Posted on

Регулируемый стабилизатор от 0 до 12 вольт

Регулируемый стабилизатор напряжения от 0 до 12 вольт и током нагрузки до 1-го ампера представлен на рисунке 1.

Переменное напряжение 12 вольт выпрямляется диодным мостиком VD1…VD4, сглаживается фильтром С1 С2, подается на параметрический стабилизатор на стабилитроне VD1. Напряжение 12 вольт, выделенное на стабилитроне, приложено к резистору R2. С движка переменного резистора R2 напряжение подается на аналоговый ключ VT1 VT2, включенного по схеме составного транзистора. Степень открытия ключа зависит от положения движка переменного резистора R2, т.е. в нижнем по схеме положении регулятора, напряжение на базе равно нулю и транзисторы VT1 VT2 закрыты, напряжение в нагрузку не поступает. В верхнем по схеме положении регулятора R2, напряжение не базе максимально. Транзисторы открыты полностью, а напряжение с выпрямителя приложено к нагрузке, за исключением падения на переходе коллектор – эмиттер транзистора VT1.

В схеме регулируемого стабилизатора на рисунке 1 заложена схема защиты по току на транзисторе VT3. Если ток на резисторе R4 превысит значение 1,2 ампера, за счет падения напряжения на нем открывается транзистор VT3, шунтируя тем самым переходом коллектор – эмиттер резистор R2, напряжение на R2 уменьшается, вызывая закрытие транзисторов VT1 VT2.

Порог срабатывания защиты по току подбирается сопротивлением R4, и при его сопротивлении 0,5 ома примерно равен 1,1…1,25 ампера.

Регулируемый стабилизатор от 0 до 12 вольт 3 ампера

Исключив из схемы на рисунке 1 узел защиты по току и заменив транзисторы VT1 VT2 на более мощные, можно построить регулируемый стабилизатор от 0 до 12 вольт с током в нагрузке до 3-х ампер. Схема такого стабилизатора представлена на рисунке 2.

При повторении схемы регулируемого стабилизатора на рисунке 2, необходимо обратить внимание на тепловые параметры выпрямительного мостика VD1…VD4 и транзистора VT2. Транзистор VT2 необходимо установить на радиатор с площадью охлаждения не мене 250 кв.см, а диоды должны быть рассчитаны на ток не менее 10 ампер (Д245…Д247).

В схеме регулируемого стабилизатора не показан питающий транформатор, который должен обеспечить требуемый ток на вторичной обмотке.

Стабилизированный источник питания 12В / 30А – Поделки для авто

Представляем мощный стабилизированный блок питания на 12 В. Он построен на микросхеме стабилизатора LM7812 и транзисторах TIP2955, что обеспечивает ток до 30 А. Каждый транзистор может давать ток до 5 А, соответственно 6 транзисторов обеспечат ток до 30 А. Можно изменением количества транзисторов и получить желаемое значение тока. Микросхема выдает ток около 800 мА.

На его выходе установлен предохранитель в 1 А для защиты от больших переходных токов. Нужно обеспечить хороший теплоотвод от транзисторов и микросхемы. Когда ток через нагрузку большой, мощность рассеиваемая каждым транзистором также увеличивается, так что избыточное тепло может привести к пробою транзистора.

В этом случае для охлаждения потребуется очень большой радиатор или вентилятор. Резисторы 100 Ом используются для стабильности и предотвращения насыщения, т.к. коэффициенты усиления имеют некоторый разброс у одного и того же типа транзисторов. Диоды моста рассчитаны не менее, чем на 100 А.

Примечания

Наиболее затратным элементом всей конструкции, пожалуй, является входной трансформатор, Вместо него возможно использование двух последовательно соединенных батарей автомобиля. Напряжение на входе стабилизатора должно быть на несколько вольт выше требуемого на выходе (12В), чтобы он мог поддерживать стабильный выход. Если используется трансформатор, то диоды должны выдерживать достаточно большой пиковый прямой ток, обычно, 100А или более.

Через LM 7812 будет проходить не более 1 А, остальная часть обеспечивается транзисторами.Так как схема рассчитана на нагрузку до 30А, то шесть транзисторов соединены параллельно. Рассеиваемая каждым из них мощность – это 1/6 часть общей нагрузки, но все же необходимо обеспечить достаточный теплоотвод. Максимальный ток нагрузки приведет к максимальному рассеиванию, при этом потребуется крупногабаритный радиатор.

Для эффективного отвода тепла от радиатора, может быть хорошей идеей применение вентилятора или радиатора с водяным охлаждением. Если блок питания нагружен на максимальную нагрузку, а силовые транзисторы вышли из строя, то весь ток пройдет через микросхему, что приведет к катастрофическому результату. Для предотвращения пробоя микросхемы на ее выходе стоит предохранитель в 1 А. Нагрузка 400 МОм только для тестирования и не входит в окончательную схему.

Стабилизированный источник питания 12В / 30А

Вычисления

Данная схема отличная демонстрация законов Кирхгофа. Входящая в узел сумма токов, должна быть равна сумме токов выходящих из этого узла, а сумма падений напряжений на всех ветвях, любого замкнутого контура цепи должна быть равна нулю. В нашей схеме, входное напряжение 24 вольт, из них 4В падения на R7 и 20 В на входе LM 7812, т.е 24 -4 -20 = 0. На выходе суммарный ток нагрузки 30А, регулятор поставляет 0.866А и 4.855А каждый из 6 транзисторов: 30 = 6 * 4.855 + 0.866.

Ток базы составляет около 138 мА на транзистор, чтобы получить ток коллектора около 4.86А коэффициент усиления по постоянному току для каждого транзистора должен быть не менее 35.

TIP2955 удовлетворяет этим требованиям. Падение напряжения на R7 = 100 Ом при максимальной нагрузке будет 4В. Рассеиваемая на нем мощность, вычисляется по формуле P= (4 * 4) / 100, т.е 0.16 Вт. Желательно, чтобы этот резистор был мощностью 0.5 Вт.

Входной ток микросхемы поступает через резистор в цепи эмиттера и переход Б-Э транзисторов. Еще раз применим законы Кирхгофа. Входной ток регулятора состоит из тока 871 мА, протекающего по цепи базы, и 40.3мА через R = 100 Ом.
871,18 = 40,3 + 830. 88. Входной ток стабилизатора всегда должен быть больше выходного. Мы видим, что он потребляет только около 5 мА и практически не должен греться.

Стабилизированный источник питания 12В / 30А

Тестирование и ошибки

Во время первого испытании, не надо подключать нагрузку. Вначале измеряем вольтметром напряжение на выходе, оно должно быть 12 вольт, или не сильно отличающаяся величина. Затем подключаем сопротивление около100 Ом, 3 Вт в качестве нагрузки.Показания вольтметра не должны измениться. Если вы не видите 12 В, то, предварительно выключив питание, следует проверить корректность монтажа и качество пайки.

Один из читателей, получил на выходе 35 В, вместо стабилизированных 12 В. Это было вызвано коротким замыканием силового транзистора. Если есть КЗ любого из транзисторов, придется отпаять все 6 для проверки мультиметром переходов коллектор-эмиттер.

Похожие статьи:

Простой стабилизатор напряжения | Все своими руками

Опубликовал admin | Дата 30 сентября, 2011

Здравствуйте дорогой читатель. После того, как появились трехвыводные стабилизаторы напряжения, жизнь для разработчиков линейных блоков питания стала лучше, жизнь стала веселее. И я тоже к ним пристрастился — удобная штука. И каких только схем на них не встретишь.


Здесь приводится типовая схема включения регулируемого трехвыводного стабилизатора напряжения на микросхеме LM117, наш полный аналог — КР142ЕН12А.

Максимальное входное напряжение КР142ЕН12А равно сорок пять вольт, минимальное входное — пять вольт. Особенно хорош верхний порог входного напряжения этой микросхемы, есть шансы, что она останется жива при аномальном перенапряжении первичной сети.

Диапазон выходных напряжений от 1,25 до 37 вольт — достойный диапазон. Максимальный выходной ток микросхемы с соответствующим радиатором составляет полтора ампера. Так как я воспитывался в оборонной промышленности, то и все элементы схем стараюсь использовать на 30 максимум на 50% от их предельно-допустимых параметров. Так стабилизатор, собранный по этой схеме с выходным напряжением 13,6 вольт и током нагрузки 400ма работает уже одиннадцать лет. Рассчитать радиатор самому очень сложно, поэтому я их подбираю. Оставляю такой радиатор, при котором температура самой микросхемы не превышала 40-50 градусов при максимальной нагрузке. Во всем должен быть запас. Конденсатор С1 на схеме необходим, если длина провода от конденсаторов фильтра до микросхемы больше восьми сантиметров. R1 может принимать значения от 220 до 270ом и устанавливать его лучше прямо на выводы микросхемы,  при  этом время пайки должно быть не более трех секунд. Резистор R2 можно оставить подстроечным, Но если вы делаете блок питания под конкретное напряжение, его следует заменить постоянным, сами понимаете — контакт, да еще и скользящий — опасная штука. R2 можно рассчитать по формуле — R2=R1x (Uвых/1,25 — 1). Собираясь делать радиоаппаратуру, не забывайте о том, где она у вас будет работать, или под одеялом дома, или в поле зимой на ветру. От климатических условий зависит и выбор радиокомпонентов по диапазону рабочих температур.

До свидания К.В.Ю.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:124 734


Регулируемый стабилизатор тока | Все своими руками

Опубликовал admin | Дата 16 сентября, 2013

     На рисунке один изображена схема стабилизатора тока на 10А. Схема регулируемого стабилизатора тока приведена на рисунке 2.

     Величина тока стабилизации в схеме, изображенной на рис.1, полностью зависит от номинала резистора R3, найти переменный резистор с таким маленьким номиналом практически невозможно.

Стабилизатор тока на 10А. Стабилизатор тока на 5А.

     Да и мощность, выделяемая на этом резисторе относительно большая, например, при токе пять ампер и величине сопротивления 0,24 Ом, на данном резисторе выделится мощность Р = I 2 • R = 5 • 5 • 0,24 = 6Вт. Поэтому самый простой выход, это применить магазин сопротивлений, подключаемых тумблерами, как показано на рисунке 2. Все резисторы в магазине имеют одинаковый номинал. Резистор R6 включен в схему постоянно и ток стабилизации при этом будет равен 1А, мощность, выделяемая на этом резисторе, будет равна 1,2Вт. При подключении параллельно ему еще одного резистора, ток стабилизации увеличится до двух ампер, если в параллель будет включено три резистора, то ток будет равен – 3А, … четыре резистора – 4А и так далее. Дискретность изменения тока стабилизации в данном случае равна одному амперу. Меняя номиналы резисторов и количество тумблеров, можно получить необходимую вам величину регулировки тока стабилизации. Недостатком данной схемы является большое количество тумблеров и резисторов. Достоинство – все просто, можно обойтись без печатной платы. При больших рабочих токах, протекающих через транзистор, необходим радиатор соответствующей величины. Прикинуть площадь радиатора можно здесь.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:81 227


Блок питания собственной конструкции на 12 В 15 А

Нужен мощный БП на ток более 10 Ампер? Вот одна из самых простых схем источников питания, которую можно собрать предварительно протестировав и отрегулировав. Исходные предположения проекта: несложный блок питания предназначенный для питания нагрузки 55 Вт в течение многих часов каждый день.

Схема принципиальная блока 12 В 15 А

Многие имели дело с блоками питания на стабилизаторах LM317, поэтому было бы достаточно сделать стабилизирующую часть на микросхеме LM338. Не стоит брать мощные транзисторы, потому что по цене это будет дороже, чем готовые стабилизаторы, да и заметное усложнение электроники.

В качестве трансформатора использовался тороид 220 В / 12 В 150 Вт (он будет питать 2 отдельных источника питания с разной силой тока).

Стоит сразу 3 стабилизатора LM338, соединенных параллельно. Просматривая даташит производителей LM338 стало понятно, что 3 штуки дадут запас надежности даже в случае сильного нагрева воздуха в корпусе.

При первых тестах использовали диодный мост BR1010, но были в ужасе от его быстрого нагрева до высокой температуры, поэтому пришлось брать KBPC 2510 и установка большего радиатора. В качестве вспомогательных конденсаторов 2x 10000 мкФ, 10 мкФ и 1 мкФ для фильтрации нежелательных помех. Контрольные резисторы LM338 имеют сопротивление 240 Ом и 1,9 кОм.

Обратите внимание, что тороиды могут иметь первоначальное высокое потребление энергии от сети (бросок тока при включении) и, таким образом, может перегорать предохранитель, в несколько раз превышающий номинальное потребление тока, поэтому советуем использовать устройство плавного пуска для тороидальных трансформаторов.

Данные номиналов деталей

  • C1, C2 = 10000 мкФ / 35 В
  • C3 = 10 мкФ / 25 В
  • C4 = 1 мкФ / 25 В
  • U1, U2, U3 = LM338
  • R1 = 240 Ом
  • R2 = 1,9 кОм

На фото показана тестовая конструкция, собранная навесным монтажом чтобы проверить работает ли она вообще. Использовалась универсальная монтажная плата — это самый простой и быстрый способ сборки печатной платы без травления.

Хотя 3 элемента в корпусе TO220, 2 резистора и конденсатора, это можно успешно сделать вообще без такой большой универсальной платы. Отсутствие выравнивающих резисторов на выходах стабилизатора может быстро повредить их. Помните, что электронные компоненты не идеальны и имеют свои допуски. На практике это означает что один из стабилизаторов будет давать немного более высокое напряжение, которое примет на себя большую часть нагрузки. Выравнивающие резисторы (0,1 Ом 5 Вт) на выходе будут частично компенсировать это явление.

Что касается эффективности LM338, то в спецификации четко описывается коэффициент полезного действия 5 А, пиковое значение составляет даже 12 А. Поэтому такая схема обладает такой реальной эффективностью по мощности.

И не берите трансформаторы на слишком большие напряжения. После фильтрации если будет около 24 В, конечно возникнут большие потери, преобразованные в тепло под нагрузкой. Напряжение должно быть в пределах 14-16 В. Лучше всего чтобы разница напряжений до и после стабилизации составляла около 4-5 В.

Схема мощного блока питания на 12 В 50 А

Вы спросите — а зачем вообще нужен блок питания на ток 50 ампер? Хотя если ищите именно этот БП, то значит у вас есть уже какие-то планы на такую мощность. В нашем случае он нужен был для питания мощного усилителя радиостанции, а также для индукционного нагревателя.

Схема стабилизированного источника питания 50 Ампер

Основные элементы, которые использованы для его постройки:

  • трансформатор 1000VA, имеющий две обмотки на 15 В проводом 2.2 мм,
  • диодный мост — 4 диода 50 А из блока питания компьютера,
  • конденсаторы фильтра 32 x 4700uF / 25V,
  • силовые транзисторы 4x IRFP150,
  • микросхема управления LM723.

Испытания готового БП на нагрузке

Результаты измерений на искусственной нагрузке вышли следующие:

НАПРЯЖЕНИЕ — ТОК

  • 13,75V 25А
  • 13,75V 30A
  • 13,75V 35A
  • 13,64V 40A
  • 13,61V 45A
  • 13,50V 50A

Рекомендации по изготовлению блока

Каждый уравнительный резистор (на истоках транзисторов) для таких токов представляет собой нихромовый провод длинной около 2 см. Все транзисторы сидят на общем радиаторе. Электролитические конденсаторы собраны в батарею.

Мостовой выпрямитель собран на диоде MBR4060 (оба вывода соединены между собой параллельно для увеличения предельного тока). Общий плавкий предохранитель имеет номинал 50 А.

Дополнительный небольшой трансформатор на 26 В питает микросхему стабилизатора, чтоб на неё не влияли форс-мажорные ситуации с КЗ и перегрузами.

В блоке питания есть тиристорная защита, которая замыкает выходное напряжение накоротко, защищая тем самым дорогостоящее подключенное оборудование. Индикация осуществляется стрелочным вольтамперметром, но можно и готовый цифровой индикаторный блок.

Имеет смысл поставить два мощных диода на выходе между землей и плюсом, а другие параллельно выходным транзисторам (если конечно не используются со встроенными защитными, типа IRFP460 и иже с ними). Рисунки печатной платы можете скачать тут.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *