Posted on

Драйверы для светодиодных лампочек.

Небольшая лабораторка на тему «какой драйвер лучше?» Электронный или на конденсаторах в роли балласта? Думаю, что у каждого есть своя ниша. Постараюсь рассмотреть все плюсы и минусы и тех и других схем. Напомню формулу расчёта балластных драйверов. Может кому интересно?

Свой обзор построю по простому принципу. Сначала рассмотрю драйверы на конденсаторах в роли балласта. Затем посмотрю на их электронных собратьев. Ну а в конце сравнительный вывод.
А теперь перейдём к делу.
Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная). Почему усовершенствованная? Эта схема подойдёт к любой дешёвой китайской лампочке. Отличие будет только в номиналах радиодеталей и отсутствии некоторых сопротивлений (в целях экономии).

Бывают лампочки с отсутствующим С2 (очень редко, но бывает). В таких лампочках коэффициент пульсаций 100%. Очень редко ставят R4. Хотя сопротивление R4 просто необходимо. Оно будет вместо предохранителя, а также смягчит пусковой ток. Если в схеме отсутствует, лучше поставить. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды (для самодельщиков), можно рассчитать его ёмкость по формуле (1).

Эту формулу я писАл много раз. Повторюсь.
Формула (2) позволяет сделать обратное. С её помощью можно посчитать ток через светодиоды, а затем и мощность лампочки, не имея Ваттметра. Для расчётов мощности нам ещё необходимо знать падение напряжения на светодиодах. Можно вольтметром измерить, можно просто посчитать (без вольтметра). Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но очень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 — 30В и т.д.). Всё просто. Бывает, что схемы собраны из светодиодов в несколько параллелей. Тогда надо будет учитывать количество светодиодов только в одной параллели.
Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Рассчитаем лампочку на 100мА. Будет запас по мощности. По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2).
(220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети (это первый минус драйвера), от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. При помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек (уже упоминал). Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения. Чем больше превышает, тем болезненнее реагирует (это дружеский совет). Тем более, за этими пределами формула работает неточно. Точно уже не рассчитать.
Вот появился очень большой плюс у этих драйверов. Мощность лампочки можно подгонять под нужный результат подбором ёмкости С1 (как самодельных, так и уже купленных). Но тут же появился и второй минус. Схема не имеет гальванической развязки с сетью. Если ткнуть в любое место включенной лампочки отвёрткой-индикатором, она покажет наличие фазы. Трогать руками (включенную в сеть лампочку) категорически запрещено.
Такой драйвер имеет практически 100%-ный КПД. Потери только на диодах и двух сопротивлениях.
Его можно изготовить в течение получаса (по-быстрому). Даже плату травить необязательно.
Конденсаторы заказывал эти:
aliexpress.com/snapshot/310648391.html
aliexpress.com/snapshot/310648393.html
Диоды вот эти:
aliexpress.com/snapshot/6008595825.html


Но у этих схем есть ещё один серьёзный недостаток. Это пульсации. Пульсации частотой 100Гц, результат выпрямления сетевого напряжения.

У различных лампочек форма незначительно будет отличаться. Всё зависит от величины фильтрующей ёмкости С2. Чем больше ёмкость, тем меньше горбы, тем меньше пульсации. Необходимо смотреть ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. Там же формула для расчёта (приложение Г).

Но это не всё. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». В зависимости от предназначения помещения максимально допустимые пульсации от 10 до 20%.
В жизни ничего просто так не бывает. Результат простоты и дешевизны лампочек налицо.
Пора переходить к электронным драйверам. Здесь тоже не всё так безоблачно.
Вот такой драйвер я заказывал. Это ссылка именно на него в начале обзора.

Почему заказал именно такой? Объясню. Хотел сам «колхозить» светильники на 1-3Вт-ных светодиодах. Подбирал по цене и характеристикам. Меня устроил бы драйвер на 3-4 светодиода с током до 700мА. Драйвер должен иметь в своём составе ключевой транзистор, что позволит разгрузить микросхему управления драйвером. Для уменьшения ВЧ пульсаций по выходу должен стоять конденсатор. Первый минус. Стоимость подобных драйверов (US $13.75 /10 штук) отличается в бОльшую сторону от балластных. Но тут же плюс. Токи стабилизации подобных драйверов 300мА, 600мА и выше. Балластным драйверам такое и не снилось (более 200мА не рекомендую).
Посмотрим на характеристики от продавца:
[input voltage] ac85-265v» that everyday household appliances.»
[output voltage] load after 10-15v; can drive 3-4 3w led lamp beads series
[output current] 600ma
А вот диапазон выходных напряжений маловат (тоже минус). Максимум, можно подцепить последовательно пять светодиодов. Параллельно можно подцеплять сколько угодно. Светодиодная мощность считается по формуле: Ток драйвера умножить на падение напряжения на светодиодах [количество светодиодов (от трёх до пяти) и умножить на падение напряжения на светодиоде (около 3В)].
Ещё один большой недостаток этих драйверов – большие ВЧ помехи. Некоторые экземпляры слышит не только ФМ радио, но и пропадает приём цифровых каналов ТВ при их работе. Частота преобразования составляет несколько десятков кГц. А вот защиты, как правило, никакой (от помех).

Под трансформатором что-то типа «экрана». Должно уменьшить помехи. Именно Этот драйвер почти не фонит.
Почему они фонят, становится ясно, если посмотреть на осциллограмму напряжения на светодиодах. Без конденсаторов ёлочка куда серьёзнее!

На выходе драйвера должен стоять не только электролит, но и керамика для подавления ВЧ помех. Высказал своё мнение. Обычно стоит либо то либо другое. Бывает, что ничего не стоит. Это бывает в дешёвых лампочках. Драйвер спрятан внутри, предъявить претензию будет сложно.
Посмотрим схему. Но предупрежу, она ознакомительная. Нанёс только основные элементы, которые необходимы нам для творчества (для понимания «что к чему»).


Микросхема 3106 отслеживает выходные параметры преобразователя через обратную связь с вспомогательной обмотки трансформатора и управляет ключевым транзистором. Попытки найти информацию на эту МС в Интернете ничего не дала. RS1 RS2 — токозадающие резисторы. От их номинала зависит выходной ток драйвера. RS1 (1 Ом) – основной, при помощи RS2 (33 Ом) выходной ток подгоняется более точно.

Оказывается, и у этих драйверов можно регулировать выходной ток. Снял зависимость выходного тока от сопротивления RS (может кому пригодится).

Регулировать ток при помощи выносного переменного резистора не получится. Паразитные ёмкости и индуктивности никто не отменял.
А теперь на счёт применимости.

В этот светильник что только не вклеивал (был обзор). Теперь приклеил 1-Вт-ные светодиоды. К ним буду подключать обозреваемые драйверы, так нагляднее.
А вот так он светит.

Всего 12 светодиодов (6 пар). Для равномерного распределения света самое оптимальное количество. Для эксперимента тоже лучше не придумаешь.
Один из вариантов подключения к драйверу с балластом на конденсаторах.

С1=1,5мкФ+1,2мкФ=2,7мкФ. Чтобы посчитать мощность, необходимо посчитать ток по формуле (2).
I=(228В-36В)*2,7мкФ/3,18=163мА. Мощность считается по формуле из школьного учебника физики.
Р= 36В*0,163А=5,9Вт.
А теперь посмотрим, что показывают приборы.


Погрешность в расчётах присутствует. Кстати, на мелких мощностях приборчик тоже подвирает.
А теперь посчитаем пульсации (теория в начале обзора). Посмотрим, что же видит наш глаз. К осциллографу подключаю фотодиод. Два снимка объединил в один для удобства восприятия. Слева лампочка выключена. Справа – лампочка включена. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. А у нас около 100Гц. Для глаз вредно.

У меня получилось 20%. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». Использовать можно, но не в спальне. А у меня коридор. Можно СНиП и не смотреть.

А теперь посмотрим другой вариант подключения светодиодов. Это схема подключения к электронному драйверу.

Итого 3 параллели по 4 светодиода.
Вот, что показывает Ваттметр. 7,1Вт активной мощности.

Посмотрим, сколько доходит до светодиодов. Подключил к выходу драйвера амперметр и вольтметр.

Посчитаем чисто светодиодную мощность. Р=0,49А*12,1В=5,93Вт. Всё, что не хватает, взял на себя драйвер.
Теперь посмотрим, что же видит наш глаз. Слева лампочка выключена. Справа – лампочка включена. Частота повторения импульсов около 100кГц. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что вредны для здоровья только пульсации частотой до 300Гц. А у нас около 100кГц. Для глаз безвредно.

Всё рассмотрел, всё измерил.
Теперь выделю плюсы и минусы этих схем:
Минусы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
-Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
-Невозможно достичь высоких токов свечения светодиодов, т.к. при этом необходимы конденсаторы больших размеров. А увеличение ёмкости приводит к большим пусковым токам, портящим выключатели.
-Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.
Плюсы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
+Схема очень проста, не требует особых навыков при изготовлении.
+Диапазон выходных напряжений просто фантастический. Один и тот же драйвер будет работать и с одним и с сорока последовательно соединёнными светодиодами. У электронных драйверов выходные напряжения имеют намного более узкий диапазон.
+Низкая стоимость подобных драйверов, которая складывается буквально из стоимости двух конденсаторов и диодного моста.
+Можно изготовить и самому. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
+Можно регулировать ток через светодиоды подбором ёмкости балласта.
+Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
Есть ещё одно качество, которое можно отнести как к плюсам, так и к минусам. При использовании подобных схем с выключателями с подсветкой, светодиоды лампочки подсвечиваются. Лично для меня это скорее плюс, чем минус. Использую повсеместно как дежурное (ночное) освещение.
Умышленно не пишу, какие драйверы лучше, у каждого есть своя ниша.
Я выложил по максимуму всё, что знаю. Показал все плюсы и минусы этих схем. А выбор как всегда делать вам. Я лишь постарался помочь.
На этом всё!
Удачи всем.

КАК СДЕЛАТЬ СВЕТОДИОДНУЮ ЛАМПУ

   Всем мастерам привет! Сегодня хочу Вам показать несколько конструкций светодиодных ламп, которые можно сделать из отслуживших свой срок «энергосберегаек» и обрезков светодиодной ленты. Суть идеи в том, что можно дать новую жизнь старым вещам и они ещё долго будут служить на благо человеку. Схема общая для всех трёх конструкций — обычный бестрансформаторный источник питания. Подробнее о его работе можно почитать здесь.

Светодиодная лампа для ночника

КАК СДЕЛАТЬ СВЕТОДИОДНУЮ ЛАМПУ для ночника - плата

КАК СДЕЛАТЬ СВЕТОДИОДНУЮ ЛАМПУ для ночника

КАК СДЕЛАТЬ СВЕТОДИОДНУЮ ЛАМПУ в ночник

КАК СДЕЛАТЬ СВЕТО ДИОДНУЮ ЛАМПУ ночник

КАК СПАЯТЬ СВЕТОДИОДНУЮ ЛАМПУ ночник

КАК СДЕЛАТЬ ЛАМПУ-ночник

   Первая конструкция небольшой мощности, поэтому планируется установить её в ночник. Лампа собирается на базе четырёх трёхкристальных светодиодов SMD5050. Ток потребления 4,5 мА. Балластный конденсатор 0,1 мкФ.

Светодиодная лампа 2 ватта

Светодиодная лампа 2 ватта - плата

Светодиодная лампа 2 ватта самодельная

Светодиодная лампа 2 вт - делаем сами

Свето диодная лампа 2 ватта - как сделать

   Лампа на 2 ватта из пятидесяти четырёх однокристальных светодиодов SMD3528 в настольный светильник. Ток потребления 11 мА. Конденсатор 0,47 мкФ.

Светодиодная лампа 5,5 ватт

Светодиодная лампа 5,5 ватт - плата

Светодиодная лампа 5 ватт своими руками

Светодиодная лампа 5,5 ватт

Светодиодная лампа на 5,5 ватт - как сделать

   Лампа на 5,5 ватт из тридцати трёхкристальных светодиодов SMD5050 в прихожую. Ток её потребления 60 мА. Конденсатор 1,5 мкФ.

Схема питания LED ламп

   Собирается всё очень просто, вот схема, для которой нам понадобится:

  • резистор 100 Ом * 1 Вт,
  • резистор 1 Мом * 0,25 Вт, нужен для разряда неполярного конденсатора после выключения питания,
  • любой диодный мост с рабочим напряжением не менее 400 вольт (или сборка из четырёх диодов, которые можно взять из тех же «энергосберегаек»),
  • неполярный конденсатор от 0,1 до 2,0 мкФ на напряжение не менее 275 вольт (лучше 400 вольт), он ограничивает ток подводимый к светодиодам,
  • электролитический конденсатор от 2 мкФ и предельным напряжением не менее 400 вольт (тоже можно взять из «энергосберегайки»), он сглаживает пульсации напряжения, исключая мерцание светодиодов,
  • и, конечно, любые одинаковые светодиоды.

   Все светодиоды соединяются последовательно (плюс к минусу) и подключаются к схеме, соблюдая полярность. Неполярный конденсатор подбирается исходя из тока светодиодов, который можно посмотреть в даташите на данный светодиод, вот по этой таблице:

   Но лучше, конечно, вставив в разрыв питания светодиодов мультиметр (на режиме 200 мА) проконтролировать ток, что бы он не превышал номинальный ток светодиодов, во избежание преждевременного выхода их из строя.

ПРЕДУПРЕЖДЕНИЕ: Данная схема не имеет гальванической развязки с сетью, поэтому необходимо соблюдать осторожность при работе, не касаться руками оголённых участков цепи, включенного в сеть прибора, во избежание удара током!

   Архивы на печатные платы для ламп можете скачать по этой ссылке. Удачи Вам в творческих начинаниях и до новых встреч на страницах сайта Радиосхемы! С Вами был Тёмыч.

   Форум по LED

   Обсудить статью КАК СДЕЛАТЬ СВЕТОДИОДНУЮ ЛАМПУ


пошаговая инструкция, преимущества и недостатки

Содержание статьи:

Светодиодные источники света обеспечивают экономию электричества в 1,5-2 раза в сравнении с лампочками дневного света и в 10 раз по сравнению с лампами накаливания. Чтобы сэкономить еще больше, изделия можно не приобретать в магазинах. Светодиодная лампа своими руками на 220 В собирается из расходников, которые можно найти в закромах мастера.

Выгоды применения самодельных светодиодных ламп

Светодиодная лампа имеет длительный ресурс работы – около 10000 часов

На прилавках магазинов представлено несколько типов устройств. Лампы накаливания с высоким индексом цветопередачи потребляют большое количество энергии. Энергосберегающие в основном выпускаются с цоколем Е27, люминесцентные выделяют при нагреве ядовитые пары. LED-устройства почти не нагреваются, отличаются стойкостью к механическим повреждениям, имеют мощность 10 Вт. При силе светового потока 800 Лм светодиодный прибор прослужит 50 тыс. часов.

Минус источников света на диодах – высокая стоимость. Этот недостаток можно сделать преимуществом, если изготовить светодиодную лампу качественно своими руками. Ее будут отличать:

  • длительный ресурс работы – около 10 тыс. часов;
  • высокая эффективность ватт/люмен по сравнению с аналогами;
  • ценовой диапазон расходников, аналогичный люминесцентным приборам.

Преимущества самодельного устройства достигаются при условии правильной сборки.

Конструктивные отличия заводских LED-ламп

Изделия с заводской сборкой представляют поликристаллические светодиоды без многочисленных контактов. Лампочки имеют несколько отличий.

Разновидности светодиодов

Светодиод Пиранья

Светодиод является полупроводниковым многослойным кристаллом с переходом электронно-дырочного типа. Световое излучение получается при пропускании тока, но перегоревший элемент ремонту не подлежит. Производители применяют такие светодиоды:

  • DIP – в виде кристалла с двумя проводниками и линзы. Используются для гирлянд и табло с подсветкой.
  • Пиранья – кристалл с линзой и четырьмя выводами для проводников. Отличается яркостью, подходит для фар машин.
  • SMD – сверхъяркий тип небольшого размера, который устанавливается на поверхность.
  • СОВ – с неокисляемыми и ненагреваемыми контактами, отличной интенсивностью свечения. Впаивается в специальную плату.

Перед самостоятельной сборкой определитесь с источником питания.

Типы драйверов

Драйвер для светодиодов

Драйвер обеспечивает питание лампочки от электросети посредством трансформации переменного напряжения в рабочее. Самый простой элемент сконструирован из резисторов, диодного моста и конденсатора на входе.

Для светодиодных устройств применяются несколько типов драйверов:

  • линейные – рассчитаны на малые рабочие токи (до 100 мА) или для источников питания с напряжением, аналогичным падению напряжения диода;
  • импульсные понижающие – запитывает мощные светодиоды, но дроссель может создавать помехи электромагнитного характера;
  • импульсные повышающие – применяется для моделей с рабочим напряжением большим, чем у источника питания.

В LED-приборы 220 В встраиваются электронные драйверы.

Виды цоколей современных ламп

Цоколь представляет собой резьбу, необходимую для присоединения лампочки к патрону, подачи электропитания и защиты вакуумной колбы. На изделии уже стоит заводская маркировка цоколя.

Назначение цоколей ламп

Первая литера обозначает тип цоколя, указанный в таблице:

БукваРасшифровка
Вштифтовый
Ерезьбовой
F1 штырь
G2 штыря
Hпод ксенон
Kконтакт кабельного типа
Rутопленный контакт
Pфокусировка
Sсофит
Tдля телефонии
Wвводные контакты в стекле колбы

Вторая литера указывает на тип источника света: U – энергосберегающий, A – для машины, V – с кончиком конической формы.

Цифры после букв обозначают диаметр в миллиметрах.

Под напряжение 220 В подходит цоколь Е27.

Материалы для самостоятельной сборки

Многокристальные светодиоды HK6

Делать самостоятельно источник света на диодах можно при помощи таких материалов:

  • цоколя от сгоревшей люминесцентной лампочки;
  • LED-элементов с силой тока 100-120 мА и напряжением 3-3,3 В – понадобится лента или отдельные светодиоды НК-6;
  • диодного моста или диодов-выпрямителей с маркировкой 1N4007;
  • предохранителя из цоколя сгоревшего источника света;
  • конденсатора – параметры зависят от схемы сборки и числа светодиодов;
  • пластикового каркаса для крепления светодиодов;
  • суперклея или жидких гвоздей;
  • электролитов и драйверов.

Составляйте список материалов заранее.

LED-лампа Е27 из энергосберегайки и готового драйвера

Можно использовать цоколь от неисправной светодиодной лампы

Чтобы сделать светодиодную лампочку, понадобятся неисправное КЛЛ изделие, светодиоды НК-6, паяльник, пассатижи, припой и картонная основа. Работа осуществляется пошагово:

  1. Из старой лампочки мощностью 20 Вт извлекается цоколь. Понадобится поддеть защелки или высверлить участки с точеным кернением.
  2. Пустой цоколь очищается от излишков припоя, обрабатывается спиртом или косметической жидкостью для снятия лака.
  3. Находится 6 отверстий на крышке цоколя. На кусочке картона делает разметка круглых ниш, которая потом вырезается при помощи маникюрных ножниц.
  4. Разбирается лента диодов из параллельно соединенных 6 кристаллов.
  5. Кристаллы соединяются по 3 параллельно.
  6. Две готовые цепочки с параллельными светодиодами крепятся последовательно.
  7. На готовый драйвер из сломанной LED-лампочки подключается 6 элементов мощностью 1 Вт.
  8. Из картона вырезается круг, укладывается между драйвером и платой. Драйвер устанавливается в цоколь.
  9. Лампочка полностью собирается и проверяется на предмет работоспособности.

В результате получится белый яркий аналог лампочки накаливания на 30 Вт. Яркость изделия будет 150-200 Лм, а мощность – 3 Вт.

Для корректировки участка освещения можно подогнуть выводы светодиодных элементов.

Светодиодная лампочка на основе самодельного драйвера

Самодельный драйвер получится только в том случае, если мастер умеет работать с паяльником, читать простые электросхемы и применять химические реактивы. Лампа из светодиодов своими руками изготавливается поэтапно.

Процесс подготовки

Стеклолит

Состоит из таких шагов:

  1. Подготовка материалов. Понадобятся фольгированный медью стеклотекстолит, LED-элементы, конденсаторы, резистор, маленькая дрель, канифоль и припой, паяльник и пассатижи, лак для покрытия ногтей или канцелярский карандаш-корректор.
  2. Подготовка реактивов. Травление платы производится при помощи поваренной соли, медного купороса или раствора хлорида железа.

Берите стеклотекстолит толщиной от 0,5 до 3 мм.

Схема изготовления драйвера

Схема простейшего драйвера для светодиодной лампы

Чтобы делать драйвер, стоит добавить к списку основных материалов резистор R3, стабилитроны VD2 и VD3, конденсаторы С1 и С2. Такого количества элементов хватит для лампы из 20 элементов. Схема устройства работает по принципу прохождения переменных токов на диоды через первый конденсатор. Второй помогает исключить мерцание и обеспечить ровность светового потока.

Напряжение сети будет проходить через резистор и конденсатор токоограничения, которые сглаживают колебания напряжения. Второй резистор понадобится для подачи напряжения на диодный блок и получения свечения. Пульсацию сглаживает конденсатор.

Для монтажа драйверных элементов используйте печатную плату.

Последовательность сборки схемы

Программа DipTrace

Самодельная схема изготавливается следующим образом:

  1. В программе Sprint Layout или DipTrace генерируется рисунок под травление платы.
  2. Из стеклотекстолитовой пластины вырезается круг под плату 3 см в диаметре.
  3. Переносится набросок схемы специальным маркером, лаком для ногтей или распечатывается на бумаге.
  4. Готовится смесь для травления из 1 ст. л. медного купороса и 2 ст. л. соли, разведенных в кипятке.
  5. Плата опускается в раствор на 30 мин. Вследствие реакции удаляется вся медь, кроме покрытых рисунком элементов.
  6. При помощи жидкости для снятия лака удаляется покрытие с материала.
  7. Края и точки крепления контактов залуживаются припоем.
  8. Проделываются дрелью отверстия, куда будут выходить светодиоды.
  9. Элементы пропаиваются на плате, которая потом помещается в корпус.

Результатом работы будет лампочка с эквивалентом лампе накаливания на 100 Вт.

Материалы для изготовления корпуса

Чтобы сделать корпус для светодиодного светильника с питанием от сети 220 В, можно использовать несколько подручных средств.

Цоколь от лампочки накаливания

Цоколь от старой энергосберегающей лампы

С изделия понадобится снять стеклянную колбу, а потом извлечь спираль. Во внутреннюю часть размещается схема. Элементы крепятся на верх платы. Минусом основания будет некачественная изоляция.

Корпус от энергосберегайки

Неисправную лампочку требуется разобрать и достать плату преобразователя. Светодиоды располагаются в отверстиях крышки под стеклянную колбу, если у источника 3 дугообразных элемента. Схема помещается внутрь, а диоды фиксируются в готовых отверстиях.

Требования к безопасности работ

Опытные электрики отмечают:

  1. Нельзя начинать сборку без базовых электротехнических познаний. Неправильная последовательность изготовления может стать причиной взрыва изделия или короткого замыкания сети.
  2. К стандартной электросети не подключаются устройства с напряжением от 12 В.
  3. При отсутствии изоляции конструкции возможно поражение током, если касаться к ней руками.
  4. Готовая лампочка не работает без качественной спайки узлов.

Самостоятельная сборка светодиодного источника света при наличии знаний и умений будет несложной. Если имеются сомнения, вы не разбираетесь в схемах, лучше приобрести готовый светодиодный прибор.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *