Подробная схема светодиодной лампы на 220В
Устройство светодиодной лампы на 220В значительно сложнее, чем у аналогичной лампы накаливания. Пытаясь сохранить привычную грушевидную форму, инженерам пришлось немало потрудиться. И, как оказалось, не зря! Новые осветительные приборы практически не греются, потребляют малое количество электроэнергии и стали значительно менее хрупкими. Но чего же особенного в светодиодной лампе и в чем сложность ее схемы? Давайте разберемся.
Конструктивная схема
Конструктивно схема светодиодной лампы на 220В состоит из трех основных частей: корпуса, электронной части и системы охлаждения. Сетевое напряжение через цоколь поступает на драйвер, где преобразуется в сигнал постоянного тока, необходимый для свечения светодиодов. Свет от излучающих диодов обладает широким углом рассеивания и поэтому не требует установки дополнительных линз. Достаточно обойтись рассеивателем. В процессе работы детали драйвера и светодиоды нагреваются. Поэтому в конструкции лампы обязательно должен быть продуман отвод тепла.
В фирменных светодиодных лампах на 220В печатная плата с SMD светодиодами крепится к радиатору через термопасту для эффективного отвода тепла.
В дешевых китайских моделях эта плата либо просто вставлена в пазы корпуса, либо прикреплена саморезами к металлической пластине для охлаждения кристаллов. Эффективность такого охлаждения крайне низкая, так как пластина имеет малую площадь, да и наносить термопасту китайские производители, как правило, забывают. Вывод излучения происходит через рассеиватель, как правило, из матового пластика. А в дешевых светодиодных лампах на 220В такой корпус ещё надёжно скрывает недостатки китайской сборки от любопытных глаз потребителя. Крепится рассеиватель к основанию либо герметиком, либо резьбовым соединением.Электрическая схема
Касательно электрической части между светодиодными лампами на 220В разных ценовых категорий также много отличий. В этом можно убедиться сразу после демонтажа рассеивателя. Достаточно рассмотреть качество пайки SMD элементов и соединительных проводов.
Недорогой китайской лампы на 220В
В лампочках стоимостью 2-3$ отсутствует какая-либо симметрия на плате со светодиодами, что свидетельствует о ручной пайке, а провода выбраны с минимально возможным сечением. Вместо надежного драйвера в них собрана простая схема бестрансформаторного питания с конденсаторами и выпрямителем. Напряжение сети сначала снижается неполярным металлопленочным конденсатором, выпрямляется, а затем сглаживается и повышается до нужного уровня. Ток нагрузки ограничивается обычным SMD резистором, который расположен на печатной плате со светодиодами. При диагностике и ремонте светодиодных ламп такого типа важно соблюдать технику безопасности, т.к. все элементы электрической цепи потенциально находятся под высоким напряжением. Прикоснувшись пальцем к токоведущей части схемы по неосторожности можно получить электрический удар, а соскользнувший щуп мультиметра может закоротить провода с неприятными последствиями.
Фирменной светодиодной лампы
Фирменная светодиодная продукция отличается не только приятным внешним видом, но и качеством элементной базы. Непосредственно драйвер имеет более сложное устройство и зачастую собирается одним из двух способов. Первый предусматривает наличие импульсного трансформатора, импульсного преобразователя напряжения с последующей стабилизацией тока нагрузки.
Во втором случае обходятся без трансформатора, а основная функциональная нагрузка ложится на специальную микросхему – сердце драйвера. Её универсальность в том, что она стабилизирует входное напряжение, поддерживает выходной ток с заданной частотой (ЧИМ) или шириной импульса (ШИМ), допускает возможность диммирования, имеет систему отрицательной обратной связи. В качестве примера можно назвать, например, CPC9909.
ledjournal.info
Схема светодиодной лампы на 220 в
Для многих многоквартирных домов актуальна проблема освещения лестничных площадок: хорошую лампу туда ставить жалко, а дешевые быстро выходят из строя.
С другой стороны качество освещения в данном случае не является критичным, так как люди находятся там очень недолго, то вполне можно поставить туда лапочки с повышенными пульсациями. А раз так, то схема светодиодной лампы на 220 В получиться совсем простой:
Список номиналов:
- C1 – значение емкости по таблице, 275 В или больше
- C2 – 100 мкФ (напряжение должно быть больше чем падает на диодах
- R1 – 100 Ом
- R2 – 1 MОм (для разряда конденсатора C1)
- VD1 .. VD4 – 1N4007
Я уже приводил схему подключение светодиодной ленты к сети 220В так вот её можно упростить выкинуть стабилизатор тока. Упрощенная схема не будет работать в широком диапазоне напряжений, это плата за упрощение.
Конденсатор C1 является тем компонентом, который ограничивает ток. И выбор его значения очень важен, его величина зависит от напряжения питания, напряжения на последовательно включенных светодиодах и требуемого тока через светодиоды.
количество светодиодов последовательно, шт | 1 | 10 | 20 | 30 | 50 | 70 |
напряжение на сборке из светодиодов, В | 3,5 | 35 | 70 | 105 | 165 | 230 |
ток через светодиоды, мА (С1=1000нФ) | 64 | 57 | 49 | 42 | 32 | 20 |
ток через светодиоды, мА (С1=680нФ) | 44 | 39 | 34 | 29 | 22 | 14 |
ток через светодиоды, мА (С1=470нФ) | 30 | 27 | 24 | 20 | 15 | — |
ток через светодиоды, мА (С1=330нФ) | 21 | 19 | 17 | 14 | — | — |
ток через светодиоды, мА (С1=220нФ) | 14 | 13 | 11 | — | — | — |
Для 1 светодиода в сборке фильтрующий конденсатор C2 следует увеличить до 1000мкФ, а для 10 светодиодов, до 470мкФ.
По таблице можно понять, что для получения максимальной мощности (чуть более 4 Вт) нужен конденсатор на 1мкФ и 70 последовательно включенных светодиодов на 20мА. Для более мощных источников света лучше подойдет схема светодиодной лампы на 220 в использующая широтноимпульсную модуляцию для преобразования и стабилизации тока через светодиоды.
Схемы на основе широтноимпульсной более сложные, но зато обладают преимуществами: им не требуется большой ограничивающий конденсатор, эти схемы обладают высоким КПД и широким диапазоном работы.
Я заказал несколько светодиодных светильников в Китае. В основе преобразователей этих ламп лежат микросхемы драйверов разработанных в том же Китае, конечно качество работы этих схем ещё не дотягивает до западных стандартов, но вот стоимость более чем демократичная.
Итак, конкретно в последних светодиодных лампах была установлена микросхема WS3413D7P, являющаяся светодиодным драйвером с активным корректором коэффициента мощности.
Что же мы видим на схеме? Все тот же диодный мост VD1 — VD4, сглаживающий конденсатор С1. Остальные же компоненты работают нужны для работы микросхемы D1. Резистор R1 нужен для питания самой микросхемы в начальный момент времени, а после запуска микросхема начинает питаться со своего выхода через цепочку R5, VD5. Конденсатор С2 фильтрует питания собственных нужд. Конденсатор С3 служит для задания частоты преобразования. Резистор R2 нужен для измерения тока через светодиоды. Делитель на резисторах R3, R4 позволяет микросхеме получать информацию о напряжении на светодиодной сборке. Катушка индуктивности L1 и конденсатор C4 нужны для преобразования импульсной энергии в постоянную.
Существует куча других разновидностей микросхем, но основных типов высоковольтных драйверов светодиодов всего три: на основе емкостного гасящего сопротивления, активный гасящий стабилизатор тока и импульсный стабилизатор тока.
hardelectronics.ru
Схема драйвера светодиодов 220В
Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».
Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.
Теория питания светодиодных ламп от 220В
Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.
Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.
Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.
Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.
Компоненты диодного светильника
Схема светодиодной лампы на 220 вольт потребует минимальное количество доступных компонентов.
- Светодиоды 3,3В 1Вт – 12 шт.;
- керамический конденсатор 0,27мкФ 400-500В – 1 шт.;
- резистор 500кОм — 1Мом 0,5 — 1Вт – 1 ш.т;
- диод на 100В – 4 шт.;
- электролитические конденсаторы на 330мкФ и 100мкФ 16В по 1 шт.;
- стабилизатор напряжения на 12В L7812 или аналогичный – 1шт.
Изготовление драйвера светодиодов на 220В своими руками
Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.
В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.
Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:
- Делитель напряжения на ёмкостном сопротивлении;
- диодный мост;
- каскад стабилизации напряжения.
Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).
При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.
Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.
Третий каскад – сглаживающий стабилизирующий фильтр.
Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.
Что бы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки.
В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.
Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.
Вариант драйвера без стабилизатора тока
В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.
Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.
На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.
Диаграмма напряжения в схеме без стабилизатора
Диаграмма в схеме со стабилизатором
Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.
Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.
Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.
Понравилась статья? Расскажите о ней! Вы нам очень поможете:)
svetodiodinfo.ru
Схема и устройство светодиодной лампы на 220 вольт
Светодиодная лампа на 220в, частота сети 50Гц, мощность 3Вт, тип LED3-JDR, производитель Camelion, цоколь E14, потребляемый ток 26mA, световой поток 235Лм. Температура свечения 4500 К. Это параметры заявленные производителем.
Внимание! Соблюдайте правила электробезопасности. Электротравмы, могут быть смертельными, а неправильный ремонт пожароопасным.Яркость свечения светильника визуально сопоставима с энергосберегающей лампой на 7-9 Вт. Разобрать лампу оказалось не просто. Защитное стекло приклеено на совесть, прорезал склейку по контуру, но снять его без потерь не получилось – стекло плафона очень хрупкое.
На плате с наружной стороны установлены 6 smd светодиодов неизвестного типа. На обратной стороне «драйвер». Схема питания светодиодов этой лампы не удивила: для гашения избыточного напряжения используется реактивное сопротивление конденсатора С2, далее выпрямительный мост и сглаживающий конденсатор С3, а не импульсный драйвер, как в светодиодной лампе GL5,5.
Принципиальная электрическая схема светодиодной лампы LED3-JDR во многом совпадает со схемой лампы Selecta-G9-220v-5w.Конденсатор С2 полистирольный металлопленочный типа CBB22 рассчитан на использование в цепях постоянного тока и импульсных схемах, обладает эффектом самовосстанавления, хорошей изолирующей способностью и минимальными потерями на высокой частоте. Советские аналоги — конденсаторы типов К73-17, К73-44, К71-7
Десятиомный резистор ограничивает пиковый ток заряда С3 для исключения перегрузки выпрямительного диодного моста при включении. Через резистор R1 разряжается конденсатор С3 после выключения. С1 на плате не установлен, предназначен для увеличения тока через светодиоды при необходимости. При обрыве в цепи светодиодов напряжение на С3 без резистора R2 может достигнуть 350 вольт, а с этим резистором оно хоть и превысит номинальное для конденсатора, но не настолько, чтобы тот вышел из строя.
При напряжении в сети 237 вольт напряжение на всей цепочке диодов составило 93 В, на каждом светодиоде 15,3 вольта соответственно. Корпуса излучателей на плате типоразмера 6730 (6,7х3 мм), похоже, в каждом корпусе находится матрица из 4-х последовательно включенных светодиодов. Для светодиодов белого свечения падение напряжения при номинальном токе порядка 3,5 вольт. В нашем случае получается 3,8 вольта на каждом диоде, т.е. диоды работают в жестком режиме. Об этом говорит и то, что их температура при работе составляет 50-60 градусов Цельсия. В таком режиме диоды подвержены усиленной деградации и срок их службы будет в разы меньше, чем при номинальных токах. Производитель никогда не будет делать «вечную» лампу, иначе он разорится.
В схеме светодиодной лампы с гасящим конденсатором и выпрямительным мостом, за которым стоит конденсатор для сглаживания пульсаций ток будет очень отличаться от синусоидальной формы. Но это отдельная тема.
На этом фото, для сравнения, показаны однокристальные светодиоды 3528 (3,5х2,8 мм) у которых номинальный ток 20 мА.
Более эффективные (но больших габаритов) светодиодные светильники на 220 вольт можно сделать своими руками из диодной ленты. Для этого нужно взять 20 отрезков ленты 3528 на 12 вольт и спаять их последовательно, соблюдая полярность. Конденсаторы С1, С2 и резисторы R1, R2 исключаются из схемы. Вместо R1 надо поставить перемычку, а С3 должен быть на напряжение не менее 310 вольт. В данной схеме 10-тиомный резистор будет служить еще и предохранителем в случае короткого замыкания моста. На такой светильник понадобиться 1 метр открытой ленты с 60 диодами (20 отрезков по 5 сантиметров) или 0,5 метра с 120 диодами (20 отрезков по 2,5 см). Конструкция и размеры могут быть различными, главное соблюдать технику безопасности и, конечно, такой светильник должен иметь корпус с хорошей изоляцией.
firstelectro.ru
Варианты схем как подключить светодиод к 220 вольтам (для световой индикации). _v_
Порой возникает необходимость в подключении обычного, маломощного светодиода к переменному, сетевому напряжению 220 вольт в роли светового индикатора. Казалось бы нет ничего проще, чем взять и поставить последовательно светодиоду обычный резистор, который бы ограничивал силу тока в данной цепи. Но не все так просто. В этой статье давайте с вами рассмотрим наиболее распространенные варианты такого подключения, после чего можно будет выбрать наиболее лучшую схему с учетом имеющихся достоинств и недостатков.
Вариант №1 » последовательное включение светодиода и резистора.
Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 килоома (24000 ом).
Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.
Вариант №2 » подключение светодиода с защитой от обратного напряжения.
В этом варианте схемы подключения индикаторного светодиода к сетевому напряжению 220 вольт имеется защита от чрезмерного высокого напряжения обратной полуволны, что подается на светодиод. То есть, в цепь добавлен обычный диод, который включен той же полярностью, что и светодиод. В итоге все излишнее высокое напряжение оседает на полупроводниках (при обратном включении питания, обратной полуволне переменного тока). Тот ток, что возникает в цепи при обратной полуволне настолько настолько мал, что его не хватает для пробития светодиода при обратном его включении. Таким образом данная схема уже будет нормально работать. Хотя в этом варианте все же имеются свои недостатки, а именно будет достаточно сильно греться резистор. Его мощность должна быть не менее 2 Вт. Этот нагрев приводит к тому, что схема весьма не экономна, у нее низкий КПД. Помимо этого поскольку светодиод будет светить только при одной полуволне, то рабочая частота светодиода будет равна 25 Гц. Свечение светодиода при такой частоте будет восприниматься глазом с эффектом мерцания.
Вариант №3 » альтернативная схема подключения светодиода к 220 с защитой от обратного напряжения.
Эта схема похожа не предидущую. Она также имеет защиту от чрезмерного напряжения обратной полуволны переменного напряжения. Если в первой схеме защитный диод стоял последовательно со светодиодом, то в данной схеме диод подключен параллельно, и имеет уже обратное включение относительно светодиоду. При одной полуволне переменного напряжения будет гореть индикаторный светодиод (на котором будет падение напряжения до рабочей величины светодиода), а при обратной полуволне диод будет находится в открытом состоянии и на нем также будет падение напряжения до величины (порядка 1 вольта) недостаточной для пробоя светодиода. Как и в предыдущей схеме недостатками будет значительный нагрев резистора и видимое мерцание светодиода, вдобавок эта схема будет больше потреблять электроэнергии из-за прямого включения диода.
Хотя вместо обычного диода можно поставить еще один светодиод.
Тогда в одну полуволну будет гореть один светодиод, ну а в обратную второй. Хотя в этом случае и будут светодиоды обезопасены от высокого обратного напряжения, но гореть каждый из них будет все равно с частотой 25 герц (будут оба мерцать).
Вариант №4 » лучшая схема с токоограничительным кондесатором, резистором и выпрямительным мостом.
Данный вариант схемы подключения индикаторного светодиода к сети 220 вольт считаю наиболее лучшим. Единственным недостатком (если можно так сказать) этой схемы является то, что в ней больше всего деталей. К достоинствам же можно отнести то, что в ней нет элементов, которые чрезмерно нагревались, поскольку стоит диодный мост, то светодиод работает с двумя полупериодами переменного напряжения, следовательно нет заметных для глаза мерцаний. Потребляет эта схема меньше всего электроэнергии (экономная).
Работает данная схема следующим образом. Вместо токоограничительного резистора (который был в предыдущих схемах на 24 кОм) стоит конденсатор, что исключает нагрев данного элемента. Этот конденсатор обязательно должен быть пленочного типа (не электролит) и рассчитан на напряжение не менее 250 вольт (лучше ставить на 400 вольт). Именно подбором его емкости можно регулировать величину силы тока в схеме. В таблице на рисунке приведены емкости конденсатора и соответствующие им токи. Параллельно конденсатору стоит резистор, задача которого сводится всего лишь к разряду конденсатора после отключения схемы от сети 220 вольт. Активной роли в самой схеме запитки индикаторного светодиода от 220 В он не принимает.
Далее стоит обычный выпрямительный диодный мост, который из переменного тока делает постоянный. Подойдут любые диоды (готовый диодный мост), у которых максимальная сила тока будет больше тока, потребляемого самим индикаторным светодиодом. Ну и обратное напряжение этих диодов должно быть не менее 400 вольт. Можно поставить наиболее популярные диоды серии 1N4007. Они дешево стоят, малы по размерам, рассчитаны на ток до 1 ампера и обратное напряжение 1000 вольт.
В схеме есть еще один резистор, токоограничительный, но он нужен для ограничения тока, который возникает от случайных всплесков напряжения, идущие от самой сети 220 вольт. Допусти если кто-то по соседству использует мощные устройства, содержащие катушки (индуктивный элемент, способствующий кратковременным всплескам напряжения), то в сети образуется кратковременное увеличение сетевого напряжения. Конденсатор данный всплеск напряжения пропускает беспрепятственно. А поскольку величина тока этого всплеска достаточна для того, чтобы вывести из строя индикаторный светодиод в схеме предусмотрен токоограничительный резистор, защищающий схему от подобный перепадов напряжения в электрической сети. Этот резистор нагревается незначительно, в сравнении с резисторами в предыдущих схемах. Ну и сам индикаторный светодиод. Его вы выбираете уже сами, его яркость, цвет, размеры. После выбора светодиода подбирайте соответствующий конденсатор нужной емкости руководствуясь таблицей на рисунке.
P.S. Альтернативным вариантом электрической светодиодной подсветки может быть классическая схема подключения неоновой лампочки (параллельно которой ставится резистор где-то на 500кОм-2мОм). Если сравнивать по яркости, то все таки она больше у светодиодной подсветки, ну а если особая яркость не требуется, то вполне можно обойтись данным вариантом схемы на неоновой лампе.
electrohobby.ru
Как подключить светодиод к 220В: резистор, конденсатор, способы подключения
Содержание статьи:
Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов. Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников. Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.
Технические особенности диода
По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт. Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал. В противном случае приходится применять особые меры защиты от опасных обратных напряжений.
Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы. Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера. В этом случае важно уметь включать светодиоды в 220 В.
Полюса светодиода
Полярность светодиода
Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).
Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:
- визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
- с помощью мультиметра в режиме «Проверка диодов»;
- посредством блока питания с постоянным выходным напряжением.
Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.
При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.
Способы подключения
Установка дополнительного резистора гасит излишки мощности электричества
Простейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.
Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин. В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В. В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.
Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более). Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом. Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.
Шунтирование светодиода обычным диодом (встречно-параллельное подключение)
Встречно-параллельное подключение
Другой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.
Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.
Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.
Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.
С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно. Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности. Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.
Ограничение с помощью конденсатора
Использование накопительного конденсатора
Простейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:
- предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
- потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
- для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.
Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.
В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.
Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.
Нюансы подключения к сети 220 Вольт
Схема подключения светодиода к сети 220В
При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.
Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.
Значение сопротивления подбирается по методикам, описанным ранее.
Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.
Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.
Схема лед драйвера на 220 вольт
Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня. Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту). В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.
Вариант драйвера без стабилизатора тока
При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:
- при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
- в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
- при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.
При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.
Безопасность при подключении
Не следует устанавливать в цепь диодов полярные конденсаторы
При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:
- предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
- если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
- не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.
Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно. В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей. Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.
strojdvor.ru
как сделать, как устроена, схемы
Появление светодиодных ламп — революция в сфере устройств освещения. Экономичные, с огромным ресурсом и отличными характеристиками — они быстро завоевывают популярность.
Только один фактор препятствует их массовому распространению: высокая стоимость. Это побуждает умельцев изготавливать такие светильники самостоятельно.
В данной статье речь пойдет о том, как делается светодиодная лампа своими руками на 220В.
Схемы
Диод — элемент из двух полупроводников с разным типом проводимости. Электронно-дырочный переход пропускает электрический ток только в одну сторону.
Светодиод отличается от обычного диода следующим:
- имеет многослойную структуру, то есть состоит из нескольких параллельно соединенных простых диодов, но при этом снабжен всего двумя выводами;
- значительную часть электрической энергии превращает в световое излучение;
- рассчитан на напряжение только в 12 или 24 В;
- легко пробивается обратным напряжением, в результате чего выходит из строя (достаточно несколько вольт).
Из сказанного следует вывод: для подключения светодиодов к сети переменного тока (Iпер.)напряжением 220 В, требуется применить преобразователь, превращающий Iпер. в постоянный и понижающий напряжение до 12 или 24 В. Эта задача решается несколькими способами.
Преобразователя с диодным мостом
Двухполупериодный выпрямитель — самый популярный из всех известных вариантов. Состоит из 4-х силовых диодов (не световых), соединенных в квадрат. При этом два из них стыкуются анодами (точка А), а остальные — катодами (точка К).
В одну диагональ моста (между точками А и К) включается нагрузка. На другую — подается переменное напряжение. Данная схема относится к двухполупериодным, то есть она подает однонаправленный ток в нагрузку в течение обоих полупериодов.
Схема двухполупериодного выпрямителя
Напряжение на выходе получается пульсирующим: меняется от 0 В до 311 В. Для сглаживания пульсаций за мостом параллельно ему подключается конденсатор с параметрами 25х400 В.
С целью ограничить напряжение делают следующее:
- перед мостом со стороны «плюсовой» клеммы впаивается конденсатор с параметрами 10,47х250 В;
- к противоположной (отрицательной) клемме, также со стороны источника переменного тока, припаивается резистор на 100 Ом.
Данный вариант драйвера подходит для маломощных светодиодов, например, HK6, рассчитанных на ток в 100-120 мА.
Светодиодный элемент
Можно использовать готовую плату со светодиодами от сгоревшей лампы, действуют так:
- подключают плату к автомобильному аккумулятору с напряжением на клеммах 12 В;
- определяют сгоревшие диоды;
- выпаивают их и устанавливают новые.
За неимением готовой платы лампу делают самостоятельно одним из следующих способов:
- вырезают диск из тонкого алюминиевого листа (подойдет банка из-под напитка) соответственно размерам корпуса и высверливают в нем либо пробивают просечкой отверстия в количестве, равном числу диодов. В отверстия вставляют светодиоды, соблюдая следующие условия: вывод анода одного диода соседствует с выводом катода ближайшего; анодные выводы несколько укорачиваются (это упрощает монтаж). Светодиоды фиксируются силиконовым герметиком (удобно подавать из медицинского шприца) или термопистолетом. Далее элементы соединяют пайкой по 4 шт. Обычно используется 20 диодов, соответственно, получится 5 групп — по одному свободному аноду и катоду в каждой. К выводу со знаком «-» припаивают резисторы. Аноды (выводы со знаком «+») объединяются. Резисторы также объединяют, и к их общему выводу припаивают отрезок медного провода. Такой же кусок припаивается к выводу от анодов;
- берут светодиодную ленту и разрезают ее по предусмотренным для этого пунктирным линиям на фрагменты по 3 диода (в некоторых моделях светодиоды сгруппированы по 6 шт.). Далее сворачивают в трубку лист пенокартона чуть меньше диаметра изделия, используемого в качестве корпуса (об этом ниже). На нее крепят Отрезки светодиодной ленты и соединяют их последовательно. Куски ленты лучше клеить «жидкими гвоздями». Этот клей схватывается относительно медленно, что позволяет скорректировать положение светодиодов. Данным составом можно залить и всю ленту, чтобы выглядывали только светодиоды;
- берут омедненный стеклотекстолит и проделывают с ним те же действия: очерчивают круг по размеру корпуса и отмечают на нем карандашом положение светодиодов. Далее действуют в таком порядке: делают тонким сверлом в текстолите отверстия под ножки светодиодов; лаком вычерчивают на текстолите (со стороны медного напыления) схему; растворяют в воде 2 ст. л. поваренной соли и 1 ст. л. медного купороса и погружают в раствор текстолит на 24 часа. Медь вне лакового покрытия в результате травления удалится, после чего на плату припаивают светодиоды.
Клей «жидкие гвозди» придаст светильнику оригинальный вид и послужит защитой от механических повреждений.
Для более мягкого свечения
Небольшое усовершенствование выпрямителя сделает воздействие лампы на глаза более щадящим за счет уменьшения мигания.
Блок питания отличается следующим:
- для ограничения напряжения используется конденсатор емкостью 400 нФ. Его и резистор на 100 Ом устанавливают по одну сторону от моста (конденсатор ближе к мосту), а не по разные;
- за сглаживающим конденсатором устанавливают резистор на 230 Ом.
Данный выпрямитель, как и предыдущий, подключается к нагрузке — цепочке из параллельно включенных светодиодов.
Схемы на резисторах
Простой вариант драйвера для самодельного светодиодного светильника состоит из двух резисторов по 12 кОм. Между ними впаивают две полосы светодиодов, чередуя направленность. Со стороны первого резистора одна полоса подключается катодом, другая — анодом.
Анод первой полосы и катод второй, соответственно, припаиваются ко второму резистору. При таком подключении цепочки светодиодов горят поочередно, так что луч от лампы становится ровным и совсем не раздражает глаза. Светильник данного типа отлично подходит на роль настольного.
Схема с гасящим конденсатором
Количество светодиодов — не менее 20-ти, обычно соединяют 40. При большем количестве сильно усложняется сборка: ножки диодов располагаются слишком близко. Можно использовать более мощные диоды — тогда их число сокращается до 4-6.
В этом случае схему требуется пересчитать, подобрав новый номинал резисторов и конденсаторов. В этом помогут специальные онлайн-калькуляторы, размещенные на посвященных электротехнике сайтах.
Корпуса для светодиодных ламп
Собранную лампу для удобства эксплуатации помещают в корпус, в этом качестве могут выступать разные изделия:
Размещение в цоколе дает два преимущества:
- лампу можно включать в стандартный патрон;
- обеспечивается хороший теплоотвод.
Теплоотвод крайне важен для светодиодов, поскольку в условиях перегрева они деградируют: уменьшается иллюминация и сокращается срок службы.
Цоколь с лампы накаливания
От перегоревшей лампочки аккуратно отделяют колбу, затем вынимают спираль. В освободившийся цоколь помещают собранную на текстолите или алюминиевой пластине светодиодную лампу.
Основа последней должна иметь соответствующие размеры: на текстолите или алюминиевом листе вычерчивается круг такого диаметра, чтобы его можно было утопить в цоколе на 1-2 мм.
У данного варианта есть два недостатка:
- отсутствует качественная изоляция;
- лампа смотрится не очень привлекательно.
Потому зачастую для установки светодиодной лампы используют другие изделия.
Корпус энергосберегающей лампы
Наилучший вариант. Лампу аккуратно разбирают, отделяя газоразрядные трубки. Затем извлекают схему, предназначенную для розжига и поддержания горения.
Для светодиодной лампы она не нужна, но некоторые детали могут пригодиться. Используют предохранитель (его так и оставляют в цоколе) и диод (обычно в лампах КЛЛ устанавливается диод марки 1N4007).
Лампа крепится к цоколю двумя способами:
- на защелках (наиболее распространенный). Их необходимо поддеть отверткой;
- точечным кернением по всей окружности. Разборка осуществляется путем высверливания фиксаторов либо спиливанием этой части ножовкой.
Светодиоды в подобном корпусе крепят разными способами:
- в лампах с 3-мя U-образными газоразрядными трубками: в отверстиях под трубки (их 6 шт.). Здесь диоды крепят термопистолетом или силиконовым герметиком. Драйвер же размещают в цоколе;
- в лампах прочих видов устанавливают в корпус крышку от пластиковой бутылки и затем в нее — плату со светодиодами. А можно вырезать круг по размерам корпуса и проделать в нем отверстия под ножки светодиодов, как это было описано выше.
Существует несколько видов цоколя. Их идентифицируют по буквенно-цифровому обозначению. Так, литера «Е» указывает на наличие резьбы, «В» — штифта, «F» — штыря и т.д.
Может присутствовать еще одна буква — U, A или V: обозначает, в каких лампах применяется цоколь (соответственно, в энергосберегающих, автомобильных, с коническим концом). Далее следуют цифры, обозначающие его диаметр.
Наиболее популярный на постсоветском пространстве цоколь — Е27.
Корпус галогенной лампы
Помещенную в такую деталь светодиодную лампу нельзя вкрутить в патрон. Потому данный вариант больше подходит для изготовления светильника постоянного тока и индикаторов.Для извлечения колбы галогенной лампы из корпуса — достаточно удалить отверткой удерживающий ее клей. Работу следует вести с предельной осторожностью, поскольку хрупкую колбу легко можно повредить.
Далее лампу располагают контактными ножками вверх и слегка бьют по ним молотком. Светоэлемент при этом выпадет.
Видео по теме
Как сделать светодиодную лампу на 22оВ своими руками:
Изготовление светодиодной лампы своими руками — это не только способ сэкономить, но и интересная, творческая и развивающая работа. Важно помнить о мерах безопасности.
На случай короткого замыкания (выводы светодиодов могли быть по неосторожности закорочены при пайке) лампа запитывается от линии, защищенной автоматическим выключателем и УЗО. Начав с простенькой лампы, можно переходить к созданию более сложных светильников.
proprovoda.ru