреона в кондиционере должно находиться. Используя манометр, мастер определяет величину давления в охлаждающем корпусе и смотрит эту табличку.

В идеале заправка бытовых кондиционеров фреоном должна происходить маленькими порциями, чтобы в систему не попало большее количество газа, так как его переизбыток ведет к неэффективной работе – он не успевает пройти полный цикл трансформации из одного состояния в другое.

Способы заправки кондиционера

заправка по массе

заправка по массе

Заправка кондиционера может производиться несколькими способами, но наиболее простыми и часто применимыми являются:

  • заправка по массе (по весам)
    – понадобится дорогостоящие весы для взвешивания баллона с хладагентом;
  • заправка по давлению – при значениях ниже 3-3,5 атм требуется восполнение газа;
  • по току – понадобятся токоизмерительные клещи, накладываемые на фазу провода питания работающего внешнего блока.

Существуют еще два способа: заправка по переохлаждению и по перегреву. Но в реальности их применяют только при проверке промышленных компрессорно-конденсаторных блоков, так как в бытовых сплитах нет устройства, регулирующего расход фреона. Его роль выполняет капиллярная трубка.

Если после полной или частичной заправки кондиционера его работа не выравнивается, то следует провести диагностику оборудования на обнаружение других неисправностей системы.

Только опытные монтажники знают все безопасные способы, как слить фреон в кондиционере и как восполнить его нехватку. Не стоит самим пытаться проводить такие действия, которые могут привести к ожогам кожных покровов или глаз, а также полностью вывести холодильную машину из строя.

что об этом нужно знать

Как показывает статистика, основной причиной аномальной работы кондиционеров и выхода из строя компрессоров, является неправильная заправка холодильного контура хладагентом. Нехватка хладагента в контуре может объясняться случайными утечками. В то же время избыточная заправка, как правило, является следствием ошибочных действий персонала, вызванных его недостаточной квалификацией. Для систем, в которых в качестве дросселирующего устройства используется терморегулирующий вентиль (ТРВ), лучшим индикатором, указывающим на нормальную величину заправки хладагентом, является переохлаждение. Слабое переохлаждение говорит о том, что заправка недостаточна, сильное указывает на избыток хладагента. Заправка может считаться нормальной, когда температура переохлаждения жидкости на выходе из конденсатора поддерживается в пределах 10-12 градусов Цельсия при температуре воздуха на входе в испаритель, близкой к номинальным условиям эксплуатации.

Температура переохлаждения Тп определяется как разность:
Тп =Тк – Тф
Тк – температура конденсации, считываемая с манометра ВД.
Тф – температура фреона (трубы) на выходе из конденсатора.

1. Нехватка хладагента. Симптомы.

Недостаток фреона будет ощущаться в каждом элементе контура, но особенно этот недостаток чувствуется в испарителе, конденсаторе и жидкостной линии. В результате недостаточного количества жидкости испаритель слабо заполнен фреоном и холодопроизводительность низкая. Поскольку жидкости в испарителе недостаточно, количество производимого там пара сильно падает. Так как объемная производительность компрессора превышает количество пара, поступающего из испарителя, давление в нем аномально падает. Падение давления испарения приводит к снижению температуры испарения. Температура испарения может опуститься до минусовой отметки, в результате чего произойдет обмерзание входной трубки и испарителя, при этом перегрев пара будет очень значительным.

Температура перегрева Т перегрева определяется как разность:
Т перегрева = Т ф.и. – Т всас.
Т ф.и. — температура фреона (трубы) на выходе из испарителя.
Т всас. — температура всасывания, считываемая с манометра НД.
Нормальный перегрев 4-7 градусов Цельсия.

При значительном недостатке фреона перегрев может достигать 12–14 о С и, соответственно, температура на входе в компрессор также возрастет. А поскольку охлаждение электрических двигателей герметичных компрессоров осуществляется при помощи всасываемых паров, то в этом случае компрессор будет аномально перегреваться и может выйти из строя. Вследствие повышения температуры паров на линии всасывания температура пара в магистрали нагнетания также будет повышенной. Поскольку в контуре будет ощущаться нехватка хладагента, точно также его будет недостаточно и в зоне переохлаждения.

    Таким образом, основные признаки нехватки фреона:
  • Низкая холодопроизводительность
  • Низкое давление испарения
  • Высокий перегрев
  • Недостаточное переохлаждение (менее 10 градусов Цельсия)

Необходимо отметить, что в установках с капиллярными трубками в качестве дросселирующего устройства, переохлаждение не может рассматриваться как определяющий показатель для оценки правильности величины заправки хладагентом.

2. Чрезмерная заправка. Симптомы.

В системах с ТРВ в качестве дросселирующего устройства, жидкость не может попасть в испаритель, поэтому излишки хладагента находятся в конденсаторе. Аномально высокий уровень жидкости в конденсаторе снижает поверхность теплообмена, охлаждение газа поступающего в конденсатор, ухудшается, что приводит к повышению температуры насыщенных паров и росту давления конденсации. С другой стороны, жидкость внизу конденсатора остается в контакте с наружным воздухом гораздо дольше, и это приводит к увеличению зоны переохлаждения. Поскольку давление конденсации увеличено, а покидающая конденсатор жидкость отлично охлаждается, переохлаждение, замеренное на выходе из конденсатора, будет высоким. Из-за повышенного давления конденсации происходит снижение массового расхода через компрессор и падение холодопроизводительности. В результате, давление испарения также будет расти. Ввиду того, что чрезмерная заправка приводит к снижению массового расхода паров, охлаждение электрического двигателя компрессора будет ухудшаться. Более того, из-за повышенного давления конденсации, растет ток электрического двигателя компрессора. Ухудшение охлаждения и увеличение потребляемого тока ведет к перегреву электрического двигателя и в конечном итоге – выходу из строя компрессор.

    Итог. Основные признаки перезаправки хладагентом:
  • Упала хладопроизводительность
  • Возросло давление испарения
  • Возросло д

При какой температуре кипит хладагент. Принципы работы холодильной машины

Охлаждение в кондиционерах производится за счет поглощения тепла при кипении жидкости. Когда мы говорим о кипящей жидкости, мы, естественно, думаем, что она горячая. Однако это не совсем верно.

Во-первых, температура кипения жидкости зависит от давления окружающей среды. Чем выше давление, тем выше температура кипения, и наоборот: чем ниже давление, тем ниже температура кипения. При нормальном атмосферном давлении, равном 760 мм рт.ст. (1 атм), вода кипит при плюс 100°С, но если давление пониженное, как например в горах на высоте 7000-8000 м, вода начнет кипеть уже при температуре плюс 40-60°С.

Во-вторых, при одинаковых условиях разные жидкости имеют различные температуры кипения.

Например, фреон R-22, широко используемый в холодильной технике, при нормальном атмосферном давлении имеет температуру кипения минус 4°,8°С.

Если жидкий фреон находится в открытом сосуде, то есть при атмосферном давлении и температуре окружающей среды, то он немедленно вскипает, поглощая при этом большое количество тепла из окружающей среды или любого материала, с которым находится в контакте. В холодильной машине фреон кипит не в открытом сосуде, а в специальном теплообменнике, называемом испарителем. При этом кипящий в трубках испарителя фреон активно поглощает тепло от воздушного потока, омывающего наружную, как правило, оребренную поверхность трубок.

Рассмотрим процесс конденсации паров жидкости на примере фреона R-22. Температура конденсации паров фреона, так же, как и температура кипения, зависит от давления окружающей среды. Чем выше давление, тем выше температура конденсации. Так, например, конденсация паров фреона R-22 при давлении 23 атм начинается уже при температуре плюс 55°С. Процесс конденсации фреоновых паров, как и любой другой жидкости, сопровождается выделением большого количества тепла в окружающую среду или, применительно к холодильной машине, передачей этого тепла потоку воздуха или жидкости в специальном теплообменнике, называемом конденсатором.

Естественно, чтобы процесс кипения фреона в испарителе и охлаждения воздуха, а также процесс конденсации и отвод тепла в конденсаторе были непрерывными, необходимо постоянно «подливать» в испаритель жидкий фреон, а в конденсатор постоянно подавать пары фреона. Такой непрерывный процесс (цикл) осуществляется в холодильной машине.

Прочитав данный материал, вы познакомитесь с технологиями холодопроизводительности, принципами функционирования холодильного оборудования и основными элементами холодильных установок: конденсаторами, вентиляторами, компрессорами, регуляторами потока и испарителями. Кроме того, вы узнаете, как в холодильных машинах работает режим «теплового насоса» и как влияют отрицательные температуры на функционирование холодильных устройств. Также мы разберемся с принципиальными схемами холодильных комплексов, которые работают с холодильным оборудованием, имеющим воздушное охлаждение конденсаторов.

Помимо всего прочего, вы увидите конкретную разработку проекта холодильного комплекса с принятием основных технических решений и принципиальную схему холодильного комплекса.

Знакомство с основной терминологией

Эксперты по холодильному оборудованию руководствуются специальными терминами, которые исчисляются несколькими тысячами. Вам предлагаются самые основные определения, которые наиболее часто используются в технологических основах холодопроизводительности. Без этих понятий подробное изучение данной технической отрасли не имеет смысла.

Термодинамическая система объединяет тела, взаимодействующие друг с другом, окружающим пространством и иными телами.

Данная система может находиться в определенном состоянии, которое имеет свои параметры. Последние являются величинами, характеризующими то, в каком состоянии сейчас пребывает термодинамическая система.

Интенсивные термодинамические параметры являются параметрами состояния, на которые не влияет масса вышеуказанной системы. К ним можно отнести температуру, давление и т.д.

Экстенсивные термодинамические параметры находятс

Фреоны температура кипения — Справочник химика 21

    Обычно для этой цели применяют неорганические соединения— аммиак (температура кипения —33 «»С) или сернистый газ (температура кипения —10 «С). Оба они дешевы и сейчас используются в больших промышленных холодильных установках. А в установках поменьше, например в домашних холодильниках или кондиционерах, применяют фреон — его температура кипения —28 «»С. [c.78]

    Высокотемпературное отходящее тепло пара пригодно для приве дения в действие турбины, однако использование воды при температуре ниже 200°С затруднительно, и в качестве рабочей жидкости применяют фреоны, температура кипения которых ниже, чем у воды. [c.80]


    Ниже приведены температуры кипения, и плавления фреонов  [c.394]

    Каскадные холодильные циклы представляют собой последовательно соединенные парокомпрессионные машины с различными хладагентами, отличающимися по температурам кипения. Принцип взаимодействия последовательно соединенных парокомпрессионных холодильных машин заключается в том, что хладагент, сжижающийся при более высокой температуре, служит для конденсации паров труднее конденсируемого хладагента. Например, в стандартном каскадном холодильном цикле, предназначенном для сжижения природного газа, обычно применяют три ступени. На первой ступени в качестве хладагента используют пропан, фреон или аммиак, на второй — этан или этилен, на третьей — метан или природный газ. Принципиальная схема каскадного холодильного цикла показана на рис. 31. [c.129]

    При температурах в холодильнике выше —23.3° С применяются пропан, аммиак или один из фреонов. При криогенных условиях можно использовать этилен и метан. В общем, нижним пределом практической применимости любого хладагента является его температура кипения при атмосферных условиях. Желательно, чтобы хладагент обеспечивал в холодильнике г.есколько повышен ое давление, что необходимо для более эффективной работы компрессора, так как при давлении менее 1,8—2,1 кгс/см значительно возрастает необходимая мощность. [c.183]

    Все большее распространение получают фреоны (фторхлор-производные углеводородов), которые отличаются широким диапазоном термодинамических свойств (температур кипения, давлений и т. д.). В большинстве своем фреоны безвредны, негорючи, не взрывоопасны, не имеют запаха недостатком фреонов является их малая скрытая теплота парообразования и растворимость в смазочных маслах. [c.380]

    Имеются сведения, что некоторые зарубежные фирмы применяют для обезжиривания кислородного оборудования фреоны. Эти вещества являются хорошими растворителями жиров и масел, не взрывоопасны в воздухе и кислороде и, что очень важно, значительно менее токсичны, чем другие хлорированные углеводороды. Наиболее приемлемым является использование для обезжиривания фреона 113, имеющего сравнительно высокую температуру кипения. [c.201]


    Температура кипения фреона-12 [c.333]

    Фреоны (СР,С12, СИР С и т.д.), которые имеют температуры кипения немного ниже комнатной и могут быть сжижены при неболь- [c.197]

    Состав холодильной установки. Холодильная установка, работающая на Р22, объединяет несколько автономных установок, обслуживающих морозильные аппараты типа АСМА и АМП-7А, трюмы мороженой продукции и льдогенераторы с температурами кипения, соответственно равными —42, —38 и —32 °С. Распределение хладагента по аппаратам осуществляется насосами, которые обеспечивают пятикратную циркуляцию фреона. [c.294]

    Температура кипения фреона, С……20.. .25 [c.940]

    Исходным мономером для получения политетрафторэтилена является тетрафторэтилен (СГг = СРз), который представляет собой газообразное нетоксическое вещество с температурой кипения 76,0° и температурой плавления 142,5° [94]. Синтез тетрафторэтилена начинается с фторирования хлороформа. При фторировании образуется дифторхлорметаи, который применяется в холодильной технике под названием фреон 22. Во второй стадии дифторхлорметаи при каталитическом пиролизе превращается в тетрафторэтилен [95]  [c.802]

    Однако при полном растворении масла во фреоне температура кипения смеси несколько выше, чем у чистого хладагента. Чтобы обеспечить заданную холодопроизводительность, приходится поддерживать более низкое давление, что связано с дополнительной затратой мощности компрессора. Другой недостаток состоит в том, что при длительной остановке компрессора повышение давления приводит к насыщению масла в картере фреоном. При пуске компрессора давление в нем резко падает, масло вскипает, что приводит к необходимости принимать дополнительные меры, чтобы предотвратить выброс масла из картера. Однако преимущества полной растворимости гораздо выше указанных недостатков. [c.46]

    Область применения холодильных ротационных бустер-компрессоров характеризуется холодопроизводительностью от нескольких киловатт до 900 кВт (теоретическая производительность до 1,3 м /с) при температуре кипения /о=—40 °С и промежуточной температуре = —10 °С, температурой кипения от —25 до —70 °С разностью давлений нагнетания и всасывания до 400 кПа. Компрессоры используют для работы на аммиаке и фреонах. [c.24]

    При комбинированной подаче фреон движется через последовательно соединенные змеевики сначала снизу вверх, а затем (в последних секциях) — сверху вниз. Коэффициент теплопередачи при комбинированной подаче несколько выше, чем при верхней, однако такие испарители имеют повышенное гидравлическое сопротивление. Поэтому комбинированный способ подачи фреона применяют лишь в некоторых испарителях, работающих при высоких температурах кипения возврат масла из таких систем осуществляется легче, чем при нижней подаче хладагента. [c.61]

    Устройство подключается к вакуумной линии в точке А, а ампулы с растворителем (802), осадителем (фреон 113) и реагентами — в точке В. При атом объемы содержащихся в ампулах компонентов должны быть тщательно калиброваны (в противном сл> гае система должна включать в себя вспомогательную линию, обеспечивающую точное дозирование). Необходимо принять некоторые меры предосторожности в связи с тем, что нормальная температура кипения 80г равна -10°С и давление паров при комнатной температуре составляет около 3 атм. В частности, аппаратура не должна содержать тонкостенных деталей и секций, а 80 и растворы необходимо содер

Зависимость температуры конденсации от давления. Подробно о холодильном оборудовании. Проектирование холодильных площадок

Охлаждение в кондиционерах производится за счет поглощения тепла при кипении жидкости. Когда мы говорим о кипящей жидкости, мы, естественно, думаем, что она горячая. Однако это не совсем верно.

Во-первых, температура кипения жидкости зависит от давления окружающей среды. Чем выше давление, тем выше температура кипения, и наоборот: чем ниже давление, тем ниже температура кипения. При нормальном атмосферном давлении, равном 760 мм рт.ст. (1 атм), вода кипит при плюс 100°С, но если давление пониженное, как например в горах на высоте 7000-8000 м, вода начнет кипеть уже при температуре плюс 40-60°С.

Во-вторых, при одинаковых условиях разные жидкости имеют различные температуры кипения.

Например, фреон R-22, широко используемый в холодильной технике, при нормальном атмосферном давлении имеет температуру кипения минус 4°,8°С.

Если жидкий фреон находится в открытом сосуде, то есть при атмосферном давлении и температуре окружающей среды, то он немедленно вскипает, поглощая при этом большое количество тепла из окружающей среды или любого материала, с которым находится в контакте. В холодильной машине фреон кипит не в открытом сосуде, а в специальном теплообменнике, называемом испарителем. При этом кипящий в трубках испарителя фреон активно поглощает тепло от воздушного потока, омывающего наружную, как правило, оребренную поверхность трубок.

Рассмотрим процесс конденсации паров жидкости на примере фреона R-22. Температура конденсации паров фреона, так же, как и температура кипения, зависит от давления окружающей среды. Чем выше давление, тем выше температура конденсации. Так, например, конденсация паров фреона R-22 при давлении 23 атм начинается уже при температуре плюс 55°С. Процесс конденсации фреоновых паров, как и любой другой жидкости, сопровождается выделением большого количества тепла в окружающую среду или, применительно к холодильной машине, передачей этого тепла потоку воздуха или жидкости в специальном теплообменнике, называемом конденсатором.

Естественно, чтобы процесс кипения фреона в испарителе и охлаждения воздуха, а также процесс конденсации и отвод тепла в конденсаторе были непрерывными, необходимо постоянно «подливать» в испаритель жидкий фреон, а в конденсатор постоянно подавать пары фреона. Такой непрерывный процесс (цикл) осуществляется в холодильной машине.

За все время развития климатической техники и холодильного оборудования было создано около 40 различных видов фреонов, каждый из которых имеет собственную температуру кипения и конденсации. Таким образом, фреон приобретает и теряет газообразное состояние и во время этого процесса возникает давление внутри системы охлаждения агрегата.

Существует четкая зависимость давления от температуры фреона, точнее, температуры его кипения и конденсации.

Физические свойства фреона

Температура кипения фреона зависит от его молекулярного состава, чем выше температура кипения, тем большее количество фреона системы охлаждения переходит в газообразное состояние и тем выше давление в системе. Высокое давление предъявляет повышенные требования к мощности компрессора, прочности материалов, из которых изготовлена трасса прокачки фреона, качеству соединений труб, шлангов и т.п.

До недавнего времени основным видом фреона, применявшимся во всем мире был R22 и его модификации. В странах СНГ он по-прежнему занимает львиную долю, поскольку его ввоз, но не использование, запрещен только с 2013 года.

Если принять физические показатели R22 за точку отсчета (за единицу), то для нормальной работы системы охлаждения достаточное давление составит 16 атмосфер. Исходя из этого значения, разрабатывались конструкции холодильников и кондиционеров, их определяла зависимость давления от температуры фреона.

Физические свойства озонобезопасного фреона

В связи с опасностью разрушения озонового слоя атмосферы фреонами вначале были полностью запрещен фреон R12 и его модификации, а сейчас на грани подобного запрета находится R22. Новые озонобезопасные фреоны представляют собой многокомпонентные смеси из нескольких фреонов.

Наиболее распространенными являются R407 и R-410A. Первый из них создавался под физические характеристики R22 для того чтобы выдержать в системе показатели давления, однако разная температура испарения отдельных компонентов привела к тому, что естественные потери фреона стало невозможно восполнить дозаправкой. Поэтому при потере критического объема этот фреон в системе приходится полностью менять.

У ф

Температура — кипение — хладагент

Температура — кипение — хладагент

Cтраница 1

Температура кипения хладагента в рабочем режиме должна быть по возможности такой, чтобы давление в испарителе превышало атмосферное. Это позволяет избежать вакуума в аппаратах и связанного с ним проникновения воздуха в систему, ухудшающего работу холодильной машины.  [1]

Температура кипения хладагента в установках с одноступенчатым сжатием при непосредственном охлаждении камер должна быть на 8 — 10 С ниже температуры воздуха охлаждаемых объектов-помещений, а при рассольном охлаждении — на 13 — 15 С. Держать более низкие температуры кипения неэкономично, так как растет удельный расход потребляемой компрессором электроэнергии примерно на 4 — 4 5 % на 1 С и холодо-производительность установки снижается. Температуру кипения хладагента измеряют по мановакуумметру, установленному на всасывающем трубопроводе компрессора. По одной шкале мановакуумметра определяют давление в испарителе, а по другой — соответствующую ему температуру кипения хладагента.  [2]

Температуру кипения хладагента в закрытых испарителях следует принимать на 5 С ниже средней температуры хладоносителя.  [3]

Температуру кипения хладагента принимают в зависимости от температуры воздуха в охлаждаемом объекте.  [4]

Температуру кипения хладагента в закрытых испарителях следует принимать на 5 С ниже средней температуры хладоносителя.  [5]

Температуру кипения хладагента ( фреона, аммиака) в закрытых кожухотрубных горизонтальных испарителях, охлаждающих воду, следует принимать не ниже 1 С, во избежание замораживания воды при понижении нагрузки или нарушении протока воды.  [6]

Температуру кипения хладагента в закрытых испарителях следует принимать на 5 ниже средней температуры холодоносителя. Температуру кипения хладагента ( фреона, аммиака) в закрытых кожухотруб-ных горизонтальных испарителях, охлаждающих воду, следует принимать не ниже 1 С во избежание замерзания воды при понижении нагрузок или нарушении движения воды.  [7]

Температуру кипения хладагента в кожухотрубных испарителях следует принимать не более чем на 5 С ниже средней температуры хладоносителя, но не ниже 2 С, причем температура воды, выходящей из кожухотрубных испарителей, не должна быть ниже 6 С.  [8]

В рассольных схемах температуру кипения хладагента принимают на 5 — 6 С ниже температуры рассола, которую в свою очередь принимают на 8 — 10 С ниже температуры воздуха в камере. Остальные температуры выбирают так же, как и для системы непосредственного охлаждения.  [9]

Для кожухотрубных испарителей температуру кипения хладагентов, охлаждающих воду, следует принимать не ниже 2 С, для других испарителей — не ниже — 2 С. В помещениях производственных, общественных и административно-бытовых зданий, если над их перекрытием или под полом имеются помещения с массовым постоянным или временным ( кроме аварийных ситуаций) пребыванием людей, не разрешается размещать холодильные установки компрессионного типа с хладагентом хладо-ном при содержании масла в любой из холодильных машин 250 кг и более.  [10]

Перегрев воспринимается регулятором как разность температур кипения хладагента и выходящего из испарителя пара. При этом температура кипения измеряется косвенно по соответствующему давлению, а температура пара преобразовывается в давление внутри манометрической термосистемы.  [11]

Режим работы холодильной машины определяется температурой кипения хладагента to, С, которая принимается исходя из условий работы СКВ; температурой конденсации tK, С, которая принимается на 3 — 4 С выше температуры воды, уходящей из конденсаторов; температурой переохлаждения хладагента t, С, которая принимается на 1 — 2е С выше начальной температуры воды, подаваемой в конденсаторы.  [12]

Режим работы холодильной машины определяется температурой кипения хладагента tt, C, которая принимается исходя из, условий работы СКВ; температурой конденсации tK, С, которая принимается на 3 — 4 С выше температуры воды, уходящей из конденсаторов; температурой переохлаждения хладагента tu, C, которая принимается на 1 — 2 С выше начальной температуры воды, подаваемой в конденсаторы.  [13]

Аппараты могут быть использованы при температурах кипения хладагента в пределах от — 17 до 5 С при шаге ребер 6 35 и 8 45 мм и в пределах от — 4 до 8 С при шаге ребер 3 2 мм.  [15]

Страницы:      1    2    3    4

АНО ДПО «УКЦ «УНИВЕРСИТЕТ КЛИМАТА»

Основные понятия, связанные с работой холодильной машины

Охлаждение в кондиционерах производится за счет поглощения тепла при кипении жидкости. Когда мы говорим о кипящей жидкости, мы, естественно, думаем, что она горячая. Однако это не совсем верно.

Во-первых, температура кипения жидкости зависит от давления окружающей среды. Чем выше давление, тем выше температура кипения, и наоборот: чем ниже давление, тем ниже температура кипения. При нормальном атмосферном давлении, равном 760 мм рт.ст. (1 атм), вода кипит при плюс 100°С, но если давление пониженное, как например в горах на высоте 7000-8000 м, вода начнет кипеть уже при температуре плюс 40-60°С.

Во-вторых, при одинаковых условиях разные жидкости имеют различные температуры кипения.

Например, фреон R-22, широко используемый в холодильной технике, при нормальном атмосферном давлении имеет температуру кипения минус 4°,8°С.

Если жидкий фреон находится в открытом сосуде, то есть при атмосферном давлении и температуре окружающей среды, то он немедленно вскипает, поглощая при этом большое количество тепла из окружающей среды или любого материала, с которым находится в контакте. В холодильной машине фреон кипит не в открытом сосуде, а в специальном теплообменнике, называемом испарителем. При этом кипящий в трубках испарителя фреон активно поглощает тепло от воздушного потока, омывающего наружную, как правило, оребренную поверхность трубок.

Рассмотрим процесс конденсации паров жидкости на примере фреона R-22. Температура конденсации паров фреона, так же, как и температура кипения, зависит от давления окружающей среды. Чем выше давление, тем выше температура конденсации. Так, например, конденсация паров фреона R-22 при давлении 23 атм начинается уже при температуре плюс 55°С. Процесс конденсации фреоновых паров, как и любой другой жидкости, сопровождается выделением большого количества тепла в окружающую среду или, применительно к холодильной машине, передачей этого тепла потоку воздуха или жидкости в специальном теплообменнике, называемом конденсатором.

Естественно, чтобы процесс кипения фреона в испарителе и охлаждения воздуха, а также процесс конденсации и отвод тепла в конденсаторе были непрерывными, необходимо постоянно «подливать» в испаритель жидкий фреон, а в конденсатор постоянно подавать пары фреона. Такой непрерывный процесс (цикл) осуществляется в холодильной машине.

Наиболее обширный класс холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются компрессор, испаритель, конденсатор и регулятор потока (капиллярная трубка), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента (фреона) осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагнетания) высокое давление порядка 20-23 атм.

Теперь, когда рассмотрены основные понятия, связанные с работой холодильной машины, перейдем к более подробному рассмотрению схемы компрессионного цикла охлаждения, конструктивному исполнению и функциональному назначению отдельных узлов и элементов.

Схема компрессионного цикла охлаждения

Кондиционер — это та же холодильная машина, предназначенная для тепловлажностной обработки воздушного потока. Кроме того, кондиционер обладает существенно большими возможностями, более сложной конструкцией и многочисленными дополнительными опциями. Обработка воздуха предполагает придание ему определенных кондиций, таких как температура и влажность, а также направление движения и подвижность (скорость движения). Остановимся на принципе работы и физических процессах, происходящих в холодильной машине (кондиционере). Охлаждение в кондиционере обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре, а конденсация — при высоком давлении и высокой температуре. Принципиальная схема компрессионного цикла охлаждения показана на рис. 1.

 

Схема компрессионного цикла охлаждения
Рис. 1. Схема компрессионного цикла охлаждения

 

Начнем рассмотрение работы цикла с выхода испарителя (участок 1-1). Здесь хладагент находится в парообразном состоянии с низким давлением и температурой.

Парообразный хладагент всасывается компрессором, который повышает его давление до 15-25 атм и температуру до плюс 70-90°С (участок 2-2).

Далее в конденсаторе горячий парообразный хладагент охлаждается и конденсируется, то есть переходит в жидкую фазу. Конденсатор может быть либо с воздушным, либо с водяным охлаждением в зависимости от типа холодильной системы.

На выходе из конденсатора (точка 3) хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ полностью сконденсировался внутри конденсатора. Поэтому температура жидкости на выходе из конденсатора оказывается несколько ниже температуры конденсации. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет примерно плюс 4-7°С.

При этом температура конденсации примерно на 10-20°С выше температуры атмосферного воздуха.

Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается, часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости (точка 4).

Жидкость кипит в испарителе, отбирая тепло от окружающего воздуха, и вновь переходит в парообразное состояние.

Размеры испарителя выбираются таким образом, чтобы жидкость полностью испарилась внутри испарителя. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения, происходит так называемый перегрев хладагента в испарителе. В этом случае даже самые маленькие капельки хладагента испаряются и в компрессор не попадает жидкость. Следует отметить, что в случае попадания жидкого хладагента в компрессор, так называемого «гидравлического удара», возможны повреждения и поломки клапанов и других деталей компрессора.

Перегретый пар выходит из испарителя (точка 1), и цикл возобновляется.

Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот.

Все компрессионные циклы холодильных машин включают два определенных уровня давления. Граница между ними проходит через нагнетательный клапан на выходе компрессора с одной стороны и выход из регулятора потока (из капиллярной трубки) с другой стороны.

Нагнетательный клапан компрессора и выходное отверстие регулятора потока являются разделительными точками между сторонами высокого и низкого давлений в холодильной машине.

На стороне высокого давления находятся все элементы, работающие при давлении конденсации.

На стороне низкого давления находятся все элементы, работающие при давлении испарения.

Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.

Теоретический и реальный цикл охлаждения.

Цикл охлаждения можно представить графически в виде диаграммы зависимости абсолютного давления и теплосодержания (энтальпии). На диаграмме (рис. 2) представлена характерная кривая отображающая процесс насыщения хладагента.

Левая часть кривой соответствует состоянию насыщенной жидкости, правая часть — состоянию насыщенного пара. Две кривые соединяются в центре в так называемой «критической точке», где хладагент может находиться как в жидком, так и в парообразном состоянии. Зоны слева и справа от кривой соответствуют переохлажденной жидкости и перегретому пару. Внутри кривой линии помещается зона, соответствующая состоянию смеси жидкости и пара.

Рассмотрим схему теоретического (идеального) цикла охлаждения с тем, чтобы лучше понять действующие факторы (рис. 3).

Рассмотрим наиболее характерные процессы, происходящие в компрессионном цикле охлаждения.

Сжатие пара в компрессоре.

Холодный парообразный насыщенный хладагент поступает в компрессор (точка С`). В процессе сжатия повышаются его давление и температура (точка D). Теплосодержание также повышается на величину, определяемую отрезком НС`-HD, то есть проекцией линии C`-D на горизонтальную ось.

Конденсация.

В конце цикла сжатия (точка D) горячий пар поступает в конденсатор, где начинается его конденсация и переход из состояния горячего пара в состояние горячей жидкости. Этот переход в новое состояние происходит при неизменных давлении и температуре. Следует отметить, что, хотя температура смеси остается практически неизменной, теплосодержание уменьшается за счет отвода тепла от конденсатора и превращения пара в жидкость, поэтому он отображается на диаграмме в виде прямой, параллельной горизонтальной оси.

 

Диаграмма давления и теплосодержания
Риc. 2. Диаграмма давления и теплосодержания
Изображение теоретического цикла сжатия на диаграмме
Рис. 3. Изображение теоретического цикла сжатия на диаграмме «Давление и теплосодержание»

 

Процесс в конденсаторе происходит в три стадии: снятие перегрева (D-E), собственно конденсация (Е-А) и переохлаждение жидкости (А-А`).

Рассмотрим кратко каждый этап.

Снятие перегрева (D-E).

Это первая фаза, происходящая в конденсаторе, и в течение ее температура охлаждаемого пара снижается до температуры насыщения или конденсации. На этом этапе происходит лишь отъем излишнего тепла и не происходит изменение агрегатного состояния хладагента.

На этом участке снимается примерно 10-20% общего теплосъема в конденсаторе.

Конденсация (Е-А).

Температура конденсации охлаждаемого пара и образующейся жидкости сохраняется постоянной на протяжении всей этой фазы. Происходит изменение агрегатного состояния хладагента с переходом насыщенного пара в состояние насыщенной жидкости. На этом участке снимается 60-80% теплосъема.

Переохлаждение жидкости (А-А`).

На этой фазе хладагент, находящийся в жидком состоянии, подвергается дальнейшему охлаждению, в результате чего его температура понижается. Получается переохлажденная жидкость (по отношению к состоянию насыщенной жидкости) без изменения агрегатного состояния.

Переохлаждение хладагента дает значительные энергетические преимущества: при нормальном функционировании понижение температуры хладагента на один градус соответствует повышению мощности холодильной машины примерно на 1% при том же уровне энергопотребления.

Количество тепла, выделяемого в конденсаторе.

Участок D-A` соответствует изменению теплосодержания хладагента в конденсаторе и характеризует количество тепла, выделяемого в конденсаторе.

Регулятор потока (А`-B).

Переохлажденная жидкость с параметрами в точке А` поступает на регулятор потока (капиллярную трубку или терморегулирующий расширительный клапан), где происходит резкое снижение давления. Если давление за регулятором потока становится достаточно низким, то кипение хладагента может происходить непосредственно за регулятором, достигая параметров точки В.

Испарение жидкости в испарителе (В-C).

Смесь жидкости и пара (точка В) поступает в испаритель, где она поглощает тепло от окружающей среды (потока воздуха) и переходит полностью в парообразное состояние (точка С). Процесс идет при постоянной температуре, но с увеличением теплосодержания.

Как уже говорилось выше, парообразный хладагент несколько перегревается на выходе испарителя. Главная задача фазы перегрева (С-С`) — обеспечение полного испарения остающихся капель жидкости, чтобы в компрессор поступал только парообразный хладагент. Для этого требуется повышение площади теплообменной поверхности испарителя на 2-3% на каждые 0,5°С перегрева. Поскольку обычно перегрев соответствуют 5-8°С, то увеличение площади поверхности испарителя может составлять около 20%, что безусловно оправдано, так как увеличивает эффективность охлаждения.

Количество тепла, поглощаемого испарителем.

Участок HB-НС` соответствует изменению теплосодержания хладагента в испарителе и характеризует количество тепла, поглощаемого испарителем.

Реальный цикл охлаждения.

В действительности в результате потерь давления, возникающих на линии всасывания и нагнетания, а также в клапанах компрессора, цикл охлаждения отображается на диаграмме несколько иным образом (рис. 4).

Из-за потерь давления на входе (участок C`-L) компрессор должен производить всасывание при давлении ниже давления испарения.

С другой стороны, из-за потерь давления на выходе (участок М-D`), компрессор должен сжимать парообразный хладагент до давлений выше давления конденсации.

Необходимость компенсации потерь увеличивает работу сжатия и снижает эффективность цикла.

Помимо потерь давления в трубопроводах и клапанах, на отклонение реального цикла от теоретического влияют также потери в процессе сжатия.

 

Реальный цикл охлаждения
Рис. 4. Изображение цикла реального сжатия на диаграмме «Давление-теплосодержание» C`L: потеря давления при всасывании MD: потеря давления при выходе HDHC`: теоретический термический эквивалент сжатия HD`HC`: реальный термический эквивалент сжатия C`D: теоретическое сжатие LM: реальное сжатие

 

Во-первых, процесс сжатия в компрессоре отличается от адиабатического, поэтому реальная работа сжатия оказывается выше теоретической, что также ведет к энергетическим потерям.

Во-вторых, в компрессоре имеются чисто механические потери, приводящие к увеличению потребной мощности электродвигателя компрессора и увеличению работы сжатия.

В третьих, из-за того, что давление в цилиндре компрессора в конце цикла всасывания всегда ниже давления пара перед компрессором (давления испарения), также уменьшается производительность компрессора. Кроме того, в компрессоре всегда имеется объем, не участвующий в процессе сжатия, например, объем под головкой цилиндра.

Оценка эффективности цикла охлаждения

Эффективность цикла охлаждения обычно оценивается коэффициентом полезного действия или коэффициентом термической (термодинамической) эффективности.

Коэффициент эффективности может быть вычислен как соотношение изменения теплосодержания хладагента в испарителе (НС-НВ) к изменению теплосодержания хладагента в процессе сжатия (НD-НС).

Фактически он представляет собой соотношение холодильной мощности и электрической мощности, потребляемой компрессором.

Причем он не является показателем производительности холодильной машины, а представляет собой сравнительный параметр при оценке эффективности процесса передачи энергии. Так, например, если холодильная машина имеет коэффициент термической эффективности, равный 2,5, то это означает, что на каждую единицу электроэнергии, потребляемую холодильной машиной, производится 2,5 единицы холода.

 

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *