Posted on

Содержание

Подключение обмоток трехфазного трансформатора. Какие бывают схемы соединения обмоток трансформатора

Ремонт силовых трансформаторов и пусконаладочные работы

Компания ЗАО «Спецмаркет» выполняет установку, монтаж, наладку, а также ремонты силовых трансформаторов любой сложности . Ремонт силовых трансформаторов является одним из основных направлений деятельности предприятия «Спецмаркет». Также наша компания выполняет испытания первичного оборудования (силовых трансформаторов, масляных, вакуумных выключателей, ошиновки, трансформаторов напряжения, тока и др. оборудования) станций и подстанций любых классов напряжений. По всем вопросам обращайтесь через форму

Схема соединений обмоток

Соединение звезда — звезда. Присоединении первичных и вторичных обмоток звездою ток в обмотках равен линейному току; напряжение же каждой фазы в раз меньше линейного напряжения. Последнее обстоятельство имеет следствием то, что изоляция обмоток может быть взята с учетом только лишь фазного напряжения, а число витков фазы может быть взято в раз меньше, чем это требовалось бы при соединении треугольником. Таким образом трансформатор с соединением обмоток звезда — звезда является наиболее дешевым. В эксплуатационном же отношении трансформатор с соединением звезда-звезда имеет существенные недостатки. Одним из недостатков его является необеспеченность в отношении симметрии напряжений при несимметричной нагрузке. Если первичная обмотка имеет нейтральный провод, соединенный с генератором (рис. 146а), то нагрузка одной фазы почти не вызывает нарушений симметрии трансформатора. В рассматриваемом случае токи идут только по обмоткам одною стержня, причем ампервитки вторичной обмотки целиком компенсируются ампервитками первичной обмотки, т. е.

Нарушения магнитного состояния трансформатора почти не получается. Если бы мы привели вторичную обмотку к первичной, т. е. положили то токи в соответствующих фазах (на рис. 146а в фазах А и а) были бы равны между собою, т. е.. Наличие нейтрального провода со стороны первичной цепи несомненно удорожает систему, а потому такая система почти и не применяется.

Предположим теперь, что нейтральный провод со стороны первичной цепи отброшен. В таком случае при загрузке одной фазы вторичной обмотки (на рис. 146b фазы а) во всех фазах первичной обмотки пойдут токи. В сопряженной фазе первичной обмотки, т.е. в фазе А ток будет равен а в двух других фазах по

В указанных соотношениях между токами легко убедиться из рассмотрения рис. 147, на котором схематически изображен сердечник трансформатора с первичными катушками и одною вторичною катушкою на среднем стержне. Мы имеем, во-первых, что сумма ампервит-ков одного окна, т. е. действующих на рис. 147 по пунктирной линии t, должна быть равна нулю; во-вторых, в сопряженной первичной фазе ток вдвое больше тока в двух других первичных фазах (по закону Кирхгофа), в-третьих, направление токов в несопряженных первичных фазах прямо противоположно направлению тока в сопряженной первичной фазе, потому что в первых двух фазах токи идут от концов фаз к началам В и с, а в последней фазе от начала фазы А к концу. Вследствие этого направления токов в сечениях первичных фаз будут такими, какими они показаны на рис. 147. Написав равенство ампервитков для одного окна

где I X — ток в сопряженной первичной фазе, получаем, что

Из рассмотрения рис. 147 мы видим, что на всех сердечниках нет уравновешенности ампервитков. На крайних стержнях имеются ампервитки первичной обмотки, но нет ампервитков вторичной обмотки. На среднем стержне вторичные ампервитки преобладают над первичными. Если всмотреться в действия неуравновешенных ампервитков, то мы заметим, что во всех стержнях они действуют в одну сторону; на рис. 147 вниз. Это значит, что неуравновешенные ампервитки создадут добавочное магнитное поле, которое во всех стержнях будет направлено в одну сторону и будет замыкаться через воздух. Добавочное магнитное поле, меняясь с частотою тока, индуктирует во всех фазах первичной и вторичной обмоток электродвижущие силы одной фазы, которые в первичной обмотке вместе с электродвижущими силами, индуктируемыми главным магнитным потоком, уравновешивают первичное напряжение

Во вторичной обмотке те же электродвижущие силы вместе с электродвижущими силами главного потока дают фазные электродвижущие силы.

Нетрудно показать, что фазные электродвижущие силы в этом случае получаются неравными. Пусть треугольник АВС на рис. 148 представляет треугольник приложенного первичного напряжения, а -электродвижущие силы добавочного магнитного потока. Если бы нулевая точка О треугольника напряжений ABC не сдвинулась со своего места, то фазные электродвижущие силы с первичной стороны должны были определяться векторами . Этими векторами определялись бы по величине и магнитные потоки в трех стержнях, так как электродвижущие силы пропорциональны вызвавшим их потокам. Магнитные потоки в сердечнике трехфазного трансформатора соединены звездой, а потому к ним приложимо свойство давать в сумме в каждый момент времени нуль, т. е. Ф 1 + Ф 2 +Ф 3 = О. Это значит, что векторы должны дать замкнутый равносторонний треугольник. Но последние векторы не могут дать замкнутого равностороннего треугольника. Такой треугольник мы получим, если сместим нейтральную точку О в точку на расстоянии . В этом случае векторы уже дадут замкнутый равносторонний треугольник. Таким образом в результате добавочного потока нулевая точка обмотки смещается на величину добавочной электродвижущей силы. Последнее явление совершенно подобно тому, что имеет место при холостой работе трансформатора с несимметричною магнитною системою, когда смещение нулевой точки выражалось величиной фазного напряжения. Имея в виду, что полный ток нагрузки больше тока холостой работы раз в 20, то при несимметричной нагрузке с полным током смещение нулевой точки выразится фазного напряжения. Такое большое смещение нулевой точки вызывает большое неравенство в фазных напряжениях, что, конечно, представляет большое неудобство с эксплуатационной точки зрения. В том случае, когда нейтраль первичной звезды не может быть соединена с нейтралью генератора, рассматриваемое соединение не рекомендуется брать при трансформировании тока отдельными однофазными трансформаторами или одним трехфазным трансформатором броневого типа, так как в фазных напряжениях получаются значительные третьи гармоники. Оно не рекомендуется даже и при передачах звезда — звезда на звезда — треугольник при условии заземления нейтралей высокого напряжения, потому что замыкающиеся в этом случае через землю токи третьей гармоники могут причинить большие расстройства в соседних телефонных и телеграфных линиях.

При трансформировании трехфазным трансформатором стержневого типа третьи гармоники, как мы видели и ранее, проявляются значительно слабее, а потому соединение звезда-звезда в данном случае будет допустимо. Группа звезда- звезда применяется при небольших распределительных сетях с мало нагруженным вторичным нулевым проводом. При высоких напряжениях эта группа применяется только при наличии третичной обмотки, соединенной треугольником. Эта последняя необходима для прохождения третьей гармоники намагничивающего тока; она же может дать ток для защитных приспособлений в случае короткого замыкания главной обмотки.

В. Звезда-зигзаг. Для того чтобы в соединении обмоток трансформаторов звезда-звезда избавиться в известной мере от добавочного магнитного потока при несимметричной нагрузке применяют соединение вторичных обмоток звезда-зигзаг. Если бы при так

понятие, схемы и таблицы, чем определяется

Любой трансформатор, за исключением автотрансформатора, имеет минимум две обмотки: высокого и низкого напряжений. Также у трехфазных устройств каждая из обмоток состоит из трех частей (по числу фаз). Большое количество частей дает возможность множества вариантов включения. Чтобы избежать путаницы, все группы соединения обмоток трансформатора для трехфазных устройств стандартизированы и приведены к единой системе для безошибочного подключения устройств и возможности параллельной работы.

Понятие группы соединение обмоток трехфазного трансформатора

В трехфазных сетях используется два вида соединений: звезда и треугольник. При изготовлении  конструкций может показаться, что существует всего четыре вида расположения обмоток:

  1. Звезда-звезда.
  2. Звезда-треугольник.
  3. Треугольник-звезда.
  4. Треугольник-треугольник.

обмотки трехфазного трансформатора

На деле все обстоит сложнее, поскольку в каждом виде соединений (звезде или треугольники) части обмоток могут быть соединены по-разному. В качестве примера можно привести обычных двухобмоточный трансформатор. Если у такого устройства совпадают начала и концы обмоток, то сдвиг фаз будет равен 0. Разворот одной из обмоток даст сдвиг фаз 180.

Также встречаются z-образные соединения обмоток (зигзаг). В таких конструкциях каждая из обмоток состоит из двух частей, расположенных на различных стержнях магнитопровода трансформатора.

Трехфазная сеть характеризуется сдвигом фаз одна относительно другой на 120. Поэтому всего насчитывается 12 групп соединения. Каждая группа характеризуется определенным сдвигом одноименных фаз на входе и выходе трансформатора.

Магнитные системы трехфазных трансформаторов

Условные обозначения и расшифровка

Группы маркируются числами от 0 до 11. Для удобства и стандартизации принято следующее:

  • однотипные соединения (∆/∆, Y/Y) имеют четные номера;
  • разнотипные соединения (∆/Y, Y/∆) – нечетные.

Трехфазные трансформаторы выполняются на стержневых магнитопроводах. Каждая из фаз располагается на отдельном стержне. Это во многом упрощает дальнейшую работу и согласование устройств между собой.

Если у трансформатора одинаковые фазы намотаны на одних стержнях, то группы соединений при этом называются основными (0, 6, 11, 5). Остальные группы – производные.

Так как минимальный сдвиг фаз может составлять 30, то количество вариантов равно 12, что соответствует положениям стрелок часов. 0-е и 12-е положения совпадают.  На основании этого говорят, что номер группы совпадает с положением часовой и минутной стрелок. Сдвиг фаз вычисляется просто:

Номер группы*30.

Трехфазные трансформаторы

Приняты следующие обозначения на электросхемах и устройствах:

  • Y, У – звезда;
  • Yн, Ун – звезда на стороне низкого напряжения;
  • Yо, Уо – звезда с нулевой точкой;
  • ∆, Д, D – треугольник;
  • ∆н, Дн, Dн – треугольник на стороне низкого напряжения.

Пример маркировки двухобмоточного трансформатора:

  • ∆/Yн – 11. Первичная обмотка треугольник, вторичная (понижающая) звезда. Сдвиг фаз 330;
  • Y/Yо -0. Обе обмотки соединены звездой, вторичная с выведенной нулевой точкой. Сдвиг фаз отсутствует.

Также на электрических схемах обмотки высокого напряжения (ВН) обозначают символами:

  • A,B, C – начало обмотки;
  • X, Y, Z – конец обмотки.

Аналогично для стороны низкого напряжения:

Подобным образом маркируются многообмоточные устройства, например:

Yо/Y/∆ – 0 – 11.

Вместо нулевой группы может указываться двенадцатая, что совершенно равнозначно.

Трехфазные трансформаторы

Как строятся векторные диаграммы

При построении векторных диаграмм надо запомнить правило, что сдвиг фаз меду фазами равняется 120, то есть, при равенстве напряжений, концы векторов всегда будут образовывать равносторонний треугольник.

Наиболее просто составляется диаграмм для соединения звезда. В центре диаграммы ставится точка, которая соответствует объединенным концам обмоток. Из центра под углами 1200 проводятся векторы фаз. Вертикально проводят вектор средней фазы.

Для треугольника начерно проводят линию, параллельную соответствующей фазы звезды, а от ее концов, соответственно, подсоединенные к ней оставшиеся две фазы. Должно соблюдаться условие – все стороны треугольника должны быть параллельны соответствующим фазам звезды. Искомыми векторами будут проведенные линии из центра треугольника к его вершинам.

Векторные диаграммы рисуются для высокой и низкой сторон, а затем совмещаются с единым центром. Угол между одинаковыми фазами будет показывать номер группы соединения, выраженный в часах.

Отсчет нужно брать от вектора высокого напряжения к низкому.

векторные диаграммы трехфазной цепи

Таблица групп соединений

В таблице ниже представлены обозначения групп соединения и чередование фаз низкой и высокой сторон.

Группа соединенияОбозначениеЧередование фаз

 

Y/Y-0C, B, A
c, b, a
∆/∆-0C, B, A
c, b, a
1Y/∆-1C, B, A
c, b, a
∆/Y-1C, B, A
c, b, a
2Y/Y-2C, B, A
c, b, a
∆/∆-2C, B, A
а, c, b
3Y/∆-3C, B, A
 b, a, с
∆/Y-3C, B, A
 b, a, с
4Y/Y-4C, B, A
 b, a, с
∆/∆-4C, B, A
b, a, с
5Y/∆-5C, B, A
c, b, a
∆/Y-5C, B, A
c, b, a
6Y/Y-6C, B, A
c, b, a
∆/∆-6C, B, A
c, b, a
7Y/∆-7C, B, A
c, b, a
∆/Y-7C, B, A
c, b, a
8Y/Y-8C, B, A
а, c, b
∆/∆-8C, B, A
c, b, a
9Y/∆-9C, B, A
b, a, с
∆/Y-9C, B, A
b, a, с
10Y/Y-10C, B, A
c, b, a
∆/∆-10C, B, A
b, a, с
11Y/∆-11C, B, A
c, b, a
∆/Y-11C, B, A
c, b, a

Определение методом гальванометра

Существует несколько способов определить правильность подсоединения обмоток. Самый простой способ – использование вольтметра магнитоэлектрической системы. Его еще называют методом постоянного тока.

Для этого к концам проверяемой обмотки подключают измерительный прибор, а на другую обмотку подают постоянное напряжение. Отклонение стрелки в момент  замыкания ключа покажет полярность подключения обмотки. Такие действия производятся для каждой обмотки.

Также можно воспользоваться простым вольтметром при подключении переменного напряжения. Для этого на одну из обмоток подают пониженное переменное напряжение, а остальные две обмотки соединяют последовательно и  подключают к вольтметру. Отсутствие или слишком малые показания говорят о том, что обмотки включены встречно.

Метод тангенс–гальванометра

Проверка

Если известен коэффициент трансформации, то при помощи вольтметра можно определить номер основной группы соединения. Для этой цели подают напряжение на концы А и а или x и y и измеряют напряжения на выводах В-в и С-с при соединении звездой или B-y и C-z при соединении треугольником. Для проверки используют следующие соотношения:

UBb = UCc = UAa(k-1)                                              Группа  Y/Y-0

UBy = UCz = Uxy(k+1)                                                       Y/Y-6

UBb = UCc = UAa(√(1-√3k+k2))                                     Y/∆-11

UBy = UCz = Uxy(√(1+√3k+k2))                                     Y/∆-5

Для исключения повреждения оборудования,  возникновения аварийных ситуаций и травмирования, все измерения следует производить при низком напряжении, не включая оборудование в основную сеть предприятия.

вольтметр

Примеры групповых соединений обмоток

Государственным стандартом предусмотрены только две группы соединения обмоток:

  1. Y/Y-0 или ∆/∆-0
  2. Y/∆-11 и ∆/Y-11

Жесткая стандартизация позволяет исключить аварии и повреждения в результате неправильных подключений. К тому же, для трансформаторов одинаковой мощности и коэффициента трансформации становится возможным параллельное включение устройств.

Остальное количество соединений используется крайне редко в отдельных случаях при невозможности использования стандартного варианта.

Тип подключения должен быть оговорен в сопроводительной документации и продублирован на шильдике устройства.

Примеры групповых соединений обмоток

Ошибочные обозначения

Ошибочные включения возникают при несоблюдении правил подключения концов. Это происходит в результате неправильной намотки или неправильном обозначении. В результате при включении устройства в трехфазную сеть, обмотки, включенные встречно, компенсируют магнитные потоки друг у друга, поэтому через них начинает протекать ток, ограниченный лишь активным сопротивлением обмоточного провода, что равносильно короткому замыканию.

Чтобы исключить случаи неправильного включения, рекомендуется после ремонта оборудования или перед включением неизвестных устройств тщательно проверить фазировку каждой обмотки несколькими методами для исключения возможных ошибок.

Уменьшить вероятность ошибки поможет предварительный расчет напряжений для измерений по методу вольтметра. Полученные данные служат ориентировочными значениями, на которые нужно обращать внимание при проведении последующих измерений.

§ 1.8. Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов

Рис. 1.20. Трансформаторная группа (а) и трехфазный трансформатор (б)

Трансформирование трехфазной системы напряжений можно осуществить тремя однофазными трансформаторами, соединенными в трансформаторную группу (рис. 1.20, а). Однако относительная громоздкость, большой вес и повышенная стоимость — недостаток трансформаторной группы, поэтому она применяется только в установках большой мощности с целью уменьшения веса и габаритов единицы оборудования, что важно при монтаже и транспортировке трансформаторов.

Рис. 1.21. Трехстержневой магнитопровод и векторные диаграммы

В установках мощностью примерно до 60000 кВ-А обычно применяют трехфазные трансформаторы (рис. 1.20, б), у которых обмотки расположены на трех стержнях, объединенных в общий магнитопровод двумя ярмами (см. рис. 1.2). Но полученный таким образом магнитопровод является несимметричным: магнитное сопротивление потоку средней фазы ФВ меньше магнитного сопротивления потокам крайних фаз ФА и Фс (рис. 1.21, а).

Так как к первичным обмоткам трехфазного трансформатора подводится симметричная система напряжений и то в магнитопроводе трансформатора возникают магнитные потоки и , образующие также симметричную систему (рис. 1.21, 6). Однако вследствие магнитной несимметрии магнитопровода намагничивающие токи отдельных фазовых обмоток не равны: намагничивающие токи обмоток крайних фаз ( и ) больше намагничивающего тока обмотки средней фазы . Кроме того, токи и оказываются сдвинутыми по фазе относительно соответствующих потоков и на угол α. Таким образом, при симметричной системе трехфазного напряжения, подведенного к трансформатору, токи х.х. образуют несимметричную систему (рис. 1.21, в).

Для уменьшения магнитной несимметрии трехстержневого магнитопровода, т.е. уменьшения магнитного сопротивления потокам крайних фаз, сечение ярм делают на 10—15% больше сечения стержней, что уменьшает их магнитное сопротивление. Несимметрия токов х.х. трехстержневого трансформатора практически не отражается на работе трансформатора, так как даже при небольшой нагрузке различие в значениях токов , и становится незаметным.

Таким образом, при симметричном питающем напряжении и равномерной трехфазной нагрузке все фазы трехфазного трансформатора, выполненного на трехстержневом магнитопроводе, практически находятся в одинаковых условиях. Поэтому рассмотренные выше уравнения напряжений, МДС и токов, а также схема замещения и векторные диаграммы могут быть использованы для исследования работы каждой фазы трехфазного трансформатора.

Обмотки трехфазных трансформаторов принято соединять по следующим схемам: звезда; звезда с нулевым выводом; треугольник; зигзаг с нулевым выводом. Схемы соединения обмоток трансформатора обозначают дробью, в числителе которой указана схема соединения обмоток ВН, а в знаменателе — обмоток НН. Например, Y/A означает, что обмотки ВН соединены в звезду, а обмотки НН — в треугольник.

Рис. 1.22. Соединение обмоток в зигзаг

Соединение в зигзаг применяют только в трансформаторах специального назначения, например в трансформаторах для выпрямителей (см. § 5.2). Для выполнения соединения каждую фазу обмотки НН делят на две части, располагая их на разных стерж­нях. Указанные части обмоток соединяют так, чтобы конец одной части фазной обмотки был присоединен к концу другой части этой же обмотки, расположенной на другом стержне (рис. 1.22, а). Зигзаг называют равноплечным, если части обмоток, располагаемые на разных стержнях и соединяемые последовательно, одинаковы, и неравноплечными, если эти части неодинаковы. При соединении в зигзаг ЭДС отдельных частей обмоток геометрически вычитаются (рис. 1.22, б).

Выводы обмоток трансформаторов принято обозначать следующим образом: обмотки ВН — начало обмоток А, В, С, соответствующие концы X, Y, Z; обмотки НН — начала обмоток а, Ь, с, соответствующие концы х, у, z.

При соединении обмоток звездой линейное напряжение больше фазного (), а при соединении обмоток треугольником линейное напряжение равно фазному (Uл = Uф ).

Отношение линейных напряжений трехфазного трансформатора определяется следующим образом:

Схема соединения обмоток

Y/Y

∆/Y

∆/∆

Y/∆

Отношение линейных напряжений

Таким образом, отношение линейных напряжений в трехфазном трансформаторе определяется не только отношением чисел витков фазных обмоток, но и схемой их соединений.

Пример 1.3. Трехфазный трансформатор номинальной мощностью Sном =100 кВ-А включен по схеме Y/∆. При этом номинальные линейные напряжения на входе и выходе трансформатора соответственно равны: U1ном = 3,0 кВ, U2ном = 0,4 кВ. Определить соотношение витков wllw2 и номинальные значения фазных токов в первичной I и вторичной I обмотках.

Решение. Фазные напряжения первичных и вторичных обмоток

Требуемое соотношение витков в трансформаторе w1/w2 = U/U= 1,73/0,4 = 4,32.

Номинальный фазный ток в первичной обмотке (соединенной в звезду)

I1Ф = I1ном=SHOM/(√3U1ном) = 100/(√3·3,0) = 19,3 А.

Номинальный фазный ток во вторичной обмотке (соединенной в треугольник)

I = I2ном /√З = SHOM /(3 U2ном) = 100/(З • 0,4) = 8,33 А.

Таким образом, соотношение фазных токов I/ I =83,3/19,3 = 4,32 равно соотношению витков в обмотках трансформатора.

Трехфазный трансформатор. Его устройство и схема.

Для трансформирования энергии в трехфазных системах используют либо группу из трех однофазных трансформаторов (именно так и работают мощные однофазные трансформаторы, устанавливаемые на крупных электростанциях), у которых первичные и вторичные обмотки соединяются звездой или треугольником, либо один трехфазный трансформатор с общим магнитопроводом.

Устройство трехфазного трансформатора

Трехфазные трансформаторы могут иметь различные схемы соединения первичных и вторичных обмоток. Все начала первичных обмоток трансформатора обозначают большими буквами: А, В, С; начала вторичных обмоток — малыми буквами: а, Ь, с. Концы обмоток обозначаются соответственно: X, У, Z и х, у, z. Зажим выведенной нулевой точки при соединении звездой обозначают буквой О.

Наибольшее распространение имеют соединения обмоток по схеме «звезда» (Y) и «треугольник» (D), причем первичные и вторичные обмотки могут иметь как одинаковые, так и различные схемы. Если при соединении обмоток «звездой» нулевая точка выводится, то такое соединение называют «звезда c нулем» (Yо).

Самым простым и дешевым из них является соединение обеих обмоток трансформатора звездой (Y/Y), при котором каждая из обмоток и ее изоляция (при глухом заземлении нейтральной точки) должны быть рассчитаны только на фазное напряжение и линейный ток; так как число витков обмотки трансформатора прямо пропорционально напряжению, то, следовательно, соединение обмоток звездой требует в каждой из обмоток меньшего количества витков, но большего сечения проводников с изоляцией, рассчитанной лишь на фазное напряжение.

Схема трехфазного трансформатора

На рисунке приведено устройство трехфазного трансформатора при соединении обеих обмоток звездой (Y/Y). Такое соединение широко применяют для трансформаторов небольшой и средней мощности (примерно до 1800 кВ-А). Соединение звездой является наиболее желательным для высокого напряжения, так как при нем изоляция обмоток рассчитывается лишь на фазное напряжение. Чем выше напряжение и меньше ток, тем относительно дороже обходится соединение обмоток треугольником.

Соединение обмоток треугольником конструктивно удобнее при больших токах. По этой причине соединение Y/D широко применяется для трансформаторов большой мощности в тех случаях, когда на стороне низшего напряжения не требуется нейтрального провода.

При трехфазной трансформации только отношение фазных напряжений U/U всегда приближенно равно отношению чисел витков первичной и вторичной обмоток w1/w2; что же касается линейных напряжений, то их отношение зависит от способа соединения обмоток трансформатора. При одинаковом способе соединения (Y/Y или D/D) отношение линейных напряжений также равно коэффициенту трансформации. Однако при различном способе соединения (Y/D или D/Y) отношение линейных напряжений меньше или больше этого коэффициента в √3 раз. Это дает возможность регулировать вторичное линейное напряжение трансформатора соответствующим изменением способа соединения его обмоток.

Братание с трехфазным трансформатором » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)

Приветствую! После очередного похода на радиобарахолку сподвигнулся на написание этого отчасти лженаучного материала.
Может оно и старо, как мир, но в наше «низкоимпедансное» время, когда у людей с грошами туговато, авось кому-то и пригодится…

Как-то у барахольщикив наткнулся на небольшой трехфазный трансформатор (150-180 вт навскидку). Имея небольшой, да и давнишний уже, опыт с таким железом (наладка и испытания оборудования подстанций), хотел было пройти мимо этой вроде бесполезной в хозяйстве железяки, но потом все же забрал за 50 деревянных ради эксперимента.
И вон он, расстерзанный, на «операционном» столе, приступим…


Чистим, отмываем, вызваниваем обмотки, по-новой лудим клеммные колодки, сажаем все на свои места.

Содержание / Contents

После замеров нарисовалось следующее (обмотки на всех трех стержнях идентичны):

В живую разглядеть диаметр проводов удалось только на обмотке с отводом – 0,8 мм.кв. Вторая (22V) оказалась слаботочной и вытягивала без просадки 18V 200 mA. Поскольку целью эксперимента была попытка включить транс в качестве разделительного либо силового с минимальными потерями, все слаботочные обмотки не рассматриваем и про отвод на вторичке тоже пока забудем. Таким образом, грубо взяв за исходное 2А по каждой вторичке при 22V попробуем забрать у транса ватт 130 полезной мощности, а может и больше.
Варинтов включения первичных обмоток просматривается четыре:

Здесь сразу поясним, что все стержни трехфазника одинаковы по ширине, это обычное Ш-образное железо, собранное вперекрышку. Таким образом, включение трех первичек синфазно и параллельно недопустимо, для понимания достаточно нарисовать себе схему движения магнитного потока по сердечнику.

Абсолютно корректным и безопасным является вариант I. С него и начнем, причем замеры будем делать на холостом ходу и только после нахождения оптимального включения прогрузим рабочий вариант. Вот результат при токе холостого хода 25 mA и сетевом напряжении 240V (дело было уже в 5 утра):

В этом варианте мы можем варьировать включением всех вторичных и двух первичных обмоток, как в любом однофазнике, но нагрузочная способность его из-за работы только одной катушки (одна лошадь везет две телеги) предполагается ослабленной.

Теперь попробуем вариант II, включив первички А и С синфазно параллельно. Магнитный поток в центральном стержне возрастет в 2 раза при том же сечении. По идее – рискованно, но попробуем.


Ток холостого хода, как и ожидалось, значительно вырос – 380 mA. Но и после 1 часа непрерывной работы трансформатор оставался чуть теплым. Мощность в таком включении должна быть уже приемлемой и почти удвоенные напряжения в секции B тоже представляют интерес.

Теперь включим транс по варианту III.


Здесь обмотки А и С включены параллельно, но противофазно. Соответственно магнитные потоки в катушке В будут направлены встречно (самоуничтожение) и на выводах В и в1 практически по нолям. А что же происходит в остальных обмотках? Меряем:
Ток холостого хода всего трансформатора 65 mA , для его габаритов- самое то. Не утерпел, нагрузил на лампу 24V 60W обмотку a1 – 22V при токе 2,3А. Добавил еще одну лампу на c1 – та же песня, напруга даже не просела. Постояло так 30 мин. – транс чуть теплый. Чем не решение для двуполярника?! А обмотки секции В можно попросту убрать, при нынешнем дефиците провода – одна выгода!

Вариант IV замысливался, как альтернатива второму: попытаться уменьшить ток холостого хода. Здесь к соединенным синфазно обмоткам А и С последовательно добавлена обмотка В. Вот что получилось:


Ток холостого хода уменьшился до 240 мА и я уже возликовал. Но рано… Лампы при одновременном включении посадили обмотки a1 и c1 до 13V, а обмотку b1 до 36V (лампы здесь включал последовательно). В обоих случаях ток был 2А. Но этим не закончилось, ибо пока перекуривал, центральная обмотка стала ощутимо греться. Тогда я решил тупо поменять ее концы, включив по отношению к спарке А и С в противофазе. Транс получился сверхэкономичный: ток холостого хода аж 15 мА. Но вот напруга… a1, c1 – по 10V, b1 – 20V. И все это при слабой нагрузочной способности. Хотя как вариант имеет право жить!
А вот в чистом виде, как на рисунке, лучше забыть, потому из дальнейших действий мы его исключаем, равно как и сверхэкономичный (он на любителя).

Днем были дела семейные и прогрузкой занялся вечером. В качестве нагрузок – те же две лампы 24V 60W каждая. Исходный замер варианта II (он мне показался наиболее интересным) на холостом ходу при сетевом 220V: a1,c1 по 26V, b1 – 49V, в обмотке B – 416V. Включаем: a1,c1 по 21V, b1 – 45V, в обмотке B – 382V(пока не нагружена).

Добавляем сюда две на 220V 100W и 25W в последовательном включении (других под рукой не оказалось). Света в комнате сразу прибавилось, в обмотках следующие значения: a1,c1 по 18V(2,2A), b1 – 40V (не нагружена, но пол-ампера отдаст смело без просадки остальных обмоток), на B – 320V (230 mA). Вот вам готовый транс для гибридного уся. Полчаса прогрузки, температура транса примерно 50 градусей, вполне терпимо, но лучше подцепить кулер.

Ну и для очистки совести прогрузил все так же, но обмотки a1,с1 подключил через мосты с фильтрующими кондюками по 2200 мкф.

На a1 и c1 – по 18,7V (2.3А), b1 – 40V (не нагружена, на c1 – 320V (232mA). Тепловой режим не поменялся. Далее перецепил последовательно включенные лампы на обмотку b1, все остальные нагрузки снял: 41V, 2,3A (на холостом здесь было 44V). И, наконец, нагрузил только секцию B, причем низковольтую обмотку через мост и конденсаторы фильтра: на b1 – 36V (2,7A), на B – 315V (240 mA). Если подытожить, транс сполна отдаст 140-160 ватт полезной мощи, которая в данном случае ограничена сечением провода.

Мне могут возразить: к чему весь огород, взял тот же ТС-180 и не мучайся. Я отвечу:

1. На «безрыбье» при нынешних ценах он очень даже ТРАНС! Присмотритесь на барахолках, этих красавцев никто не берет, их можно купить впополам дешевле как минимум (у сварщиков ценятся мощностью от киловатта и выше).

2. Трехфазники более надежны конструктивно, Ш-образное железо с дырками в пластинах, хороший крепеж, мощный каркас, удобство в разборке и перемотке. Но даже если не перематывать – они практически не горят за счет хорошей изоляции и запаса прочности (на случай попадания фазного напряжения). Помнится, испытывают их мегометром при подаче минимум 1000 Вольт. Мой вот пропитан щеллаком. Плюс есть вариации с включением. То есть, как разделительный в хозяйстве — это очень хороший выбор (по варианту I и III).

3. Опытный радиолюбитель легко сделает из него приличный силовик для усилителя. По варианту II и анодное для ламп есть. А что до большого тока холостого хода – так и в классе А не меньше на ветер улетает. В конце-концов кому нужно, тот воспользуется данным материалом, а оспаривать его целесообразность не буду. Потому, как я с филологическим образованием и до сих пор не знаю, что такое логарифм числа «А». Но вот дымок канифольный люблю всю жизнь, и выдумывать пропорционально мозгам – тоже.

4. И теперь о сокровенном, на что я не дотягивают совсем. А почему бы не попробовать это железо в качестве выходного транса в ламповом усе? Может, спецы-датагрцы пораскинут своими головушками? Железо здесь совсем не хилое, пластины тонкие, три катушки (можно секционированием поиграть).
Надо же какую-то точку и здесь поставить.
Засим откланиваюсь!

Камрад, смотри полезняхи!

Имя героя неизвестно (smarold)

Местоположение в тайне.

О себе автор ничего не сообщил.

 

Схемы соединений обмоток трехфазных трансформаторов

При соединении обмоток трехфазных трансформаторов как двухобмоточных, так и трехобмоточных применяют различные схемы соединения. Однако в силовых трансформаторах как повышающих, так и понижающих, главных образом применяются схемы соединения в звезду, треугольник и зигзаг—звезду. Для практических целей в энергосистемах не требуется большого количества схем соединений обмоток. Так, для мощных трансформаторов применяется одно соединение обмоток ВН и СН— в звезду с выведенной нейтралью (Y0), а для обмоток НН — в треугольник (А).
ГОСТ 12022-66 предусматривает для трансформаторов мощностью 25, 40, 63 и 100 кВА с ПБВ (с переключением ответвлений обмотки трансформатора без возбуждения — т. е. после отключения всех обмоток трансформатора от сети) и для трансформаторов мощностью 63, 100, 160 и 250 кВА с ПБВ и РПН (с регулированием напряжения путем переключения ответвлений обмотки трансформатора под нагрузкой при следующем сочетании напряжений па стороне ВН и НН (кВ)  на стороне обмотки низшего напряжения соединение в зигзаг—звезду.
Соединение в зигзаг — звезду дает возможность при несимметрии нагрузки на стороне НН сглаживать на стороне ВН эту неравномерность. Кроме того, схема зигзага допускает иметь три напряжения, например 127, 220 и 380 е.
Другие схемы соединений обмоток для силовых трансформаторов применяются крайне редко. Область применения таких схем ограничивается трансформаторами специального назначения (электропечными, для питания ртутных выпрямительных установок, для преобразования частоты, числа фаз переменного тока, электросварочными и др.).
а) Соединение обмоток в звезду
Если соединить концы или начала обмоток трех фаз вместе, то получится соединение в звезду. На рис. 3,а показаны обмотки НН, соединенные в звезду. В нулевой точке соединены все концы обмоток у, z, а к началам а, Ьу с— подводится напряжение от трехфазной сети или генератора. На рис. 3,6 показано то же соединение обмоток НН в звезду, но только в нулевую точку соединены другие концы обмоток, которые прежде присоединялись к сети. При независимой друг от друга работе трансформаторов подобное «переворачивание» одной из обмоток, соединенной в звезду, не имеет значения, по параллельная работа таких трансформаторов, как это будет доказано далее, невозможна. В звезду могут быть соединены различные обмотки трансформатора как ВН и СН, так и НН. Нулевая точка звезды может быть выведена на крышку трансформатора (рис. 3,б).
По схеме звезда или звезда с выведенной нулевой точкой соединяются обычно обмотки ВН как повышающих, так и понижающих трансформаторов различной мощности.
Соединение обмотки НН в звезду
Рис. 3. Соединение обмотки НН в звезду.
а — одна схема соединения; б — другая схема соединения; в — соединение в звезду с выведенной нулевой точкой; г — векторная диаграмма линейных э. д с.
Обмотки ВН при напряжениях 110 кВ и выше предпочтительно соединять в звезду с выведенной нулевой точкой, что дает возможность заземления нейтрали. При этом можно выполнить один конец каждой из фаз, прилегающий к нейтрали, с пониженной изоляцией.
Обмотки СН соединяются большей частью по схеме Y0.
Обмотки НН соединяются в звезду с выведенной нулевой точкой у понижающих трансформаторов тогда, когда напряжение этой обмотки 230 или 400 в при мощностях до 560 кВА. В звезду без выведения нулевой точки обмотки НН соединяются крайне редко, например, у понижающих трансформаторов мощностью 1 000—5 600 кВА при сочетании напряжений обмоток ВН и НН 10 000/6 300 е.
Обычно обмотки НН повышающих трансформаторов, а также большей части понижающих мощных соединяются в треугольник.
Векторная диаграмма линейных э. д. с. для соединения обмоток в звезду строится следующим образом. Откладываем в масштабе вектор ах (рис. 3,г). Так как мы знаем, что концы обмоток л*, //, г электрически соединены, то из точки х под углом 120° к ах откладываем в том же масштабе вектор by. Далее из точки у под углом 120° к вектору by откладываем вектор сг.
При соединении обмотки в звезду с выведенной пулевой точкой можно получить два напряжения (фазное и лилейное). Если измерять напряжение между нулем и какой-либо фазой, то получим напряжения, называемые фазными ((Уф). На рис. 3,г они изображены векторами ха, yb и гс.
Напряжения, измеренные между фазами а и ft, b и с, с и а, называются линейными (междуфазными) напряжениями (U). Эти напряжения па рис. 5-3,г изображены в масштабе ab, be и са. Так как в треугольнике abx угол между векторами ха и yb равен 120°, то зависимость между линейным и фазным напряжениям  будет U = = Uфv3 , т. е. линейное напряжение в v3 раз больше фазного. Если трансформатор, обмотки НН которого включены в звезду, имеет линейное напряжение 220 в, то фазное напряжение будет:
Соединение обмотки НН в звезду
б) Соединение обмоток в треугольник
Если соединить конец фазы а (точку х) с началом фазы с, конец фазы с (точка z) с началом фазы b и конец фазы b (точка у) с началом фазы а, то получится соединение в треугольник (рис. 4,а). Соединение в треугольник можно осуществить (рис. 4,6) иначе, соединяя конец фазы а с началом фазы b, конец фазы b с началом фазы с и конец фазы с с началом фазы а.
Векторная диаграмма линейных э. д. с. при соединении обмоток в треугольник по схеме рис. 4,а будет равносторонним треугольником рис. 4,в и г. При соединении в треугольник фазные напряжения будут равны линейным.
В мощных трансформаторах принято одну из обмоток всегда соединять в треугольник. Делается это по следующим соображениям:
Как известно, намагничивающий ток трансформатора имеет несинусоидальную форму, т. е. содержит высшие гармонические. Наибольший удельный вес имеет третья гармоническая. Если все обмотки трансформатора соединить в звезду, то третья гармоническая в намагничивающем токе образоваться не может, так как она будет направлена во всех фазах одинаково: (3 • 120° = 360° = = 0°) и поэтому форма кривой фазного напряжения исказится, что может привести к нежелательным явлениям в эксплуатации. По этим соображениям принято одну из обмоток обязательно соединять в треугольник. Если же почему-либо требуется построить мощный двухобмоточный трансформатор или автотрансформатор с соединением обмоток звезда — звезда (например, трехфазный автотрансформатор), то он снабжается дополнительной третьей обмоткой, соединенной в треугольник, которая в некоторых случаях может даже не иметь внешних выводов.
Соединение обмоток НН в треугольник
Рис. 4. Соединение обмоток НН в треугольник.
а — первая схема соединения обмоток в треугольник, б — вторая схема соединения обмоток в треугольник; в — вектора линейных э. д. с фаз a, b и с; г —векторная диаграмма линейных э д с

Обычно в треугольник соединяется обмотка низшего напряжения.
В мощных трансформаторах номинальный ток обмотки НН часто составляет несколько тысяч ампер и конструктивно бывает легче выполнить соединение обмотки в треугольник, так как фазный ток при той же мощности получается в v 3 раз меньшим, чем при соединении в звезду.
В треугольник соединяются обмотки НН всех повышающих и понижающих двухобмоточных и трехобмоточных трехфазных трансформаторов мощностью 5 600 кВА и больше, понижающих трансформаторов мощностью до 5 600 кВА, имеющих на стороне НН напряжения 38,5; 11; 10,5; 6,6; 6,3; 3,3; 3,15 и 0,525 кВ, а также обмотки НН всех мощных однофазных двухобмоточных и трехобмоточных трансформаторов, предназначающихся для соединения в трехфазные группы. Обмотки ВН и СН силовых повышающих и понижающих трансформаторов обычно в треугольник не соединяются.
в) Соединение обмоток в зигзаг — звезду (равноплечий и неравноплечий зигзаг)
Равноплечий зигзаг может быть получен, если соединить по одной из трех схем рис. 5,а, бив концы и начала шести полуобмоток с одинаковыми числами витков (а следовательно, и э. д. е.), расположенных по две полуобмотки на каждой фазе трансформатора.
Соединение обмотки НН в равноплечий зигзаг
Рис. 5. Соединение обмотки НН в равноплечий зигзаг.
а —первая схема соединения; б — вторая схема соединения; в — третья схема соединения; г — векторная диаграмма э. д. с. звезды нижних полукатушек; д — векторная диаграмма линейных э. д. с.
Построим векторную диаграмму соединений обмоток в зигзаг согласно схеме рис. 5,а. Начнем построение с нижних полуобмоток, соединенных в звезду. Векторная диаграмма для этих полуобмоток представлена на рис. 5,г. Согласно схеме рис. 5,а начало а’ нижней полуобмотки электрически соединено с концом zr верхней.
Вектор г’с должен пойти в направлении, противоположном вектору zc’, а потому из точки а’г’ (рис. 5,д) откладываем вектор zrc в направлении, противоположном вектору zc’.

Аналогичным образом строим векторы остальных частей обмоток. Обмотка при соединении в зигзаг обычно выполняется двухслойной, причем каждый слой имеет свободные начала и концы.
Один из слоев обмотки наматывают правой намоткой, другой — левой. Делается это для удобства выполнения соединений в зигзаг. При соединении обмотки в зигзаг мы можем получить три различных напряжения.

Схема равноплечего зигзага применяется для нормальных силовых понижающих трансформаторов, для мощностей 25, 40, 63, 100, 160 и 250 кВА в случае, когда при большой несимметрии нагрузок фаз необходимо на стороне питания иметь схему звезды.
Неравноплечий зигзаг получается, если по схемам а, б и в (рпс. 5-5) соединить концы и начала полуобмоток с неодинаковым числом витков. На рис. 6,а и б даны две схемы соединения в неравноплечий зигзаг при отношении числа витков в полуобмотках 1 : 2.
Схема неравноплечего зигзага применяется иногда иностранными фирмами для трансформаторов специального назначения. В нормальных силовых трансформаторах наши заводы эту схему не применяют.
г) Соединение обмоток по схеме А
Если соединить обмотки трансформатора, как показано на рис. 7,а, то получится соединение по схеме А. Схему, как это видно из векторной диаграммы
Соединение обмотки по схеме А
Рис. 7. Соединение обмотки по схеме А.
а — схема соединений обмоток; б — векторная диаграмма.
(рис. 7,6), можно представить как треугольник а’Ьс’, у которого две стороны а’b и cfb имеют дополнительные витки (а’а и с’с).
Для того чтобы получить соединения обмоток, отвечающих векторной диаграмме рис. 7,6, принимают соотношения числа витков на фазах трансформатора, которые должны удовлетворять следующим трем условиям:
Соединение обмотки по схеме А
т. е. обмотка фазы с должна иметь 2/3 числа витков обмоток фаз а и b.
Нулевой вывод берется от середины обмотки фазы с, и, кроме того, число витков дополнительных участков фаз а и b должно быть одинаково и составлять Уз общего числа витков этих фаз.
Соединение обмотки по схеме А

Рис. 8. Соединение обмоток в скользящий треугольник.
а — схема соединений обмоток; б—векторная диаграмма.
Эта схема не имеет применения в нормальных силовых трансформаторах и применяется только там, где необходимо иметь соединение обмоток в треугольник и в то же время требуется иметь нулевую точку.
д) Соединение обмоток в скользящий треугольник
На рис. 8 даны схема соединения обмотки и векторная диаграмма скользящего треугольника. Из рассмотрения схемы видно, что изменяя положение концов
а’b’с’ (рис. 8,а) и «скользя» ими по обмотке из крайнего верхнего положения к нижнему, можно перейти от треугольника к звезде. При этом могут быть получены все промежуточные положения. Это дает возможность, так же как в схеме неравноплечего зигзага, иметь различные углы сдвига фаз (ф).
Схема скользящего треугольника применяется иногда для трансформаторов, питающих электрические печи. В силовых трансформаторах эта схема не применяется.

Трехобмоточный трансформатор: описание, схемы, мощность, обмотки

Обычный трансформатор преобразовывает первичное напряжение U1 во вторичное U2. Нередко одного выходного напряжения для питания электроприемников бывает недостаточно. Задача создания третьего среднего напряжения СН (U3), наряду с высоким напряжением ВН (U1) и трансформируемым низким (U2), решается установкой трехобмоточного трансформатора с дополнительной третьей обмоткой на магнитопроводе. Этот электрический аппарат заменяет собой два двухобмоточных трансформатора.

Общее описание и назначение

Если взять двухобмоточный трансформатор и на стержень намотать проводом витки дополнительной катушки индуктивности, наводимое в ней напряжение будет пропорционально числу витков. В зависимости от исполнения вторичные катушки могут быть одинаковой или разной мощности.

Cхема 3-х обмоточного трансформатора

Cхема 3-х обмоточного трансформатора

Существуют 2 вида трансформаторов подобного типа:

  • с 1-й первичной и 2-мя вторичными обмотками – самый распространенный вид;
  • с 2-мя первичными и 1-ой вторичной обмоткой – этот вид задействован в трансформаторных группах электростанций.

Условное обозначение 3-х обмоточного трансформатора

Условное обозначение 3-х обмоточного трансформатора

Номинальной мощностью 3-х обмоточного аппарата считается параметр самой мощной его катушки, которой в данном типе электрических устройств является обмотка ВН. Размещение силового 3-х обмоточного устройства с невысокой мощностью любой из обмоток в электрических цепях экономически не оправдано. Поэтому мощности вторичных катушек ВН, СН и НН аппарата в процентах от Pном обычно составляют:

  • 100;100;100%;
  • 100;100;66,7%;
  • 100;66,7;100%;
  • 100;66,7;66,7%.

Конструкция и принцип действия

Конструктивно первичную катушку 3-х обмоточного силового трансформатора обычно располагают в середине между двумя вторичными, чтобы ослабить влияние обмоток между собой. Если нулевой вывод заземляется, то она называется «глухозаземленной», в ином случае именуют «обмоткой с изолированной нейтралью».

 Вторичную катушку с более низким напряжением (НН) размещают ближе к стержню устройства.

При подобном расположении напряжение КЗ между обмотками ВН и СН минимально. Это позволяет снизить  потери мощности при передаче в сеть СН. Одновременно значение напряжения КЗ между ВН и НН относительно большое, что ограничивает силу тока короткого замыкания в сети НН низшего напряжения.

трехобмоточный трансформатор

3-х обмоточные преобразователи переменного напряжения нашли широкое применение в силовой энергетике. В маркировке изделий они обозначаются третьей буквой «Т» в буквенно-цифровом коде. Очень часто требуется иметь третье более низкое, чем U2 значение для подачи менее мощным электроприемникам или, расположенным вблизи подстанций, потребителям электроэнергии.

Стандартными условиями эксплуатации изделий считается температура не выше 35ºС и влажность воздуха ≤65%, обеспечиваемые в отапливаемом помещении. Товарные позиции этого типа изготовляются как для нужд народного хозяйства, так и экспортируются в страны с умеренным/ тропическим климатом.

На понижающих подстанциях для раздельного питания электрических сетей в радиусе 10–15 км задействуют  электротехнические изделия с выходными параметрами 6–10 кВ, а в радиусе до 50-60 км применяют 35 кВ трансформаторы. 3-х обмоточные преобразователи только с более низким значением параметров используется в измерительной технике и радиотехнике, автоматике и средствах релейной защиты.

трехобмоточный трансформатор

Разновидности

Однофазный

Однофазные трехобмоточные трансформаторы для силовых линий обычно изготавливают мощностью 5000–40000 кВт с напряжением обмоток:

  • ВН – с значениями 110–121 кВ;
  • CН – от 34,5 до 38,5 кВ;
  • НН – в диапазоне 3,15–15,7 кВ.

Однофазный

Типовой однофазный 3-х обмоточный преобразователь, например, классов напряжения 15, 20, 24 и 35 кВ предназначен для встраивания в пофазно-экранированные токопроводы сетей 50/60Гц. Конструкция изделия включает следующие составные части и комплектующие:

  • бак с крышкой из немагнитной стали, задвижкой и пробкой, заполненный трансформаторным маслом;
  • магнитопровод из электротехнической стали;
  • активную часть, состоящую из обмоток, изоляции и крепежных элементов;
  • плоского контакта на крышке бака первичного вводного напряжения;
  • заземляющего ввода первичной обмотки и вводов вторичной обмотки на боковой стенке бака.

однофазный трансформатор

Электрические аппараты большой мощности (≤40000 кВа), рассчитанные на работу в интервале 110–121 кВ дополнительно могут оснащаться:

  • выхлопной трубой для защиты бака от разрыва парами масла и газовым реле, отключающим подачу электропитания при внутривитковом замыкании в трансформаторе;
  • расширителя с воздухоосушителем и термосифонным фильтром для поддержания требуемого уровня масла и предотвращения попадания влаги из атмосферы;
  • системами естественной/принудительной циркуляции воздуха или масла.

Экономическая эффективность применения изделия состоит в том, что при 3-х обмоточном исполнении первичный ток равен не арифметической, а геометрической сумме приведенных вторичных токов. Трехобмоточные (многообмоточные) аппараты целесообразно применять вместо двухобмоточных в том случае, если нагрузки ЛЭП/обслуживаемых электрических сетей соизмеримы, то есть отличаются друг от друга не более чем в 5 раз.

Многообмоточный трансформатор

Трехфазный

В трехфазных преобразователях переменного напряжения на каждую трансформируемую фазу приходится 3 обмотки. В  таком трансформаторе с общим магнитопроводом обмоток рабочие процессы протекают для каждой фазы аналогично, только со сдвигом во времени. На первичные обмотки поступает переменное фазное напряжение, вторичные обмотки соединены с нагрузкой. Поэтому для описания работы электрического аппарата исследуется только одна рабочая фаза.

Трехфазные 3-х обмоточные преобразователи для силовых линий обычно изготавливают мощностью 5600–31500 кВт и напряжениями катушек  аналогичным тем, которые используются в однофазных аппаратах. Трансформаторы получили наибольшее распространение на электрических подстанциях. По сравнению с группой однофазных трансформаторов при той же мощности они позволяют экономить 12–15% электроэнергии и 20–25% активных материалов в стоимостном выражении. Это конкурентное преимущество изделий подобного типа учитывается при изготовлении аппаратов массовых серий.

Трехфазный трансформатор

Схемы замещения

Схема замещения 3-х обмоточного трансформатора представлена ввиде трехлучевой звезды, состоящей из активных R и реактивных X сопротивлений обмоток. Все сопротивления в схеме приведены к напряжению высшей обмотки. На первичные зажимы подключена ветвь намагничивания (на схеме она соединена с корпусом), состоящая из B – активной  и G – реактивной проводимости.

Проводимость В возникает ввиду потерь в стали части мощности на перемагничивание и вихревые токи, G отражает мощность намагничивания. За номинальную Pном катушек трансформатора принимается мощность его первичной обмотки. Мощность обмоток трансформатора СН и НН и коэффициент трансформации выбирается под потребности конкретного объекта энергопотребления. Электрический аппарат рассчитывается на соответствующую мощность (диаметр и количество витков, электрическую прочность изоляции, размер и материал магнитопровода). С учетом  нагрева при работе  выбирается соответствующая модель.

Схема

Проведение опытов короткого замыкания

Чтобы определить значения параметров этой схемы, необходимо провести 1 опыт холостого хода и 3 опыта с коротким замыканием. Если первый опыт необходим для определения B и G и не отличается от опыта двухобмоточного аналога, то опыты короткого замыкания проводятся с целью определения паспортных данных напряжения короткого замыкания U к и потерь активной мощности ∆Р к на соответствующих катушках трансформатора в режиме короткого замыкания:

  • U к вн, ∆Р к вн – закорочивается обмотка НН и подается питание на обмотку ВН;
  • U к сн, ∆Р к сн – коротится обмотка НН и питание подается со стороны обмотки СН;
  • U к вс, ∆Р к вс – накоротко замыкаются клеммы катушки СН и запитывается обмотка ВН.

Трехфазный трансформатор короткое замыкание

В результате решения системы уравнений выводится значение U к каждой из обмоток:

уравнение обмоток

При определении ∆Р к следует учитывать значение активной мощности, содержащееся в справочнике для конкретной модели трансформатора. Обычно приводится параметр для самой мощной обмотки. Очень часто в источниках дается одно значение ∆Рк, определенное из опыта КЗ, выполненного для наиболее мощных обмоток, обычно ∆Рк вс. Потери мощности в каждой катушке определяются с учетом соотношения номинальных мощностей обмоток S ном %, выраженных в процентах.  Потери активной мощности ∆Рк в обмотках СН и НН рассчитываются из пропорций:

уравнение обмоток

При соотношениях всех мощностей обмоток 100 %:

∆Рк в = ∆Рк с = ∆Рк н = 0,5 ∆Рк вс,

Если соотношение 100 %, 100 %, 66,7 %, то:

  • ∆Рк в = ∆Рк с = 0,5 ∆Рк вс;
  • ∆Рк н = 1,5 ∆Рк в.

Применять вычисления придется только для электрических аппаратов, производимых ранее. Они  могли иметь мощность обмоток НН и СН в полтора раза меньше, чем мощность катушки ВН.

В последние годы отечественные производители выпускают трехобмоточные трансформаторы с одинаковой мощностью обмоток 100%.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *