Posted on

Содержание

Схема высоковольтного стабилизатора напряжения — РАДИОСХЕМЫ

В настоящее время существуют интегральные микросхемы, применяя которые можно создавать высоковольтные стабилизаторы напряжения компенсационного типа на выходное напряжение от 70 до 140 В. Это микросхемы типов SE070N, SE080N, SE090N, SE105N, SE110N, SE120N, SE125N, SE130N, SE135N, SE140N — они предназначены для контроля и регулировки напряжения постоянного тока. На рисунке показан один из возможных вариантов линейного стабилизатора на выходное напряжение 115 В постоянного тока. Источником напряжения для стабилизатора служит сеть переменного тока 220 В. В других конструкциях источником напряжения может быть, например, вторичная обмотка силового трансформатора, выход выпрямителя преобразователя напряжения. Стабилизатор выполнен на интегральной микросхеме SE115N, представляющей собой детектор напряжения на 115 В. Контролируемое напряжение с выхода стабилизатора поступает на вход DA1 — вывод 1.

 

Если напряжение на выходе стабилизатора стремится увеличиться свыше рабочего напряжения DA1, то открывается выходной п-p-n транзистор микросхемы, коллектор которого выведен на вывод 2 DA1. Это приводит к тому, что понижается напряжение затвор-исток VT1 что приводит к понижению выходного напряжения стабилизатора. На мощном высоковольтном полевом n-канальном транзисторе VT1 выполнен истоковый повторитель напряжения. Сетевое напряжение переменного тока поступает на мостовой диодный выпрямитель VD1 — VD4. Конденсатор С1 сглаживает пульсации выпрямленного напряжения. Резистор R1 уменьшает бросок тока через выпрямительные диоды и разряженный конденсатор С1, возникающий при включении устройства в сеть. Стабилитрон VD5 защищает полевой транзистор от пробоя высоким напряжением затвор-исток. Светящийся светодиод HL1 сигнализирует о наличии выходного напряжения, кроме того, цепь R3HL1 разряжает оксидные конденсаторы при отключенной нагрузке. Резистор R1 должен быть проволочным. Его сопротивление и мощность выбирают исходя из параметров подключенной к стабилизатору нагрузки. Остальные резисторы любые из С2-33, МЛТ, РПМ соответствующей мощности. Сопротивление резистора R2 выбирают исходя из входного напряжения стабилизатора, при этом следует учитывать, что максимальный втекающий ток DA1 по выводу 2 не должен превышать 20 мА. Конденсаторы типа К50-68 или импортные аналоги. Вместо стабилитрона BZV55C-12 подойдёт BZV55C-13, 1N4743A, 2С212Ц, КС212Ц. Светодиод подойдёт любого типа непрерывного свечения, желательно с повышенной светоотдачей. Полевой МДП транзистор HV82 рассчитан на максимальный ток стока 6,5 А, напряжение сток-исток 800 В и максимальную рассеиваемую мощность 150 Вт. В этой конструкции его можно заменить, например, на IRF350, IRF352 или другой, подходящий по параметрам. Следует учитывать, что если, например, к выходу стабилизатора подключена нагрузка мощностью 30 Вт, то при питании устройства от сети 220 В, на транзисторе VT1 будет рассеиваться мощность около 80 Вт. Если же входным напряжением для стабилизатора будет, например, напряжение +180 В (выход выпрямителя «лампового» трансформатора), то при выходном напряжении 115 В и токе нагрузки 0,5 А установленный на теплоотвод транзистор будет рассеивать около 33 Вт тепловой мощности. Это немало, поэтому, линейные высоковольтные стабилизаторы напряжения целесообразно применять для питания слаботочной нагрузки, например, лампового активного щупа для осциллографа и в других местах, где применение импульсных высоковольтных стабилизаторов напряжения нежелательно. Источник: Радио-конструктор 11 — 2010.

radioskot.ru

Стабилизатор напряжения | РадиоГазета — принципиальные схемы для радиолюбителей и меломанов

ssАвтор: Andy Nehan

Когда речь заходит о стабилизаторах напряжения, сразу вспоминаются трехвыводные стабилизаторы типа LM317/337 или 78ХХ и 79ХХ. Все они работают при небольших напряжениях (до 40 Вольт), имеют всего три вывода и, как следствие, простые схемы включения.

Забегая вперёд, приведу цитату из конца этой статьи:

«Если вы обычно слушаете усилители со стабилизаторами на LM317 и им подобным, то прослушивание усилителя со стабилизатором без обратной связи поначалу может вызвать у вас шок!

Для меня это было сравнимо с тем, когда я первый раз попробовал сырую рыбу.

Просто забудьте про ваши предрассудки!»

Для слежения за выходным напряжением  микросхемы LM317/LM337 и аналогичные используют обратную связь.

параметрический стабилизатор напряжения

Другой тип стабилизаторов обычно называют параллельными и часто говорят, что они не имеют обратной связи, а стабилизация напряжения происходит путем шунтирования нагрузки (из рисунка видно, что это не так и обратная связь присутствует и в этом типе стабилизаторов).

параллельный стабилизатор напряжения

У обоих типов стабилизаторов есть ряд общих черт. Оба используют усилитель сигнала ошибки. При этом все усилители имеют конечный коэффициент усиления и ограниченную полосу пропускания. В идеале, надо использовать усилитель сигнала ошибки с постоянным усилением и фазовым сдвигом в полосе от постоянного тока и далее во всем звуковом диапазоне.

Смысл этого в том, что характеристики усилителя сигнала ошибки и цепи обратной связи определяют выходное сопротивление стабилизатора таким образом, что:

1. чем выше коэффициент усиления, тем ниже выходное сопротивление стабилизатора

2. выходное сопротивление обычно монотонно растёт с ростом частоты. Зависит от АЧХ усилителя ошибки и на практике рост может начинаться с частот 100Гц-10кГц.

На рисунке показан типичный выходной импеданс стабилизатора на микросхеме LM317:

Выходное сопротивление стабилизатора LM317

Целью моей работы было создание стабилизатора со стабильным выходным сопротивлением во всем диапазоне звуковых частот, высоким уровнем подавления пульсаций и низким уровнем шумов.

Исходя из этих требований, рассмотрим весь тракт от выпрямления до стабилизации напряжения.

Выпрямление переменного напряжения

Сегодня требования к качеству напряжения сети довольно мягки. Прибавьте к этому огромное количество потребителей с импульсными блоками питания (компьютеры, телевизоры, принтеры, DVD-проигрыватели и т.п.) и нелинейные характеристики понижающих трансформаторов. В результате форма питающего напряжения далека от синуса. В первую очередь наблюдается уплощение вершин полуволн.

На рисунке  показаны результаты измерений напряжения на выходе Ш-образного трансформатора:

спектры сетевого напряжения

Увеличение по клику

Я был удивлен, честно скажу — ожидал худшего.

Примечание главного редактора «РадиоГазеты»: имейте ввиду, что автор живёт в Великобритании!!! В российской электросети  картина будет далеко не такая радужная.

Я использую Ш-образные трансформаторы, потому что их звук мне больше по душе. Они не так быстродействующие, как торы, но я считаю, что они дают лучшую детализацию и проработку сцены в звучании.

На предыдущем рисунке показан и спектр выходного напряжения мостового выпрямителя.

Ужасно! Даже хуже, чем на входе трансформатора.
Теперь появились гармоники частотой 2 кГц, с уровнем около 60 дБ относительно  к 50 Гц пульсациям напряжения.

Чистый вход

Я хотел получить чистое входное напряжение по максимуму очистив его от гармоник и исключив все переходные процессы. Дело в том, что все стабилизаторы имеют некоторую ёмкость между входом и выходом. Плюс помехи могут проникнуть на выход стабилизатора через цепи обратной связи или общий провод. Потому на входе стабилизатора нам требуется иметь максимально чистый сигнал.

Звучит немного утопически? Как получить «чистое» напряжение на входе стабилизатора?

RC или LC-фильтры могут значительно снизить гармоники в выпрямленном напряжении.
А какой сигнал считать достаточно чистым?

Довольно популярны в ламповых усилителях выпрямители на кенотронах, которые в силу своих конструктивных особенностей являются несимметричными, однако же ничего…звучат эти усилители! 🙂

Чтобы получить минимальный уровень гармоник в выпрямленном напряжении я экспериментировал с одно и двухзвенными RC-фильтрами, установленными после первого фильтрующего конденсатора.

Как и ожидалось, добавление одного звена даёт наибольший прирост в качестве звучания усилителя.
Второе звено также даёт заметный вклад. Дальнейшее увеличение количества звеньев на звук существенно не влияет, а вот на массо-габаритные показатели очень.

RC-фильтр

Спектр сигнала после фильтра
Результаты измерений:

спектры сетевого напряжения

Как видно, существенно уменьшают не только верхние гармоники, но и основные пульсации также существенно затухают. Что и требовалось. К сожалению, моё оборудование не позволяет точно измерить уровень фона в присутствии сигнала. Кроме основой гармоники уровень других гармоник составил ниже 10 мВ.

Дополнительное звено в фильтре может снизить ещё на 20дБ уровень всех гармоник выше 200Гц. Но они и так уже на уровне шума стабилизатора.
Упрощенное моделирование стабилизатора на мощном FET-транзисторе показало уровень подавления низкочастотных составляющих на уровне 100дБ и 40 дБ для гармоник 100 кГц и выше.

Такие впечатляющие цифры вряд ли будут достигнуты на практике из-за паразитных ёмкостей монтажа, наводок со стороны сети и прочих негативных факторов.

Поэтому я решил считать нормальными результаты: подавление 60дБ на нижних частотах и 20дБ на высоких. Получается, что пульсации частотой 50Гц и амплитудой 100 мВ будут ослаблены до уровня 0,1мВ. Подавление ВЧ-гармоник не столь важно, так как они очень хорошо ослабляются RC-фильтрами.

Слабые сигналы

Основываясь на моем опыте, я считаю, что все неосновные (шумы, помехи, гармоники) сигналы питающей сети должны быть подавлены с достаточной степенью. Особенно это относится к высокочастотным составляющим, так как с увеличением частоты из-за паразитных емкостей между входом и выходом стабилизатора, а также ограниченной полосы пропускания усилителя сигнала ошибки, способность стабилизатора их подавлять заметно ухудшается.

Как легко заметить, резистор (или может быть индуктивность) в фильтре включены в оба провода: положительный и общий. Часто резистор (или дроссель) добавляют только в один (положительный) проводник фильтра. На результатах измерений это не сказывается.

Но это ошибка!!! Я уверен, что из-за распределенной индуктивности трансформатора помеха на одном выводе вторичной обмотки может быть больше, чем на другом. (К сожалению, моё измерительное оборудование не позволяет это проверить) Симметричная схема фильтра наиболее эффективно справится с такой помехой.

Если говорить о замене резисторов в фильтре на индуктивности, то я никогда не был доволен LC-фильтрами. На мой взгляд они замедляют атаку и снижают динамику усилителя. Это вовсе не означает, правильно посчитанный и изготовленный дроссель будет звучать плохо. Но за последние 5 лет мне не попалось таких изделий, хорошо сочетающихся с моими конструкциями.

К аналогичному результату (снижению динамики) приводит увеличение номинала резисторов фильтра. Для маломощной нагрузки я использую резисторы на 22 Ом. Для более мощной нагрузки значения резисторов следует уменьшить.

«СВЯЗЬ ВПЕРЁД»

Я разработал топологию стабилизатора без обратной связи. Считаю, что именно она отвечает моим требованиям, а после тестовых прослушиваний я заменил в своих конструкциях типовые стабилизаторы с обратной связью, несмотря на их высокие параметры.

В моей топологии сначала получается стабильное образцовое напряжение, которое через буфер подается на накапливающее устройство (конденсатор). Буфер обеспечивает постоянство выходного сопротивления стабилизатора, а конденсатор мгновенную подачу энергии усилителю при резких колебаниях тока нагрузки.

Обе топологии я смоделировал для проверки своих рассуждений.

Оказалось, что топология с обратной связью имеет чуть больший коэффициент стабилизации и ниже выходное сопротивление, которое повышается с ростом частоты.

Однако, по результатам прослушивания я отдал предпочтение топологии без обратной связи.

Базовая конфигурация

Главная задача стабилизатора — обеспечить постоянство выходного напряжения и подавление пульсаций.
Конструкция стабилизатора основана на простейшей схеме, но каждый её элемент я выбирал так, чтобы он идеально выполнял свою функцию:
стабилизаторДля максимального подавления входных шумов сопротивление резистора R должно быть максимально, а в внутреннее сопротивление источника опорного напряжения Vref как можно ниже. Да и работать формирователь опорного напряжения будет лучше, если его питать от высокоомного источника. Таким требованиям отвечает источник стабильного тока (ГСТ).

Для высоковольтного стабилизатора я использовал ГСТ на двух транзисторах, что обеспечивает большую стабильность тока при колебаниях питающего напряжения.

Для низковольтных стабилизаторов можно использовать аналогичную схему или просто одиночный диод.

Для высоковольтных стабилизаторов я выбрал значение тока ГСТ около 5мА. Для низковольтных стабилизаторов можно выбрать значение поменьше.

Микросхеме TL431 для нормальной работы требуется минимум 2 мА.

Важное замечание: ГСТ на двух транзисторах может иногда возбуждаться, если использовать высокочастотные транзисторы. Поэтому я выбрал транзисторы  MJ340/350 которые, как показывает мой опыт, работают стабильно.

Стабилитроны довольно шумные и кроме того имеют плохой температурный коэффициент. Выходное напряжение при их использовании будет меняться в зависимости от температуры окружающей среды, а если в вашем усилителе активная вентиляция, то тем более. Кроме того, стабильность их внутреннего сопротивления тоже оставляет желать лучшего.

Вместо них я использовал TL431 в качестве источника опорного напряжения, так как их шумовые характеристики весьма достойны, они имеют низкое выходное сопротивление и довольно широкий диапазон выходных напряжений, которое устанавливается с помощью простого делителя.

Стабилизатор напряжения для цепей накала.

Буферным элементом стабилизатора может быть как биполярный так и полевой транзистор.  На практике я использовал полевые транзисторы, с высокой крутизной, номинальной мощностью и высоким рабочим напряжением.  Надежность была превосходной!

Теплоотвод для буферного транзистора требуется как для низковольтного, так и в случае высоковольтного стабилизатора.

Конденсатор в цепи TL431 Дополнительно снижает уровень шума.

низковольтный стабилизатор напряжения

увеличение по клику

Недостатком схемы можно считать необходимость подстройки выходного напряжения при замене ламп, так как из-за конструктивных особенностей потребление по цепям накала у разных ламп отличается.

Но настоящего аудиофила это не остановит!

Высоковольтный стабилизатор напряжения

Так как максимальное выходное напряжение микросхемы TL431 составляет всего 30В, то для получения больших значений выходного напряжения стабилизатора используется полевой транзистор, включенный как умножитель. Его коэффициент усиления равен отношению суммы резисторов 330кОм и 270 кОм к резистору в 33кОм. При указанных номиналах усиление равно 15, т.е. максимальное выходное напряжение схемы составляет порядка 450В.

Высоковольтный стабилизатор напряженияИсточник тока на транзисторах MJE350 питает источник образцового напряжения током в 5мА, значение которого устанавливается резистором 150R.
В остальном работа схемы аналогична предыдущей.

Следует обратить внимание на качество конденсаторов. Они должны быть низкоимпедансными и быстрыми. К примеру, плёночные конденсаторы фирмы WIMA типа FKP1 отвечают всем этим требованиям.

Кстати, так как схема не обеспечивает плавную подачу анодного напряжения (или задержку включения) до прогрева ламп, для решения это проблемы можно использовать модуль, описанный здесь.

Стабилизатор напряжения отрицательной полярности

Понятно, что для отрицательной полярности напряжения схема должна претерпеть изменения, так как для микросхемы TL431 нет комплементарного аналога.

Тем не менее, я так же использовал TL431, но в связке с составным транзистором (Дарлингтон):

Стабилизатор отрицательного напряжения

Этот стабилизатор обычно используется для питания вспомогательных цепей, к примеру, катодных источников стабильного тока. Потому образцовые параметры здесь не нужны и усложнять схему я не стал.

Буфер

После рассмотрения стабилизаторов цепей накала и высоковольтного стабилизатора, я предлагаю вашему вниманию схему простого высоковольтного буфера:

Буфер питания

Его функция в обеспечении постоянного выходного сопротивления и подавление пульсация и помех по питанию. Если его подключить после обычного стабилизатора, то все негативные факторы от обратной связи в источнике питания можно существенно снизить.

Выходное сопротивление такого буфера обратно пропорционально крутизне транзистора и получается достаточно низким. Оно также постоянно в звуковом диапазоне частот.

Большую роль для качества звучания играет выбор конденсаторов!!!

Кстати, я обнаружил, что параллельное соединение конденсаторов не добавляет качества звучания. К примеру, один конденсатор на 20 мкФ звучит лучше, чем параллельное соединение двух конденсаторов на 10 мкФ того же производителя.

Конструкция.

Конструкция таких стабилизаторов особенностей не имеет. При ограничениях в размерах вы можете использовать двухсторонний монтаж. В этом случае одна сторона платы должны быть заземлена. В моих опытах заземление одной стороны платы давало значительный прирост в качестве звучания!

Подобные стабилизаторы я эксплуатирую в своих конструкциях уже около пяти лет и они не доставляют мне проблем ни с качеством звучания, ни с надёжностью.

Прослушивание.

Если вы обычно слушаете усилители со стабилизаторами на LM317 и им подобным, то прослушивание усилителя со стабилизатором без обратной связи поначалу может вызвать у вас шок!

Первое, что вас удивит — кажущаяся потеря динамики. Я считаю, что LM317 добавляет «лишней скорости звуку», искажая тем самым истинное звучание фонограммы. Закрытое прослушивание показало, что стабилизаторы без ОС удаляют  из звука весь мусор, который привносит LM317.

Потратьте немного времени на привыкание к новому звуку. На это уйдет не больше часа. Но я уверен, что вы будете восхищенны конечным результатом.

Для меня это было сравнимо с тем, когда я первый раз попробовал сырую рыбу.

Просто забудьте про ваши предрассудки!

Теперь немного сравнительных тестов. Я сравнивал стабилизатор на LM317, на лампах и стабилизатор без обратной связи.

1. LM317 как стабилизатор цепей накала и LM317 с двухзвенным фильтром помех. Последний вариант дает более детальный звук.

2. LM371 как стабилизатор цепей накала против безоосного стабилизатора. Второй вариант дает большую динамику и повышает детальность в верхнем диапазоне, что приводит к расширению стереобазы.

3. Выпрямитель на кенотроне и стабилизатор на лампах против безоосного стабилизатора анодного напряжения. Второй вариант даёт в звучании большую динамику и детальность. Ламповый стабилизатор дал более «жирный» звук.

Для получения максимального эффекта необходимо использовать для питания каждой лампы отдельный стабилизатор. Это несколько удорожает, усложняет и утяжеляет конструкцию. Но, поверьте мне, оно того стоит!

Кроме этого я провел много сравнительных прослушиваний для конденсаторов. В результате я остановился на пленочных конденсаторах фирмы WIMA. Я услышал четкие различия в звучании между плёночными и электролитическими конденсаторами. Пленочные гораздо предпочтительнее.

В своей системе я могу на слух отличить какие используются конденсаторы — пленочные или электролитические даже в цепях накала ламп.

Если вы хотите получить достойный результат, будьте готовы использовать качественные материалы!

Статья подготовлена по материалам журнала AudoiXpress.

Удачного творчества!

Замечание от главного редактора «РАДИОГАЗЕТЫ»: мнение редакции может частично или полностью не совпадать с мнением авторов статей.

Так как приходят вопросы по реализации описанных схем на доступных элементах, для примера привожу схему собранную и опробованную в работе.

стабилизатор напряжения

Здесь интегральный источник тока J310 заменён на более доступную микросхему LM317L, включенную по схеме стабилизатора тока. Можно использовать и источники тока на полевых транзисторах.

Резистор R3 задаёт выходное напряжение (подбирается). Качество стабилизации этой схемы сильно зависит от параметров транзистора Т1. Сюда надо выбрать транзистор с максимальной крутизной и минимальным сопротивлением открытого канала. Отлично показал себя  CEP50N06. Из более доступных стоит попробовать IRFZ44.

Важно иметь в виду, что управляющее напряжение на транзисторе порядка 3,5-4В и для нормальной работы источника тока необходимо напряжение около 3,5В. Поэтому разница между входным и выходным напряжениями такого стабилизатора должна быть не менее 8В! Это несколько снижает КПД этой схемы и при больших токах нагрузки требует использования радиаторов приличных размеров. Настоящего аудиофила такие трудности не остановят 🙂

Похожие статьи:


radiopages.ru

Высоковольтный регулируемый стабилизатор — Меандр — занимательная электроника

  Плавающий режим работы регулируемых трехвыводных стабилизаторов, например, семейства LM117, делает их идеальными для работы на высоких напряжениях . Стабилизатор не имеет земляного вывода; вместо этого весь потребляемый ток (примерно 5 мА) протекает через выходной вывод. Так как стабилизатор видит только разницу напряжений между входом и выходом, максимально допустимое напряжение 40 В для стандартной серии LM117 и 60 В для высоковольтной серии LM117HV может не достигаться для выходных напряжений в сотни вольт. Однако микросхема может быть повреждена при коротком замыкании выхода, если не принять специальных мер для защиты от этой ситуации.

На рис. 1 показано, как это можно сделать. Стабилитрон D1 обеспечивает, что LM317H видит разницу между входом и выходом всего 5 В в диапазоне выходных напряжений от 1.2 В до 160 В. Поскольку высоковольтные транзисторы неизбежно имеют низкое β, применен транзистор Дарлингтона. Стабилитрон имеет достаточно низкий импеданс, поэтому прямо на входе LM317 блокировочный конденсатор не требуется (очевидно, что конденсатор не должен использоваться, если схема должна уцелеть при коротком замыкании выхода!). R3 ограничивает ток короткого замыкания на уровне 50 мА. RC-цепочка на выходе улучшает переходную характеристику, как и шунтирование вывода ADJUST, а R4 и D2 защищают вывод ADJUST во время короткого замыкания.

 Рис. 1. Базовая схема высоковольтного стабилизатора.

 Так как Q2 может рассеивать до 5 Вт в нормальном режиме и 10 Вт при коротком замыкании, он должен быть установлен на радиатор. Для больших выходных токов следует заменить проходной транзистор в корпусе TO-3 или TO-220 на TO-202 NSD134 и уменьшить R3. Естественно, если требуется выходной ток менее 25 мА, то R3 можно увеличить, чтобы уменьшить требуемый размер радиатора.

Усовершенствованный вариант стабилизатора показан на рис. 2. Здесь стабилитрон LM329B на 6.9 В соединен последовательно с внутренним опорным источником LM317. Это улучшает температурную стабильность, так как LM329B имеет гарантированный температурный коэффициент ±20 ppm/°C, а также улучшает качество стабилизации, так как LM317 может иметь большее петлевое усиление.

Рис. 2. Прецизионная схема высоковольтного стабилизатора.

 Эта же технология может быть использована для больших напряжений или токов при использовании лучших высоковольтных транзисторов или при каскадировании или параллельном соединении (с соответствующими уравнивающими эмиттерными резисторами ) нескольких транзисторов. Выходной ток короткого замыкания, определяемый R3, должен лежать в области безопасной работы Q2, чтобы исключить возможность вторичного пробоя.

Возможно, вам это будет интересно:

meandr.org

ВЫСОКОВОЛЬТНЫЙ СТАБИЛИЗАТОР С МАЛЫМ УРОВНЕМ ПУЛЬСАЦИЙ

john 29 октября, 2013 — 22:58

Евгений Карпов

ВЫСОКОВОЛЬТНЫЙ СТАБИЛИЗАТОР С МАЛЫМ УРОВНЕМ ПУЛЬСАЦИЙ

В статье описан относительно простой высоковольтный стабилизатор, обладающий малым уровнем шумов и пульсаций выходного напряжения. В стабилизатор встроены функции плавного нарастания выходного напряжения и защиты от перегрузок.

Стабилизатор предназначен для питания чувствительных схем предварительных усилителей и фонокорректоров, выполненных на электронных лампах.

Основные соображения

Основным назначением описанного ниже стабилизатора является питание высокочувствительных входных цепей ламповых усилителей. Это определило основное требование к стабилизатору – низкий уровень шума и пульсаций на выходе [1]. Конечно, было желательно получить и малое выходное сопротивление, но этот параметр не является определяющим из-за незначительного и мало меняющегося тока, потребляемого этим блоком усилителя.

За базовый вариант была принята классическая схема компенсационного стабилизатора с однокаскадным усилителем ошибки (Рис.1) [2]. Для получения малых пульсаций на выходе стабилизатора необходимо иметь значительную величину петлевого усиления, которое существенно зависит от коэффициента усиления усилителя ошибки. Для получения максимального коэффициента усиления в качестве коллекторной нагрузки транзистора VT1 применен источник тока I, и регулирующий элемент (VT2) выполнен на полевом транзисторе (можно считать, что каскад на транзисторе VT1 в области низких частот не нагружен).

Такая схемотехника позволяет получить в области низких частот усиление каскада порядка 55 — 63db (если b используемых транзисторов находится в пределах 40 — 100).

Читатель может задать закономерный вопрос: а почему не использовать стандартный операционный усилитель? Основным преимуществом такого решения является более простая схема при сравнимой величине усиления. Так же стабилизатор получается менее склонным к паразитной генерации.

Высокое выходное напряжение стабилизатора и относительно низкое опорное напряжение VR позволяет практически бесплатно и существенно (в 2 — 3 раза) повысить стабильность выходного напряжения за счет подключения резистора, задающего начальный ток стабилитрона (R1), к цепи выходного стабильного напряжения. Если вы посмотрите на схему, то увидите, что через стабилитрон текут три тока – стабильный ток I, заданный источником тока, стабильный ток IR1, заданный резистором R1 и нестабильный ток базы транзистора IB. Если учесть, что ток базы транзистора на несколько порядков меньше суммы стабильных токов I и IR1, то становится ясно, что влияние динамического сопротивления стабилитрона RD (Рис. 2) на выходное напряжение практически исключается.

 

 Особое внимание было уделено вопросу минимизации уровня шумов на выходе стабилизатора. В схеме можно выделить два основных источника шума – это транзистор VT1 и стабилитрон VD. Шумом источника тока и резисторов делителя R2 и R3 можно в первом приближении пренебречь. Это связано с тем, что суммарное сопротивление резисторов делителя достаточно мало (сотни ом – единицы килоомм), а шум источника тока не усиливается.

Возможность минимизации уровня шумов выбором типа и режима работы транзистора VT1 весьма ограничена. Во-первых, транзистор VT1 должен быть высоковольтным, это существенно ограничивает номенклатуру пригодных типов. Во-вторых, снижение уровня шумов путем снижением величины коллекторного тока наталкивается на два ограничения: ухудшение частотных свойств каскада и снижение величины b транзистора.

Точный расчет параметров каскада весьма громоздок, и я не буду его приводить, а ограничусь несколькими практическими рекомендациями.

Для большинства высоковольтных транзисторов средней мощности, аналогичных MPSA42, 2N6517, ZTX658, ZTX458 удовлетворительное сочетание параметров достигается при токе коллектора 0.7 — 1.5mA.

(При установке транзистора в схему желательно проверить величину его b; хотя типовые значения лежат в пределах 50 — 100, могут попасться экземпляры с b = 17 — 20.)

Нежелательно использовать в качестве VT1 более мощные транзисторы (типа MJE13003), при малых токах коллектора они имеют очень малую величину b, для получения приемлемого усиления каскада придется значительно увеличивать ток коллектора. Конечно, частотные свойства стабилизатора улучшатся, но ценой этого будет значительное увеличение рассеиваемой мощности на элементах схемы и увеличение уровня шума на выходе.

Следующим объектом нашей заботы является стабилитрон VD, определяющий величину опорного напряжения VR. Как правило, выбор типа стабилитрона и его рабочих режимов производится исходя из необходимого напряжения и его стабильности. Его шумовые характеристики не учитываются и не приводятся в технических данных. Чаще всего, это и не надо, но в некоторых случаях шумовые характеристики стабилитрона важны. Например, если источник питания должен иметь низкий уровень шума на выходе, если стабилитрон используется в цепях сдвига уровня сигнала или для организации напряжения смещения во входных каскадах усилителей, и непосредственно включен в сигнальную цепь.

Простейшая эквивалентная схема стабилитрона, учитывающая его ЕДС шума EN, показана на рисунке 2. Если вы мысленно замените в схеме стабилизатора (Рис.1) стабилитрон VD на его эквивалентную схему, то становится очевидным, что шумовой генератор включен непосредственно во входную цепь усилительного каскада на транзисторе VT1 и, соответственно, его шум будет усилен.

Фактически, стабилитрон является почти идеальным источником белого шума в широкой полосе частот, простирающейся от постоянного тока до единиц мегагерц (это используется для создания генераторов шума)[3]. Уровень шумового напряжения, генерируемого стабилитроном, существенно зависит от его режима. Наибольший уровень шума стабилитрон генерирует, когда он начинает входить в режим стабилизации, и его рабочая точка находится на колене вольт-амперной характеристики. Этот режим характеризуется очень малыми токами, текущими через стабилитрон (десятки – сотни микроампер). Увеличение тока стабилитрона вызывает уменьшение уровня шумового напряжения, этот факт многократно описан в различных источниках, но численных данных о величине уровня шума мне обнаружить не удалось.

Поэтому я решил просто померить уровни шумов, генерируемых стабилитронами различных типов, и оценить влияние тока стабилизации. Измерения проводились по схеме, показанной на рисунке 3.

 В качестве источника тока использовался довольно малошумящий полевой транзистор КП302Г. Уровень шума измерялся прибором ИСШ-НЧ в звуковой полосе частот (использовался внутренний фильтр). Конечно, полученные результаты не соответствуют абсолютно точному значению уровня шума, генерируемого стабилитроном, так как источник тока добавляет собственные шумы, но как показали измерения, они весьма малы, и этой погрешностью можно пренебречь.

www.radionic.ru

Высоковольтный стабилизатор постоянного напряжения — Radio это просто

Высоковольтный стабилизатор постоянного напряжения при построении высококачественных высоковольтных стабилизаторов напряжения, например, для питания ламповых каскадов, приходиться применять специальные схемы включения регулировочных элементов, что усложняет схемотехнику таких стабилизаторов [1]. Между тем, существуют интегральные микросхемы, применяя которые можно создавать простые высоковольтные стабилизаторы напряжения компенсационного типа на выходное напряжение от 70 до 140 В. Это микросхемы типов SE070N, SE080N, SE090N, SE105N, SE110N, SE120N, SE125N, SE130N, SE135N, SE140N. Эти микросхемы предназначены для контроля и регулировки напряжения постоянного тока. Как нетрудно догадаться, цифровое обозначение в маркировке микросхемы будет соответствовать рабочему напряжению микросхемы в вольтах.

Высоковольтный стабилизатор постоянного напряжения на рис.

Высоковольтный стабилизатор постоянного напряжения

показан один из возможных вариантов линейного стабилизатора на выходное напряжение 115 В постоянного тока. Источником напряжения для стабилизатора служит сеть переменного тока 220 В. В других конструкциях источником напряжения может быть, например, вторичная обмотка силового трансформатора, выход выпрямителя преобразователя напряжения. Стабилизатор выполнен на интегральной микросхеме SE115N, представляющей собой детектор напряжения на 115 В.

Контролируемое напряжение с выхода стабилизатора поступает на вход DA1 — вывод 1. Если напряжение на выходе стабилизатора стремится увеличиться свыше рабочего напряжения DA1, то открывается выходной п-р-п транзистор микросхемы, коллектор которого выведен на вывод 2 DA1. Это приводит к тому, что понижается напряжение затвор-исток VT1, что приводит к понижению выходного напряжения стабилизатора. На мощном высоковольтном полевом n-канальном транзисторе VT1 выполнен истоковый повторитель напряжения.

Сетевое напряжение переменного тока поступает на мостовой диодный выпрямитель VD1 – VD4. Конденсатор С1 сглаживает пульсации выпрямленного напряжения. Резистор R1 уменьшает бросок тока через выпрямительные диоды и разряженный конденсатор С1, возникающий при включении устройства в сеть. Стабилитрон VD5 защищает полевой транзистор от пробоя высоким напряжением затвор-исток. Светящийся светодиод HL1 сигнализирует о наличии выходного напряжения, кроме того, цепь R3HL1 разряжает оксидные конденсаторы при отключенной нагрузке.

Резистор R1 должен быть проволочным. Его сопротивление и мощность выбирают исходя из параметров подключенной к стабилизатору нагрузки. Остальные резисторы любые из С2-33, МЛТ, РПМ соответствующей мощности. Сопротивление резистора R2 выбирают исходя из входного напряжения стабилизатора, при этом следует учитывать, что максимальный втекающий ток DA1 по выводу 2 не должен превышать 20 мА. Конденсаторы типа К50-68 или импортные аналоги. Если в вашей конструкции С1 будет, как и по схеме рис. 1, подключен к выходу мостового выпрямителя напряжения переменного тока 50 Гц, то его ёмкость следует выбирать исходя из 4 мкФ на каждый 1 Вт нагрузки. В общем случае, ёмкость конденсатора С2 должна быть равна ёмкости конденсатора С1. Выпрямительные диоды 1 N4007 можно заменить, например, на 1N4006, UF4006, RL105, КД234Д. Вместо стабилитрона BZV55C-12 подойдёт BZV55C-13, 1N4743A, 2С212Ц, КС212Ц. Светодиод подойдёт любого типа непрерывного свечения, желательно с повышенной светоотдачей. Полевой МДП транзистор HV82 рассчитан на максимальный ток стока 6,5 А, напряжение сток-исток 800 В и максимальную рассеиваемую мощность 150 Вт (с теплоотводом).

В высоковольтный стабилизатор постоянного напряжения его можно заменить, например, на IRF350, IRF352 или другой, подходящий по параметрам к подключенной нагрузке [2, 3]. Следует учитывать, что если, например, к выходу стабилизатора подключена нагрузка мощностью 30 Вт, то при питании устройства от сети 220 В, на транзисторе VT1 будет рассеиваться мощность около 80 Вт. Если же входным напряжением для стабилизатора будет, например, напряжение +180 В (выход выпрямителя «лампового» трансформатора), то при выходном напряжении 115 В и токе нагрузки 0,5 А установленный на теплоотвод транзистор будет рассеивать около 33 Вт тепловой мощности. Это немало, поэтому, линейные высоковольтные стабилизаторы напряжения целесообразно применять для питания слаботочной нагрузки, например, лампового активного щупа для осциллографа и в других местах, где применение импульсных высоковольтных стабилизаторов напряжения нежелательно.

Высоковольтный стабилизатор постоянного напряжения может быть смонтировано на печатной плате размерами 105×50 мм, эскиз которой показан на рис.

Высоковольтный стабилизатор постоянного напряжения

Ток потребления микросхемы SE115N по выв. 1 около 3 мА. Для увеличения выходного напряжения стабилизатора в цепь вывода 3 DA1 можно включить стабилитрон. Например, если у вас имеется микросхема SE140N «на 140 В», а вам нужен стабилизатор на выходное напряжение 180 В, то нужно последовательно с выв. 3 включить стабилитрон 1N4755A или два последовательно включенных стабилитрона КС520В. Через стабилитрон будет протекать сумма токов через выв. 1 и 2 DA1.

Кроме высоковольтных интегральных микросхем SE***N существуют также и низковольтные SE005N, SE012N, SE024N, SE034N, SE040N, на которых также можно изготавливать компенсационные стабилизаторы напряжения. Стабилизатор напряжения, изготовленный по тому же принципу, который показан на рис. 1, должен иметь входное напряжение постоянного тока (на обкладках С1), превышающее выходное не менее чем на 8 В. При изготовлении конструкции, собранной по рис. 1, учитывайте, что все её элементы находятся под напряжением сети.

vse-v-seti.ru

Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе

Для постоянного контроля сетевого напряжения и предохранения электрического оборудования от чрезмерного понижения или повышения показателя, а также резких его скачков целесообразно приобрести мощный стабилизатор напряжения. Это устройство, призванное держать значения параметра в рамках рабочего диапазона и выключать электрооборудование, если ситуация может ему навредить.

Автоматический стабилизатор напряжения

Автоматический стабилизатор напряжения

Виды устройств

Существуют различные типы стабилизирующих приборов: архаичные релейные, электромеханические, дорогие варианты с плавной регулировкой и сложной электронной начинкой. Важно выбрать вариант, подходящий для эксплуатируемой сети.

Электромеханический тип

В трансформатор, используемый в таком приборе, вмонтирован сервопривод на базе двигателя с функцией реверса (работы в обратную сторону). Управляется механизм посредством электронной платы. При изменении положения контактов число витков во вторичной катушке меняется. Регулировать напряжение с помощью изделия получается только резко, без ступеней.

Электромеханический прибор с сервоприводом

Электромеханический прибор с сервоприводом

Электронные

В этом случае, напротив, получается ступенчатое управление, при этом одни ступени призваны понижать показатель, другие – повышать. В приборе использованы тиристорные или симисторные элементы. При одновременном замыкании обоих типов ступеней получается достаточный спектр регуляции, позволяющий плавно изменять напряжение. Кроме того, этот ход нивелирует мигание ламповых компонентов. Устройство отличается бесшумной работой, что делает возможной его установку практически в любом помещении.

Какие лучше

Электромеханические варианты пользуются большой популярностью из-за невысокой цены. Они не искажают синусоидальную кривую, могут выдерживать короткие перегрузки. Но применять их целесообразно в тех электросетях, для которых не характерны мощные скачки стабилизируемого показателя. Перед приобретением нужно проверить, на какую силу тока рассчитан прибор. Минусы этой группы приборов – медленная коррекция показателя и невозможность эффективной эксплуатации при низких температурах.

Важно! Время от времени, хотя бы раз в год, потребуется заменять графитовые щеточки (они склонны изнашиваться). Подвижные элементы механизма надо смазывать.

Электронные изделия контролируют ситуацию в сети не резко, быстро коммутируются, практически не издают шума, легче переносят перегрузки. Кроме того, они отличаются большим сроком службы, так как не имеют движущихся деталей, склонных к износу. При температуре ниже нуля аппараты сохраняют эксплуатационные свойства. Единственный недостаток этих устройств, помимо относительно высокой цены, – меньшая точность регулировки, чем у механических приборов.

Выбор по техническим параметрам

Приобретая стабилизатор пониженного напряжения или устройство, защищающее электрооборудование от избыточной нагрузки, важно выделить основные критерии выбора.

Основные характеристики

Выбрав тип исполнения изделия, нужно изучить его особенности:

  1. Число фаз. Для электросети 220 В подойдет устройство с одной фазой. Если жилище подсоединено к трехфазной сети, отталкиваются от того, есть ли в нем приборы, использующие все фазы. Если да, приобретается прибор с тремя фазами.
  2. Мощность. Не всегда рассмотрение стабилизаторов напряжения большой мощности является наиболее целесообразным. Можно опираться на номинальный параметр входного автоматического выключателя. Если стабилизатор будет работать с несколькими приборами, их мощностные значения суммируют и умножают на 1,3. Если электродвигатель относится к асинхронному типу, показатель умножают уже на 3. Обычно прибор со значением в 10 квт подходит для домашнего использования.
  3. Точность (отклонение от целевого показателя). Самое малое возможное отклонение – 0,5%. Если оно превышает 2%, такой прибор лучше не покупать.
  4. Спектр рабочих значений на входе. Если то напряжение, что поступает, находится в его границах, на выходе будет стабильно получаться четкий заданный показатель.
  5. Спектр предельных значений. Аппарат еще работает, но выходное напряжение может отличаться от целевого показателя. При выходе за рамки данного диапазона прибор выключится.

Детали

Помимо этого, качество работы прибора характеризуют дополнительные параметры:

  1. Температурный диапазон, при котором дозволяется эксплуатировать устройство. Электромеханические приборы не стоит ставить там, где градусник опускается ниже нуля, так как подвижные элементы в этом случае замерзают. Электронный – можно установить и в неотапливаемом помещении.
  2. Скорость реакции на изменения значения на входе (она зависит от вида устройства).
  3. Скорость процесса стабилизации (особенно важна при выравнивании сильных скачков).
  4. Способ охлаждения – естественный или с использованием вентилятора. Во втором случае спектр температур, при которых прибор функционирует нормально, выше.
  5. Механизм подсоединения в сеть. У мощных аппаратов есть клеммная колодка – туда ставится нагрузка и то напряжение, которое надо выпрямлением привести в линейный вид. Более скромные агрегаты имеют на корпусе розеточное гнездо, к которому включают нагрузку.

Стабилизация напряжения бытовой сети

Она необходима для поддержания бытовой техники в работоспособном состоянии и обеспечения безопасности электросетей. Чаще стабилизирующее оборудование применяется для работы с насосами, газовыми котлами, морозильными камерами.

Высоковольтный стабилизатор напряжения на полевом транзисторе

Для высоковольтной стабилизации используют силовое устройство трансформации и полевые транзисторы высокой мощности, например, вида IRF840. На первичную катушку подается показатель до 250 В. После ее прохождения ток идет к диодному мосту для выпрямления, затем к транзисторному компоненту. Одна из вторичных катушек работает в блоке с потенциометром и выпрямителем. Этот блок формирует сигнал управления, идущий к затвору IRF840.

Важно! При подскоке сетевого напряжения блоком управления снижается таковое у затвора, благодаря чему ключ закрывается, и на нагружаемых контактах ставится предел возможному росту напряжения. Если в сети показатель падает, действует обратный механизм.

Схемные решения стабилизации электросети 220В

Чтобы осуществить сборку прибора своими руками, нужно выбрать подходящую схему.

Вариант 1 Феррорезонансная схема

Она использует магнитно-резонансный эффект. Конструкция тяжеловесна, массивна, но проста и не требует обилия деталей: она включает два дросселя и конденсаторный компонент.

Вариант 2 Автотрансформатор или сервопривод

Автоматическая трансформация подаваемого напряжения реализуется посредством сервопривода (управление которым происходит через датчик) и реостата. Прибор подойдет для дачного домика или хозяйства в частном секторе. Еще один вариант – использование реле для изменения коэффициента трансформации через включение или выключение нужных катушек.

Вариант 3 Электронная схема

Она может включать в себя транзистор или симистор, усилитель, блок электронного управления. В некоторых видах применяются полевые силовые транзисторные компоненты.

Схема электронного устройства

Схема электронного устройства

На приведенной схеме цифрой 1 обозначаются входные зажимы, 4 – выходные (к ним подключают нагрузку), 2 – блок на симисторах, манипулирующий катушками трансформатора, 3 – микропроцессорный отдел.

Подробные инструкции по сборке

Для самодельного стабилизатора подойдет трансформатор, обеспечивающий на выходе нагрузку до 2 кВт. Иногда подходящее под эту задачу устройство можно демонтировать из вышедшего из эксплуатации телевизора.

Сетевой трансформатор для сборки стабилизатора

Сетевой трансформатор для сборки стабилизатора

Шаг 1 Изготовление корпуса стабилизатора

Подойдет достаточно вместительный короб из диэлектрика: текстолита или пластика, в котором легко размещаются все элементы конструкции. Надо разместить на нем пазы для входа, выхода и выключателя.

Шаг 2 Изготовление печатной платы

Подготавливают макет, иллюстрирующий связи между компонентами системы (исключая трансформатор), делают по нему разметку листка покрытого фольгой текстолита. Потом по фольге рисуют подготовленную трассировку и приступают к травлению платы. Затем на луженую оловом плату монтируют электронные компоненты. Можно заказать печатную конфигурацию у стороннего мастера.

Шаг 3 Сборка стабилизатора напряжения

Плату крепят на диэлектрике, и от нее прокладываются коммуникационные линии к интерфейсам входа и выхода, выключателю, трансформирующему устройству. Подсоединяют внешние компоненты, вмонтированные в корпус. Транзистор-ключ ставят на радиатор.

Сейчас потребители могут выбрать из широкого спектра стабилизирующих устройств наиболее подходящее по эксплуатационным характеристикам. Простой вариант возможно смонтировать самому при наличии навыка травления печатных плат.

Видео

amperof.ru

Высоковольтный стабилизатор на ОУ | HomeElectronics

Всем доброго времени суток. В прошлой статье я рассматривал схемы стабилизаторов напряжения на операционных усилителях. Данные схемы обладают хорошими стабилизационными показателями и простотой исполнения, но существует небольшое ограничение их применения, которое заключается в том, что выходное напряжение таких источников питания ограничивается напряжением питания ОУ. В большинстве случаев ОУ имеют питание +/- 15 В или даже +/- 22 В. При использовании таких ОУ в стабилизаторах напряжения, даже с учётом однополярного питания, стабилизируемое напряжение не будет превышать 30…40 В, что в большинстве случаев вполне достаточно. Однако существуют такие устройства, где необходимо стабилизированное выходное напряжение превышающее напряжение питания ОУ. Такие схемы получили название стабилизаторов с «плавающим» ОУ.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Плавающее питание ОУ

Особенностью работы схемы данного типа является то, что питание ОУ не «заземляется» в целом, а находится между напряжением общего провода и напряжением источника питания, то есть как бы «плавает» между ними. Для пояснения работы схем данного типа изобразим принципиальную схему стабилизатора с «плавающим» питание ОУ



Принципиальная схема стабилизатора напряжения с «плавающим» питанием ОУ.

Данная схема является стандартной и описана во многих источниках и учебных пособиях. Операционный усилитель DA1 включен по схеме стабилизатора с умножением опорного напряжения. Опорное напряжение задаётся параметрическим стабилизатором VD1R1, коэффициент умножения – резисторами R4R5 включенными в цепь обратной связи ОУ. Транзистор VT1 включенный на выходе ОУ используется в качестве проходного и служит для увеличения выходной мощности стабилизатора. Данные элементы стандартны во всех стабилизаторах на остове ОУ.

Питание же ОУ осуществляется специальными элементами схемы. Параметрический стабилизатор VD3R3 ограничивает максимальное напряжение питания ОУ. Так как выходное напряжение стабилизатора UВЫХ должно быть меньше напряжения питания положительной полярности UПИТ+, то для его поднятия служит параметрический стабилизатор VD2R2.

Работает данная схема следующим образом. Допустим нам необходимо получить на выходе стабилизатора напряжение UВЫХ = 50 В UВЫХ, в тоже время на входе схемы имеется нестабилизированное напряжение порядка UВХ = 70 В. Напряжение питания ОУ DA1 составляет +/- 15 В, то есть сумма питающих напряжений составит  UПИТ = 30 В, данное напряжение должен обеспечить параметрический стабилизатор VD3R3. В качестве опорного напряжения примем величину равную UОП =10 В, которое обеспечивает стабилизатор VD1R1, а соответствующий коэффициент умножения К = 10 должна обеспечить цепь ООС R4R5, согласно следующему соотношению

20161114012016111401

Для обеспечения условия превышения напряжения питания над выходным напряжением стабилизатора применяется стабилизатор VD2R2, напряжение стабилизации которого обычно принимают равным 10 В.

Таким образом, независимо от величины входного напряжения разность потенциалов между инвертирующим входом и выходом ОУ ограничена стабилитроном VD1, а напряжение на неинвертирующем входе ненамного отличается от напряжения на инвертирующем входе.

Недостатками данной схемы является то, что при увеличении напряжения на выходе схемы при постоянных остальных параметрах уменьшается коэффициент стабилизации данной схемы. Ещё одним существенным недостатком схемы является то, что на резисторах R1 и R5 присутствует довольно большой потенциал.

Улучшение схемы стабилизатора с «плавающим» питание ОУ

Значительно улучшить характеристики схемы стабилизатора с «плавающим» питанием ОУ можно применив питание ОУ от отдельного источника, а также применив защиту входов ОУ, схема такого стабилизатора показана ниже



Улучшенная схема стабилизатора напряжения на ОУ с «плавающим» питанием.

Данная схема состоит из ОУ DA1, в цепь ООС которого  включена интегрирующая цепочка C1R4, источника опорного напряжения R1VD1, делитель R2R3 для установления коэффициента усиления интегратора и регулирующий элемент на транзисторе VT1 с токоограничительным резистором R5.

Работа данной схемы основана на тех же принципах, что и предыдущая, то есть общий провод (┴) ОУ подсоединен не к общему выводу стабилизатора (UВЫХ-), а к положительному выводу (UВЫХ+). В этом случае создаются условия для перехода транзистора в режим регулирования напряжения и тока.

Основными отличиями данной схемы является то, что для питания ОУ необходим двухполярный источник напряжения общий провод которого подсоединён к положительному выводу стабилизатора напряжения. Кроме этого источник опорного напряжения представляет собой параметрический стабилизатор R1VD1, который питается от положительного вывода двухполярного источника.

Коэффициент усиления данной схемы а следовательно и величина выходного напряжения зависит от опорного напряжения и некоторого коэффициента который задаётся делителем напряжения R2R3. Выходное напряжение определяется из следующего выражения

20161114022016111402

В отличие от предыдущей схемы в данном стабилизаторе применён интегратор, который служит для устранения самовозбуждения ОУ при резких изменениях нагрузки, в результате которых на входе ОУ возникают скачки напряжения. Величину сопротивления R4 выбирают порядка нескольких килом, а емкость конденсатора C1 – десятков нанофарад.

Защита входов ОУ от перегрузки

В результате работы схемы стабилизатора напряжения на ОУ с «плавающим» питанием на входах ОУ могут возникать всплески напряжения и переходные процессы с высокой амплитудой напряжения, которые могут привести к выходу их строя ОУ. Поэтому необходимо обеспечить защиту входов ОУ. Существует несколько схем, обеспечивающих защиту от высоких дифференциальных и синфазных напряжений на входах ОУ, в основе которых лежат ограничители напряжения на диодах. Данные схемы показаны ниже




Схемы защиты операционного усилителя от превышения входных напряжений.

Изображённые выше схемы защиты входов ОУ действуют по принципу ограничителей напряжения, то есть до тех пор пока входные напряжения ОУ не превышают нескольких сотен милливольт диоды не проводят ток и практически не оказывают никакого влияния на входные сигналы. Как только входное напряжение превысит величину прямого падения напряжения на диодах, то они откроются и перейдут в проводящее состояние, что приведёт к ограничению напряжения на входах ОУ.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

www.electronicsblog.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *