Posted on

РЕГУЛЯТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ

   Всем привет! В прошлой статье я расказывал, как сделать регулятор напряжения для постоянного тока. Сегодня мы сделаем регулятор напряжения для переменного тока 220в. Конструкция довольно-таки проста для повторения даже начинающими. Но при этом регулятор может брать на себя нагрузку даже в 1 киловатт! Для изготовления данного регулятора нам понадобится несколько компонентов:

 1. Резистор 4.7кОм млт-0.5 (пойдет даже 0.25 ватт).
 2. Перменный резистор 500кОм-1мОм, с 500ком будет регулировать довольно плавно, но только в диапазоне 220в-120в. С 1 мОм — будет регулировать более жестко, тоесть будет регулировать промежутком в 5-10вольт, но зато диапазон возрастет, возможно регулировать от 220 до 60 вольт! Резистор желательно ставить со встроеным выключателем (хотя можно обойтись и без него, просто поставив перемычку).
 3. Динистор DB3. Взять такой можно из ЛСД экономичных ламп. (Можно заменить на отечественный Kh202).
 4. Диод FR104 или 1N4007, такие диоды встречаются практически в любой импортной радиотехнике.

 5. Экономичные по току светодиоды.
 6. Симистор BT136-600B или BT138-600.
 7. Винтовые клемники. (обйтись можно и без них, просто припаяв провода к плате).
 8. Небольшой радиатор (до 0,5кВт он не нужен).
 9. Пленочный конденсатор на 400вольт, от 0.1 микрофарадп, до 0.47 микрофарад.

   Схема регулятора переменного напряжения:


   Приступим к сборке устройства. Для начало вытравим и пролудим плату. Печатная плата — её рисунок в LAY, находится в архиве. Более компактный вариант, представленный товарищем sergei — тут.

вытравим и пролудим плату регулятора ПН

   Далее припаяем симистор, и переменный резистор.

детали регулятора напряжения 220в

   Затем паяем конденастор. На фото конднесатор со стороны лужения, т.к у моего экземпляра конденсатора были слишком коротки ножки.

припаяем симистор, и переменный резистор к плате

   Паяем динистор. У динистора полярности нет, так-что вставляем его как вам угодно. Припаиваем диод, резистор, светодиод, перемычку и винтовой клемник. Выглядит оно примерно так:

РЕГУЛЯТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ - ИЗГОТОВЛЕНИЕ

   И в конце концов последний этап — это ставим на симистор радиатор.

ставим на симистор BT136 радиатор

   А вот фото готового устройства уже в корпусе.

регулятора переменного напряжения на симисторе


   Регулятор какой-нибуть дополнительно настройки не требует. Видео работы данного устройства:
   Хочу заметить, что ставить его можно не только в сеть 220В на обычные приборы и электроинструменты, но и на любой другой источник переменного тока с напряжением от 20 до 500В (ограничивается предельными параметрами радиоэлементов схемы). С вами был [PC]Boil-:D

   Форум по источникам питания

   Обсудить статью РЕГУЛЯТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ


назначение прибора, инструкция по изготовлению устройства своими руками

Регулятор напряжения 220в Регуляторы напряжения нашли широкое применение в быту и промышленности. Многим людям известно такое устройство, как диммер, позволяющий бесступенчато регулировать яркость светильников. Оно и является отличным примером регулятора напряжения 220в. Своими руками такой прибор собрать довольно просто. Безусловно, его можно приобрести в магазине, но себестоимость самодельного изделия окажется значительно ниже.

Назначение и принцип работы

С помощью регуляторов напряжения можно изменять не только яркость свечения ламп накаливания, но и скорость вращение электромоторов, температуру жала паяльника и так далее. Нередко эти устройства называют регуляторами мощности, что не совсем правильно. Устройства, предназначенные для регулирования мощности, основаны на ШИМ (широтно-импульсная модуляция) схемах.

Это позволяет получить на выходе различную частоту следования импульсов, амплитуда которых остается неизменной. Однако если параллельно нагрузке в такую схему включить вольтметр, то напряжение также будет изменяться. Дело в том, что прибор просто не успевает точно измерять амплитуду импульсов.

Принцип работы регулятора напряжения

Регуляторы напряжения чаще всего изготовлены на основе полупроводниковых деталей – тиристорах и симисторах. С их помощью изменяется длительность прохождения волны напряжения из сети в нагрузку.

Следует заметить, что регуляторы напряжения будут максимально эффективны при работе с резистивной нагрузкой, например, лампами накаливания. А вот использовать их для подключения к индуктивной нагрузке нецелесообразно. Дело в том, что показатель индуктивного электротока значительно ниже в сравнении с резистивным.

Рекомендации по изготовлению

Собрать самодельный диммер довольно просто. Для этого потребуются начальные знания в области электроники и несколько деталей.

На основе симистора

Такой прибор работает по принципу фазового смещения открывания ключа. Ниже представлена простейшая схема диммера на основе симистора:

Схема диммера на основе симистора

Структурно прибор можно разделить на два блока:

  • Силовой ключ, в роли которого используется симистор.
  • Узел создания управляющих импульсов на основе симметричного динистора.

Делитель напряжения с резисторами R1-R2С помощью резисторов R1-R2 создан делитель напряжения. Следует обратить внимание, что сопротивление R1 – переменное. Это позволяет менять напряжение в линии R2-C1. Между этими элементами включен динистор DB3. Как только показатель напряжения на конденсаторе C1 достигает значения порога открытия динистора, на ключ (симистор VS1) подается управляющий импульс.

В результате силовой ключ включается, и через него начинает проходить электроток на нагрузку. Положение регулятора определяет, в какой части фазы волны должен сработать силовой ключ.

На базе тиристора

Эти проборы также достаточно эффективны, а их схемы не отличаются высокой сложностью. Роль ключа в таком устройстве выполняет тиристор. Если внимательно изучить схему прибора, то сразу можно заметить главное отличие этой схемы от предыдущей – для каждой полуволны используется собственный ключ с управляющим динистором.

Схема на базе тиристора

Принцип работы тиристорного прибора следующий:

  • Когда через линию R5-R4-R3 проходит положительная полуволна, конденсатор C1 заряжается.
  • После достижения порога включения динистора V3 он срабатывает, и электроток поступает на ключ V1.
  • При прохождении отрицательной полуволны наблюдается аналогичная ситуация для линии R1-R2-R5, управляющего динистора V4 и ключа V2.

С помощью фазных регуляторов можно управлять не только яркостью ламп накаливания, но и другими видами нагрузок, например, количеством оборотов дрели. Однако следует помнить, что прибор на основе тиристора нельзя применять для работы со светодиодными и люминесцентными лампочками.

Тиристорный регулятор мощностиТакже в быту используются конденсаторные регуляторы. Однако в отличие от полупроводниковых приборов, они не позволяют плавно изменять напряжение. Таким образом, для самостоятельного изготовления лучше всего подходят тиристорная и симисторная схемы.

Найти все необходимые для изготовления регулятора детали не составит труда. При этом их не обязательно покупать, а можно выпаять из старого телевизора или другой радиоаппаратуры. При желании на основе выбранной схемы можно сделать печатную плату, а затем впаять в нее все элементы. Также детали можно соединить обычными проводами. Домашний мастер может выбрать тот способ, который покажется ему наиболее привлекательным.

Оба рассмотренных устройства довольно легко собрать, и для выполнения всех работ не нужно обладать серьезными знаниями в области электроники. Даже начинающий радиолюбитель сможет изготовить своими руками схему регулятора напряжения 220в. При невысокой стоимости, они практически ни в чем не уступают заводским аналогам.

Регулятор напряжения — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 августа 2019; проверки требуют 7 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 августа 2019; проверки требуют 7 правок. Блок питания «Волна-М» для бытовых электронных устройств с регулятором напряжения. СССР, 1980-е годы.

Регулятор напряжения — это устройство, позволяющее изменять величину электрического напряжения на выходе при воздействии на органы управления, либо при поступлении управляющего сигнала.

Регулятор напряжения может быть, как нестабилизированным, так и стабилизированным. Стабилизированный регулятор напряжения, кроме регулятора напряжения, содержит в себе ещё и стабилизатор напряжения. В англоязычной традиции регулятором напряжения называют стабилизатор напряжения, а тиристорный регулятор напряжения называют Voltage controller.

Используется как в составе электронной аппаратуры, так и в виде отдельного изделия.

О применении специализированных стабилизаторов напряжения на авто- и мототранспорте см. статью автомобильный генератор.

Принципиальная схема регулятора напряжения с компенсационным стабилизатором[править | править код]

Voltage stabiliser OA, IEC symbols.svg
Микросхема стабилизатора напряжения 7812 на +12 Вольт 1 Ампер[1]

Устройство подключается входным разъёмом +UIn и «массой» к выпрямителю переменного тока.
Стабилизированное напряжение на нагрузку питания RL снимается с разъёма +UOut.
Биполярный транзистор Q — регулирующий элемент стабилизатора.
Постоянное напряжение на его базу подаётся с параметрического стабилизатора Rv-Dz, состоящего из резистора Rv и стабилитрона Dz.
Микросхема стабилизатора напряжения OA — управляющий элемент.
Заданное напряжение на микросхему подаётся с делителя напряжения R1-R2-R3 и может устанавливаться переменным резистором R2.
Делитель напряжения R1-R2-R3 является также балластным резистором, поддерживающим рабочий режим транзистора Q при отключенной нагрузке RL.

Под ред. Н. И. Чистякова. Справочная книга радиолюбителя-конструктора / Серия «Массовая радиобиблиотека», выпуск 1147. — Москва: Радио и связь, 1990. — С. 306-322. — 622 с.

Мощный ШИМ регулятор своими руками


Приветствую, Самоделкины!
Совсем недавно Роману, автору YouTube канала «Open Frime TV», понадобился мощный ШИМ-регулятор. Начались поиски и проверки разных схем. В итоге он остановился на данном варианте:

Автор уже не однократно снимал ролики про шим-регуляторы, но на момент их создания не особо разбирался в схемотехнике, да и не было оборудования для того, чтобы полностью протестировать получившиеся устройства.

Теперь же у автора появился осциллограф, с помощью которого можно увидеть все косяки.

Давайте разберемся в ошибках, чтобы в дальнейшем их не допускать. Самая важная ошибка — это непонимание принципа работы полевого транзистора. Те, кто не первый год занимается электроникой знают, что для открытия полевика нужно не только напряжение, но некий ток.


Это же касается и закрытия. Если этого тока недостаточно, то транзистор будет медленнее открываться и, следовательно, сильнее греться.

Нагрев мосфетов в ключевом режиме появляется именно в моменты переключения, и чем быстрее мы будем коммутировать транзистор, тем меньше он будет нагреваться. Большинство новичков этого не знают и поэтому, в некоторых схемах, силовой транзистор довольно сильно нагревается. У автора было точно также и на тот момент ему было непонятно почему так происходит.

Думаю, все кто искал схему шим-регулятора, натыкались на вариант с микросхемой ne555 и кучей транзисторов, но стоит заглянуть в ее datasheet и мы увидим максимальный выходной ток 200 мА.


Этого тока явно недостаточно для корректной работы устройства. Как же тогда собрать отличный шим-регулятор и уменьшить его нагрев? Все очень просто, необходимо на выход управляющей микросхемы поставить драйвер, который сможет обеспечить достаточный ток для открытия и закрытия мосфетов.

На осциллограммах четко видно, как переключается транзистор без драйвера и когда он есть. Тут даже невооруженным взглядом можно увидеть преимущества драйвера.


Теперь давайте взглянем на схему устройства:

Как видим, в качестве задающий микросхемы, автор применил TL494. Почему именно ее? Да потому, что она очень популярна и легка в настройке.

Автор также пробовал собирать ШИМ на Uc3843, но там есть свои особенности, которые затрудняют сборку. Делал и на 555-ой, но больше всего приглянулась именно 494-ая. В нее можно без особых проблем добавить ограничитель тока, но это уже будете делать под ваши нужды.

Теперь пару слов про работу схемы. TL494 генерирует прямоугольные импульсы, частота которых задается с помощью вот этого конденсатора и резистора:


Потом эти импульсы усиливаются драйвером и поступают на затворы транзисторов.


У каждого транзистора на затворе свой резистор. Это сделано с целью убрать звон при закрытии.

Так как это полевые транзисторы, то при параллельном включении им не нужны токоограничивающие резисторы, что повышает КПД схемы. Также на схеме можем видеть 2 входных напряжения.

Это сделано с целью расширения пределов работы самого шим-регулятора. Если входное напряжение находится в районе 13-30В, то можно установить перемычку и питать схему одним напряжением.

Также нужно сказать пару слов про транзисторы.

IRFZ44N рассчитан на напряжение 50В.

Если вам нужно управлять более высоким напряжением, то необходимо заменить транзисторы под ваши параметры. К примеру, IRF540 рассчитаны уже на напряжение 100В.

Со схемой закончили, рассмотрим печатную плату.

Тут в глаза бросаются силовые дорожки. Они не очень большие, но все компенсируется после сборки устройства. Их придется пропаять медным проводом для повышения токопроводимости. Это будет лучшим решением, так как делать саму дорожку еще больше нету смысла, она имеет маленькое сечение и не сможет провести большой ток.

С платой тоже разобрались. Давайте ее соберем. Это не составит трудностей, деталей немного и сложность минимальная.
э


С обратной стороны пропаяли силовые дорожки. Теперь необходимо установить транзисторы на радиатор, вы же не думаете, что мы полностью избавились от нагрева.


При установке можно не использовать изолирующие подложки, так как транзисторы включены параллельно.

С таким радиатором можно коммутировать токи до 20А. При б0льших токах требуется б0льший радиатор.

Ну и в конце можно производить тесты. Подаем напряжение на схему (в данном случае оно составляет 28В) и производим включение.

Для начала подключаем 2 лампы накаливания мощностью 100Вт, рассчитанные на напряжение 36В.


Но это такое, детский сад, схема справляется на раз-два. Теперь можно взять нагрузку помощнее, к примеру, вот такую нихромовую спираль.

Как видим ток идет довольно таки большой, но схема держится молодцом. Саму плату автор собирал одному человеку для мощного двигателя постоянного тока. Пока жалоб не было, поэтому можно советовать ее к повторению. Ну а на этом все. Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Как самостоятельно сделать простой регулятор напряжения

Довольно часто необходима регулировка мощности электрического тока. К примеру, уменьшить напряжение электролампы в доме или отрегулировать температуру жала паяльника. Для этих целей хорошо подойдет регулятор напряжения. Основной его задачей является регулирование подаваемой мощности на потребителя. Этот прибор регулирует уровень звука, освещения, обороты двигателя и т.д.

regulyator_napryazheniya

regulyator_napryazheniya

Для того, чтобы задействовать регулятор, его можно приобрести в магазинах по продаже радиодеталей либо изготовить самому.

Описание регуляторов напряжения

Данный прибор предназначен для регулирования уровня исходящего сигнала, который передается на какое-либо устройство. Наиболее простым таким устройством является реостат. Это устройство имеет ползунок, благодаря которому можно механически отрегулировать подаваемую мощность. Значительным недостатком такого прибора является возможность его использования только в цепях с небольшой мощностью. Если напряжение достаточно велико, то реостат быстро перегреется и выйдет из строя.

regulyator_napryazheniya2

regulyator_napryazheniya2

Для понимания, какие элементы понадобятся для изготовления регулятора, необходимо понимать, какие могут быть разновидности данных приборов. Все они делятся по виду выходного сигнала:

  • нестабилизированные и стабилизированные;
  • аналоговые и цифровые.

regulyator_napryazheniya3

regulyator_napryazheniya3

Первые виды могут быть использованы без применения печатных плат и микросхем. Поэтому выбирая элементы для самостоятельного изготовления регулятора лучше остановить свой выбор на резисторах транзисторах либо тиристорах. А вот применение аналоговых либо цифровых печатных схем без специальных знаний в радиоэлектронике вряд ли получится.

reg1_b

reg1_b

Характеристика регулятора

Самостоятельно изготовленные регуляторы могут быть изготовлены и установлены в качестве временного либо стационарного прибора. Основными характеристиками, которыми должен обладать регулятор, являются:

  1. Возможность постепенной регулировки. Лучше всего, если на регуляторе будет специальной колесико, с помощью которого можно плавно отрегулировать разность приема и отдачи сигнала.
  2. Мощность, при которой регулятор может стабильно функционировать. Чем выше показатель силы тока, при котором он будет работать без негативных последствий для себя, тем лучше для самого прибора.
  3. Показатель максимальной мощности, которую способен выдержать регулятор в течение небольшого временного отрезка.
  4. Диапазон входящего напряжения.
  5. Тип сигнала, который может регулироваться (постоянный либо переменный ток).
  6. Управление регулятором. Оно может быть механическое (с использованием различных механизмов) либо электронное (устанавливается с помощью пультов либо программирования).

regulyator_napryazheniya4

regulyator_napryazheniya4

Что понадобится для изготовления?

Изготовить регулятор самостоятельно можно =, используя 2 возможных варианта:

  • Приобретение платы и радиоэлементов и дальнейшая их сборка;
  • Покупка радиоэлементов и самостоятельное изготовление печатной платы.

Для реализации второго варианта понадобятся: паяльник, канифоль, припой, пинцет, провода, кусачки либо пассатижи.

regulyator_napryazheniya5-1

regulyator_napryazheniya5-1

Самостоятельно можно изготовить такие типы регулятора напряжения:

  1. Простую схему – предполагает использование транзисторов, один из которых будет определять напряжение, а другой – пропускать соответствующее электричество на прибор.
  2. Симистор – регулятор, регулирующий управление мощностью нагревательными элементами;
  3. Реле напряжения – большую популярность данный вид регулятора имеет у автолюбителей. Благодаря реле, электроприборы, используемые в автомобиле, получают стабильное напряжение, при изменении показателя напряжения в сети.
  4. Блок управления питанием – его используют для подключения приборов, которые работают в сетях с напряжением 12В.

regulyator_napryazheniya6

regulyator_napryazheniya6

cxema.org — Три схемы простых регуляторов тока

В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях. 

Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.

Стабилизатор тока — неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения. 

Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта. Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться. 

Стабилизаторы тока, шунты

Первая схема отличается максимальной простотой и доступностью компонентов.  Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток. 

Простой стабилизатор тока на транзисторах, схема

Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение. Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии. Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.

Простой стабилизатор тока на транзисторахПростой стабилизатор тока на транзисторах

Резистор R1 по сути обычный делитель напряжения, которым  мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему. 

Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта — эта схема является стабилизатором тока.

Простой стабилизатор тока на lm358, схема

Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме. Операционный усилитель  сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение. Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения. 

Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне. 

Простой стабилизатор тока на lm358Простой стабилизатор тока на lm358

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.

Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока. 

Стабилизатор тока на LM317

Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов. 

Стабилизатор тока на LM317, шунтСтабилизатор тока на LM317, шунт

Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься. 

Стабилизатор тока на LM317Стабилизатор тока на LM317

Небольшое видео

Печатные платы 

 

Регулятор тока и напряжения своими руками

Содержание:

  1. Регулятор тока и напряжения
  2. Регулятор напряжения и тока схема
  3. Схема тиристорного регулятора сварочного тока
  4. Видео

Многие современные приборы имеют возможность регулировать свои параметры, в том числе значения тока и напряжения. За счет этого можно настроить любое устройство в соответствии с конкретными условиями эксплуатации. Для этих целей существует регулятор тока, выпускаемый в различных конфигурациях и конструкциях. Процесс регулировки может происходить как с постоянным, так и с переменным током.

Основными рабочими элементами регуляторов служат тиристоры, а также различные типы конденсаторов и резисторов. В высоковольтных устройствах дополнительно используются магнитные усилители. Модуляторы обеспечивают плавность регулировок, а специальные фильтры способствуют сглаживанию помех в цепи. В результате, электрический ток на выходе приобретает более высокую стабильность, чем на входе.

Регулятор тока и напряжения

Регуляторы постоянного и переменного тока имеют свои особенности и отличаются основными параметрами и характеристиками. Например, регулятор напряжения постоянного тока имеет более высокую проводимость, при минимальных потерях тепла. Основой прибора является тиристор диодного типа, обеспечивающий высокую подачу импульса за счет ускоренного преобразования напряжения. Резисторы, используемые в цепи, должны выдерживать значение сопротивления до 8 Ом. За счет этого снижаются тепловые потери, предохраняя модулятор от быстрого перегрева.

Регулятор постоянного тока может нормально функционировать при максимальной температуре 400С. Этот фактор следует обязательно учитывать в процессе эксплуатации. Полевые транзисторы располагаются следом за тиристорами, поскольку они пропускают ток лишь в одном направлении. За счет этого отрицательное сопротивление будет сохраняться на уровне, не превышающем 8 Ом.

Основным отличием регулятора переменного тока является использование в его конструкции тиристоров исключительно триодного типа. Однако полевые транзисторы применяются такие же, как и в регуляторах постоянного тока. Конденсаторы, установленные в цепь, выполняют лишь стабилизирующие функции. Фильтры высокой частоты встречаются очень редко. Все проблемы, связанные с высокими температурами, решаются установкой импульсных преобразователей, расположенных следом за модуляторами. В регуляторах переменного тока, мощность которых не превышает 5 В, применяются фильтры с низкой частотой. Управление по катоду в таких приборах выполняется путем подавления входного напряжения.

Во время регулировок в сети должна быть обеспечена плавная стабилизация тока. При высоких нагрузках схема дополняется стабилитронами обратного направления. Для их соединения между собой используются транзисторы и дроссель. Таким образом, регулятор тока на транзисторе выполняет преобразование тока быстро и без потерь.

Следует отдельно остановиться на регуляторах тока, предназначенных для активных нагрузок. В схемах этих устройств используются тиристоры триодного типа, способные пропускать сигналы в обоих направлениях. Ток анода в цепи снижается в тот период, когда понижается и предельная частота данного устройства. Частота может колебаться в пределах, установленных для каждого прибора. От этого будет зависеть и максимальное выходное напряжение. Для обеспечения такого режима используются резисторы полевого типа и обычные конденсаторы, способные выдерживать сопротивление до 9 Ом.

Очень часто в таких регуляторах применяются импульсные стабилитроны, способные преодолевать высокую амплитуду электромагнитных колебаний. Иначе, в результате быстрого роста температуры транзисторов, они сразу же придут в нерабочее состояние.

Схема регулятора напряжения и тока

Прежде чем рассматривать схему регулятора напряжения, необходимо хотя-бы в общих чертах ознакомиться с принципом его работы. В качестве примера можно взять тиристорный регулятор напряжения, широко распространенный во многих схемах.

Основной деталью таких устройств, как регулятор сварочного тока является тиристор, который считается одним из мощных полупроводниковых устройств. Лучше всего он подходит для преобразователей энергии с высокой мощностью. Управление этим прибором имеет свою специфику: он открывается импульсом тока, а закрывается при падении тока почти до нулевой отметки, то есть ниже тока удержания. В связи с этим, тиристоры преимущественно используются для работы с переменным током.

Регулировать переменное напряжение с помощью тиристоров можно разными способами. Один из них основан на пропуске или запрете целых периодов или полупериодов на выход регулятора. В другом случае тиристор включается не в начале полупериода напряжения, а с небольшой задержкой. В это время напряжение на выходе будет нулевым, соответственно мощность не будет передаваться на выход. Во второй части полупериода тиристором уже будет проводиться ток и на выходе регулятора появится напряжение.

Время задержки известно еще и как угол открытия тиристора. Если он имеет нулевое значение, все входное напряжение будет попадать на выход, а падение напряжения на открытом тиристоре будет потеряно. Когда угол начинает увеличиваться, под действием тиристорного регулятора выходное напряжение будет снижаться. Следовательно, если угол, равен 90 электрическим градусам, на выходе будет лишь половина входного напряжения, если же угол составляет 180 градусов – выходное напряжение будет нулевым.

Принципы фазового регулирования позволяют создать не только регулятор тока и напряжения для зарядного устройства, но и схемы стабилизации, регулирования, а также плавного пуска. В последнем случае напряжение повышается постепенно, от нулевой отметки до максимального значения.

На основе физических свойств тиристоров была создана классическая схема регулятора тока. В случае применения охладителей для диодов и тиристора, полученный регулятор сможет отдавать в нагрузку до 10 А. Таким образом, при напряжении 220 вольт появляется возможность регулировки напряжения на нагрузке, мощностью 2,2 кВт.

Подобные устройства состоят всего из двух силовых компонентов – тиристора и диодного моста, рассчитанных на ток 10 А и напряжение 400 В. Диодный мост осуществляет превращение переменного напряжения в однополярное пульсирующее напряжение. Фазовая регулировка полупериодов выполняется с помощью тиристора.

Для параметрического стабилизатора, ограничивающего напряжение, используется два резистора и стабилитрон. Это напряжение подается на систему управления и составляет 15 вольт. Резисторы включаются последовательно, увеличивая тем самым пробивное напряжение и рассеиваемую мощность. На основании самых простых деталей можно легко изготовить самодельные регуляторы тока, схема которых будет довольно простой. В качестве конкретного примера стоит подробнее рассмотреть тиристорный регулятор сварочного тока.

Схема тиристорного регулятора сварочного тока

Принципы дуговой сварки известны всем, кто сталкивался со сварочными работами. Для получения сварочного соединения, требуется создать электрическую дугу. Она возникает в том момент, когда напряжение подается между сварочным электродом и свариваемым материалом. Под действием тока дуги металл расплавляется, образуя между торцами своеобразную расплавленную ванну. Когда шов остывает, обе металлические детали оказываются крепко соединенными между собой.

В нашей стране частота переменного тока составляет 50 Гц, фазное напряжение питания – 220 В. В каждом сварочном трансформаторе имеется две обмотки – первичная и вторичная. Напряжение вторичной обмотки трансформатора или вторичное напряжение составляет 70 В.

Сварка может проводиться в ручном или автоматическом режиме. В домашних условиях, когда создан регулятор тока и напряжения своими руками, сварочные работы выполняются ручным способом. Автоматическая сварка используется в промышленном производстве при больших объемах работ.

Ручная сварка имеет ряд параметров, подлежащих изменениям и регулировкам. Прежде всего, это касается силы сварочного тока и напряжения дуги. Кроме того, может изменяться скорость электрода, его марка и диаметр, а также количество проходов, требующихся на один шов. В связи с этим, большое значение имеет правильный выбор параметров и поддержание их оптимальных значений в течение всего сварочного процесса. Только таким образом можно обеспечить качественное сварное соединение.

Изменение силы тока при сварке может выполняться различными способами. Наиболее простой из них заключается в установке пассивных элементов во вторичной цепи. В этом случае используется последовательное включение в сварочную цепь резистора или дросселя. В результате, сила тока и напряжение дуги изменяется за счет сопротивления и вызванного им падения напряжения. Дополнительные резисторы позволяют смягчить вольтамперные характеристики источника питания. Они изготавливаются из нихромовой проволоки диаметром 5-10 мм. Данный способ чаще всего используется, когда требуется изготовить регулятор тока. Однако такая конструкция обладает небольшим диапазоном регулировок и сложностями перестройки параметров.

Следующий способ регулировок связан с переключением количества витков трансформаторных обмоток. За счет этого происходит изменение коэффициента трансформации. Данные регуляторы просты в изготовлении и эксплуатации, достаточно всего лишь сделать отводы при намотке витков. Для коммутации применяется переключатель, способный выдерживать большие значения тока и напряжения.

Нередко регулировки осуществляются путем изменения магнитного потока трансформатора. Этот способ также применяется, когда необходимо сделать регулятор тока своими руками. В этом случае для регулировки используется подвижность обмоток, изменение зазора или ввод магнитного шунта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *