Схема инфракрасного датчика движения — как правильно подключить инфракрасный датчик движения
Как подключить инфракрасный датчик движения?
Весь технический прогресс направлен на то, чтобы сделать жизнь человека более комфортной. Датчики движения – не исключение. Реагируя на присутствие человека, эти небольшие приборы получили широкое распространение не так давно. Еще 5–10 лет назад такие специальные устройства использовались только для охраны крупных производственных объектов.
Сейчас же датчики используют в качестве функционального дополнения к общей сети электричества дома или квартиры. Такое решение позволяет отлично экономить электроэнергию, используя ее только при необходимости. С покупкой такого устройства особых проблем не возникает, но схема подключения инфракрасного датчика движения может загнать в тупик. Поэтому перед тем, как самостоятельно подключать датчик, стоит тщательно продумать все моменты.
Все, что нужно знать о датчике движения
Датчики движения реагируют на перемещение объектов, которые испускают тепло, что заметно в инфракрасном спектре. Радиус обнаружения в каждой модели разнится, так что этот момент нужно уточнить на этапе покупки. Основным компонентом любого датчика является фотоэлемент, который непосредственно обеспечивает распознавание тепла и движения, обнаруживая тепловые лучи.
Устройство состоит из:
- пластикового корпуса
- фотоэлемента, покрытого фокусирующей линзой
- электронных элементов
Примечательно то, что при построении схемы подключения этого устройства необходимо учитывать окружающие объекты.
Чтобы распознавание движения не было затруднено, стоит помнить:
- электроприборы излучают тепло
- нельзя ставить датчик напротив источника света
- магниты могут искажать работу устройств
Наиболее важной характеристикой любого датчика движения является угол обхвата. Соответственно, чем он больше, тем разнообразнее может быть схема подключения. От этого же напрямую зависит, сможет ли датчик покрыть весь объем помещения, где он размещен.
Схема подключения датчика движения
Первое, что стоит сделать перед тем, как подключать датчик, внимательно ознакомиться с инструкцией. Это обязательно по той причине, что по своей конструкции каждое устройство отличается, а значит, отдельные моменты подключения могут не совпадать. Стоит тщательно изучить схему расположения клеммных элементов, при этом имея четкое представление о функциях каждой клеммы.
Особое внимание стоит уделить соблюдению фазировки при подключении датчика движения.
Схема действий тут проста:
- ознакомиться с расположением фазы, нуля и заземления (информация содержится в инструкции)
- проверить то же самое в устанавливаемом помещении
Здесь следует быть максимально точным, ведь ошибка может привести к короткому замыканию и, как следствие, пожару.
Дальше – проще. Подключение датчика движения – действие само по себе несложное, в чем-то похожее на работу со стандартным выключателем. В обоих этих случаях схема подключения представляет собой разрыв электрической цепи, где устанавливаемое устройство смыкает или размыкает цепь. При необходимости постоянной работы источника света вне зависимости от движения, в состав схемы можно включить еще и стандартный выключатель, подсоединив его параллельно к самому датчику. В итоге получится, что:
- когда свет выключен – контроль у датчика
- когда включен – у выключателя
Несколько датчиков движения: схема подключения
Вследствие особенностей конкретного помещения, одного датчика может не хватить для покрытия всей площади. К примеру, изгибы или другие интерьерные элементы. В таком случае подключить сразу несколько датчиков – не проблема. Схема для подобных ситуаций предполагает параллельное друг к другу подключение устройств.
Расположение фазы с нулем оказывается отдельно и без всяких прерываний подается на каждое устройство, а лишь затем идет подсоединение к освещению. В тоге замыкание цепи происходит по срабатыванию одного из датчиков движения, а на источник света подается напряжение. Само собой, что подключать надо датчики так, чтобы каждый из них покрывал максимальную площадь и вместе они обеспечивали покрытие всего помещения. Стоит избегать слепых пятен, хотя бы в ключевых точках.
Также принцип работы такой схемы подключения заключается в системе по принципу параллельных выключателей. Это означает, что, пока один из датчиков улавливает движение и замыкает цепь, второй – бездействует. Но как только человек появляется в радиусе действия второго устройства, первое заканчивает свою работу. При этом освещение буде непрерывным, даже без мигания.
Обязательно стоит помнить, что:
- устройство направлять фотоэлементом в сторону потенциального движения
- нужно регулярно протирать датчик, так как грязь скажется на его работе
- необходимо учитывать все объекты в радиусе действия
Если установка датчиков, их монтаж или выбор при покупке вызывают затруднения, обращайтесь в сервис Юду. Специалисты всегда охотно помогут, выполнят работу профессионально и недорого.
оптическая схема и блок обработки сигналов
Просмотров: 5 589
Среди большого многообразия охранных извещателей, инфракрасный датчик движения является самым распространенным устройством. Доступная цена и эффективность, вот качества, обеспечившие им популярность. А все благодаря тому, что в начале девятнадцатого века обнаружили инфракрасное излучение.
Оно находится за границей видимого красного света в диапазоне 0,74-2000 мкм. Оптические свойства веществ сильно различаются и зависят от типа облучения. Небольшой слой воды является непрозрачным для ИК излучения. Инфракрасное излучение солнца составляет 50 процентов всей излучаемой энергии.
Область применения
Инфракрасные датчики движения для охраны применяются давно. Они фиксировали перемещения теплых объектов в помещениях, и передавали сигнал тревоги на контрольную панель. Их стали совмещать с видеокамерами и фотоаппаратами. При нарушении происходила фиксация происшествия. Потом область применения расширилась. Зоологи стали применять в фотоловушках для контроля исследуемых животных.
Больше всего ИК датчики применяются в системе умный дом, где играют роль сенсора присутствия. При попадании теплокровного объекта в область действия устройства, оно включает освещение в помещении или на улице. Экономится электричество и облегчается жизнь людям.
Инфракрасный датчик движения для освещения
В системах контроля доступа извещатели движения управляют открыванием и закрыванием дверей общественных сооружений. По расчетам экспертов рынок ИК сенсоров будет расти на 20% ежегодно ближайшие 3-5 лет.
Принцип работы ИК датчика движения
Работа ИК извещателя заключается в контроле инфракрасного излучения определенной области, сравнении его с фоновым уровнем, и по результатам анализа выдачи сообщения.
ИК датчики движения для охраны используют активные и пассивные виды сенсоров. Первые для контроля используют собственный передатчик, облучающие все в зоне действия устройства. Приемник получает отраженную часть ИК излучения и по его характеристикам определяет, было нарушение зоны охраны или нет. Активные датчики бывают комбинированного типа, когда принимающие и передающие блоки разделены, это извещатели контролирующие периметр объекта. Имеют большую дальность действия по сравнению с пассивными устройствами.
Зона действия инфракрасного датчика
Пассивный инфракрасный датчик движения не имеет излучателя, он реагирует на изменение окружающего ИК излучения. В общем случае, извещатель имеет два чувствительных элемента, способных фиксировать инфракрасное излучение. Перед сенсорами устанавливается линза Френеля, разбивающая пространство на несколько десятков зон.
Маленькая линза собирает излучение с конкретного участка пространства и посылает на свой чувствительный элемент. Соседняя линза, контролирующая смежный участок посылает поток излучения на второй сенсор. Излучения соседних участков примерно одинаковы. При нарушении баланса, превышении какого-то порогового значения, прибор извещает контрольную панель о нарушении зоны охраны.
Схема ИК датчика
Каждый производитель имеет уникальную принципиальную схему ИК извещателя, но функционально они примерно одинаковы.
Устройство инфракрасного датчика
ИК датчик имеет оптическую систему, пирочувствительный элемент, блок обработки сигналов.
Оптическая система
Рабочая область современных датчиков движения весьма разнообразна благодаря различным формам оптической системы. От устройства расходятся лучи в радиальном направлении в различных плоскостях.
Так как извещатель имеет сдвоенный сенсор, то все лучи раздваиваются.
Сенсор инфракрасного датчика
Оптическая система ориентируется таким образом, что будет контролировать только одну плоскость или несколько плоскостей на разных уровнях. Может контролировать пространство вкруговую или по лучу.
При построении оптики ИК-датчиков часто используются линзы Френеля, представляющих множество призматических фасеток на выпуклой пластиковой чашке. Каждая линза собирает ИК поток со своего участка пространства и отправляет на ПИР элемент.
Конструкция оптической системы такова, что избирательность по всем линзам одинакова. Чтобы защититься от собственного тепла элементов, насекомых в устройстве устанавливается герметичная камера. Редко используется зеркальная оптика. Это значительно повышает дальность действия устройства и цену прибора.
Пирочувствительный элемент
Роль сенсора в ИК датчике играет пироэлектрический преобразователь на чувствительных полупроводниковых элементах. Он состоит из двух сенсоров. На каждый из них от двух соседних лучей поступает поток излучения. При одинаковом равномерном фоне сенсор молчит. При возникновении дисбаланса, в одной зоне появляется дополнительный источник тепла, а в другой нет, сенсор срабатывает.
Для повышения надежности и уменьшения ложных срабатываний в последнее время стали применять счетверенные ПИР элементы. Это увеличило чувствительность и помехозащищенность прибора. Но уменьшило расстояние уверенного распознавания нарушителя. Для решения этого приходится использовать прецизионную оптику.
Блок обработки сигналов
Главной задачей блока является надежное распознавание человека на фоне помех.
Они бывают самые разнообразные:
- солнечное излучение;
- искусственные ИК источники;
- кондиционеры и холодильники;
- животные;
- конвекция воздуха;
- электромагнитные помехи;
- вибрация.
Блок обработки для анализа использует амплитуду, форму и длительность выходного сигнала пироэлектрического преобразователя. Воздействие нарушителя вызывает симметричный двухполярный сигнал. Помехи выдают несимметричные значения на обрабатывающий модуль. В простейшем варианте сравнивается амплитуда сигнала с пороговым значением.
Распознавание животных инфракрасным датчиком
При превышении порога извещатель сообщает об этом, подавая определенный сигнал на контрольную панель. В более сложных датчиках измеряется длительность превышения порога, количество этих превышений. Для повышения помехозащищенности прибора используется автоматическая термокомпенсация. Она обеспечивает постоянную чувствительность во всем диапазоне температур.
Обработка сигнала осуществляется аналоговыми и цифровыми устройствами. В новейших устройствах начали применять цифровые алгоритмы обработки сигнала, что позволило улучшить избирательность прибора.
Эффективность использования ИК извещателя в охранной сигнализации
От правильности выбора вида сенсора, расположения на объекте охраны во многом зависит его эффективность. Пассивные ИК датчики движения уличные и внутреннего применения реагируют на перемещения теплых по сравнению с фоном объектов при определенных скоростях перемещения. При маленькой скорости движения, изменения потоков инфракрасного излучения в соседних секторах настолько незначительны, что он воспринимается, как фоновый дрейф, и не реагирует на нарушение зоны охраны.
Если нарушитель облачится в защитный костюм с отличной теплоизоляцией, то ИК датчик движения не отреагирует, не будет нарушения баланса излучения в соседних зонах. Человек сольется с фоновым излучением.
Нарушитель двигается вдоль лучей извещателя движения с малой скоростью, в этом случае он нередко молчит.
Схема работы инфракрасного датчика движения
Изменения потоков оказываются недостаточными для срабатывания устройства. Особенно свойственно извещателям с функцией защиты от животных. В них уменьшают чувствительность, чтобы избежать реакции на появления домашних питомцев.
Важно правильно установить инфракрасный датчик. Требуется по конфигурации здания применять устройство типа «шторка», следует так и делать. Производитель рекомендует монтаж прибора на определенной высоте, надо соблюсти и это.
Для повышения эффективности работы инфракрасных датчиков их применяют совместно с сенсорами, работающими на других принципах.
Обычно, дополнительно придается радиоволновой извещатель с высокой чувствительностью, что снижает процент ложных срабатываний и повышает надежность охранной сигнализации. При защите окон от проникновения дополнительно устанавливается ультразвуковой извещатель, реагирующий на разбитие стекла.
Заключение
Постепенно ИК датчики усложняются, повышается их чувствительность, улучшается избирательность. Сенсоры находят широкое распространение в системах «умный дом», видеонаблюдения, контроль доступа. Совместное использование с различными устройствами повысило потребительские свойства датчиков. Им уготована долгая жизнь.
Видео: Датчик движения, принцип работы
Схема правильного подключения инфракрасного датчика движения для освещения
Инфракрасным датчиком движения называется электронное изделие, позволяющее обнаружить присутствие и передвижение человека или животного. Датчик дает возможность подключать через себя электрическое питание устройств освещения и другой подобной аппаратуры. Обычно инфракрасный датчик движения предназначен для включения систем освещения, однако его можно применять и для других целей.
Основные виды датчиков движения
Датчики по месту монтажа можно разделить на такие виды:
- периметрические устройства, которые используются для освещения улицы;
- внутренние устройства, которые применяются для освещения различных помещений;
- периферийные устройства, которые еще можно назвать универсальными.
Датчики по принципу работы делятся на такие категории:
- ультразвуковые устройства, которые реагируют на небольшое изменение звуковых волн разной частоты;
- микроволновые изделия, которые испускают радиоволны высокой частоты;
- инфракрасные изделия, которые срабатывают при изменении теплового излучения;
- активные изделия, которые оборудованы передатчиком и приемником различного вида излучения;
- пассивные изделия, в которых не предусмотрен передатчика сигнала.
Датчики по типу срабатывания можно разделить на такие категории:
- тепловые устройства, которые реагируют на колебания температуры в определенном месте;
- звуковые устройства, которые срабатывают при небольших колебаниях воздуха от импульсов звука;
- колебательные устройства, которые срабатывают от перемены окружающей среды или от изменения магнитного поля при передвижении человека.
Датчики движения по своему устройству принято делить на такие типы:
- однопозиционные изделия, которые оборудованы передатчиком и приемником сигнала;
- двухпозиционные изделия, в которых приемник и передатчик сигнала находятся в разных корпусах;
- многопозиционные изделия, аппаратура которых включает в себя несколько устройств с приемниками и передатчиками.
Датчики движения по виду монтажа можно разделить на такие типы:
- многофункциональные изделия используют для определения передвижения и степени освещенности в различных помещениях;
- комнатные изделия применяют для мониторинга и систем управления светом в комнате;
- наружные изделия используют для измерения уровня внешнего освещения;
- накладные изделия изготовлены для монтажа на стену;
- потолочные изделия ставят в подвесной потолок;
- врезные изделия применяют для обнаружения передвижения в комнатах и офисах.
Схема подключения датчика движения для освещения
Подсоединить инфракрасный датчик движения довольно легко, потому что электрическая схема работает только на замыкание и размыкание цепи. Когда необходима постоянная работа системы освещения при абсолютном отсутствии любого перемещения, то в электрическую цепь необходимо включить обычный выключатель, который подключается параллельно инфракрасному устройству движения.
Из-за этого при включении выключателя свет будет загораться по другой схеме в обход изделия, потому что при отключенном переключателе контролировать состояние системы освещения будет инфракрасный датчик движения.
Как подсоединить несколько инфракрасных датчиков движения
Довольно часто получается так, что своеобразная форма комнаты физически не позволяет контролировать всю площадь одним изделием. К примеру, в сильно изогнутой комнате, если устанавливать одно устройство, то оно не будет работать, когда человек передвигается за изгибом. Тогда стоит применить схему подсоединения устройств, в которой несколько изделий подключаются параллельно.
Иначе говоря, нулевой провод идет отдельно и непрерывно, подается на каждое изделие, а потом подключают все клеммы к светильнику. В таком случае срабатывание любого устройства приведет к замыканию электрической цепи и подаче напряжения на лампу. При подобном подключении необходимо знать, что все датчики стоит подсоединить к одной фазе, а иначе между фазами может произойти короткое замыкание. А также различные условия и технические особенности комнаты тоже имеют большое влияние на тип подсоединения инфракрасных датчиков движения.
Выполнять монтаж датчика нужно так, чтобы он имел большой угол обзора на предполагаемые области передвижения. А также необходимо не допустить, чтобы детали интерьера, двери или окна экранировали сигнал устройства. Все изделия обладают максимально допустимым значением мощности, которая составляет от 500 до 1000 ватт. Этот показатель сильно ограничивает их использование в условиях больших нагрузок. Когда есть необходимость в подсоединении через датчик движения многих мощных источников света, то оптимальным решением можно считать использование специального магнитного пускателя.
При приобретении инфракрасного датчика движения, в комплекте обязана находиться подробная инструкция по эксплуатации, подсоединению и настройке. Дополнительно подобная схема всегда присутствует на корпусе самого изделия. Под крышкой устройства движения располагается специальная колодка, а также подсоединенные к ней несколько разноцветных проводов, которые выходят наружу корпуса. Подсоединение кабеля выполняется при помощи разнообразных зажимов. Когда для подключения применяют многожильный провод, то стоит использовать специализированные наконечники для втулок.
Как подключить датчик движения к лампочке
Электрический ток на инфракрасный датчик движения приходит от питающей сети по нескольким проводникам. Это фазный провод и нулевой. После того как фазный провод вышел из устройства, он попадает на один из выводов светильника. Другой вывод светильника присоединен к нулевому проводнику. Когда начинается передвижение в области контроля изделия, то сразу замыкается контакт специального реле, что приводит к появлению фазы на лампочке и включается освещение. Так как специализированная колодка для подсоединения снабжена винтовыми зажимами, то кабель к датчику движения присоединяют при помощи специальных наконечников.
Необходимо понимать, что подсоединение фазного провода нужно выполнять лишь по принципиальной схеме, которая должна быть в руководстве по эксплуатации. После подсоединения кабеля необходимо надеть крышку и начать следующую стадию работы, которая заключается в подключении проводов в распределительной коробке. В ней находится 7 проводов, 2 от светильника, 3 от инфракрасного датчика и 2 от сети питания. В кабеле питания фазный провод покрашен в красный цвет, а ноль окрашен в синий.
У кабеля, который подсоединен к изделию, белый проводник является фазой, зеленый провод считается нулевым, а красный проводник необходимо подключить к питающей сети. Все проводники стоит присоединять по определенным правилам. Фазу питающего кабеля нужно соединить с фазным проводником датчика движения. Потом подключают нулевой проводник от питающего кабеля, а далее, нулевой провод от устройства и нулевой проводник от светильника.
Провод от инфракрасного движения красного цвета и коричневый проводник от светильника необходимо соединить вместе. После этого подключение можно считать оконченным, потому что изделие подсоединено к светильнику. Далее, подается электрическое напряжение, датчик движения срабатывает при передвижении, замыкает цепь и включает освещение.
Как подсоединить датчик движения к выключателю
Чтобы определенное время освещение не выключалось, вне зависимости от степени освещения или передвижения человека, стоит использовать схему подсоединения изделия с выключателем. Для этого необходимо подключить простой выключатель в схему, параллельно инфракрасному датчику.
С помощью подобного подсоединения есть возможность при включенном выключателе держать в замкнутом состоянии цепь светильника в течение продолжительного времени. Когда управление светом необходимо отдать датчику, то просто стоит выключить выключатель.
Как настроить датчик для управления светом
Настройка инфракрасного датчика является наиболее важной работой при монтаже изделия. Все устройства, которые способны управлять светильниками, имеют дополнительные настройки. С их помощью можно добиться качественной работы изделия. Подобные настройки имеют вид небольших приборов, предназначенных для регулирования. Прежде всего, это:
- установка времени отключения TIME;
- регулировка степени освещения LUX;
- установка уровня восприимчивости к определенному виду излучения SENS.
Настройку включения от степени освещения используют для правильной работы датчика в светлое время. Изделие сработает при небольшом уровне освещения при сравнении с наименьшим значением. Таким образом, устройство не будет срабатывать при большом уровне освещения при сравнении с выставленным порогом.
С помощью подстройки времени есть возможность устанавливать время, в которое свет будет работать с того момента, как стало обнаружено передвижение. Рабочий интервал времени можно выставить от 1 до 650 секунд.
Настройка восприимчивости перед срабатыванием датчика является следующей полезной функцией. Осуществлять регулировку восприимчивости к срабатыванию в зависимости от площади и дальности человека можно с помощью специального регулятора. Реакция изделия напрямую зависит от степени установленной чувствительности. Когда осуществляется большое количество включений изделия, то восприимчивость необходимо понизить, а выставить яркость освещенности инфракрасных волн, на которые и будет реагировать аппаратура.
Как необходимо правильно устанавливать датчик движения
В зоне видимости устройства, который ставится на улице, не должны быть предметы, излучающие свет или тепловую энергию. Не нужно монтировать датчик движения возле больших деревьев, которые способны помешать качественному выявлению передвижения. Необходимо постараться свести к минимуму вероятное воздействие различных видов излучений, которые могут привести к ложному срабатыванию изделия.
Устройство стоит настраивать непосредственно на то место, где выявление передвижения обязано служить поводом для включения света. Нужно держать изделие в идеальной чистоте, потому что грязь плохо влияет на качество работы датчика и области его действия.
Инфракрасный датчик движения (Zelo-модуль) [Амперка / Вики]
Видеообзор
Принцип работы
Каждый теплокровный объект является источником теплового излучения. Длина волны теплового излучения зависит от температуры и находится в инфракрасной части спектра. ИК излучение невидимо для глаза, но улавливается пироэлектрическими датчиками.
В радиусе видимости датчика полная тишина. Каждый чувствительный элемент PIR-сенсора получает постоянную дозу излучения. Следовательно выдаваемое напряжение равноценно.
В области видимости появляется человек. Персонаж первым делом попадает в зону обозрения первого элемента, на котором появляется положительный электрический импульс.
Человек движется и пересекает второй элемент, который генерирует отрицательный импульс.
Разнонаправленные импульсы регистрируются электронной схемой модуля, которая фиксирует перемещение объекта. В результате на выходе модуля генерируется положительный импульс.
Примеры работы
Простой датчик движения
Инфракрасный датчик может работать даже без микроконтроллера. Соберите простой детектор движения объекта.
Что вам понадобится?
Схема устройства
При появлении объекта в зоне видимости датчика, лампочка загорится.
Используйте инфракрасный датчик движения как одно из зёрен в своём умном доме. Тут уже не обойтись без Arduino, Raspberry Pi или Iskra JS.
Пример для Arduino
Подключим датчик движения к Arduino Uno через Troyka Shield к 4
цифровому пину.
Схема устройства
Код программы
Выведем в Serial-порт текущее состояние датчика с обновлением каждые 100 миллисекунд.
- motionState.ino
// пин инфракрасного датчика движения #define MOTION_PIN 4 void setup() { // открываем монитор Serial-порта Serial.begin(9600); // настраиваем пин в режим входа pinMode(MOTION_PIN, INPUT); } void loop() { // считываем состояние пина int motionState = digitalRead(MOTION_PIN); // выводим в Serial-порт Serial.println(motionState); delay(100); }
После прошивки платы, вы увидите бегущие нули. А как только появится живой объект на горизонте — нули сменятся на единицы.
Пример для Iskra JS
Скоммутируем PIR-сенсор к Iskra JS через Troyka Shield к 4
цифровому пину.
Схема устройства
Код программы
Зафиксируем движение объекта с помощью Espruino и языка JavaScript.
- motionDetect.js
// наблюдаем за датчиком движения setWatch(function() { // если датчик зафиксировал движение // печатаем об этом в консоль print("Movement detected"); }, P4, { // функция вызывается многократно repeat: true, // фиксация восходящего фронта edge: "rising" });
В результате вы увидите сообщение в консоле, при обнаружении живого объекта в зоне видимости сенсора.
Пример для Raspberry Pi
Поймаем живой объект одноплатником Raspberry Pi. Подключите сенсор движения к 4
пину Raspberry. Для избежания макеток и проводов используйте плату расширения Troyka Cap.
Схема устройства
Код программы
- motionState.py
# библиотека для работы с методами языка Wiring (Arduino) import wiringpi as wp # инициализация WiringPi wp.wiringPiSetup() # пин 4 в режим входа wp.pinMode(4, 0) while (True): # считываем состояние с датчика движения motionState = wp.digitalRead(4) # печатаем результат в консоль print(motionState); # ждём 100 мс wp.delay(100)
После запуска скрипта вы увидите текущие показатели сенсора. Пока движения нет — в консоле выводятся нули, при обнаружении живого объекта — единицы.
Элементы платы
Пироэлектрический сенсор с линзой Френеля
Модуль выполнен на пироэлектрическом сенсоре RD-624 в металлическом герметичном корпусе. Внутри компонента расположено два чувствительных элемента, которые смотрят на внешний мир через прямоугольное окно, которое пропускает инфракрасное излучение.
На пироэлектрический сенсор одевается Линза Френеля, которая концентрируют излучение, значительно расширяя диапазон чувствительности датчика.
Микросхема управления
Мозгом сенсора является микросхема BISS0001. Чип считывает и обрабатывает сигналы с PIR-сенсора. В итоге на выходе модуля бинарный цифровой. Есть движение — единица, нет — ноль.
Выбор режима работы
Режим работы модуля задается перемычкой . Есть два режима — режим H и режим L. На фото выше в модуле установлен режим H.
Режим H — в этом режиме при срабатывании датчика несколько раз подряд на его выходе (на OUT) остается высокий логический уровень.
Режим L — в этом режиме на выходе при каждом срабатывании датчика появляется отдельный импульс.
Регулировка режимов работы
На модуле расположено три потенциометра отвечающие за подстройку режима работы:
T.on
— регулировка длительности сигнала при обнаружении движения объекта. Время на которое сенсор будет выдавать гарантированно высокий уровень при детектировании объекта. Диапазон длительности: от одной секунды до пяти минут.T.off
— регулировка длительности игнорирования движения при повтором срабатывании датчика. Время на которое сенсор не будет реагировать на движущий объект при циклическом срабатывании датчика. Временной диапазон: от нуля до пяти секунд.SENS
— регулировка чувствительности сенсора.
Световой индикатор
Индикаторный светодиод дублирующий выходной сигнал с датчика движения. При высоком уровне сигнала с модуля — светодиод горит, при низком — не горит.
Датчик освещённости
Датчик освещённости на фоторезисторе GL5528, подкорректирует чувствительность модуля на солнечный свет. Это удобно при необходимости отключение работы сенсора в дневное время суток.
Troyka-контакты
На модуле выведена группа Troyka-контактов:
Сигнальный (S) — цифровой выход сенсора. Используется для передачи текущего состояния модуля. Подключите к цифровому пину микроконтроллера.
Питание (V) — соедините с рабочим напряжением микроконтроллера.
Земля (G) — соедините с землёй микроконтроллера.
Принципиальная и монтажная схемы
Габаритный чертёж
Характеристики
Напряжение питания: 3.3–5 В
Расстояние наблюдения: 7 м
Угол обзора: 110°
Длительность сигнала при обнаружении движения (Ton): от 1 секунды до 5 минут
Длительность игнорирования движения при повтором срабатывании (Toff): до 5 секунд
Ресурсы
Датчик движения HC-SR501 и его применение
В борьбе за срок жизни ламп накаливания на лестничной площадке испробовал достаточно большое количество схем их защиты. Это были и простые диоды и схемы плавного включения, и аккустические датчики. Не все зарекомендовали себя с положительной стороны.Зайдя на сайт Aliexpress, наткнулся на пироэлектрический датчик HC-SR501. При цене менее одного доллара, датчик обладает рядом положительных качеств, а именно: питание от 5 до 20 вольт, зона обнаружения движения от 3 до 7 метров, задержка выключения от 5 (на практике, хотя расчетное время по формуле Tx – минимум 2,5 секунды) до 300 секунд. Ток потребления в дежурном режиме
Ток потребления в рабочем режиме
Внешне датчик выглядит следующим образом:
Кроме описанных выше характеристик существует еще один параметр – время восстановления датчика или время блокировки замера, т.е. время от момента выключения датчика до следующего его включения. Данный параметр не имеет регулировки и обусловлен значениями RC цепочки состоящей из R9,C7. Имел дело с 7-ю такими датчиками и время восстановления было от 3 до 6 секунд. Рассчитывается этот параметр по формуле ниже схемы (Ti). Таким образом, поигравшись со значениями этой цепочки можно данный датчик движения превратить в датчик присутствия или что-то близкое к этому, т.е. добиться таких значений цепочки, что высокий уровень на выходе пропадать практически не будет при условии нахождения в зоне действия датчика теплого тела).
Одним словом, счет это устройство наиболее приемлемым для освещения лестничной площадки, где не так часто ходят люди и постоянное свечение лампы ни к чему.
На фото ниже обозначены точки подключения общего провода (GND), выход сигнала о срабатывании (Output) и шины питания (+Power ). На плате установлены два переменных сопротивления: один регулирует зону срабатывания (Sensitivity Adjust), другой задержку выключения (Time Delay Adjust).
Кроме того, имеется джампер для переключения режимов H и L.
В режиме L датчик, зафиксировав движение, выдает на выход сигнал высокого уровня. Не зависимо от того, есть в зоне обнаружения дальнейшее движение или нет, через установленное время задержки (например, 30 секунд), сигнал на выходе будет отключен.
В режиме Н сигнал на выходе исчезнет только после времени истечения задержки от момента последней фиксации движения в зоне обнаружения. Т.е., прошли через зону движения — он выключится через 30 секунд, находитесь и двигаетесь в зоне обнаружения 10 минут и выходите из нее — он выключится через 30 секунд. Пока вы ДВИГАЕТЕСЬ в зоне обнаружения – датчик не выключится.
Изучив даташит, набросал следующую схему:
Функционально устройство состоит из трех узлов:
1) самого датчика HC-SR501;
2) исполнительного устройства, состоящего из резистора R3, транзистора VT1, диода D1 и реле Р1, где R3 и VT1 служат связующим звеном между датчиком и реле. Без них нагрузочная способность датчика столь низка, что напрямую можно подключить лишь светодиод;
3) безтрансформаторного блока питания, где R1 необходим для снижения пускового тока (зачастую им можно пренебречь), конденсатор С1 с номиналом от 0,47 – 0,68 мкф с рабочим напряжением минимум 250 вольт обеспечивает на выходе ток до 0,05А, R2 необходим для разрядки конденсатора С1 после отключения устройства от сети. Для чего диодный мост всем известно. Фильтрующий конденсатор следует выбирать с рабочим напряжением не менее 25 вольт. Ну, и наконец стабилитрон устанавливает напряжение на выходе блока питания на уровне 12 вольт. Выбор стабилитрона именно на 12 вольт обусловлен с одной стороны диапазоном питания датчика от 3 до 20 вольт, с другой рабочим напряжением реле – 12 вольт.
Тразистор структуры NPN – 2N3094, ВС547, КТ3102, КТ815, КТ817 и т.д. и т.п.
Реле с практически любым сопротивлением катушки, напряжением коммутации 250 вольт и током 3 ампера, что даст возможность безболезненно коммутировать нагрузку мощностью в несколько сот ват.
На выходе получилось нижеследующее:
Корпусом для устройства послужил обрезок кабельного канала. Боковые стенки просто заклеил белым скотчем, оставив щель для вентиляции на торцах.
После установки и подачи напряжения питания 220 вольт, датчик в течении 20-30 секунд калибруется, после чего полностью готов к работе.
Джампер выставлен в режим Н, время задержки выключения установил 5 секунд.
Кроме всего описанного у датчика есть еще две «скрытые» возможности — предусмотрены места для установки температурного и фотоэлемента, что даст возможность срабатывания по достижению определенной температуры и темного времени суток. Такой апгрейд за ненадобностью не делал, но кому-то может понадобиться.
За небольшие деньги удалось получить надежное и весьма полезное устройство, работой которого весьма доволен и нареканий не имею…
Файл платы (версия №2 — подключается 220В и лампа) по ссылке
cloud.mail.ru/public/AijR/Fvp9w9GQE