Не секрет, что эффективность переменного тока гораздо выше в сравнении с постоянным током, это доказано как практически, так и теоретически. Но очень часто случается так, что доступен только постоянный ток, например, бортовая сеть автомобиля, аккумуляторы, солнечные батареи и другие альтернативные источники энергии. В то же время, например, при использовании солнечных батарей, в течение дня солнечная энергия поступает в неравных количествах, вечером или в облачную погоду ее значительно меньше, чем днем в ясную погоду. Для выравнивания напряжения в схеме с солнечной батареей используют аккумуляторы, которые при излишках солнечной активности заряжаются, а при недостаточности солнечного света отдают накопленную за предыдущее время энергию. Или бывает необходимость использования переменного тока, но не со стандартными параметрами. Если при помощи трансформатора мы можем понизить или повысить напряжение, то частоту переменного тока, увы, с их помощью не изменишь. Для всех вышеописанных случаев можно применить чудо современной технологии – инвертор электрической энергии. Согласно википедии: Инвертор — устройство для преобразования постоянного в переменный ток с изменением величины частоты или напряжения. По сути инвертор — это преобразователь постоянного тока в переменный ток. Причем получить на выходе можно любой ток, с практически любыми необходимыми параметрами. Ток, получаемый на выходе инвертора, не зависит от входящего. Единственное, что инвертор не может делать – это увеличивать электрическую энергию, дабы не нарушить закон сохранения энергии. Во всем остальном универсальность инверторов огромная, они позволяют получать не статичные параметры тока на выходе, а регулировать его. Принцип работы инвертора, если упростить сам процесс, можно описать так: это трансформатор, к первичной обмотке которого подключены два ключа, которые поочередно открываются и закрываются. В результате работает либо левая, либо правая обмотки. В один момент времени электрический ток движется либо в одну сторону по первой обмотке, либо в противоположную по второй обмотке. В это время во вторичной обмотке индуцируется ток. Токи в обмотке нарастают и уменьшаются, во вторичной обмотке также, но при этом еще и меняя направление тока, в зависимости от того, какая первичная обмотка сейчас активна. Правда, на выходе мы получаем ступенчатую (а), либо апрокисмированую синусоиду (б), а не плавную (в), но это не существенно для работы большинства бытовых приборов. Более дорогие инверторы позволяют получать на выходе и синусоидальную форму выходного напряжения (в). Инверторы можно разделить на автономные и сетевые. Автономные инверторы получают питание от мощных аккумуляторных батарей. Питание от них постоянное. Сетевые инверторы получают питание от постоянного тока, но входное напряжение различается по времени. Например, в случае с солнечными батареями оно может колебаться в диапазоне от 300 до 800 вольт. А вот ток на выходе должен оставаться постоянным по параметрам: и по напряжению и по частоте. А значит, в таких инверторах система контроля и коммутации более совершенная, поскольку в качестве генератора частоты используется сама сеть, и работа инвертора синхронизируется с этой сетью. Итак, с теоретической частью разобрались. Но где же можно встретить инверторы в повседневной жизни? В больших городах трёхфазные инверторы обычно используются для создания тяги троллейбусов, трамваев, да и вообще для питания трёхфазных асинхронных электродвигателей. Однофазные инверторы есть практические в каждом офисе – источники бесперебойного питания. Массовое использование ИБП связано с обеспечением бесперебойной работы компьютеров, позволяющее подключенному к ИБП оборудованию при пропадании электрического тока или при выходе его параметров за допустимые нормы, некоторое непродолжительное время продолжить работу. Самые распространенные бытовые ИБП оборудованы аккумулятором 12 вольт 7,2 А. Конструктивно преобразователи сильно могут отличаться в зависимости от необходимой выходной мощности. Если инвертор с выходной мощностью до 150 ватт можно собрать, как говорится, на коленках дома из подручных радиодеталей, то с более высокими требованиями придется «повозиться». Это связано, как и большей дороговизной и дефицитностью деталей, так и возрастающим количеством выделяемой теплоты. Ниже приведу схему относительно простого, но маломощного инвертора, мощностью не более 100 ватт: От автомобильного аккумулятора такой инвертор может питать устройство мощностью 100 ватт в течение нескольких часов, что является достаточно неплохим показателем. Вот самые необходимые параметры преобразователя: Напряжение питания ——————— 10,5 – 14 В В качестве задающего генератора DA1 в данном варианте используется специализированная микросхема КР1211ЕУ1. Микросхема содержит интегрированный тактовый генератор, частота генерации которого определяется постоянной времени цепи, подключаемой к выводу 7 микросхемы. Для работы системы защиты используется вывод 1 микросхемы. При подаче на него высокого уровня напряжения работа микросхемы блокируется и на выходах устанавливается низкий уровень напряжения. В рабочий режим микросхема переводится либо выключением и включением питания, либо кратковременной подачей низкого уровня напряжения на вывод 3 микросхемы. Выходные импульсы DA1 поочерёдно открывают полевые транзисторы VT4, VT5, которые создают в первичной обмотке трансформатора T1 переменный электрический ток. При этом на выводах вторичной обмотки T1 формируется выходное переменное напряжение. Питание для микросхемы DA1 поступает от маломощного интегрального стабилизатора DA2. Наличие напряжения питания информируется светодиодом VD3. Частота формируемого переменного напряжения определяется номиналами R1, C1. Датчиком перегрузки служат параллельно соединённые резисторы R9 и R10. Протекающий по ним ток создаёт падение напряжения между базой и эмиттером транзистора VT2 через делитель R8, R11. При перегрузке транзистор VT2 открывается и через делитель R6, R5 на вывод 1 микросхемы поступает напряжение высокого уровня. Пороговая величина тока срабатывания защиты определяется номиналами R8, R11 и для данной схемы составляет 10 А. При пониженном напряжении питания открывается транзистор VT1. Ток, протекающий через открытый транзистор VT1 и резисторы R4, R5 создаёт на выводе 1 микросхемы DA1 напряжение высокого уровня. Транзисторы VT4, VT5 должны быть установлены на радиаторы площадью 30-50 кв. см. каждый. При этом необходимо обеспечить электрическую изоляцию между радиатором и корпусом транзистора. Рекомендуется использовать прокладки из слюды или керамики, а также диэлектрические шайбы под винты и теплопроводящую пасту. В качестве Т1 подойдёт понижающий трансформатор мощностью не менее 150 Вт. Рекомендуется использовать трансформатор ТП-190 после его несложной доработки. Доработка трансформатора заключается в том, чтобы, не прибегая к его разборке, отмотать 10 витков каждой секции вторичной обмотки. Для самостоятельного изготовления трансформатора можно рекомендовать сердечник ПЛМ27-40-58. Первичная обмотка должна содержать две секции по 32 витка провода диаметром 2 мм, а вторичная (повышающая) – 700 витков провода диаметром 0,6 мм. Соединения в цепях истоков транзисторов VT4, VT5 первичной обмотки трансформатора Т1, а также конденсатора С8 должны быть выполнены проводом сечением не менее 1,5 кв. мм. Провода, соединяющие преобразователь с источником питания должны иметь сечение не менее 2,5 кв. мм. Резистор R19 устанавливается непосредственно на выводах конденсатора С8, а элементы R19, C9 устанавливаются на клеммах трансформатора Т1. В качестве выключателя SW1 рекомендуется использовать автомат на ток 16 А. Элементы преобразователя, включая печатную плату, рекомендуется закрепить на металлическом шасси, которое следует соединить с «минусом» источника питания. Используемые в преобразователе полевые транзисторы имеют сопротивление открытого канала около 25 МОм, они рассчитаны на довольно большой допустимый ток стока 40 А, поэтому мощность преобразователя может быть увеличена до 250 Вт путем изменения номиналов схемы блокировки и использования соответствующего трансформатора. Настройка инвертора сводится к подбору частотозадающего резистора R1. При отсутствии измерительных приборов частоту формируемого напряжения можно оценить с помощью простого устройства оценки частоты, схема которого приведена на рис. 5. Разъём XР1 подключается к выходу преобразователя, а разъём XР2 – в электросеть 220 В 50 Гц. При этом частота мигания светодиода VD2 соответствует разности частот напряжений преобразователя и электросети. Подбирая резистор R1, следует добиться наиболее редких миганий светодиода. Перечень элементов для сборки данного преобразователя: Позиция Наименование Количество DA1 КР1211ЕУ1 — 1 C1 1000 пФ — 1 C2,C3 0,1 мкФ — 2 C4 1000мкФ 16В — 1 C5 10 мкФ 16В — 1 C6,C7 0,047 мкФ — 2 C8 10000 мкФ 16В — 1 C9 0,047 мкФ 400В — 1 В качестве корпуса использован блок питания с персонального компьютера, транзисторы КТ315 с любым буквенным индексом, КТ209 можно заменить на КТ361 так же с любым буквенным индексом. Стабилизатор напряжения 7805 лучше заменить на отечественный КР142ЕН5А. Резисторы любые, мощностью от 0,125 до 0,25 вт. Диоды подойдут тоже практически любые низкочастотные, например — КД105 или IN4002. Конденсаторы C1 типа К73-11, К10-17В с малым уходом ёмкости при прогреве. Трансформатор был взят от блока питания персонального компьютера, но можно использовать и от старых ламповых телевизоров, например — «Весна» или «Рекорд», важно, чтобы витки, сечение и железо совпадали. С радиодеталями разобрались, теперь, как всё это собрать воедино. Ниже приведу неплохую схему инвертора: Этот процесс можно описать так: на микросхеме D1 собран генератор прямоугольных импульсов, частота следования которых около 200 гц — диаграмма «A». С вывода 8 микросхемы импульсы поступают далее на делители частоты, собранные на элементах D2.1 — D2.2 микросхемы D2. В результате чего на выводе 6 микросхемы D2 частота следования импульсов становится вдвое меньше — 100 гц — диаграмма «B», а на выводе 8 импульсы становятся равным частоте 50 гц — диаграмма «C». С вывода 9 снимаются неинвертируемые импульсы 50 гц — диаграмма «D». На диодах VD1-VD2 собрана логическая схема «ИЛИ». В результате чего взятые с выводов микросхем D1 вывод 8, D2 вывод 6 импульсы образуют на катодах диодов импульс соответствующий диаграмме «E». Каскад на транзисторах V1 и V2 служит для увеличения амплитуды импульсов необходимых для полного открывания полевых транзисторов. Транзисторы V3 и V4, подключенные к выходам 8 и 9 микросхемы D2 поочерёдно открываются, запирая тем самым то один полевой транзистор V5, то другой V6. В результате чего управляющие импульсы формируются так, что между ними существует пауза, из-за чего исключается возможность протекания сквозного тока через выходные транзисторы и значительно повышается КПД. На диаграммах «F» и «G» показаны сформированные импульсы управления транзисторами V5 и V6. Вот так будет выглядеть печатная плата: Нам остается только подготовить трансформатор от блока питания. Для этого обмотку на напряжение 220 вольт оставляем, а остальные обмотки удаляются. Поверх этой обмотки наматываются две обмотки проводом ПЭЛ — 2 мм. Для лучшей симметрии их следует намотать одновременно в два провода. При подключении обмоток необходимо учесть фазировку. Полевые транзисторы закрепить через слюдяные прокладки на общий радиатор из алюминия. Правильно собранный инвертор начинает работать сразу после подачи питания. Единственное — бывает необходимость выставить частоту 50-60 гц подбором резистора R1 и конденсатора C1. Поделитесь полезными схемами
|
Инвертор для солнечных батарей, как правильно выбрать
Инвертор одна из неотъемлемых составляющих любой системы солнечных батарей и ветрогенератора. Его задача преобразовывать постоянный ток, вырабатываемый панелями, в переменный 220 вольт, который используют большинство современных бытовых и промышленных приборов.
Но, несмотря на то что все инверторы выполняют одинаковую функцию, не все они могут подойти непосредственно под ваши задачи.
Как выбрать инвертор
Важные параметры этого устройства
- Мощность, которую он может отработать.
- Число одновременно подключаемых линий панелей.
- Рабочая частота
- Коэффициент полезного действия, на прямую влияет на производительность всей станции.
- Вес оборудования, как показатель его качества.
Теперь обо всем этом, и не только, подробнее!
Прежде чем приступить к выбору такого оборудование нужно определится с типом вашей солнечной электростанции и ее задачей.
1 Автономная электростанция. Ваша электростанция не подключена к внешней электрической сети и вы получаете всю электроэнергию только от панеле. В этом случае вам нужен инвертор типа off grid.
В зависимости от свое мощности автономные инверторы подразделяются на однофазные и трёхфазные, а также могут преобразовывать различный вольтаж постоянного тока начиная от 12В, 24В, 48В, 96В и т.д.
Это самый дешевый вариант данного оборудования, стоимость, в зависимости от мощности и страны производителя, составляет 25-600 долларов.
2 Сетевая электростанция. Ваша солнечная электростанция может работать совместно с центральной электрической сетью, но не имеет аккумуляторов.
Инвертор регулирует отбор электричества из сети, но не из аккумуляторных батарей, если панели не вырабатывают достаточного количества. Также он может отправлять излишки выработанной электроэнергии обратно в центральную сеть, например если вы хотите продавать ее по “зеленому тарифу”. Такое оборудование имеет класс on grid.
Кроме своей основной функции это оборудование имеет ее ряд возможностей:
- регулировать частоту напряжения,
- выставить 220 В,
- регулировать амплитуду тока,
- защищать оборудование от перегрева,
- защитить сеть от коротких замыканий.
- выводить информацию на экран телефона, планшета или монитор ПК через Wi-Fi.
Стоимость такого оборудование значительно выше и колеблется в пределах 200-20 000 долларов.
Стоит отметить что цена напрямую зависит от мощности устройства, к примеру инвертор 3-6 КВт будет стоят 2000$, на 1000 КВт уже около 20 000$. Для домашней станции вполне хватит 5 КВт.
3 Аккумуляторно-сетевая. Ваша электростанция обеспечивает электроэнергией все приборы, а излишек отправляет в аккумуляторные батареи, которые отдают накопленный заряд ночью или когда батареи не справляются с нагрузкой.
В случае если батареи не справляются и заряда аккумуляторов не достаточно вы планируете брать недостающую энергию из центральной сети. Для такой задачи вам необходим гибридный (hybrid) инвертор. Он также имеет все функции сетевого, и может продавать излишки в сеть, как например работает “Зеленый тариф” в Украине.
Что касается цены, такое оборудование не дороже сетевого, в некоторых производителях даже отчасти дешевле. Однако цена начинается от 600$ и заканчивается 20 000$ на оборудование большой мощности.
Более подробно о всех этих видах систем можно почитать здесь.Таким образом можно выделить всего 3 вида инверторов:
- Автономний (off grid).
- Сетевой (on grid).
- Гибридный или универсальный (hybrid).
Подробный видео обзор, как выбрать инвертор
Как рассчитать мощность инвертора
Мощность этого оборудования зависит от номинальной мощности солнечных батарей (по стороне постоянного тока) и максимальной мощности нагрузки по стороне переменного тока.
Другими словами, нужно учесть полную мощность всех солнечных панелей (допустимая погрешность от 90% до 120%) в сети и мощность всех устройств, которые могут быть одновременно запитаны в эту сеть.
Если с панелями все понятно, их номинальная мощность указана в характеристиках, то с потреблением все сложнее. Определять нужно потребляемую пиковую или пусковую мощность устройств, которая может быть в 5-7 раз больше рабочей.
Даже непродолжительная нагрузка во время запуска 2-3 секунды, превышающая мощность инвертора, не позволит запустить через него такой прибор.
Выбираем по напряжению
Такой параметр как входное напряжение также важен, поскольку напрямую влияет на эффективность работы системы. Рекомендуемые параметры:
- 12 В при мощности системы до 600 Вт,
- 24 В при мощности системы от 600 до 1500 Вт,
- 48 В при мощности системы более 1500 Вт.
Выбираем по КПД
Такой показатель определяется количеством энергии, которую прибор потратил впустую, например на свою работу. Энергопотребление самого инвертора не должно превышать 5-10% проходящей через него энергии. Иначе это устройство можно считать малоэффективным.
Большинство современным инверторов имеют КПД 90-95%.
Вес оборудование
Качественный инвертор не может быть легким, так как использует трансформатор. Условно можно взять следующие цифры: 1 килограмм на 100 Ватт.
Если 10 ти киловаттный прибор весит значительно ниже 10 кг, значит он низкого качества. При этом 30 ти киловаттный может весить и 15 кг, если меньше, это уже повод усомнится в его качестве.
Меандровые и синусоидальные, тип сигнала
Слева- синусоиндальная система, справа – меандровая.
Меандровые, более дешевый вариант, однако такие приборы не защищают сеть от перепадов напряжения и допускают его резкие скачки, что может негативно сказаться на работе бытовой техники и много оборудования. Это проблему можно решить установкой дополнительного стабилизатора.
Синусоидальные более дорогие, но напряжение на входе и выходе практически одинаковое, а колебания более плавные и не вредит технике.
Синусоидальный инвертор подойдет для частного дома поскольку все индуктивные нагрузки (холодильники, стиральные машины, насосы, кондиционеры и т.п.) просто не будут работать при прямоугольной форме выходного напряжения.
Квазисинусоид — это своего рода компромисс между прямоугольной формой и чистым синусом. Большинство синусоидальных моделей являются качественными, однако встречаются и ненадежные экземпляры.
1 или 3 фазный
Здесь все просто, для частного дома подойдет любой из них. Если даже вам не нужны 3 фазы, будете использовать одну. Для промышленности необходимо только 3х фазный, так как большинство оборудования работаю именно по такому принципу.
Сколько инверторов должно быть в системе
В теории 1 прибора необходимой мощности должно хватить для всей электростанции. Но, если у вас большое количество фотоэлементов и они собраны в несколько линий, лучшу на каждую их них поставить такой преобразователь.
Почему так? Дело в том что нестабильная работа одной линии, например она расположена не на солнечной стороне, будет негативно сказываться на работе инвертора и его КПД будет в целом ниже. Если важно получить максимальную эффективность электростанции, такой вариант не подходит.
Альтернативный вариант, это инвертор на несколько независимых MMP входов. Их может быть 2-4 и стоят такие модели значительно дороже.
Схема без инвертора
Несмотря на все вышеописанное, без этого оборудования можно обойтись. Но, в этом случаи можно подключить напрямую к фотоэлементам только те приборы, которые работают от 12-24 вольт. Этот список будет очень не большим, а значительную его часть будут занимать приборы освещения. Другими словами, такую схему можно использовать по большей части для различных ламп, которым достаточно такого вольтажа и их не пугают перепады напряжения.
Подключение инвертора, правильные схемы
Важно, необходимо обеспечить качественное соединение всех элементов в системе, особенно если мощность электростанции более 500 Вт.
Стандартная схема подключения сетевого инвертора
Использование 2 устройств для более стабильной работы системы а АКБ
Использование двух устройств при двух линиях фотоэлементов
Устройство сварочного инвертора.
Принцип работы сварочного инвертора
В настоящее время стали очень популярны и доступны по цене сварочные аппараты инверторного типа.
Несмотря на свои положительные качества, они, как и любое другое электронное устройство, временами выходит из строя.
Чтобы отремонтировать инвертор сварочного аппарата нужно хотя бы поверхностно знать его устройство и основные функциональные блоки.
В первых двух частях будет рассказано об устройстве сварочного аппарата модели TELWIN Tecnica 144-164. В третьей части будет рассмотрен пример реального ремонта сварочного инвертора модели TELWIN Force 165. Информация будет полезна всем тем начинающим радиолюбителям, которые хотели бы научиться самостоятельно ремонтировать сварочные аппараты инверторного типа.
Дальше будет много букв – наберитесь терпения .
Сам инверторный сварочный аппарат представляет не что иное, как довольно мощный блок питания. По принципу действия он очень схож с импульсными блоками питания, например, компьютерными блоками питания AT и ATX. Вы спросите: «Чем они похожи? Это ведь абсолютно разные устройства…». Схожесть заключается в принципе преобразования энергии.
Основные этапы преобразования энергии в инверторном сварочном аппарате:
1. Выпрямление переменного напряжения электросети 220V;
2. Преобразование постоянного напряжения в переменное высокой частоты;
3. Понижение высокочастотного напряжения;
4. Выпрямление пониженного высокочастотного напряжения.
Это кратко, так сказать, на пальцах . Такие же преобразования происходят в импульсных блоках питания для ПК.
Спрашивается, а зачем нужны эти пляски с бубном (несколько ступеней преобразования напряжения и тока)? А дело тут вот в чём.
Ранее основным элементом сварочного аппарата являлся мощный силовой трансформатор. Он понижал переменное напряжение электросети и позволял получать от вторичной обмотки огромные токи (десятки – сотни ампер), необходимых для сварки. Как известно, если понизить напряжение на вторичной обмотке трансформатора, то можно во столько же раз увеличить ток, который может отдать нагрузке вторичная обмотка. При этом уменьшается число витков вторичной обмотки, но и растёт диаметр обмоточного провода.
Из-за своей высокой мощности, трансформаторы, которые работают на частоте 50 Гц (такова частота переменного тока электросети), имеют весьма большие размеры и вес.
Чтобы устранить этот недостаток были разработаны инверторные сварочные аппараты. За счёт увеличения рабочей частоты до 60-80 кГц и более, удалось уменьшить габариты, а, следовательно, и вес трансформатора. За счёт увеличения рабочей частоты преобразования в 4 раза удаётся снизить габариты трансформатора в 2 раза. А это приводит к уменьшению веса сварочного аппарата, а также к экономии меди и других материалов на изготовление трансформатора.
Но где взять эти самые 60-80 кГц, если частота переменного тока электросети всего 50 Гц? Тут на выручку приходит инверторная схема, которая состоит из мощных ключевых транзисторов, которые переключаются с частотой 60-80 кГц. Но чтобы транзисторы работали, необходимо подать на них постоянное напряжение. Его получают от выпрямителя. Напряжение электросети выпрямляется мощным диодным мостом и сглаживается фильтрующими конденсаторами. В результате на выходе выпрямителя и фильтра получается постоянное напряжение величиной более 220 вольт. Это первая ступень преобразования.
Вот это напряжение и служит источником питания для инверторной схемы. Мощные транзисторы инвертора подключены к понижающему трансформатору. Как уже говорилось, транзисторы переключаются с огромной частотой в 60-80 кГц, а, следовательно, трансформатор работает также на этой частоте. Но, как уже говорилось, для работы на высоких частотах требуются менее громоздкие трансформаторы, ведь частота то уже не 50 Гц, а все 65000 Гц! В результате трансформатор «сжимается» до весьма малых размеров, а мощность его такая же, как и у здоровенного собрата, который работает на частоте 50 Гц. Думаю, идея понятна.
Вся эта петрушка с преобразованием привела к тому, что в схемотехнике сварочного аппарата появляется куча всяких дополнительных элементов, служащих для того, чтобы аппарат стабильно работал. Но, хватить теории, перейдём к «мясу», а точнее к реальному железу и тому, как оно устроено.
Устройство сварочного аппарата инверторного типа. Часть 1. Силовой блок.
Разбираться в устройстве сварочного инвертора желательно по схеме конкретного аппарата. К сожалению, схемы на TELWIN Force 165 я не нашёл, поэтому нагло позаимствуем схему из руководства по ремонту другого аппарата – TELWIN Tecnica 144-164. Фотографии аппарата и его начинки будут от TELWIN Force 165, так как именно он оказался в моём распоряжении. Исходя из анализа схемотехники и элементной базы, особых отличий между этими моделями практически нет, если не учитывать мелочи.
Внешний вид платы сварки TELWIN Force 165 с указанием расположения некоторых элементов схемы.
Принципиальная схема сварочного аппарата инверторного типа TELWIN Tecnica 144-164 состоит из двух основных частей: силовой и управляющей.
Сначала разберёмся в схемотехнике силовой части. Вот схема. Картинка кликабельна (нажмите для увеличения – откроется в новом окне).
Сетевой выпрямитель.
Как уже говорилось, сначала переменный ток электросети 220V выпрямляется мощным диодным мостом и фильтруется электролитическими конденсаторами. Это нужно для того, чтобы переменный ток электросети частотой 50 герц стал постоянным. Конденсаторы С21, С22 нужны для сглаживания пульсаций выпрямленного напряжения, которые всегда присутствуют после диодного выпрямителя. Выпрямитель реализован по классической схеме диодный мост. Он выполнен на диодной сборке PD1.
Следует знать, что на конденсаторах фильтра напряжение будет больше в 1,41 раза, чем на выходе диодного моста. Таким образом, если после диодного моста мы получим 220V пульсирующего напряжения, то на конденсаторах будет уже 310V постоянного напряжения (220V * 1,41 = 310,2V). Обычно же рабочее напряжение ограничивается отметкой в 250V (напряжение в сети ведь может быть и завышенным). Тогда на выходе фильтра мы получим все 350V. Именно поэтому конденсаторы имеют рабочее напряжение 400V, с запасом.
А что в железе?
На печатной плате сварочного аппарата TELWIN Force 165 элементы сетевого выпрямителя занимают довольно большую площадь (см. фото выше). Выпрямительный диодный мост установлен на охлаждающий радиатор. Через диодную сборку протекают большие токи и диоды, естественно, нагреваются. Для защиты диодного моста на радиаторе установлен термопредохранитель, который размыкается при превышении температуры радиатора выше 90С0. Это элемент защиты.
В выпрямителе применяются диодные сборки (диодный мост) типа GBPC3508 или аналогичный. Сборка GBPC3508 рассчитана на прямой ток (I0) — 35А, обратное напряжение (VR) — 800V.
После диодного моста установлены два электролитических конденсатора (здоровенькие бочонки) ёмкостью 680 микрофарад каждый и рабочим напряжением 400V. Ёмкость конденсаторов зависит от модели аппарата. В модели TELWIN Tecnica 144 – 470 мкф., а в TELWIN Tecnica 164 – 680 мкф. Постоянное напряжение с выпрямителя и фильтра подаётся на инвертор.
Помеховый фильтр.
Для того чтобы высокочастотные помехи, которые возникают из-за работы мощного инвертора, не попадали в электросеть, перед выпрямителем устанавливается фильтр ЭМС – электромагнитной совместимости. На английский манер аббревиатура ЭМС обозначается как EMC (ElectroMagnetic Compatibility). Если взглянуть на схему, то фильтр EMC состоит из элементов С1, C8, C15 и дросселя на кольцевом магнитопроводе T4.
Инвертор.
Схема инвертора собрана по схеме так называемого «косого моста». В нём используется два мощных ключевых транзистора. В сварочном инверторе ключевыми транзисторами могут быть как IGBT-транзисторы, так и MOSFET. Например, в моделях Telwin Tecnica 141-161 и 144-164 используются IGBT-транзисторы (HGTG20N60A4, HGTG30N60A4), а в модели Telwin Force 165 применены высоковольтные MOSFET-транзисторы (FCA47N60F). Оба ключевых транзистора устанавливаются на радиатор для отвода тепла. Фото одного из двух транзисторов MOSFET типа FCA47N60F на плате TELWIN Force 165.
Снова взглянем на принципиальную схему и найдём на ней элементы инвертора.
Постоянное напряжение коммутируется транзисторами Q5 и Q8 через обмотку импульсного трансформатора T3 с частотой гораздо большей, чем частота электросети. Частота переключений может составлять несколько десятков килогерц! По сути, создаётся переменный ток, как и в электросети, но только он имеет частоту в несколько десятков килогерц и прямоугольную форму.
Для защиты транзисторов от опасных выбросов напряжения используются демпфирующие RC-цепи R46C25, R63C30.
Для понижения напряжения используется высокочастотный трансформатор T3. С помощью транзисторов Q5, Q8 через первичную обмотку трансформатора T3 (обмотка 1-2) коммутируется напряжение, которое поступает от сетевого выпрямителя (DC+, DC-). Это то самое постоянное напряжение в 310 – 350V, которое было получено на первом этапе преобразования.
За счёт коммутирующих транзисторов постоянное напряжение преобразуется в переменное. Как известно, трансформаторы постоянный ток не преобразуют. Со вторичной обмотки трансформатора T3 (обмотка 5-6) снимается уже намного меньшее напряжение (около 60-70 вольт), но максимальный ток может достигать 120 – 130 ампер! В этом и заключается основная роль трансформатора T3. Через первичную обмотку течёт небольшой ток, но большого напряжения. Со вторичной обмотки уже снимается малое напряжение, но большой ток.
Размеры этого самого трансформатора невелики.
Его вторичная обмотка выполнена несколькими витками ленточного медного провода в изоляции. Сечение провода внушительное, да и не мудрено, ток в обмотке может достигать 130 ампер!
Далее со вторичной обмотки импульсного трансформатора переменный ток высокой частоты выпрямляется мощными диодными выпрямителями. С выхода выпрямителя (OUT+, OUT-) снимается электрический ток с нужными параметрами. Это и необходимо для проведения сварочных работ.
Выходной выпрямитель.
Выходной выпрямитель собран на базе мощных сдвоенных диодов с общим катодом (D32, D33, D34). Эти диоды обладают высоким быстродействием, т. е. они могут быстро открываться и также быстро закрываться. Время восстановления trr < 50 ns (50 наносекунд).
Это свойство очень важно, поскольку они выпрямляют переменный ток высокой частоты (десятки килогерц). Обычные выпрямительные диоды с такой задачей бы не справились – они бы просто не успевали открываться и закрываться, нагревались и выходили бы из строя. Поэтому в случае ремонта заменять диоды в выходном выпрямителе следует именно быстродействующими.
В выпрямителе используются сдвоенные диоды марок STTH6003CW, FFh40US30DN, VS-60CPH03 (с ними мы ещё встретимся ). Все эти диоды являются аналогами, рассчитаны на прямой ток 30 ампер на один диод (60 ампер на оба) и обратное напряжение 300 вольт. Устанавливаются на радиатор.
Для защиты диодов выпрямителя используется демпфирующая RC-цепочка R60C32 (см. схему силовой части).
Схема запуска и реализация «мягкого пуска».
Для питания микросхем и элементов, которые расположены на плате управления, используется интегральный стабилизатор на 15 вольт – LM7815A. Он установлен на радиатор. Напряжение питания на стабилизатор поступает с основного выпрямителя PD1 через два последовательно включенных резистора R18, R35 (6,8 кОм 5W). Эти резисторы понижают напряжение и участвуют при запуске схемы.
Напряжение +15 со стабилизатора U3 (LM7815A) поступает на управляющую схему. Далее, когда схема управления и драйвер «раскачали» мощную схему инвертора, то на дополнительной вторичной обмотке трансформатора T3 (обмотка 3-4) появляется напряжение, которое выпрямляется диодом D11.
Через диод D9 напряжение питания поступает на интегральный стабилизатор LM7815A и теперь схема «запитывает» как бы сама себя. Вот такой вот хитрый «приём».
Выпрямленное напряжение после диода D11 также служит для питания реле RL1, охлаждающего вентилятора V1 и индикаторного светодиода D10 (Verde – «Зелёный»). Резисторы R40, R41, R65, R37 гасят излишки напряжения. Для стабилизации напряжения питания вентилятора V1 (12V) применяется 5-ти ваттный стабилитрон D36 на 12V.
Реле RL1 обеспечивает плавный запуск инвертора («мягкий пуск»). Разберёмся с этим подробнее.
В момент включения сварочного аппарата начинается заряд электролитических конденсаторов. В самом начале зарядный ток очень велик и может вызвать перегрев и выход из строя диодов выпрямителя. Чтобы уберечь диодную сборку от повреждения зарядным током применяется схема ограничения заряда (или «мягкого пуска»). Взглянем на схему.
Основным элементом схемы «мягкого пуска» служит резистор R4, мощность которого 8W (8 ватт). Сопротивление резистора – 47 ом. Именно на него возложена роль ограничения зарядного тока в первые моменты после включения.
После того, как заряд конденсаторов закончился, а инвертор начал работу в штатном режиме, электромагнитного реле RL1 замыкает контакты. Контакты реле шунтируют резистор R4, и в дальнейшем он не участвует в работе схемы, так как весь ток проходит через контакты реле. Таким образом реализован плавный запуск.
На плате инвертора TELWIN Force 165 также можно найти элементы схемы «мягкого пуска». В качестве реле RL1 выступает электромагнитное реле модели Finder на рабочее напряжение 24V (параметры контактов реле – 16A 250V~).
Итак, мы узнали о том, что сварочный инвертор состоит из сетевого выпрямителя 220V, мощного инвертора на транзисторах, понижающего трансформатора и выходного выпрямителя. Это силовые части схемы. Через них протекают огромные токи. Но где же «мозги» этого устройства? Кто управляет работой инвертора?
Об этом мы узнаем из следующей части нашего повествования. Читать далее.
Главная » Мастерская » Текущая страница
Также Вам будет интересно узнать:
Инверторы, ведомые сетью
ИНВЕРТОРЫ, ВЕДОМЫЕ СЕТЬЮ
Как уже отмечалось, инвертированием называется процесс преобразования энергии постоянного тока в энергию переменного тока. Если при этом приемная часть такого преобразователя (нагрузка) не имеет других источников питания, то инвертор называется автономным. Если же инвертор преобразует энергию постоянного тока и отдает ее в сеть, где есть другие источники, то он называется инвертором, ведомым сетью (ИВС), или просто ведомым.
ИВС выполняют практически по таким же схемам, что и управляемые выпрямители. На рис. 1, а показана простейшая схема однофазного двухполупериодного ИВС. В качестве источника энергии используется обычная машина постоянного тока МПТ, которая может работать в режиме как двигателя, так и генератора.
Рис. 1. Однофазный ведомый инвертор (а) и диаграммы его работы (б-д)
Выходным звеном инвертора, работающего на сеть переменного тока, является трансформатор, параметры которого (количество обмоток и число витков) определяют значение и число фаз получаемого переменного напряжения. Для получения такого напряжения необходимо обеспечить периодический переход тока из одной обмотки в другую. Это достигается путем прерывания постоянного тока и распределения его по фазам трансформатора с помощью управляемых вентилей.
Чтобы изменить направление потока энергии, следует изменить знак мощности , развиваемой выпрямителем. Так как направление тока изменить нельзя вследствие односторонней проводимости тиристоров, то изменить знак Pd можно только изменением знака Ud, что достигается в управляемом выпрямителе увеличением угла управления .
При выпрямлении источником энергии является сеть, поэтому при () кривая тока i1, потребляемого от сети, совпадает по фазе с напряжением питания U1 (рис. 1,6). Если , то форма тока i1 близка к прямоугольной, тиристор VD1 работает в первом полупериоде, VD2 — во втором и машина работает в двигательном режиме (рис. 1, в, полярность на клеммах указана на рис. 1, а).
При работе схемы в качестве инвертора источником питания служит машина постоянного тока, причем полярность на ее клеммах — обратная (на рис. 1, а в скобках). Изменение полярности источника постоянного тока — одно из обязательных условий перехода схемы в режим инвертирования. При этом фазовый сдвиг между i1 и U1 составит 180° (рис. 1,г), а тиристоры будут работать в обратной последовательности: в первом полупериоде — VD2, во втором — VD1 (рис. 1, д).
Таким образом, тиристоры находятся в открытом состоянии при отрицательной полярности напряжений вторичных обмоток трансформатора, при этом осуществляются поочередное подключение обмоток трансформатора через дроссель к источнику постоянного тока и передача энергии в сеть.
Ранее проводивший тиристор запирается под действием обратного напряжения сети со стороны вторичных обмоток, отсюда и название инвертора — ведомый.
К ранее проводившему тиристору при отпирании очередного прикладывается обратное напряжение, равное сумме напряжений двух вторичных обмоток только в том случае, если очередной тиристор отпирается в момент, когда на подключенной к нему обмотке имеет место напряжение положительной полярности. Т. е. реальное значение угла должно быть меньше на некоторый угол , иначе говоря , или , или (рис. 2).
Рис. 2. Диаграмма работы тиристора в ИВС
Если же очередной тиристор будет отпираться при , то условие запирания ранее проводившего тиристора не будет выполнено, он останется открытым, будет создана цепь короткого замыкания источника постоянного тока через вторичные обмотки трансформатора и ИВС выйдет из строя. Такое явление называется опрокидыванием инвертора.
Таким образом, второе условие перехода схемы в режим инвертирования — протекание тока через тиристоры при отрицательном напряжении на обмотках.
Рассмотрим работу однофазного ИВС подробнее (рис. 3). В схеме предполагается , поэтому входной ток инвертора идеально сглажен.
На интервале проводит тиристор VD2, его анодный ток , равный id, протекает под действием ЭДС Ed источника постоянного тока (генератора) через вторичную обмотку трансформатора навстречу напряжению . Полуволна напряжения отрицательной полярности определяет на этом интервале напряжение Ud инвертора. По окончании интервала , т. е. с опережением на угол относительно точки , подачей управляющего сигнала отпирается тиристор VD1. Ввиду наличия индуктивностей и в анодных целях тиристоров наступает интервал коммутации — период перехода тока с VD2 на VD1, в течение которого . По окончании этого интервала VD2 заперт, VD1 открыт и . На интервале от ( — угол, в течение которого к VD2 приложено обратное напряжение для восстановления его запирающих свойств) до угла ток от генератора протекает через другую половину вторичной обмотки трансформатора и VD1. Участок напряжения (отрицательной полярности) определяет Ud инвертора на этом интервале, и т. д.
Рис. 3. Диаграмма работы однофазного ИВС
Заштрихованные участки (рис. 3, а) определяют отрицательный знак напряжения Ud, противоположный режиму выпрямления.
Кривая напряжения на тиристоре (рис. 3, в) определяется суммой напряжений на вторичных обмотках трансформатора: максимальное прямое напряжение равно , обратное — . Длительность действия обратного напряжения на тиристоре должна обеспечить надежное его запирание, т.е. . На рис. 3, г приведены кривые напряжения сети U1 и отдаваемого в сеть тока i1, амплитуда тока равна .
Так как коммутационные процессы в управляемом выпрямителе и ведомом инверторе сходны, то соотношения для периода коммутации в УВ можно использовать и в ИВС при условии подстановки . Тогда
,
т.е. .
При неизменных угле опережения и напряжении U2 для увеличения инвертируемого тока Id необходимо уменьшить разность за счет роста угла коммутации, т. е. увеличение инвертируемого тока приводит к уменьшению времени действия запирающего напряжения на выключаемом вентиле. Таким образом, критерием выбора угла является обеспечение при необходимого угла , требуемого для надежного запирания тиристора с целью исключить опрокидывания инвертора.
Тогда
, (*)
или
.
Если не учитывать активное сопротивление в цепи источника питания, то его ЭДС будет равна Ud, причем последнее имеет, как видно, отрицательную полярность, а коммутационное падение напряжения будет прибавляться к Ud .
Если принять , то
.
Отсюда
,
или ,
где .
Иначе говоря, при и замене на уравнение инвертора аналогично уравнению УВ.
На рис. 4 приведена обобщенная характеристика преобразователя, ведомого сетью, из которой видно, что в пределах угла регулирования он работает в режиме управляемого выпрямителя, а при — в режиме ИВС.
Рис. 4. Обобщенная характеристика тиристорного преобразователя
Коммутационное падение напряжения (за полупериод) можно вычислить так:
(**)
.
Так как
,
то после подстановки
.
Так как в инверторе Ed = Ud, то повышение Ed приводит к увеличению Id, т. е. увеличивается мощность, отдаваемая инвертором в сеть.
Зависимость напряжения Ed, питающего ИВС, от тока Id называется входной характеристикой инвертора. Уравнение характеристики определяется из уравнений (*) и (**):
,
.
Как видно, разница между входной характеристикой ИВС и внешней характеристикой УВ заключается в замене угла на угол и в знаке коммутационного падения напряжения.
Входные характеристики ИВС приведены на рис. 5. Из него видно, что для каждого угла регулирование с увеличением Idрастет Ed, причем при этом происходит уменьшение (времени, предоставляемого тиристорам для восстановления запирающих свойств). При достижении током некоторого значения угол становится критическим. При дальнейшем увеличении тока происходит опрокидывание тиристора.
Рис. 5. Входные характеристики ИВС
Так как с уменьшением допускаемый ток ИВС уменьшается, то на том же графике можно построить так называемую ограничительную характеристику, соответствующую предельным значениям , при которых еще не происходит опрокидывания инвертора. Уравнение этой характеристики может быть получено следующим образом:
,
отсюда
.
Подставив это выражение в уравнение входной характеристики ИВС, можно получить
Коэффициент мощности ИВС , где . При и (критический режим)
, .
Трехфазные инверторы применяются значительно чаще чем однофазные. Схема трехфазного ИВС подобна схеме Ларионова, только вместо нагрузки последовательно с дросселем включается источник постоянного тока, а выходной частью схемы служит первичная обмотка трансформатора, включенная на ведомую сеть. Характеристики и параметры трехфазного ИВС аналогичны рассмотренным.
РЕВЕРСИВНЫЕ УПРАВЛЯЕМЫЕ ВЫПРЯМИТЕЛИ
Во многих случаях в энергетических установках требуется получать в нагрузке напряжение постоянного тока различной полярности при питании ее от сети переменного тока, а часто необходимо обеспечить и возврат энергии в сеть. К таким установкам относятся в первую очередь электрические машины постоянного тока, работающие в системе электропривода грузоподъемных устройств (кранов, лебедок), а также гребные электрические установки переменно-постоянного тока с регулируемыми УВ. Для обеспечения указанных режимов применяются так называемые реверсивные УВ (РУВ), без каких-либо контактных переключателей.
Такие РУВ представляют собой два обычных, чаще всего трехфазных мостовых УВ, включаемых по одной из схем, приведенных на рис. 6.
Схема а — перекрестная, требует раздельного питания мостов от отдельных обмоток, поэтому используется реже. Схема б выполнена так, что оба УВ, включенные встречно-параллельно, получают питание от одной вторичной обмотки трансформатора или просто от сети. Реакторы L1-L4 могут быть независимыми, а могут быть выполнены попарно на общих магнитопроводах.
Рис. 6. Схемы реверсивных УВ
Различают два режима управления тиристорными группами РУВ -раздельное и совместное. При более простом, раздельном управлении тиристорные мосты работают по очереди. Например, чтобы обеспечить полярность напряжения на нагрузке, указанную на рис. 6, б, мост I работает в режиме выпрямителя, причем величина напряжения и, следовательно, частота вращения машины постоянного тока (МПТ) определяются углом регулирования (при напряжение максимально). При необходимости затормозить и остановить МПТ мост I переводится в инверторный режим (), происходит отдача энергии от МПТ, работающей в режиме генератора, в сеть, а когда МПТ останавливается и ее необходимо реверсировать, включается в работу мост II в выпрямительном режиме. После выключения одного моста перед включением другого необходимо обеспечить некоторую паузу, пока ток через тиристоры ранее работавшего моста не спадет до нуля и не произойдет надежное запирание тиристоров. Эта пауза (5 … 20 мс) приводит к некоторому уменьшению быстродействия в переходных режимах электропривода, но для МПТ большой мощности это время практически неощутимо. Для контроля спадания токов в мостах до нуля в схемах предусматриваются специальные датчики тока, сигнал с которых заводится в схему управления. Реакторы между мостами в принципе не нужны, но для исключения режимов прерывистых токов, что неблагоприятно отражается на МПТ, в цепи ее якоря должна быть достаточно большая индуктивность.
При совместном управлении сигналы на управляющие электроды подаются на тиристоры обоих мостов, один из которых работает в режиме выпрямления, второй — в режиме инвертирования. Для предотвращения появления значительных уравнительных токов необходимо, чтобы средние значения напряжений выпрямителя и инвертора были бы равны, т. е. , а для этого необходимо, чтобы
, или ,
или , т. e. .
При недоиспользуется мощность РУВ, а при возникают значительные уравнительные токи. Если в режиме выпрямления работает мост I, а в режиме инвертирования — мост II, то , или .
При изменении направления тока через нагрузку и изменении режимов работы мостов .
Для пояснения процессов пуска, торможения и реверсирования двигателя постоянного тока, питающегося от РУВ, удобно рассмотреть совмещенные внешние характеристики такого преобразователя (рис. 7).
Если необходимо обеспечить пуск МПТ в сторону, определяемую полярностью, указанной на рис. 6, б, осуществляется подача управляющих сигналов на тиристоры моста I с углом , близким к 90°. Двигатель начинает разгоняться до небольшой скорости, определяемой . Для дальнейшего увеличения частоты вращения МПТ надо увеличивать , что производится уменьшением угла моста I соответственно до значения . При этом происходит переход рабочей точки с одной внешней характеристики на другую по линиям, показанным пунктиром, наклон которых зависит от темпа пуска МПТ и величины индуктивности в цепи якоря. Чтобы не допустить слишком больших токов (больше ), необходимо ограничивать темп изменения . Если схема управления будет настроена на поддержание , то разгон двигателя будет идти практически по линии до достижения внешней характеристики УВ, соответствующей заданному углу (например, ), и далее двигатель будет работать в точке пересечения этой внешней характеристики и линии Мс=const, если в схеме управления не предусмотрена дополнительная обратная связь, обеспечивающая n=const. В этом режиме работает мост I, мост II не используется.
Рис. 7. Диаграмма работы РУВ на электропривод
При необходимости торможения двигателя угол увеличивают, например с до , что эквивалентно для моста II характеристике ; рабочая точка переходит во II квадрант, включается второй мост, отключается первый и дальнейшее торможение (с отдачей энергии в сеть) проводится изменением угла до , т. е. до полной остановки двигателя. Для получения максимальной скорости процесса торможения тормозной ток следует, регулируя угол , поддерживать на уровне, близком к . При дальнейшем изменении угла регулирования второго моста можно обеспечить пуск МПТ в обратном направлении.
Диаграмма напряжений на мостах РУВ приведена на рис. 8. Реверсивный управляемый выпрямитель с совместным управлением мостов позволяет обеспечить высокие динамические качества электропривода постоянного тока, однако у него есть и два больших недостатка — повышенные требования к схемам управления мостов для точного обеспечения равенства , а также неизбежность появления уравнительных токов между мостами. Эти токи возникают как следствие неравенства мгновенных значений напряжений и , создаваемых мостами, работающими соответственно в выпрямительном и инверторном режимах (при равенстве средних значений). Если мост I работает как выпрямитель, а мост II — как инвертор, то при имеет место разность напряжений (рис. 8, б). Уравнительный ток протекает по внутреннему контуру, образуемому открытыми тиристорами (в данный момент) и обмотками трансформатора. Так, на интервале уравнительный ток протекает через тиристоры 5 и 6 моста I и 4 и 5 моста II (расположение диодов в мостах показано на рис. трехфазного мостового УВ). Так как сопротивления этих контуров очень невелики, для ограничения уравнительного тока необходимо применять специальные меры, например включать в цепь реакторы.
Рис. 8. Диаграмма напряжений на мостах РУВ
Индуктивность реакторов рассчитывают из условия ограничения уравнительных токов до уровня . Естественно, с применением реакторов ухудшаются массогабаритные показатели РУВ, увеличиваются потери в вентилях и обмотках трансформатора, требуются дополнительные меры по охлаждению элементов схемы. Поэтому РУВ с совместным управлением следует использовать при создании быстродействующих, относительно малоинерционных приводов.
Необходимо иметь в виду, что уравнительные токи возникают и в РУВ, выполненном по перекрестной схеме, но так как частота этих токов в два раза больше, чем во встречно-параллельной схеме, то габариты реакторов соответственно меньше.
Для получения в нагрузке регулируемого напряжения постоянного тока любой полярности можно применять схему (рис. 9), включающую один трехфазный УВ с одной схемой управления, который может работать как в выпрямительном, так и в инверторном режиме, и тиристорный переключатель полярности VD7, VD10. При включении VD7 и VD10 ток по нагрузке протекает слева направо, при включении VD8 и VD9 — в обратном направлении.
Рис. 9. РУВ с тиристорным переключателем полярности
Так как в схему управления этими тиристорами можно не включать устройства фазового управления, а предусмотреть только блокировку переключения при , то все устройство получается дешевле, проще и не требует защиты от уравнительных токов. Но, как и в схеме с раздельным управлением тиристорных мостов, в этой схеме следует учесть бестоковую паузу.
Устройство сварочного инвертора: принцип работы, схема
Все чаще для сварки стали использовать не трансформаторные сварочные аппараты, а инверторные. Они не просаживают сеть, ими легче варить. Это обусловлено тем, что устройство сварочного инвертора значительно отличается от трансформаторного сварочного аппарата.
Содержание статьи
Чем сварочный инвертор лучше трансформатора
Начнем с того, что такое инверторный сварочный аппарат. Это устройство для ручной или полуавтоматической сварки, работающее от сетевого напряжения. Есть аппараты, которые подключают к сети 220 В, есть на 380 В. Вне зависимости от количества фаз, сварочный ток (который идет на электрод) постоянный. Так что варить инверторным сварочным аппаратом легче — дуга стабильна и не скачет. Кроме того, есть такие опции как «антизалипание» и защита от перегрева. Но это не все его плюсы.
Сварочный инверторный аппарат намного меньше и легче трансформаторного. Это важно, особенно, если надо таскать его по участку. Еще одно преимущество — он не «садит» сеть, не «дает» скачков напряжения.
В чем же дело, чем отличается инверторный аппарат от трансформаторного? Весь секрет в тройном преобразовании напряжения. Сначала переменное напряжение преобразуют в постоянное, а затем снова в переменное, но уже очень высокой частоты. Его затем на вторичном выпрямителе снова преобразуют в постоянный ток. Он и используется при сварке. Это и есть вкратце принцип работы сварочного инвертора.
Благодаря современной схемотехнике, качественные сварочные инверторы обладают высокой надежностью.
Как работает инверторный сварочный аппарат: блок-схема
Принципиальные схемы инверторных сварочников разных фирм отличаются, как отличается и элементная база. Но состоят все они из тех же блоков, так как принцип работы у всех одинаковый.
В первичном НЧ (низкочастотном) выпрямителе сетевое напряжение преобразуется в постоянное, которое подается на вход инвертора. Инвертор преобразует постоянное напряжение частотой 50 Гц в переменное напряжение высокой частоты (десятки кГц). Высокочастотный трансформатор понижает напряжение и увеличивает ток, который может превышать 250 А. Именно сила тока нужна при сварке. Вторичный выпрямитель преобразует переменное напряжение в постоянное, а дроссель завершает преобразование и на электрод уходит постоянный ток.
Блок-схема сварочного инверторного аппарата
Это общий принцип работы инверторного сварочного инвертора. Как видите, он называется так потому что инвертор — ключевой элемент схемы.
Инвертор — это устройство для преобразования постоянного тока в переменный с изменением величины напряжения. Обычно представляет собой генератор периодического напряжения, по форме приближённого к синусоиде, или дискретного сигнала.
Большая часть инверторных сварочных аппаратов имеет еще контроллеры и устройства поддержания заданных параметров. Выполнены они обычно на базе процессоров, хотя есть и электромеханические модели.
Для чего нужны все эти преобразования и почему инверторный сварочный аппарат такой маленький и легкий
Для чего столько ступеней преобразования? Для того чтобы получить на выходе ток в сотни ампер и не перегрузить при этом электрическую сеть. Вторая задача — получить постоянный ток, так как варить на «постоянке» проще. Дуга стабильна, ее проще контролировать.
В простейших трансформаторных сварочных аппаратах выпрямление происходило на трансформаторе и, после некоторой стабилизации (несколько конденсаторов), сразу шло на электрод. Для преобразования сетевого напряжения частотой 50 Гц трансформатор требуется большой по размеру, так как диаметр проволоки должен быть большим. И это определяло размеры самого аппарата и его вес.
Принцип работы сварочного инвертора: ступени преобразования напряжения и тока
В инверторах путем преобразований частоту увеличивают до нескольких десятков килогерц (может быть 50-80 кГц) и уже после этого преобразуют в постоянное. Высокочастотное переменное напряжение преобразуется в постоянное на трансформаторе малого размера. Он в разы меньше и легче. Именно поэтому инверторные сварочники такие компактные и легкие. Но так как ступеней преобразования много, требуется контроль и согласование работы всех блоков. Поэтому инверторные сварочные аппараты при малых размерах и весе стоят больше. Хоть, вроде, налицо экономия материалов. А дело в том, что есть еще контролеры, которые стоят немало.
Устройство сварочного инвертора: описание работы и назначение блоков на базе схемы РЕСАНТА САИ 140
У каждого производителя принципиальные схемы инверторных сварочных аппаратов разные. Мало того, даже разные линейки одного и того же производителя могут существенно отличаться. Но устройство сварочного инвертора имеет общие черты. Блоки те же. Просто собраны смогут быть по-разному. Это входной выпрямитель на базе мощного диодного моста и сглаживающих конденсаторов, инвертор — на ключевых транзисторах (тип IGBT или MOSFET) и выходной выпрямитель на базе высокочастотного понижающего трансформатора и диодного моста с выходным конденсаторным фильтром.
Принципиальная схема инверторного сварочного аппарата РЕСАНТА САИ 140
Далее рассмотрим, как работает сварочный аппарат, основываясь на схеме инверторного сварочного аппарата РЕСАНТА САИ 140. Он не лучше и не хуже остальных, просто есть его схемы.
Первичный выпрямитель и конденсаторный фильтр
Задача первичного выпрямителя — преобразовать синусоиду частотой в 50 Гц в постоянный ток. В реалии он получается не совсем постоянным, а с некоторой пульсацией, но это уже явно не синусоида. Реализуется это обычным диодным мостом, который «переворачивает» нижнюю полуволну синусоиды.
Как работает сварочный инвертор: первая ступень преобразования напряжения в Ресанта САИ 140
Сетевое напряжение через входную стабилизирующую группу попадает на конденсаторы С1 и С2. Основная задача — снятие статического напряжения на землю. Именно поэтому включать инверторную сварку крайне желательно в розетку с действующим заземлением, а не просто с имеющимся контактом.
Далее, диодный мост «переворачивает» нижнюю полуволну. На его выходе получается пульсирующее напряжение. Для сглаживания пульсаций ставят конденсаторы (в приведенной схеме это конденсатор С8 ёмкостью 1 микрофарад на напряжение 400 В ). На их выходе напряжение уже постоянное. Конденсаторы стоят с солидным запасом по напряжению — 400 Вольт и выше, так как на выходе диодного моста напряжение уже больше чем сетевое — порядка 320-350 В. А если учесть еще возможные скачки… вот и ставят с запасом — на 400 В.
И конденсаторы, и диоды при работе сильно греются. Для лучшего отвода тепла их монтируют на алюминиевые радиаторы. Часто еще делают дополнительный обдув — ставят вентилятор. Если вы хотите, чтобы сварочный аппарат прослужил долго, следите за тем, чтобы кулер был в рабочем состоянии.
Инвертор
Блок инвертора преобразует постоянное выпрямленное напряжение низкой частоты в переменное напряжение высокой частоты. Реализуется обычно на ключевых транзисторах, которые открываются и закрываются с большой частотой. Именно они формируют переменное напряжение с частотой в десятки килогерц. Управляет их переключением контроллер.
Силовые транзисторы G30N60, при помощи которых преобразуется постоянный ток в высокочастотный переменный
G30N60 — биполярный транзистор с изолированным затвором (IGBTs).
На выходе инвертора получаем не синусоиду, а практически прямоугольные импульсы. Но для дальнейшего выпрямления это не проблема. Зато частота высокая, что значит, что вторичный выпрямитель можно сделать на небольшом по размеру трансформаторе.
Выпрямление и стабилизация
Полученное высокочастотное напряжение подается на высокочастотный трансформатор. Напряжение на нем понижается, ток увеличивается. Через его первичную обмотку протекает высокое напряжение небольшой силы тока, а со вторичной снимается более низкое напряжение, но сила тока уже порядка 150-220 ампер — в зависимости от мощности и класса аппарата.
Выходное преобразование напряжения перед подачей на электрод
Для получения постоянного напряжения на выходе трансформатора стоит диодный мост. Он выдает уже практически постоянное напряжение, которое «доглаживается» выходными конденсаторами и идет на сварочный электрод. Диоды на выходном мосту стоят особые — с высокой скоростью срабатывания (не более 40-55 наносекунд). Они должны сглаживать напряжение частотой в десятки килогерц, так что скорость срабатывания должна быть очень высокой. Если в процессе ремонта возникла необходимость их замены, то надо подбирать именно с высоким быстродействием. Иначе работать аппарат не будет.
STTH6003CW — диод быстродействующий 300В, 30А, 55нс.
Остальные блоки на схеме — это как раз управление, «дополнительные опции» типа защит от перегрева и залипания электрода.
На что обратить внимание при выборе сварочного инвертора
Речь пойдет не о характеристиках, а о выборе марок и производителей. Ситуация на рынке со сварочными инверторами не лучше и не хуже, чем с остальными инструментами или бытовой техникой. Очень много товара из Поднебесной. Ценовая категория — от самого дешевого, до среднего. Есть также российские аппараты, украинские и белорусские. Они, в основном, в среднем ценовом диапазоне, хотя есть и более дорогие линейки. «Европейцев» в последние годы очень мало и цена далеко не «средняя».
Как работает сварочный инвертор — это одно. Надо еще, чтобы он был ремонтопригодным. Схемотехника может существенно различаться
Так что же выбрать? Оптимально — нормальный Китай и аппараты производства стран СНГ. И будьте осторожны. Очень много дешевых китайских подделок, которые имитируют российские, украинские или белорусские марки или даже «нормальный» товар из Поднебесной. В «фирменных» приборах заявленные параметры соответствуют реальным. И, если вы выставили ток, скажем, 130 ампер, на выходе вы получите именно 130 ампер плюс-минус пару процентов. В дешевых же поделках приходится потом «опытным» путем переписывать цифры на регуляторах. Потому что при положении регулятора 150 А, но на выходе может быть всего 90 А. В лучшем случае — 110-120 А, что явно не радует.
Ремонт и сервис
Второй момент, на который надо обратить внимание при выборе сварочного инверторного аппарата — его ремонтопригодность и доступность элементной базы. Производители разделились на два лагеря. У одних компоненты для ремонта стоят недорого, легкодоступны. Следовательно, ремонт быстрый, без особых проблем и недорого. Вторая группа производителей исходит из того, что нечего ремонтировать — покупайте новый аппарат. Элементная база подбирается особая, просто так ее не найти, приходится заказывать. Поставляет ее тот же производитель по очень высоким ценам. Так что действительно, часто получается дешевле купить новый аппарат, чем ремонтировать вышедший из строя.
Важно чтобы заявленные характеристики совпадали с реальными
Как ни странно, сварочные инверторы «второй группы» обычно работают нормально и довольно долго. Так что отзывы о работе обычно положительные. Но вот ремонт… Это проблема.
Ну, и следует обратить внимание на наличие сервисных центров в вашем регионе. И на то, на какой срок дают гарантию. Не только производители, но и сервисники. Может получиться так, что гарантия на аппарат солидная — несколько лет. А на ремонтные работы — всего месяц-два-три. Скажем, вам не повезло, ваш сварочник сломался очень быстро. Отвезли в мастерскую, они отремонтировали, а на отремонтированный аппарат дают гарантию два месяца. И все. Дальше «за свои деньги».
принцип работы и схема подключения
Содержание:
- Где применяется
- Виды трехфазных инверторов
- Принцип работы
- Схема подключения
- Различия между одно- и трехфазными инверторами
Инверторные устройства используются в самых различных областях. В большинстве случаев, это однофазные приборы, работающие по классическим схемам. Однако, возникают ситуации, когда необходимо обеспечить электроэнергией асинхронный двигатель от аккумуляторной батареи или просто получить трехфазный ток для специфических нужд. И здесь на выручку приходит трехфазный инвертор с увеличенным числом электронных управляемых ключей, преобразующий постоянный ток в трехфазный переменный с требуемыми характеристиками.
Где применяется
Область применения трехфазных инверторов достаточно большая, а в некоторых случаях без них просто невозможно обойтись. Управление электродвигателями будет гораздо эффективнее, когда используются модифицированные современные трехфазные инверторные устройства. Они включаются в общую схему с одно- и трехфазными асинхронными двигателями, коллекторными агрегатами, а также с трехфазными двигателями постоянного тока.
Для управления разными типами двигателей используются свои режимы, поддерживаемые соответствующим программным обеспечением. Это дает возможность подключать практически любые двигатели в обмотках которых имеется от 1 до 3 фаз. В виде исключения можно отметить конструкцию биполярных двухфазных шаговых двигателей, оборудованных двумя независимыми обмотками.
В состав комплектующих такого инвертора входит основная плата управления, входы и выходы питания, а также интерфейс для ввода необходимых данных и вывода текущих показаний на дисплей или табло. Довольно часто управления осуществляется с помощью компьютера. Подключение инвертора выполняется через специальный разъем, установленный на плате.
В современных инверторах управления предусмотрен демонстрационный режим, при котором поочередно запускается показ основных функций – пуска и остановки, изменения скорости и реверса. Для переключений между функциями предусмотрены 4 кнопки, расположенные на плате.
Разновидности трехфазных инверторов
По своим параметрам, характеристикам и предназначению все виды преобразователей можно условно разделить на несколько групп.
В первую очередь, они могут быть автономными или зависимыми. В первом случае постоянный ток преобразуется в переменный, где частоту определяет система управления, а характеристики выходного напряжения тесно связаны с параметрами нагрузки. Зависимые устройства выдают ток, определяемый частотой местной сети, с постоянными значениями. В автономных приборах возможны плавные изменения напряжения от нуля до наибольшей допустимой величины. Поэтому такие инверторы чаще всего используются в различных схемах.
Существует дополнительная классификация автономных инверторов в соответствии с его схемой, способами принудительной коммутации, параметрами нагрузки и источников питания. Они могут быть автономными инверторами тока – АИТ или напряжения – АИН, а также резонансными – АИР.
В соответствии с количеством токовых коммутаций, трехфазный инвертор бывает одно- или двухступенчатым. В первом случае ток нагрузки сразу поступает к тиристору, включающемуся в работу, а во втором происходит изначальное переключение нагрузки на вспомогательную цепь, и лишь потом она переходит в основную. Если в схеме используются тиристоры, рассчитанные только на одну операцию, в нее могут быть дополнительно включены узлы принудительной коммутации.
Как работает 3-х фазный инвертор
В состав силовой части трехфазного инвертора входят транзисторные ключи с маркировкой от VT1 до VT6 в количестве шести элементов и диоды обратного тока VD1–VD6, также шесть штук. Диоды соединяются в общий мост и подключаются параллельно с источником питания.
Силовая трёхфазная цепь инверторов может быть построена разными способами. При постоянной структуре цепи, подача управляющих сигналов происходит одновременно сразу к трем силовым транзисторам. Таким образом, ее структура остается неизменной. В случае использования переменной структуры, количество транзисторов для подачи управляющих сигналов нередко бывает менее трех.
Продолжительность переключений, выполняемых транзисторными ключами и частота напряжения на выходе, зависит от используемой системы управления. В интервале, включающем в себя один период, переключения на выходе транзисторов анодной и катодной групп может происходить от одного до множества раз.
Конфигурация тока на выходе получается в соответствии с характеристиками нагрузки. Если нагрузка активно-индуктивная, получается форма в виде ломаной кривой, разделенной на четыре части, расположенные на половине периода. Эффект от токовой нагрузки определяется интегрированием наиболее характерных участков токовой кривой. Необходимая форма нагрузки, в том числе и синусоидальная, получается при многократном включении и отключении управляемых вентилей в пределах одного периода.
Регулировка выходного напряжения в инверторе осуществляется при помощи широтно-импульсной модуляции – ШИМ. Сформированная модуляция в виде прямоугольника, получила название широтно-импульсного регулирования – ШИР. Такое регулирование выходного напряжения выполняется за счет изменяющейся продолжительности подключения нагрузки к источнику питания. Данная схема применяется в момент паузы между импульсами, когда происходит запирание двух одинаковых силовых транзисторов.
В случае групповых переключений в нагрузочном напряжении возникает определенная пауза. Это происходит при изменении током своего знака в тот момент, когда два транзистора начинают запираться. Если же ток к этому времени не изменит своего знака или нагрузка окажется слишком продолжительной, то формирования паузы в напряжении на выходе не получится. При использовании ШИР, структура тока и напряжения на выходе в диапазоне малых частот и напряжений, значительно ухудшается. Для того чтобы избежать этого негативного явления, ШИР приходится выполнять на действующих несущих частотах.
Схема подключения
Подключение трехфазного инвертора в качестве примера можно рассмотреть в общей связке с электродвигателем. На представленном ниже рисунке обозначен двигатель М, работающий под управлением ключей V1 – V6. Все полупроводники для более наглядного отображения представлены как обычные механические контакты. Для питания используется постоянное напряжение Ud, поступающее из выпрямителя, не отмеченного на схеме. Ключи 1, 3, 5 относятся к верхним, а три ключа 2, 4, 6 – к нижним.
Верхние и нижние ключи никогда не открываются одновременно, во избежание короткого замыкания. Схема будет нормально работать, когда нижний ключ открывается, а верхний к этому времени уже находится в закрытом состоянии. Для формирования этой паузы используются контроллеры.
Продолжительность паузы должна гарантировать, чтобы силовые транзисторы закрывались своевременно. При недостаточности этого временного промежутка, верхний и нижний ключи могут одновременно открыться на очень короткое время. Это крайне нежелательно и не должно происходить систематически, поскольку выходные транзисторы сильно нагреваются и быстро выйдут из строя. Подобная ситуация известна как сквозные токи.
Существует гальваническая связь между нижними и верхними ключами и с управляющим устройством. Подача сигнала управления выполняется через резисторы непосредственно к составному транзистору, выполняющему функции драйвера нижнего ключа. У верхних ключей отсутствует гальваническая связь с элементом управления и с общим проводником. Поэтому для более эффективного управления к верхнему составному транзистору помимо драйвера дополнительно устанавливается оптрон. Питание верхних ключей производится от отдельных выпрямителей, каждый из которых подключен к собственной обмотке трансформатора.
Различия между одно- и трехфазными инверторами
Существуют принципиальные отличия однофазного от трехфазного инвертора. В основном они связаны с их конструктивными особенностями. Это наглядно видно на примере устройств, используемых с солнечными батареями. Схема однофазного инвертора использует 1 или 2 трекера МРРТ, выполняющих слежение за максимальной отметкой мощности панели.
Далее в цепь включается инвертор, выполняющий преобразование тока и синхронизирующий его с сетью. Электроэнергия, полученная от этого инвертора, поступает непосредственно в сеть. К каждому трекеру подключается своя солнечная панель. При наличии двух трекеров можно подключить на выбор 1 или сразу 2.
Трехфазный инвертор напряжения может иметь в своей схеме от 1 до 4 трекеров, в зависимости от мощности каждого преобразователя. Они также выполняют слежение за точкой максимальной мощности и направляют постоянный ток от солнечной панели к входу инвертора. В свою очередь, преобразователь соединяется с сетевыми фазами и синхронизирует их сдвиг на все 3 фазы.
Таким образом, основное отличие между обоими устройствами заключается в разнице распределения полученной энергии. Распределение электричества трехфазным прибором осуществляется равномерно между всеми фазами. Если же для этой цели используется три однофазных инвертора, то выходная мощность каждого из них будет колебаться в соответствии с мощностью, выдаваемой солнечной панелью.
Довольно часто возникает вопрос, что выгоднее использовать, одно- или трехфазный инвертор? Решение принимается индивидуально, исходя из конкретных условий эксплуатации. Несмотря на 1 корпус вместо 3-х, он может оказаться слишком дорогим, поэтому сравнение нужно делать по тем или иным известным моделям. То же самое касается VHHN-трекеров, количества силовых ключей и других важных компонентов.
Схема работы и основные детали сварочного инвертора
Уникальные возможности инверторов и вполне понятная схема сварочного аппарата объясняют тот высокий интерес, который проявляют к ним многие пользователи.
Некоторые из них даже пытаются изготовить аппарат своими руками. Однако для того чтобы собрать сварочный аппарат в домашних условиях необходимо хотя бы приблизительно знать, что представляет собой схема инвертора.
Лишь после изучения схемного решения этого электронного прибора можно будет собрать качественный бытовой инвертор и в случае необходимости самостоятельно отремонтировать его.
Как происходит преобразование
Электрические схемы инверторных устройств от различных производителей могут отличаться небольшими деталями, однако все они работают по одному и тому же алгоритму. Основная задача встроенной электроники во всех случаях сводится к следующему:
- обеспечить выпрямление входного сетевого напряжения;
- преобразовать (инвертировать) его в импульсный сигнал относительно высокой частоты;
- понизить уровень полученного импульсного сигнала до требуемого значения и снова выпрямить его на выходе устройства.
Основная цель этой цепочки – получить постоянный ток величины, необходимой для поддержания сварочного процесса. Причём сделать это нужно так, чтобы используемые в схеме детали позволили снизить габариты и вес всего аппарата в целом.
Поскольку электронный преобразователь состоит из полупроводниковых деталей, то поставленная перед конструкторами задача решается без особых проблем. Инвертор всегда значительно меньше по размерам, чем обычный трансформаторный преобразователь тока.
Однако схема сварочного инвертора значительно сложнее, и собрать ее своими руками с нуля практически невозможно. Можно только использовать готовые части, соединив в общую конструкцию.
Ещё одним достоинством инвертора является возможность электронного регулирования амплитудного значения тока. Это позволяет расширить возможности прибора, варить металл разной толщины, в том числе сваривать достаточно тонкие детали. Причем делать это можно без механических регуляторов, заметно уступающих по надёжности своим электронным аналогам.
Пояснения к работе аппарата
Хорошо знакомые с электроникой специалисты сразу заметят, что рассмотренный принцип преобразования используется в блоках питания большинства современных электронных приборов (в компьютерах, холодильниках, телевизорах и так далее).
Основная особенность электросхем (схемных решений) инверторов – это увеличение частоты переменного сигнала за счёт его преобразования (инвертирования).
Многим неспециалистам не вполне понятно, зачем нужно дважды преобразовывать один и тот же сигнал, сначала выпрямляя его, затем превращать в переменный, а после снова выпрямлять.
Дело в том, что размеры и вес основного узла любого сварочного аппарата – его трансформатора – определяются не только мощностью, но и частотой протекающего через обмотки тока. Чем выше рабочая частота – тем более лёгким и компактным получается сам трансформатор.
Зависимость от частоты достаточно сильна; при её четырехкратном увеличении габариты трансформаторного модуля снижаются вдвое.
Поскольку типовая схема инверторных источников сварочного тока обеспечивает повышение частоты с 50 Герц до 60-80 килогерц –выигрыш в габаритах и весе может оказаться очень существенным.
В итоге получается очень лёгкий и компактный сварочный инвертор, при изготовлении которого расходуется минимум дорогих материалов (включая дефицитную медь).
Сетевой выпрямитель
Особенности работы инвертора предполагают наличие на его входе постоянного сигнала, получаемого путём выпрямления сетевого напряжения 220 Вольт. Выпрямительный модуль состоит из классического диодного мостика и нескольких конденсаторов, обеспечивающих фильтрацию получаемых после выпрямления пульсаций.
К источнику электроэнергии, обеспечивающему электрическим питанием сварочный инвертор, выпрямитель подключён через ещё одну фильтрующую цепочку, защищающую сеть от высокочастотных помех.
Большие рабочие токи выпрямителя сильно нагревают диодный мост, вследствие чего во время работы он нуждается в непрерывном охлаждении. Один из традиционных способов снижения температуры – крепление моста на специальном радиаторе с термическим предохранителем, отключающим схему при его нагреве до 90°.
После подключения резонансного сварочного инвертора к сети, зарядный ток конденсаторов увеличивается настолько, что может вызывать пробой элементов диодного мостика.
Во избежание этого каждый сварочный инвертор должен оборудоваться схемой обеспечения плавного запуска. Для этого в неё вводятся элемент коммутации (реле) и резистор, ослабляющий уровень потребляемого тока в момент включения.
После того как инверторный аппарат выходит на рабочий режим функционирования, реле своими контактами блокирует резистор, отключая его временно от схемы.
Импульсный преобразователь
На выходе выпрямительного модуля увеличенное напряжение 310 Вольт поступает на участок схемы с транзисторами. Они в сварочном инверторе выполняют функцию импульсных ключей.
Основное функциональное назначение транзисторов – обеспечение коммутации подводимого к ним напряжения с целью получения импульсного сигнала прямоугольной формы частотой в диапазоне от 60 до 80 килогерц.
Ключевые транзисторы так же, как и диодные мостики, всегда монтируются на радиаторах, обеспечивающих возможность их постоянного охлаждения. Для защиты этих элементов от перенапряжения в схеме предусмотрены специальные демпферные RC-цепочки. Работу остальных преобразовательных модулей сварочного инвертора стоит рассмотреть отдельно.
Импульсный трансформатор
Важнейшим элементом схемы любого сварочного агрегата, определяющим особенности технологического процесса сварки, является понижающий трансформатор.
В сварочных инверторах он отличается особой компактностью. Другое существенное отличие этого узла от традиционных трансформаторов – наличие ещё одной (дополнительной) выходной обмотки, предназначенной для запитывания схемы управления.
На приёмную обмотку инверторного преобразователя поступает последовательность прямоугольных импульсов величиной порядка 310 Вольт и частотой 60-80 килогерц. При этом наводимое во вторичной обмотке напряжение снижается до 60-70 Вольт (за счёт меньшего количества витков).
Одновременно с этим величина тока в выходных цепях сварочного инвертора возрастает до 110-130 Ампер, после чего ток подвергается окончательному выпрямлению.
Выходное выпрямительное устройство
Сигнал, формируемый высокочастотным трансформатором, должен быть преобразован в постоянный ток, используемый для получения сварочной дуги. Для этого необходим выходной выпрямительный узел.
Его схема построена на основе сдвоенных диодов, отличающихся высоким быстродействием и определяющих максимальный потребляемый ток всего сварочного аппарата. Эти выходные элементы также устанавливаются на охлаждающие радиаторы.
Схема запуска устройства работает так. В момент включения напряжение питания через стабилизаторный блок подаётся на модуль управления и сразу активирует его.
После этого в работу вступают ключевые транзисторы, благодаря чему во вспомогательной обмотке трансформатора начинает действовать переменное напряжение.
Затем оно выпрямляется с помощью диодного мостика и через стабилизатор начинает самостоятельно питать управляющую схему, отключая последнюю от сетевого выпрямителя сварочного инвертора.
Управляющий модуль
Управляющая схема предназначена для координации переключений всех узлов сварочного инвертора. Её основу составляет микросхема с функцией микроконтроллера, осуществляющего широтно-импульсную модуляцию входного сигнала. Основная задача этой схемы – управление переключением инверторных транзисторов, стоящих на её выходе.
Помимо этого, в состав управляющего модуля входит ряд дополнительных элементов, облегчающих процесс формирования импульсного сигнала и управления его параметрами.
Благодаря принципиально иной схеме работы, сварочные аппараты инверторного типа позволяют получать стабильную дугу. Инвертор делает сварку компактной, быстрой и удобной.
Коэффициент полезного действия при этом возрастает почти до 90%, а потребляемая мощность снижается, что приводит к экономии электроэнергии. Применение транзисторов и диодов открывает возможности для развития сварочной техники.
Появляются аппараты с дополнительными функциями, такими, как автоматическое отключение и программирование работы.