Posted on

изготовление своими руками и схемы

Бытовая электрическая сеть имеет напряжение 220 вольт, на которое рассчитано большинство электроприборов. При этом часто возникает необходимость понижения напряжения до 12 В для питания отдельных потребителей – низковольтных нагревателей, галогенных ламп и питания других устройств (светодиодные ленты и т. д.), рассчитанных на переменный ток. Такое преобразование обеспечивается трансформатором, который имеет небольшие размеры и цельный корпус.

Устройство можно подобрать и приобрести в торговых сетях, и при необходимости изготовить своими руками.

Конструкция, принцип работы

принцип работыСтандартный трансформатор для понижения напряжения состоит из 2х обмоток (первичной и вторичной), намотанных на ферримагнитный сердечник медным проводом. Первичную подсоединяют в сеть, а вторичную к нагрузке. Принцип работы такого устройства заключается в следующем:

  1. Напряжение, поданное на первичную обмотку, генерирует вокруг сердечника переменное поле.
  2. Магнитная индукция при подсоединении к нагрузке создает в витках вторичной обмотки напряжение, а от первичной обмотки будет поступать энергия, отдаваемая в цепь вторичной.

На величину выходного напряжения оказывает влияние соотношение и число витков каждой обмотки. Регулируя этот показатель, можно добиться любого значения тока на вторичной обмотке, и получить как понижающий, так и повышающий трансформатор. При этом нужно иметь в виду, что прибор, подключенный к бытовой сети 220 В, выдаст переменное напряжение, которое после при необходимости можно преобразовать выпрямителем.

В настоящее время широко применяются понижающие устройства электронного типа, изготовленные на основе полупроводников, работу которых дополняет интегральная схема. Они имеют определенные преимущества в виде малых размеров, высокого КПД, небольшого веса, отсутствия нагрева и шума, возможности осуществления регулировки тока, защиты от короткого замыкания. Но традиционный трансформатор продолжает активно применяться из-за надежности и простоты конструкции.

Выбор готового решения, критерии

Магазины электротехники и электроники предлагают готовые бытовые трансформаторы для различных нужд. Выбирая необходимое устройство, нужно руководствоваться следующими критериями:

  1. Параметрами входного напряжения. Корпус прибора должен быть отмечен маркировкой 220 или 380 В. В данном случае необходим бытовой вариант для сети 220 вольт.
  2. Параметрами входного напряжения, которые должны соответствовать 12 В.
  3. Мощностью. Для этого предварительно подсчитывают суммарную нагрузку, которая будет запитана через трансформатор. Данный показатель устройства должен превышать расчетное значение минимум на 20%.
При помощи трансформатора, преобразующего 220 до 12 В, можно хорошо сэкономить на защитных материалах и кабеле, реализовав на его основе бытовую систему освещения, применив галогеновые лампы и светодиодные ленты. Это безопасная схема в плане поражения электротоком, к тому же защищенная от перепадов напряжения и короткого замыкания. Подобные системы исключают возможность возникновения пожаров.

На видео рассказ про покупку готового решения

Разновидности

Понижающие трансформаторы классифицируются, исходя из вида исполнения (открытые или имеющие корпус) и по применению (промышленные, бытовые). Также устройства делятся по способу крепления:

  1. Стержневой, в котором обмотки собирают вокруг стержня, а его самого устанавливают только в вертикальном положении.
  2. Броневой, в котором применяется броневая обмотка, позволяющая устанавливать прибор в любом положении.

Обзор готовых моделей

Среди готовых моделей устройств, представленных в магазинах электротехники для преобразования тока бытовой сети 220 в 12 вольт, можно отметить следующие:

Средние цены по регионам

В зависимости от местоположения региона, цена на один и тот же трансформатор может различаться. К примеру, трансформатор ОСО 0,25 220/12 в различных городах будет иметь разную стоимость:

ГородЦенаГородЦена
Алматы600Екатеринбург595
Москва605Ростов-на-Дону595
Челябинск600Пермь595
Новосибирск600Владивосток595

Самостоятельное изготовление

При необходимости изготовления понижающего трансформатора с 220 до 12 В, после проведения расчетов мощности изделия приступают к приобретению необходимых материалов. Для этого понадобятся:

  1. Сердечник. Можно использовать эту часть подходящего размера от вышедшего из строя телевизионного трансформатора.
  2. Эмалированный медный провод необходимого сечения.
  3. Ленточную изоляцию (лакоткань), пропарафиненную бумагу и картон.
Намотку витков можно производить вручную или изготовить для этого своими руками простой намоточный станок, схема которого находится в свободном доступе в сети. Размер изделия будет зависеть от размера сердечника. Если он имеет форму кольца, то намотку витков придется производить вручную.

Процесс самостоятельного изготовления трансформатора состоит из следующих этапов:

изготовление трансформатора

Расчет характеристик и количества витков будущего устройства. Расчет ведется от напряжения первичной сети (220В), а также его параметров на выходе и сечения сердечника. К примеру, если его площадь равна 6 см2, то константа для среднего трансформаторного металла, равная 60, делится на сечение. В нашем случае выходит, что на единицу напряжения (1В) придется по 10 витков. Результат умножают на 220 и получают кол-во витков. Вторичную считают по тому же принципу: 10 витков умножают на 12 В.

Для первичной обмотки берут провод с лаковой изоляцией и небольшим сечением (около 0,3). Вторичной подойдет сечение 1 мм. Сердечник очищается от налета, лакируется, и оклеивается пропарафиненной бумагой.

схема траснформатора

Изготавливают каркас для катушки. Для этого берут толстый картон, по внутренним размерам он должен быть немного больше стержня сердечника, и легко заходить в окно трансформатора.

схема трансформатора

Наматывается первичная обмотка, которую после 2-3 рядов изолируют накладыванием бумаги. Концы обмотки закрепляют на каркасе, и кладут слои пропарафиненной бумаги.

Вторичная обмотка мотается в направлении, аналогичном первичной. После закрепления выводов, сверху на витки наклеивают бумагу.

Изготавливают основание. Для этого подойдет доска, толщиной до 5 см, прикрепленная к сердечнику металлическими скобами, огибающими его снизу. На основание выводятся и закрепляются концы обмоток.

Схема подключения устройства достаточно проста, так как изделие, изготовленное на заводе, обязательно маркируется. Нулевой провод обозначают «N» или «0», а фазу «L» или «220», на выходе чаще всего пишут параметры выходного напряжения. Если на приборе схема стерта, или он изготовлен своими руками, обмотка распознается по сечению провода: в понижающем трансформаторе первичная всегда будет тоньше вторичной.

Эксплуатация, нюансы

Главное требование правильной эксплуатации трансформатора – это место, специально оборудованное для его установки или использования.

Его нужно содержать в сухости, чистоте, и предохранять от проникновения мусора и пыли. В бытовых условиях для этого применяют специальный ящик или корпус. Также устройство в обязательном порядке заземляют.

Обслуживание и ремонт

Обслуживание понижающего трансформатора производится с периодичностью, установленной в зависимости от конкретного устройства.

Как правило, оно заключается в следующих процедурах:

  1. Наружный осмотр с устранением загрязнений.
  2. Осмотр уплотняющих деталей (прокладок и колец) и подтяжка их при необходимости.

В устройстве могут возникать неполадки и поломки в виде повреждения витков и трещин секций обмотки, что не требует демонтажа обмоток, и устраняется наложением на поврежденный участок лакоткани. При коротком замыкании в обмотках или их обрыве, производится демонтаж с последующим ремонтом, представляющим собой последовательность операций, аналогичных самостоятельному изготовлению устройства.

Трансформатор – это электроприбор, состоящий из стального сердечника и пары катушек-обмоток. Устройство преобразует поданный на первичную обмотку ток до нужного напряжения, исходя из характеристик сердечника, диаметра провода и числа витков. Прибор для понижения тока с 220 до 12 В можно приобрести в магазине или изготовить самостоятельно, если стоимость материалов дешевле стоимости готового изделия, после чего использовать для подключения потребителей, использующих переменный ток 12 В, которыми являются светодиодные ленты, лампы и другие осветительные приборы, электронагревателя или блоки питания.
Трансформаторы, рекомендованные к заказу:

Описание и характеристики

Цена

схема трансформатора

FERON 21004

Вес брутто — 0.05 кг

Степень защиты от пыли и влаги — IP 20

Мощность — 60 Вт

Напряжение — 220/12 В

Гарантия — 6 мес. схема трансформатора

140

схема трансформатора

FERON 21003

Вес брутто — 0.05 кг

Степень защиты от пыли и влаги — IP 20

Мощность — 50 Вт

Напряжение — 220/12 В

Гарантия — 6 мес.

142

схема трансформатора

FERON 21005

Вес брутто — 0.1 кг

Степень защиты от пыли и влаги — IP 20

Мощность — 105 Вт

Напряжение — 220/12 В

Гарантия — 6 мес. схема трансформатора

209

схема трансформатора

FERON 21006

Вес брутто — 0.1 кг

Степень защиты от пыли и влаги — IP 20

Мощность — 150 Вт

Напряжение — 220/12 В

Гарантия — 6 мес. схема трансформатора

289

схема трансформатора

FERON 21029

Вес брутто — 0.1 кг

Степень защиты от пыли и влаги — IP 20

Мощность — 200 Вт

Напряжение — 220/12 В

Гарантия — 6 мес. схема трансформатора

519

Трансформатор своими руками: пошаговая инструкция

Несмотря на многообразие электрооборудования на рынке, далеко не во всех ситуациях можно найти подходящий преобразовательный агрегат для решения конкретной задачи. Поэтому многие обыватели пытаются изготовить  трансформатор своими руками для получения определенных параметров работы. Стоит отметить, что намотать трансформатор может каждый, даже без специализированного оборудования и особых навыков, но этот процесс довольно трудоемкий и кропотливый. Поэтому изначально вам придется определиться с типом и характеристиками прибора.

Что понадобится для сборки?

Все преобразователи подразделяются на две основные категории – повышающие и понижающие трансформаторы.

В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:

Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.

Для изготовления трансформатора своими руками вам понадобятся:

  • Магнитопровод – служит в качестве проводника магнитного потока, лучше взять из старого трансформатора, так как он изготовлен из электротехнической стали и обеспечивает необходимые параметры работы, характеризуется малыми потерями в железе.
  • Провода нужного вам сечения в лаковой, полимерной или стеклотканевой изоляции. Чем тоньше этот слой, тем плотнее прилягут витки к каркасу и друг к другу.
  • Каркас – служит в качестве основания для обмоток трансформатора, устанавливает габариты по ширине. Можно взять из старого трансформатора, а можно изготовить своими руками. Материалом для каркаса может послужить электротехнический картон, гетинакс или текстолит, важно чтобы он не занимал много места в зазоре между сердечником и проводом.
  • Изоляция – предназначена для электрического отделения токоведущих элементов друг от друга и от конструктивных элементов трансформатора. В промышленном производстве используется лакотканевая лента, фторопласт, парафиновая пропитка, но при самостоятельном изготовлении подойдет любой имеющийся у вас материал, главное, чтобы его диэлектрической прочности хватало для напряжения сети.
  • Намоточный станок – позволяет упростить процесс и обеспечить постоянное натяжение. Можно изготовить своими руками из ручной дрели или по принципу вертела на двух шарнирах. Важно, чтобы изготовленный станок имел как можно меньший люфт.

Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.

Расчеты

Принципиальная схема трансформатораРис. 1: принципиальная схема трансформатора

Наиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1

Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.

В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле:

S = √P1

Следует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.

Далее определяется коэффициент передачи электромагнитной энергии: k = f/S, 

Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.

Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U1, N2 = k*U2

Это приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)

Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P

1 / U1

Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по  формуле: : I2 = P/ U2

Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.

Таблица: выбор сечения, в зависимости от протекающего тока

Медный проводникАлюминиевый проводник
Сечение жил, мм2Ток, АСечение  жил. мм2Ток, А
0,511
0,7515
117
1.5192,522
2.527428
438636
6461050
10701660
16802585
2511535100
3513550135
5017570165
7021595200
95265120230
120300

Сборка повышающего трансформатора

Особенностью повышающего трансформатора является большее сечение жил первичной обмотки трансформатора по отношению к вторичной. Ярким примером может служить любой агрегат, повышающий напряжение питания 220 Вольт до 400, 500, 1000 В и т.д., соответственно класс изоляции трансформатора выбирается по номиналу вторичной обмотки, как в сетевых трансформаторах.

Заметьте, что проводник большого сечения не получится намотать самодельным станком, поскольку вы не сможете выдать достаточное усилие. Определить это довольно просто – если первые витки свободно двигаются по каркасу катушки или хуже того, вы видите явный зазор между жилой и каркасом, переходите к ручной намотке.

Для сборки вам потребуется выполнить такую последовательность действий:

  • Соберите основание из диэлектрического материала, для этого можно вырезать его по лекалу из картона. Сборка каркаса производится внахлест при помощи клея. Изготовьте каркас для трансформатораРис. 2: изготовьте каркас для трансформатора

Если у вас имеется готовый образец, можете переходить к следующему этапу.

  • Сделайте отверстия в щеке катушки под выводы в электрическую сеть и к потребителю. Проденьте в них выводы. Проденьте вывод первичной обмоткиРис. 3: проденьте вывод первичной обмотки
  • Уложите первый слой изоляции под первичку. Нанесите слой изоляции на катушкуРис. 4: нанесите слой изоляции на катушку
  • Намотайте первичную обмотку трансформатора – если позволяет толщина, используйте станок, в противном случае, сделайте это руками. При намотке каждые 4 -5 витков проверяйте жесткость фиксации и плотность прилегания. Намотайте первичку
    Рис. 5: намотайте первичку

В случае наличия видимых зазоров рекомендуется придавливать витки деревянной пресс-плашкой или прибивать их через плашку молотком.

  • Посчитайте количество витков, оно должно соответствовать расчетному, выводы проденьте в отверстия. Уложите слой изоляции на первичку.
  • После слоя изоляции намотайте вторичку, так как здесь будет использоваться более тонкий провод, эту процедуру проще выполнять на станке. Намотайте вторичную обмоткуРис. 6: намотайте вторичную обмотку

Периодически проверяйте плотность витков и их фиксацию на стержне. Хорошая фиксация не должна прогибаться и деформироваться при нажатии пальцами.

  • Если все витки не помещаются в один слой, их выкладывают в несколько, тогда важно соблюдать одно и то же количество витков в каждом из них. Слои перекладываются диэлектрическим материалом, заметьте, что толщина изоляции не должна существенно влиять на общие габариты катушек. Заизолируйте первый слой
    Рис. 7: заизолируйте первый слой
  • Выведете концы вторичной обмотки на щечку каркаса.
  • Поместите магнитопровод в окно каркаса, сборка сердечника выполняется поочередно с каждой стороны, иначе потери окажутся слишком большими. Затем сердечник распирается для плотности фиксации. Поместите катушки на сердечникРис. 8: поместите катушки на сердечник

Мощные трансформаторы на большой номинал напряжения дополнительно пропитывается парафиновой изоляцией. Такая процедура приводит к повышению емкостных потерь, но создает дополнительную защиту от электрического тока.

Сборка понижающего трансформатора

Понижающий трансформатор будет отличаться большим количеством витков на первичке. В быту их можно часто встретить в блоках питания, сварочных аппаратах и прочем оборудовании. Правда, в импульсных блоках используется другая технология, поэтому ремонт таких устройств производится без трансформаторов.

Так как изготовление сварочного трансформатора своими руками довольно актуально для домашних самоделок, рассмотрим на примере этот вариант. Требования к процессу сборки соответствует предыдущему. Отличительной особенностью такого агрегата является большое сечение провода во вторичной обмотке, так как сварочный ток может достигать сотен ампер.

Процесс изготовления заключается в следующем:

  1. Возьмите старое или изготовьте основание для катушки.
  2. Зафиксируйте на трансформаторном каркасе слой изоляции.
  3. Намотайте первичную обмотку с попеременной изоляцией слоев.
  4. Заизолируйте первичку и намотайте вторичную обмотку, так как большой диаметр проводов не позволит сделать это вручную, используйте слесарный инструмент.
  5. Зафиксируйте выводы обеих катушек.
  6. Установите пластины сердечника.

Испытание

Для проверки работоспособности П-образных или тороидальных трансформаторов в домашних условиях можно воспользоваться обычным мультиметром. Для этого переведите измерительный прибор в режим прозвона и проверьте целостность каждой из обмоток. Затем  проверьте изоляцию между каждой из обмоток и магнитопроводом и сопротивление между обеими обмотками. Это наиболее простой комплекс испытаний, который даст общее представление об исправности самодельного агрегата.

Для проверки отсутствия короткозамкнутых витков используется лампа, включающаяся последовательно к первичной обмотке.

Помимо этого электрические машины испытываются в режиме холостого хода и короткого замыкания. Такие проверки показывают, насколько качественно собран преобразователь, но выполнять их в домашних условиях не обязательно.

Видео инструкции


Бестрансформаторные Схемы Питания

Без трансформаторная Концепция Электропитания

Без трансформаторная концепция работает с использованием высоковольтного конденсатора для снижения переменного тока сети до требуемого более низкого уровня, необходимого для подключенной электронной схемы или нагрузки.
Спецификация этого конденсатора выбрана с запасом. Пример конденсатора, который обычно используется в схемах без трансформаторного питания, показан ниже:


Этот конденсатор соединен последовательно с одним из входных сигналов переменного напряжения АС.
Когда сетевой переменный ток входит в этот конденсатор, в зависимости от величины конденсатора, реактивное сопротивление конденсатора вступает в действие и ограничивает переменный ток сети от превышения заданного уровня, указанным значением конденсатора.

Однако, хотя ток ограничен, напряжение не ограниченно, поэтому, при измерении выпрямленного выхода без трансформаторного источника питания, обнаруживаем, что напряжение равно пиковому значению сети переменного тока , это около 310 В.

Но поскольку ток достаточно понижен конденсатором, это высокое пиковое напряжение стабилизируется с помощью стабилитрона на выходе мостового выпрямителя.


Мощность стабилитрона должна быть выбрана в соответствии с допустимым уровнем тока конденсатора.

Преимущества использования без трансформаторной схемы питания

Дешевизна и при этом эффективность схемы для маломощных устройств.
Без трансформаторная схема питания, описанная здесь, очень эффективно заменяет обычный трансформатор для устройств, мощностью тока ниже 100 мА.

Здесь высоковольтный металлизированный конденсатор использован на входном сигнале для понижения тока сети
Схема показанная выше может быть использована как источник электропитания DC 12 В для большинства электронных схем.
Однако, обсудив преимущества вышеописанной конструкции, стоит остановиться на нескольких серьезных недостатках, которые может включать в себя данная концепция.

Недостатки без трансформаторной схемы питания

Во-первых, цепь неспособна произвести сильнотоковые выходы, что не критично для большинства конструкций.
Другим недостатком, который, безусловно, требует некоторого рассмотрения, является то, что концепция не изолирует цепь от опасных потенциалов сети переменного тока.

Этот недостаток может иметь серьезные последствия для конструкций связанных с металлическими шкафами, но не будет иметь значения для блоков, которые имеют все покрыты в непроводящем корпусе.

И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проникать через нее, что может привести к серьезному повреждению цепи питания и самой схемы питания.

Однако в предложенной простой без трансформаторной схеме питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих ступеней после мостового выпрямителя.

Этот конденсатор основывает мгновенные высоковольтные пульсации, таким образом эффективно защищая связанную электронику с ним.

Как схема работает
1. Когда сетевой вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня, определенного значением реактивного сопротивления C1. Здесь можно примерно предположить, что он составляет около 50 мА.
2. Однако напряжение тока не ограничено, и поэтому 220V может находиться на входном сигнале позволяя достигнуть последующий этап выпрямителя тока .
3. Выпрямитель тока моста выпрямляет 220V к более высокому DC 310V, к пиковому преобразованию формы волны AC.
4. DC 310V быстро уменьшен к низкоуровневому DC стабилитроном, который шунтирует его к значение согласно номинала стабилитрона. Если используется 12V стабилитрон, то и на выходе будет 12 вольт.
5. C2 окончательно фильтрует DC 12V с пульсациями, в относительно чистый DC 12V.

Пример схемы

Цепь драйвера показанная ниже управляет лентой менее 100 светодиодов (при входном сигнале 220В), каждый светодиод рассчитан на 20мА, 3.3 В 5мм:


Здесь входной конденсатор 0.33 uF / 400V выдает около 17 ма, что примерно правильно для выбранной светодиодной ленты.
Если драйвер использовать для большего числа подобных светодиодных лент 60/70 параллельно, то просто значение конденсатора пропорционально увеличить для поддержания оптимального освещения светодиодов.

Поэтому для 2 лент включенных в параллель требуемое значение будет 0.68 uF/400V, для 3 лент заменить на 1uF / 400V. Аналогично для 4 лент должно быть обновлено до 1.33 uF / 400V, и так далее.

Важно: хотя не показан ограничивающий резистор в схеме, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой светодиодной лентой, для дополнительной безопасности. Можно вставить в любом месте последовательно с отдельными лентами.

ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УПОМЯНУТЫЕ В ЭТОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ЧРЕЗВЫЧАЙНО ОПАСНЫ ДЛЯ ПРИКОСНОВЕНИЯ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ ПЕРЕМЕННОГО ТОКА.


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

   Понадобился мне блок питания для самодельной мини-дрели, сделанной из моторчика на 17 Вольт. Пересмотрел много схем различных БП, но во всех использовался трансформатор, которого у меня нету, а покупать как-то неохота. Тогда решил поступить проще и собрать бестрансформаторный блок питания на данное напряжение — 17 Вольт. Схема довольно простая, на такой готовый блок питания нужно подавать 220 вольт переменного напряжения, короче питать схему от розетки, а на выходе мы получаем 17 вольт постоянного напряжения. Обычно источники питания такого типа применяют во всяких небольших бытовых вещах, например в фонарике с аккумулятором, в качестве зарядного, где нужен небольшой ток, до 150 mA или в электробритвах.

Принципиальная схема бестрансформаторного блока питания

Принципиальная схема бестрансформаторного блока питания

   Итак, детали для схемы. Вот так выглядят высоковольтные металлопленочные конденсаторы (те что красные), и слева от них электролитический конденсатор на 100 мкФ.

высоковольтные металлопленочные конденсаторы

   Вместо микросхемы 78l08 можно использовать такие стабилизаторы напряжения, как КР1157ЕН5А (78l08) или КР1157ЕН5А (7905).

78l05

   Если отсутствует выпрямительный диод 1N4007, то его можно заменить на 1N5399 или 1N5408, которые рассчитаны на более высокий ток. Серый кружок на диоде обозначает его катод.

выпрямительный диод 1N4007 как выглядит

   Резистор R1 взял на 5W, а R2 — на 2W, для страховки, хотя оба можно было применять и на 0,5 Вт.

Резистор на 5W

   Стабилитрон BZV85C24 (1N4749), рассчитан на мощность 1,5 W, и на напряжение до 24 вольт, заменить его можно отечественным 2С524А.

стабилитрон 2С524А

   Этот бестрансформаторный БП собрал без регулировки выходного напряжения, но если вы хотите организовать такую функцию, то просто подключите к выводу 2 микросхемы 78L08 переменный резистор примерно на 1 кОм, а второй его вывод — к минусу схемы.

 бестрансформаторный БП с регулировкой выходного напряжения

   Плата к схеме бестрансформаторного блока питания конечно есть, формат лэй, скачать можно тут. Думаю вы поняли, что диоды без пометки — это 1n4007.

Плата к схеме бестрансформаторного блока питания

   Готовую конструкцию нужно обязательно поместить в пластиковый корпус, из-за того что включенная в сеть схема находиться под напряжением 220 вольт и прикасаться к ней ни в коем случае нельзя!

БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЯ СХЕМ

   На этих фото вы можете видеть напряжение на входе, то есть напряжение в розетке, и сколько вольт мы получаем на выходе БП.

БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ

Видео работы схемы бестрансформаторного БП

   Большим плюсом этой схемы можно считать очень скромные размеры готового устройства, ведь благодаря отсутствию трансформатора этот БП можно сделать маленьким, и относительно недорогая стоимость деталей для схемы.

   Минусом схемы можно считать то, что есть опасность случайно дотронуться к работающему источнику и получить удар током. Автор статьи — egoruch72.

   Форум по ИП

   Обсудить статью БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ


трансформатор +своими руками | Электрознайка. Домашний Электромастер.


   В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электичческим током.
В этих  случаях  следует пользоваться электрооборудованием рассчитанным на пониженное напряжение питания, не более 42 вольт.

    Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.
    Рассчитаем и изготовим однофазный  силовой трансформатор 220/36 вольт, с выходным напряжением 36 вольт с питанием от электрической сети переменного тока напряжением 220 вольт.

    Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с  цоколем под обыкновенный электропатрон продаются в магазинах электротоваров.
Если вы найдете лампочку на другую мощнось, например на 40 ватт, нет ничего страшного —  подойдет и она. Просто трансформатор будет выполнен с запасом по мощности.
 

Сделаем упрощенный расчет трансформатора 220/36 вольт.

   Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60 ватт 

Где:
Р_2 – мощность на выходе трансформатора, нами задана 60 ватт;

U_2 — напряжение на выходе трансформатора, нами задано 36 вольт;

I_2 — ток во вторичной цепи, в нагрузке.

КПД  трансформатора  мощностью до 100 ватт обычно равно не более  η = 0,8.
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором  от сети с учетом потерь:

Р_1 = Р_2 /  η  = 60 / 0,8 = 75 ватт.

   Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения   Р_1,   мощности потребляемой от сети 220 вольт,  зависит площадь поперечного сечения магнитопровода S.

   Магнитопровод – это сердечник  Ш – образной или  О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода. 

   Площадь поперечного сечения  магнитопровода рассчитывается по формуле:

 S = 1,2 · √P_1.  

  Где:
S — площадь в квадратных сантиметрах,

P_1 — мощность первичной сети в ваттах.

 S = 1,2 · √75 = 1,2 · 8,66 = 10,4  см².

По значению   S определяется число витков w на один вольт по формуле:

w = 50/S   

 В нашем случае площадь сечения сердечника равна  S = 10,4 см.кв.

 w = 50/10,4 = 4,8  витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 =  172.8 витков,

округляем до 173 витка.

   В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

 Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера.

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

   Диаметры проводов первичной и вторичной  обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока,  для медного провода, принимается 2 А/мм² . 

   При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:  d = 0,8√I .

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм.     Возьмем 0,5 мм.

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм.      Возьмем 1,1 мм.

   ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

    Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².    

где: d — диаметр провода.

   Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм. 

Площадь поперечного сечения провода диаметром 1,1 мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97  мм².  

Округлим до 1,0 мм².

   Из таблицы выбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

   Например, это два провода диаметром по   0,8 мм. и площадью по 0,5 мм². 

Или два провода:
 — первый диаметром 1,0 мм. и площадью сечения 0,79 мм²,
— второй диаметром 0,5 мм. и площадью сечения 0,196 мм².
что в сумме дает: 0,79 + 0,196 = 0,986 мм².

   Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

    Получается как бы один провод с суммарным поперечным сечением двух проводов.

 Смотрите статьи:
— «Как намотать трансформатор на Ш-образном сердечнике».
— «Как изготовить каркас для Ш — образного сердечника».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *