Posted on

Содержание

Последовательное соединение проводников. Видеоурок. Физика 8 Класс

Прибор, основанный на сопротивлении проводника, называется резистором. Главное свойство проводника – это наличие у него электрического сопротивления. Поэтому под словами «последовательное соединение резисторов», «последовательное соединение проводников» и «последовательное соединение сопротивлений» мы будем понимать одно и то же.

Последовательным соединением называется соединение, когда элементы идут друг за другом, чередуются. Естественно, в электрических цепях обычно используется смешанное соединение, то есть комбинация последовательного и параллельного соединений. Но на этом уроке речь пойдет именно о последовательных соединениях. Нужно научиться рассчитывать электрические цепи, то есть вычислять напряжение, силу тока в цепи, чтобы знать, какие приборы и как можно включать в цепь. Об этом и пойдет речь в дальнейшем.

Рис. 1. Последовательное соединение резисторов

На рисунке 1 представлены три резистора, которые соединены друг за другом. Это и есть так называемое «последовательное соединение». В дальнейшем мы будем рассматривать всего два резистора, которые соединены последовательно, но смысл от этого не изменится, и полученные формулы будут также справедливы для любого числа проводников, соединенных последовательно.

Рис. 2. Последовательное включение двух ламп в электрическую цепь

На рисунке 2 изображено последовательное включение двух ламп (1а и 1б). Мы заменили ими проводники, но суть от этого не поменяется, так как лампы также имеют свое сопротивление. Также в цепи присутствует амперметр (А) для измерения силы тока в цепи. Есть еще 2 важных элемента: это вольтметры  V1 и V2, которые измеряют напряжение (или падение напряжения) соответственно на лампах 1а и 1б. Еще есть источник питания (2) и ключ (3). Если ключ разомкнут, то ток в цепи не течет. Если же его замкнуть, то с помощью приборов можно измерить силу тока и напряжение в цепи. Примером такого соединения является ёлочная гирлянда, поскольку на самом деле она представляет собой последовательно соединенные лампы (рис. 3).

Рис. 3. Ёлочная гирлянда

Теперь посмотрим, что же произойдет, если замкнуть ключ. Рассмотрим схему на рис. 4, которая отличается от схемы, изображенной на рис. 2 только тем, что амперметр расположен между лампами.

Рис. 4. Включение амперметра между лампами

Амперметр изменил свое положение в цепи. Но если смотреть на его показания, то они не изменятся при перемещении амперметра в любое место на схеме последовательного соединения. Значит, можно сказать, что сила тока в лампе 1а (I1) будет равна силе тока в лампе 1б (I2) и равна общему току, протекающему в электрической цепи. То есть I= I= I. Это можно сравнить с течением реки: количество воды, протекающее за одно и то же время в разных местах этой реки, будет одинаково.

Стоит также учесть, что, хоть и вольтметры соединены параллельно с лампами, это приборы высшего качества с очень высоким сопротивлением. Значит, ток через них будет идти минимальный, и такое искажение можно не учитывать.

Теперь рассмотрим схему, когда вольтметр измеряет напряжение сразу на двух лампах (рис. 5):

 

Рис. 5. Измерение напряжения на двух лампах

На рис. 4. вольтметрами V1 и V2 измерялось напряжение на каждой из ламп 1а и 1б. На данном рисунке вольтметр V измеряет напряжение (или падение напряжения) сразу на двух лампах. Оказывается, что показания вольтметра V, можно вычислить как сумму показаний вольтметров V1 и V2. То есть общее падение напряжения на двух лампах (U) равно сумме падений напряжения на каждой лампе в отдельности (U1 и U2). Тогда U = U+ U2.

Стоит обратить внимание, что все рассуждения относительно силы тока, напряжения верны лишь при условии, что мы использовали одни и те же лампы, источники тока, вольтметры.

Завершающим звеном в исследовании последовательного соединения проводников является формула для общего сопротивления: Rобщ = R

+ R2.

До этого мы рассматривали значения силы тока, напряжения на различных участках цепи. Но исследовали мы проводники (лампы, резисторы), а их главной характеристикой является сопротивление. Обычно во всех электрических цепях пытаются определить эквивалентное (общее) сопротивление цепи, о котором мы говорили на предыдущем уроке. То есть это такое сопротивление, что можно заменить текущую цепь из последовательных проводников другим проводником, но с этим эквивалентным сопротивлением. В данном случае это сопротивление соответствует сопротивлению двух ламп, которые соединены последовательно.

Рассмотрим, как была получена формула для эквивалентного сопротивления. Для этого следует обратиться к закону Ома: . Отсюда можно получить выражение для сопротивления:

. Теперь следует вспомнить, что в случае последовательного соединения (в простейшем случае – двух ламп) общее напряжение складывалось из напряжений на отдельной лампе: U = U+ U2. Учитывая, что сила тока при последовательном соединении на всех участках цепи одинаковая, то можно разделить на нее обе части равенства:

Можно увидеть, что каждая дробь есть не что иное, как соответствующее сопротивление. Тогда R = R+ R2, где R – эквивалентное сопротивление. Значит, чтобы узнать эквивалентное сопротивление проводников, соединенных последовательно, надо сложить значения их сопротивлений. При этом общее сопротивление будет всегда больше любого из сопротивлений, включенных в такую цепь.

В заключение урока стоит отметить, что если в цепи проводников, ламп или других приборов, которые соединены последовательно, перегорит один из приборов, то цепь разомкнется. Остальные приборы также перестанут работать. Примером этому является все та же елочная гирлянда: если перегорает одна лампочка, то вся гирлянда перестает светиться. Это является основным недостатком последовательного соединения.

 

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Физика (Источник).
  2. Сверхзадача (Источник).
  3. Интернет-портал Nado5.ru (Источник).

 

Домашнее задание

  1. Стр. 111–113: вопросы № 1–4. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  2. Сила тока через лампу №1 равна 5 А. Лампа №2 соединена с ней последовательно. Какая сила тока будет проходить через лампу №2?
  3. Как получить из закона Ома выражение для сопротивления?
  4. Как связаны формулы Rобщ = R+ R2  и ? Рассмотрите проводники из одного материала и с одинаковым поперечным сечением.

interneturok.ru

Параллельное и последовательное соединение проводников — объяснение, примеры

Что было вначале — курица или яйцо?

Обычно все затрудняются ответить. А вот загадка эта в применении к электричеству решается вполне определенно.

Электричество начинается с закона Ома.

А уж если рассматривать дилемму в контексте параллельного или последовательного соединений — считая одно соединение курицей, а другое — яйцом, то сомнений вообще нет никаких.

Простейшая электрическая цепь Простейшая электрическая цепь

Потому что закон Ома — это и есть самая первоначальная электрическая цепь. И она может быть только последовательной.

Да, придумали гальванический элемент и не знали, что с ним делать, поэтому сразу придумали еще лампочку. И вот что из этого получилось. Здесь напряжение в 1,5 В немедленно потекло в качестве тока, чтобы неукоснительно выполнять закон Ома, через лампочку к задней стенке того же элемента питания. А уж внутри самой батарейки под действием волшебницы-химии заряды снова оказались в первоначальной точке своего похода. И поэтому там, где напряжение было 1,5 вольта, оно таким и остается. То есть, напряжение постоянно одно, а заряды непрерывно движутся и последовательно проходят лампочку и гальванический элемент.

И это обычно рисуют на схеме вот так:

Схема простейшей электоцепи Схема простейшей электоцепи

По закону Ома I=U/R

Тогда сопротивление лампочки (с тем током и напряжением, которые я написал) получится

R = 1/U, где R = 1 Ом 

А мощность будет выделяться  P = I * U , то есть P=2,25 Вm

В последовательной цепи, особенно на таком простом и несомненном примере, видно, что ток, который бежит по ней от начала до конца, — все время один и тот же. А если мы теперь возьмем две лампочки и сделаем так, чтобы ток пробегал сначала по одной, а потом по другой, то будет опять то же самое — ток будет и в той лампочке, и в другой снова одинаковым. Хотя другим по величине. Ток теперь испытывает сопротивление двух лампочек, но у каждой из них сопротивление как было, так и осталось, ведь оно определяется исключительно физическими свойствами самой лампочки. Новый ток вычисляем опять по закону Ома.

Схема последовательного подключения Схема последовательного подключения

Он получится равным I=U/R+R,то есть 0,75А, ровно половина того тока, который был сначала.

В этом случае току приходится преодолевать уже два сопротивления, он становится меньше. Что и видно по свечению лампочек — они теперь горят вполнакала. А общее сопротивление цепочки из двух лампочек будет равно сумме их сопротивлений. Зная арифметику, можно в отдельном случае воспользоваться и действием умножения: если последовательно соединены N одинаковых лампочек, то общее их сопротивление будет равно N, умноженное на R, где R — сопротивление одной лампочки. Логика безупречная.

Схема последовательного подключения с двумя сопротивлениями Схема последовательного подключения с двумя сопротивлениями

А мы продолжим наши опыты. Теперь сделаем нечто подобное, что мы провернули с лампочками, но только на левой стороне цепи: добавим еще один гальванический элемент, точно такой, как первый. Как видим, теперь у нас в два раза увеличилось общее напряжение, а ток стал снова 1,5 А, о чем и сигнализируют лампочки, загоревшись снова в полную силу.

Делаем вывод:

  • При последовательном соединении электрической цепи сопротивления и напряжения ее элементов суммируются, а ток на всех элементах остается неизменным.

Легко проверить, что это утверждение справедливо как для активных компонентов (гальванических элементов), так и для пассивных (лампочек, резисторов).

То есть это значит, что напряжение, измеренное на одном резисторе (оно называется падением напряжения), можно смело суммировать с напряжением, измеренным на другом резисторе, и в сумме получатся те же 3 В. А на каждом из сопротивлений оно окажется равным половине — то есть 1,5 В. И это справедливо. Два гальванических элемента вырабатывают свои напряжения, а две лампочки их потребляют. Потому что в источнике напряжения энергия химических процессов превращается в электроэнергию, принявшую вид напряжения, а в лампочках та же самая энергия из электрической превращается в тепловую и световую.

Последовательное и параллельное соединение проводников

Вернемся к первой схеме, подключим в ней еще одну лампочку, но иначе.

Теперь напряжение в точках, соединяющих две ветки, то же, что и на гальваническом элементе — 1,5 В. Но так как сопротивление у обеих лампочек тоже такое, как и было, то и ток через каждую из них пойдет 1,5 А — ток «полного накала».

Последовательное и параллельное соединение проводников Последовательное и параллельное соединение проводников

Гальванический элемент теперь питает их током одновременно, следовательно, из него вытекают сразу оба эти тока. То есть общий ток из источника напряжения будет равен 1,5 А + 1,5 А = 3,0 А.

В чем же отличие этой схемы от схемы, когда те же самые лампочки были включены последовательно? Только в накале лампочек, то есть только в токе.

Тогда ток был 0,75 А, а теперь он стал сразу 3 А.

Получается, если сравнить с первоначальной схемой, то при последовательном соединении лампочек (схема 2) току сопротивления оказывалось больше (отчего он уменьшался, и лампочки теряли светимость), а параллельное подключение оказывает МЕНЬШЕ сопротивления, хотя сопротивление лампочек осталось неизменным. В чем тут дело?

А дело в том, что мы забываем одну интересную истину, что всякая палка о двух концах.

Когда мы говорим, что резистор сопротивляется току, то как бы забываем, что он ток все-таки проводит. И теперь, когда подключили лампочки параллельно, увеличилось суммарное для них свойство проводить ток, а не сопротивляться ему. Ну и, соответственно, некую величину G, по аналогии с сопротивлением R и следовало бы назвать проводимостью. И должна она в параллельном соединении проводников суммироваться.

Ну и вот она

Закон Ома тогда будет выглядеть

I = U*G&

И в случае параллельного соединения ток I будет равен U*(G+G) = 2*U*G, что мы как раз и наблюдаем.

Замена элементов цепи общим эквивалентным элементом

Инженерам часто приходится узнавать токи и напряжения во всех частях схем. А реальные электрические схемы бывают достаточно сложными и разветвленными и могут содержать множество элементов, активно потребляющих электроэнергию и соединенных друг с другом в совершенно разных сочетаниях. Это называется расчет электрических схем. Он делается при проектировании энергоснабжения домов, квартир, организаций. При этом очень важно, какие токи и напряжения будут действовать в электрической цепи, хотя бы для того, чтобы выбрать подходящие им сечения проводов, нагрузки на всю сеть или ее части, и так далее. А уж насколько сложны бывают электронные схемы, содержащие тысячи, а то и миллионы элементов, думаю, понятно всякому.

Самое первое что, напрашивается — это воспользоваться знанием того, как ведут себя токи напряжения в таких простейших соединениях сети, как последовательное и параллельное. Делают так: вместо найденного в сети последовательного соединения двух или более активных устройств-потребителей (как наши лампочки) нарисовать один, но чтобы его сопротивление было таким же, как у обоих. Тогда картина токов и напряжений в остальной части схемы не изменится. Аналогично и с параллельным соединением: вместо них нарисовать такой элемент, ПРОВОДИМОСТЬ которого была бы такой же, как у обоих.

Теперь если схему перерисовать, заменив последовательные и параллельные соединения одним элементом, то получим схему, которая называется «схемой эквивалентного замещения».

Такую процедуру можно продолжать до тех пор, пока у нас не останется наипростейшая — которой мы в самом начале иллюстрировали закон Ома. Только вместо лампочки будет стоять одно сопротивление, которое и называют эквивалентным сопротивлением нагрузки.

Это первая задача. Она дает нам возможность по закону Ома рассчитать общий ток во всей сети, или общий ток нагрузки.

Далее обычно решают задачу обратную: идут в обратном порядке, все усложняя схему — возвращая элементы «на место» вместо эквивалентных, и рассчитывают токи во всех ветвях сети.

Вот это и есть полный расчет электрической сети.

Примеры

Пусть цепь содержит 9 активных сопротивлений. Это могут быть лампочки или что-то другое.

На ее входные клеммы подано напряжение в 60 В.

Цепь с активными сопротивлениями Цепь с активными сопротивлениями

Значения сопротивлений для всех элементов следующие:

Найти все неизвестные токи и напряжения.

Надо пойти по пути поиска параллельных и последовательных участков сети, рассчитывать эквивалентные им сопротивления и постепенно упрощать схему. Видим, что R3, R9 и R6 соединены последовательно. Тогда им эквивалентное сопротивление Rэ 3, 6, 9 будет равно их сумме Rэ 3, 6, 9= 1 + 4 + 1 Ом = 6 Ом.

Цепь с активными сопротивлениями Цепь с активными сопротивлениями

Теперь заменяем параллельный кусочек из сопротивлений R8 и Rэ 3, 6, 9, получая R э 8, 3, 6, 9. Только при параллельном соединении проводников, складывать придется проводимости.

Проводимость измеряется в единицах, называемых сименсами, обратных омам.

Если перевернуть дробь, получим сопротивление R э 8, 3, 6, 9 = 2 Ом

Совершенно так же, как в первом случае, объединяем сопротивления R2 , R э 8, 3, 6, 9 и R5, включенные последовательно, получая R э 2, 8, 3, 6, 9, 5= 1 + 2 + 1 = 4 Ом.

Цепь с активными сопротивлениями

Осталось два шага: получить сопротивление, эквивалентное двум резисторам параллельного соединения проводников R7 и R э 2, 8, 3, 6, 9, 5.

Оно равно R э 7, 2, 8, 3, 6, 9, 5 = 1/(1/4+1/4)=1/(2/4)=4/2 = 2 Ом

Цепь с активными сопротивлениями Цепь с активными сопротивлениями

На последнем шаге просуммируем все последовательно включенные сопротивления R1 , R э 7, 2, 8, 3, 6, 9, 5  и R4 и получим сопротивление, эквивалентное сопротивлению всей цепи Rэ и равное сумме этих трех сопротивлений

Rэ = R1 + R э 7, 2, 8, 3, 6, 9, 5 + R4 = 1 + 2 + 1 = 4 Ом

Ну и вспомним, в честь кого назвали единицу сопротивлений, написанную нами в последней из этих формул, и вычислим по его закону общий ток во всей цепи I

Цепь с активными сопротивлениями Цепь с активными сопротивлениямиЦепь с активными сопротивлениями Цепь с активными сопротивлениями

Теперь, двигаясь в обратном направлении, в сторону все большего усложнения сети, можно получать по закону Ома токи и напряжения во всех цепочках нашей достаточно простой схемы.

Так обычно и рассчитывают схемы электроснабжения квартир, которые состоят из параллельных и последовательных участков. Что, как правило, не годится в электронике, потому что там многое по-другому устроено, и все гораздо замысловатее. И вот такую, например, схему, когда не поймешь, параллельное это соединение проводников или последовательное, рассчитывают по законам Кирхгофа.

Цепь с активными сопротивлениями Цепь с активными сопротивлениями Похожие статьи:

domelectrik.ru

Параллельная схема: характеристики, преимущества и недостатки

В статье узнаете что такое параллельная схема соединения, как ее сделать, характеристики, сила тока в параллельной цепи, его сопротивление и мощность. А также преимущества и недостатки параллельной схемы.

Поведение схемы полностью зависит от конфигурации ее компонентов. В соответствии с конфигурацией их подключения эти цепи подразделяются на параллельные и последовательные. Этот пост раскрывает значение параллельной цепи, как создать параллельную схему, ее различные характеристики, области применения, преимущества и недостатки.

Что такое параллельная цепь

Схема называется параллельной, когда два или более компонентов подключены к одному узлу, а обе стороны компонентов подключены непосредственно к батарее или любому другому источнику. Ток в параллельной цепи имеет два или более пути прохождения через него.

Наиболее распространенным примером параллельной цепи является проводка автомобильных фар. Если бы фары были включены последовательно, то когда одна фара выходила из строя, другая также бы выключалась


Пример автомобильных фар, подключенных по параллельной цепи

Как сделать параллельную цепь

Два или более компонентов схемы соединены через общий источник напряжения для формирования параллельной цепи. На рисунке ниже показан типичный параллельный контур, в котором резисторы (R1, R2, R3, R4) соединены параллельно. Обе стороны резисторов подключены непосредственно к источнику напряжения. Параллельный путь называется ветвью, и напряжение на всех ветвях одинаково, но ток может быть разным.

принципиальная схема параллельной цепи
Принципиальная схема параллельной цепи

Характеристики параллельной цепи

Основные характеристики параллельной цепи перечислены ниже:

Сила тока в параллельной цепи

Согласно закону Ома, I = U / R. Это подразумевает, что каждый резистор в этой цепи будет потреблять ток от источника. Следовательно, общий ток, потребляемый от источника, равен сумме токов ветвления, и ток, протекающий в каждом тракте, зависит от сопротивления ветви. Тем не менее, напряжение остается неизменным и создает разность потенциалов на его клеммах. 

Общий ток (It) может быть рассчитан с использованием уравнения,

It = I1 + I2 + I3 +…. In

Где ( I1 + I2 + I3 +… In ) — токи ветвления

Давайте рассмотрим, что параллельная цепь построена с двумя резисторами (R1 и R2) с разными значениями (10 Ом и 5 Ом) соответственно. Напряжение 10V подается через резисторы , в результате тока 1А , проведенной от батареи через R1 и R2, который получен из уравнения I = U / R.

Следовательно, два тока ветвления в цепи составляют 1А и 2А, которые суммируют до 3А.

It = 1 + 2 = 3А

Сопротивления в параллельной цепи

Общее сопротивление любого количества резисторов рассчитывается по уравнению,

Уравнение сопротивления в параллельной цепи

Взаимное значение R1 = 1/R1 = 1/10 = 0,1

Взаимное от R2 = 1/R2 = 1/5 = 0,2

Сумма обратных выше = 0,3

t = 1 / 0,3 = 3,33 Ом

Мощность в параллельной цепи

Как только общий ток и приложенные значения напряжения известны, мощность может быть рассчитана с использованием уравнения P = UI . В приведенном выше примере, приложенное напряжение U = 10В и I = 3A, P = 10×3 = 30 Вт

Применение параллельной цепи

Приложения параллельных цепей включают в себя:

  • Электропроводка к точкам питания в каждом доме выполнена в форме параллельных цепей.
  • Источник питания постоянного тока в автомобильной промышленности использует параллельные цепи.
  • Аппаратное обеспечение компьютера разработано с использованием параллельных цепей.

Преимущества параллельной цепи

Преимущества параллельных цепей включают в себя:

  • Равное напряжение распределяется на каждый компонент в цепи.
  • На ток не влияет даже то, что в цепь добавлено или удалено больше компонентов (резисторов).

Недостатки параллельной цепи

Недостатки параллельных цепей перечислены ниже:

  • Дорого строить
  • Короткое замыкание может произойти случайно в параллельной проводке и может начаться пожар
  • Даже если один из компонентов неисправен, ток все равно может проходить через цепь.

meanders.ru

§ 11. Последовательное, параллельное и смешанное соединения резисторов (приемников электрической энергии)

Последовательное, параллельное и смешанное соединения резисторов. Значительное число приемников, включенных в электрическую цепь (электрические лампы, электронагревательные приборы и др.), можно рассматривать как некоторые элементы, имеющие определенное сопротивление. Это обстоятельство дает нам возможность при составлении и изучении электрических схем заменять конкретные приемники резисторами с определенными сопротивлениями. Различают следующие способы соединения резисторов (приемников электрической энергии): последовательное, параллельное и смешанное.

Рис. 25. Схемы последовательного соединения приемников

Последовательное соединение резисторов. При последовательном соединении нескольких резисторов конец первого резистора соединяют с началом второго, конец второго — с началом третьего и т. д. При таком соединении по всем элементам последовательной цепи проходит
один и тот же ток I.
Последовательное соединение приемников поясняет рис. 25, а.
.Заменяя лампы резисторами с сопротивлениями R1, R2 и R3, получим схему, показанную на рис. 25, б.
Если принять, что в источнике Ro = 0, то для трех последовательно соединенных резисторов согласно второму закону Кирхгофа можно написать:

Рис. 25. Схемы последовательного соединения приемников

E = IR1 + IR2 + IR3 = I(R1 + R2 + R3) = IRэк (19)

где Rэк = R1 + R2 + R3.
Следовательно, эквивалентное сопротивление последовательной цепи равно сумме сопротивлений всех последовательно соединенных резисторов.Так как напряжения на отдельных участках цепи согласно закону Ома: U1=IR1; U2 = IR2, U3 = IRз и в данном случае E = U, то длярассматриваемой цепи

U = U1 + U2 +U3 (20)

Следовательно, напряжение U на зажимах источника равно сумме напряжений на каждом из последовательно включенных резисторов.
Из указанных формул следует также, что напряжения распределяются между последовательно соединенными резисторами пропорционально их сопротивлениям:

U1 : U2 : U3 = R1 : R2 : R3 (21)

т. е. чем больше сопротивление какого-либо приемника в последовательной цепи, тем больше приложенное к нему напряжение.

В случае если последовательно соединяются несколько, например п, резисторов с одинаковым сопротивлением R1, эквивалентное сопротивление цепи Rэк будет в п раз больше сопротивления R1, т. е. Rэк = nR1. Напряжение U1 на каждом резисторе в этом случае в п раз меньше общего напряжения U:

U1 = U/n. (22)

При последовательном соединении приемников изменение сопротивления одного из них тотчас же влечет за собой изменение напряжения на других связанных с ним приемниках. При выключении или обрыве электрической цепи в одном из приемников и в остальных приемниках прекращается ток. Поэтому последовательное соединение приемников применяют редко — только в том случае, когда напряжение источника электрической энергии больше номинального напряжения, на которое рассчитан потребитель. Например, напряжение в электрической сети, от которой питаются вагоны метрополитена, составляет 825 В, номинальное же напряжение электрических ламп, применяемых в этих вагонах, 55 В. Поэтому в вагонах метрополитена электрические лампы включают последовательно по 15 ламп в каждой цепи.
Параллельное соединение резисторов. При параллельном соединении нескольких приемников они включаются между двумя точками электрической цепи, образуя параллельные ветви (рис. 26, а). Заменяя

Рис. 26. Схемы параллельного соединения приемников

лампы резисторами с сопротивлениями R1, R2, R3, получим схему, показанную на рис. 26, б.
При параллельном соединении ко всем резисторам приложено одинаковое напряжение U. Поэтому согласно закону Ома:

I1=U/R1; I2=U/R2; I3=U/R3.

Ток в неразветвленной части цепи согласно первому закону Кирхгофа I = I1+I2+I3, или

I = U / R1 + U / R2 + U / R3 = U (1/R1 + 1/R2 + 1/R3) = U / Rэк (23)

Следовательно, эквивалентное сопротивление рассматриваемой цепи при параллельном соединении трех резисторов определяется формулой

1/Rэк = 1/R1 + 1/R2 + 1/R3 (24)

Вводя в формулу (24) вместо значений 1/Rэк, 1/R1, 1/R2 и 1/R3 соответствующие проводимости Gэк, G1, G2 и G3, получим: эквивалентная проводимость параллельной цепи равна сумме проводимостей параллельно соединенных резисторов:

Gэк = G1+ G2 +G3 (25)

Таким образом, при увеличении числа параллельно включаемых резисторов результирующая проводимость электрической цепи увеличивается, а результирующее сопротивление уменьшается.
Из приведенных формул следует, что токи распределяются между параллельными ветвями обратно пропорционально их электрическим сопротивлениям или прямо пропорционально их проводимостям. Например, при трех ветвях

I1 : I2 : I3 = 1/R1 : 1/R2 : 1/R3 = G1 + G2 + G3 (26)

В этом отношении имеет место полная аналогия между распределением токов по отдельным ветвям и распределением потоков воды по трубам.
Приведенные формулы дают возможность определить эквивалентное сопротивление цепи для различных конкретных случаев. Например, при двух параллельно включенных резисторах результирующее сопротивление цепи

Rэк=R1R2/(R1+R2)

при трех параллельно включенных резисторах

Rэк=R1R2R3/(R1R2+R2R3+R1R3)

При параллельном соединении нескольких, например n, резисторов с одинаковым сопротивлением R1 результирующее сопротивление цепи Rэк будет в n раз меньше сопротивления R1, т.е.

Rэк = R1 / n (27)

Проходящий по каждой ветви ток I1, в этом случае будет в п раз меньше общего тока:

I1 = I / n (28)

При параллельном соединении приемников, все они находятся под одним и тем же напряжением, и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются вклю-

Рис. 27. Схемы смешанного соединения приемников

ченными. Поэтому параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение. В частности, электрические лампы и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включают параллельно.
На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Смешанное соединение резисторов. Смешанным соединением называется такое соединение, при котором часть резисторов включается последовательно, а часть — параллельно. Например, в схеме рис. 27, а имеются два последовательно включенных резистора сопротивлениями R1 и R2, параллельно им включен резистор сопротивлением Rз, а резистор сопротивлением R4 включен последовательно с группой резисторов сопротивлениями R1, R2 и R3.
Эквивалентное сопротивление цепи при смешанном соединении обычно определяют методом преобразования, при котором сложную цепь последовательными этапами преобразовывают в простейшую. Например, для схемы рис. 27, а вначале определяют эквивалентное сопротивление R12 последовательно включенных резисторов с сопротивлениями R1 и R2: R12 = R1 + R2. При этом схема рис. 27, а заменяется эквивалентной схемой рис. 27, б. Затем определяют эквивалентное сопротивление R123 параллельно включенных сопротивлений и R3 по формуле

R123=R12R3/(R12+R3)=(R1+R2)R3/(R1+R2+R3).

При этом схема рис. 27, б заменяется эквивалентной схемой рис. 27, в. После этого находят эквивалентное сопротивление всей цепи суммированием сопротивления R123 и последовательно включенного с ним сопротивления R4:

Rэк = R123 + R4 = (R1 + R2) R3 / (R1 + R2 + R3) + R4

Последовательное, параллельное и смешанное соединения широко применяют для изменения сопротивления пусковых реостатов при пуске э. п. с. постоянного тока.

Рис. 25. Схемы последовательного соединения приемников

electrono.ru

Соединение резисторов. Типы соединений и формулы расчёта общего сопротивления резисторов.

Как правильно соединять резисторы?

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Последовательное соединение резисторов.

В жизни последовательное соединение резисторов имеет вид:

Последовательное соединение резисторов
Последовательно соединённые резисторы серии МЛТ

Принципиальная схема последовательного соединения выглядит так:

Схема последовательного соединения резисторов

На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.

Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.

Формула для расчёта общего сопротивления резисторов

Общее номинальное сопротивление составного резистора обозначено как Rобщ.

Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2, R3,…RN.

Применяя последовательное соединение, стоит помнить одно простое правило:

Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.

Что это значит?

Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом. Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом. Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.

Параллельное соединение резисторов.

Можно соединять резисторы и параллельно:

Параллельное соединение резисторов
Два резистора МЛТ-2, соединённых параллельно

Принципиальная схема параллельного соединения выглядит следующим образом:

Схема параллельного соединения резисторов

Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:

Формула для расчёта сопротивления при параллельном соединении

Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:

Формула для расчёта при параллельном соединении двух резисторов

Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.

Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.

Это правило исходит из простой формулы для расчёта общего сопротивления параллельной цепи, состоящей из резисторов одного номинала. Она очень проста. Нужно разделить номинальное сопротивление одного из резисторов на общее их количество:

Формула для расчёта сопротивления при параллельном соединении одинаковых резисторов

Здесь R1 – номинальное сопротивление резистора. N – количество резисторов с одинаковым номинальным сопротивлением.

Ознакомившись с приведёнными формулами, вы скажите, что все они справедливы для расчёта ёмкости параллельно и последовательно соединённых конденсаторов. Да, только в отношении конденсаторов всё действует с точностью до «наоборот”. Узнать подробнее о соединении конденсаторов можно здесь.

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.

Измерение сопротивления
Замер общего сопротивления при последовательном соединении

Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.

Измерение сопротивления
Измерение сопротивления при параллельном соединении

Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:

При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте тут.

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Последовательное и параллельное подключение

Одним из китов, на котором держатся многие понятия в электронике, является понятие последовательного и параллельного подключения проводников. Знать основные отличия указанных типов подключения просто необходимо. Без этого нельзя понять и прочитать ни одной схемы.

Основные принципы

Электрический ток движется по проводнику от источника к потребителю (нагрузке). Чаще всего в качестве проводника выбирается медный кабель. Связано это с требованием, которое предъявляется к проводнику: он должен легко высвобождать электроны.

Независимо от способа подключения, электрический ток двигается от плюса к минусу. Именно в этом направлении убывает потенциал. При этом стоит помнить, что провод, по котору идет ток, также обладает сопротивлением. Но его значение очень мало. Именно поэтому им пренебрегают. Сопротивление проводника принимают равным нулю. В том случае, если проводник обладает сопротивлением, его принято называть резистором.

Параллельное подключение

В данном случае элементы, входящие в цепь, объединены между собой двумя узлами. С другими узлами у них связей нет. Участки цепи с таким подключением принято называть ветвями. Схема параллельного подключения представлена на рисунке ниже.

схема параллельного подключения

Если говорить более понятным языком, то в данном случае все проводники одним концом соединены в одном узле, а вторым – во втором. Это приводит к тому, что электрический ток разделяется на все элементы. Благодаря этому увеличивается проводимость всей цепи.

При подключении проводников в цепь данным способом напряжение каждого из них будет одинаково. А вот сила тока всей цепи будет определяться как сумма токов, протекающих по всем элементам. С учетом закона Ома путем нехитрых математических расчетов получается интересная закономерность: величина, обратная общему сопротивлению всей цепи, определяется как сумма величин, обратных сопротивлениям каждого отдельного элемента. При этом учитываются только элементы, подключенные параллельно.

параллельное подключение

Последовательное подключение

В данном случае все элементы цепи соединены таким образом, что они не образуют ни одного узла. При данном способе подключения имеется один существенный недостаток. Он заключается в том, что при выходе из строя одного из проводников все последующие элементы работать не смогут. Ярким примером такой ситуации является обычная гирлянда. Если в ней перегорает одна из лампочек, то вся гирлянда перестает работать.

Последовательное подключение элементов отличается тем, что сила тока во всех проводниках равна. Что касается напряжения цепи, то оно равно сумме напряжения отдельных элементов.

В данной схеме проводники включаются в цепь поочередно. А это значит, что сопротивление всей цепи будет складываться из отдельных сопротивлений, характерных для каждого элемента. То есть общее сопротивление цепи равно сумме сопротивлений всех проводников. Эту же зависимость можно вывести и математическим способом, используя закон Ома.

последовательное подключение

Смешанные схемы

Бывают ситуации, когда на одной схеме можно увидеть одновременно последовательное и параллельное подключение элементов. В таком случае говорят о смешанном соединении. Расчет подобных схем проводится отдельно для каждой из группы проводников.

Так, чтобы определить общее сопротивление, необходимо сложить сопротивление элементов, подключенных параллельно, и сопротивление элементов с последовательным подключением. При этом последовательное подключение является доминантным. То есть его рассчитывают в первую очередь. И только после этого определяют сопротивление элементов с параллельным подключением.

Подключение светодиодов

Зная основы двух типов подключения элементов в цепи, можно понять принцип создания схем различных электроприборов. Рассмотрим пример. Схема подключения светодиодов во многом зависит от напряжения источника тока.

схема подключения светодиодов

При небольшом напряжении сети (до 5 В) светодиоды подключают последовательно. Снизить уровень электромагнитных помех в данном случае поможет конденсатор проходного типа и линейные резисторы. Проводимость светодиодов увеличивают за счет использования системных модуляторов.

При напряжении сети 12 В может использоваться и последовательное, и параллельное подключение сети. В случае последовательного подключения используют импульсные блоки питания. Если собирается цепь из трех светодиодов, то можно обойтись без усилителя. Но если цепь будет включать большее количество элементов, то усилитель необходим.

Во втором случае, то есть при параллельном подключении, необходимо использование двух открытых резисторов и усилителя (с пропускной способностью выше 3 А). Причем первый резистор устанавливается перед усилителем, а второй – после.

При высоком напряжении сети (220 В) прибегают к последовательному подключению. При этом дополнительно используют операционные усилители и понижающие блоки питания.

fb.ru

Последовательное и параллельное соединение резисторов

 Внимание покупателей подшипников

Уважаемые покупатели, отправляйте ваши вопросы и заявки по приобретению  подшипников и комплектующих на почту или звоните сейчас:

     +7(499)403 39 91  

   

  Доставка подшипников  по РФ  и зарубежью.

  Каталог подшипников на сайте themechanic.ru

 

 

Внимание покупателей подшипников

Уважаемые покупатели, отправляйте ваши вопросы и заявки по приобретению подшипников и комплектующих на почту или звоните сейчас:
tel:+7 (495) 646 00 12
[email protected]
Доставка подшипников по РФ и зарубежью.
Каталог подшипников на сайте

Внимание покупателей подшипников

Уважаемые покупатели, отправляйте ваши вопросы и заявки по приобретению подшипников и комплектующих на почту или звоните сейчас:
tel:+7 (495) 646 00 12
[email protected]
Доставка подшипников по РФ и зарубежью.
Каталог подшипников на сайте

Последовательное и параллельное соединение резисторов в схемах являются самыми распространенными, также — это база для расчета более сложных схем.

Последовательное подключение

Начнем с последовательного соединения. По этой схеме каждый резистор подключается с другим только в одной точке, их может быть в цепи 2, 3 и больше.

Рис. Последовательное подключение.
Обозначение:

Обозначим сопротивления: R1, R2, R3 и напряжение источника в цепи Uц. При подключении источника питания в ней начнет протекать ток Iц. В цепи с последовательным соединением ток протекает по всем резисторам один за другим. Поскольку ток течет через все резисторы их сопротивления и ток суммируется, Iц = I1+I2+I3, Rц = R1 +R2 + R3, чем больше отдельно взятое сопротивление, тем тяжелее электронам преодолевать участок цепи. Мощность резисторов при последовательном и параллельном соединении рассчитывается по разным формулам. В последовательных цепях — складываем, в параллельных — это обратно пропорциональная величина.

Параллельное соединение

Рис. Параллельное подключение.

Данный вид подключения характерен тем, что все элементы цепи соединяется выводами в одной точке друг другу, т.е. точка входа и выхода всех нагрузок сходятся в одну точку (или еще одно обозначение на схемах — //). Электроток, двигаясь по проводнику, дойдя до общего соединения делится на количество имеющихся веток. Если представить движение воды в трубе, то можно сказать, что вода двигающиеся по одной трубе, равномерно перетекает в несколько отводов, подсоединенных к ней. В нашем случае заряженные электроны, двигающиеся по проводнику, также растекаются на количества предложенных веток в узле.
Более наглядно это можно представить в виде формул:
1. Каждый вид соединения находится под одинаковым напряжением:
U = U1 = U2;
2. Суммарная сила тока равняется суммарному значению тока каждого участка
I = I1 + I2;
3. Сопротивление цепи равно сумме величина обратных сопротивлению участка:
1/R = 1/R1 + 17R2 + . . . + 1/Rn;
4. Сила тока пропорциональна сопротивлению каждого участка
I1/I2=R2/R1.
Далее рассмотрим схему как работает не только последовательное параллельное, но и смешанное соединение резисторов.

Смешанное подключение

Рис. Смешанное подключение резисторов

В электрических схемах используются не только типовые схемы, но и смешанное, созданное из критерий определенных требований. Чаще всего в схемах встречается третий вариант, представляющий набор из элементарных типов схем. В смешанных участках учитываются не только элементы, но и направления движения тока.
При вычислении мощности резисторов смешанного подключения используются формулы для параллельного и последовательного соединения резисторов, формула также является составной.

Основные законы электротехники, наиболее часто используемые для расчетов

Рассмотрим основные законы электротехники и свойства последовательного и параллельного соединения резисторов для участка цепи

Закон Ома

Напряжение находится по закону Ома по формуле I=U/R — чем больше сопротивление, тем меньше ток. Напряжение можно найти из этой же формулы. U=R*I, ток умножается на сопротивление. Запишем эту формулу для каждого участка U1=R1· I1, Un=Rn · In.

Законы Кирхгофа

Первый закон

Ещё один очень важный закон — это закон Кирхгофа. Для участка цепи постоянного тока их два.

Рис. иллюстрация к пояснению действия первого закона Кирхгофа.

Первый закон имеет формулировку: Сумма всех токов, входящих в узел и выходящих из него равна нулю.
Если посмотреть на схему, I1 — это ток, который заходит в узел, I2 и I3 — это электроны, которые вытекают из него.
Применяя формулировку первого закона можно записать формулу по-другому:
I1-I2+I3=0. В этой формуле знаки плюс имеют значения, которые прибывают в узел, минус, который отходит от него.

Второй закон Кирхгофа.
Рис. иллюстрация к пояснению действия второго закона Кирхгофа.

Если к цепи с включенными сопротивлениями подключен один источник ЭДС (батарея питания) тогда всё понятно, можно обойтись законом Ома. А, если, источников несколько и схема с различным схемным расположением элементов, тогда вступает в силу второй закон, который гласит: сумма токов всех источников питания для замкнутого контура, равна сумме падений напряжения на всех сопротивлениях участка в этом контуре.
E1- Е2 = — UR1 — UR2 или E1 = Е2 — UR1 — UR2.

Параллельное и последовательное соединение резисторов,  решение задач

Алгоритм расчёта смешанных подключений находится в тех же правилах, что и в элементарных схемах расчета последовательного и параллельного соединения резисторов. Ничего нового нет: нужно правильно разбить предложенную схему на пригодные для расчета участки. Участки, с элементами, подключены поочередно либо параллельно.

Рис. Порядок замещения при расчете сложных позиций более простыми.

Для решения задачи на последовательное и параллельное соединение резисторов необходимо правильно оценить цепи элементов. Рассмотрим схему №1 на рис.
На схеме присутствует параллельная и последовательная часть соединения элементов. Для расчета очень важно аккуратно, шаг за шагом упрощать цепи и не брать сразу всю схему (рис.1). Как же правильно определить параллельное и последовательное соединение резисторов?

Для примера расчета возьмем резисторы R3, R4, которые подключены параллельно. Эквивалентный резистор этих элементов, будет равенRэ. = 1/R34 =1/R3 + 1/R4, после преобразования формулы и приведения к одному знаменателю получим R34 = R3 · R4 / (R3 + R4). Э. = 1/3+1/4 /(3+4) =1,7 Ом.

Далее видно, что приведённая эквивалентное R эк и R6 соединены последовательно, чтобы узнать сопротивление их необходимо сложить, тогда общее сопротивление будет равно R346 = R34 + R6, тогда Rэк346 = 1,7 + 6 = 7, 7 Ом.
Заменяем на схеме одним общим элементом, теперь, позиция упрощается еще больше (рис 3).

Теперь образовалась ситуация — включение трех элементов в //. Как вычисляется такое соединение нам уже известно, 1/ R23465 = 1/ R2 +1/R346 + 1/R5 после вычисления правой части получаем 0,82 Ом. После окончательного вычисления получаем R23465 = 2,1 Ом. Здесь следует обратить внимание, что общее сопротивление получилось меньше самого меньшего из трех.

Заменяем эти сопротивление одним эквивалентным R23465. В конечном итоге все выглядит уже намного проще. Rц = Rэк + R1+ R2. R об. = R ц = 1,21 +7+1 =9,21 Ом.
Из приведенного алгоритма расчёта видно, как из сложной схемы путем простого математического вычисления и применения правил сокращения резисторов участок становится простой и понятной.

Схема с подключением сопротивлений «треугольником»
Рис. Расчетная схема соединения резисторов в треугольник.

Иногда некоторые затруднения возникают при разборе схемы соединения в треугольник.

Рассмотрим на примере рисунка расчет резисторов по этому подключению.
Из схемы видно, что R1 и R2 соединены последовательно Rэ12 будет соединяться R3 последовательно.

Затем Rэ123 соединяется с сопротивлением R4, R5 в последовательную цепь. Затем все это объединяется с Rэ в //.

Проведем несложные вычисления учитывая, что
R1, R2, R4, R5 равняется 1 Ом. R3, R7 — 2 Ом.
RЭ1,2 = R1+R2 = 1+1=2 Ом.

Вычисляем параллельное подключение: Rэ 12 с R3. Rэ1,3 = (Rэ12*R3) /(Rэ12+R3) = (2*2) /(2+2) = 1Ом.

Далее мы видим последовательное: RЭ123 + R4 + R5 = 1+1+1 = 3 Ом.
И последнее — Rэ123 4 5 с R6 — параллельное.

Общее сопротивление цепи Rц = Rоб = (RЭ1,2,3,4,5 *R6) /(RЭ1,2,3,4,5+R6) = (3 * 2) / (3+2) = 1,2 Ом. Как видно, что расчет подобного варианта также не сложный.

Расчет последовательного и параллельного подключения резисторов онлайн

Подсчитать значение мощность и сопротивлений подставляя их в формулы можно только в учебных целях, или, когда объемы не очень большие. Наиболее практичный вариант расчета является онлайн калькуляторы, которые расположены на многочисленных интернет ресурсах. Для расчёта любой сложности нужно правильно определить тип соединения резисторов последовательное или параллельное и внести данные для расчета в поля калькулятора.

Также такая форма расчета подойдет и для проверки результатов решения учебных задач.

Последовательное и параллельное соединение резисторов и конденсаторов

Электрические цепи состоят не только из резисторов, в них применяется большое количество различных деталей, например, конденсатор, которые подключаются в последовательное, // и смешанное соединение.

Рис. Замещения последовательно включенных элементов.

Определение этому элементу можно дать следующее: Конденсатор — это совокупность проводящих тел служащий для накопления электрического заряда.
Элементарный конденсатор имеет две пластины, форма этих пластин может быть различной: сферической, круглой, цилиндрической, прямоугольной — по форме пластин разделяется и тип конденсатора.

Важное свойство. Одно из важных свойств конденсатора: если заряжается одна пластина конденсатора, то благодаря явлению электростатической индукции заряжается и вторая половина, но с противоположным знаком.

Устройство конденсатора

Плоский конденсатор состоит из двух плоских пластин отстоящих друг от друга на маленькое расстояние. У конденсатора к двум пластинам припаивается вывод всего их получается два.

Типовые схемы подключения конденсаторов

Рассмотрим различные виды подключения конденсатора.

Последовательное

Первый вид — это последовательное соединение.
Предположим, что емкость этих конденсаторов будут равны. Тогда заряды также будут равны: q1=q2=q3, как и в примере с резисторами,  сложный тип позиций с конденсатором можно упростить, заменив несколько элементов одним. У элементов соединенных друг за другом, общая емкость будет обратно пропорциональная всем имеющимся элементам. То есть: Rэк будет равняться 1/С1 + 1/С2 +…. 1/Сn/
Напряжение складывается,  U эк = U1 + U2+ … Un.

Параллельное

Второй тип подключения конденсаторов — это соединение в паралель

Рис. Схема замещения элементов, включенных в параллель.

Соответственно эти конденсаторов обозначены C1, C2, … Cn заряды: Q1, Q2, … Qn и напряжение: U1, U2, … Un.

У элементов в // емкость складывается Сэ = C1 + C2 + … C n.
Напряжение Un на каждом конденсаторе будет равно напряжению на эквивалентном
Uэ = U1 = U2 =… = Un — это особенность параллельного подсоединения всех элементов цепи.

Емкость будет складываться из суммы отдельных элементов Сэ =С1 + С2 + … Сп.

Рис. Расчетные позиции элементов при различном включении.

Простая позиция, которая не требует преобразования №1 — последовательное подключение. По известной формуле для этих поз. запишем 1/Сэ = 1/С1 +1/С2 +1/С3,  подставив формулу значения, которые даны в условии задачи, получим 1/Сэ = 1/С1 +1/С2 +1/С3 = 59 мФ.

Не требует преобразования и 2 схема: емкость общего конденсатора будет равняться сумме конденсаторов которые включены в параллельной цепи: Сэ =С1 +С2 +С3
Сэ = 100 + 200 + 500 = 800 мФ.

Рассмотрев рис. №3 видно, что пара конденсаторов включена параллельно и один последовательно. Алгоритм преобразования таких цепей мы уже рассматривали, поэтому: сразу же находим емкость конденсатора Сэ соединения: Сэ = С1+С2 = 200+500 = 700 мФ.

Теперь находим общие эквивалентную емкость элементов с последовательным подключением 1/Сэ = 1/С2,3 +1/ С1 = 89 мф.
Практическая задача решена.

themechanic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *