Параметрический стабилизатор на транзисторе и стабилитроне своими руками
Как известно, ни одно электронное устройство не работает без подходящего источника питания. В самом простейшем случае, в качестве источника питания может выступать обычный трансформатор и диодный мост (выпрямитель) со сглаживающим конденсатором. Однако, не всегда под рукой есть трансформатор на нужное напряжение. Да и тем более, такой источник питания нельзя назвать стабилизированным, ведь напряжение на его выходе будет зависеть от напряжения в сети.Вариант решения этих двух проблем – использовать готовые стабилизаторы, например, 78L05, 78L12. Они удобны в использовании, но опять-таки не всегда есть под рукой. Ещё один вариант – использовать параметрический стабилизатор на стабилитроне и транзисторе. Его схема показана ниже.
Схема стабилизатора
VD1-VD4 на этой схеме – обычный диодный мост, преобразующий переменное напряжение с трансформатора в постоянное. Конденсатор С1 сглаживает пульсации напряжения, превращая напряжение из пульсирующего в постоянное. Параллельно этому конденсатору стоит поставить плёночный или керамический конденсатор небольшой ёмкости для фильтрации высокочастотных пульсаций, т.к. при большой частоте электролитический конденсатор плохо справляется со своей задачей. Электролитические конденсаторы С2 и С3 в этой схеме стоят с этой же целью – сглаживание любых пульсаций. Цепочка R1 – VD5 служит для формирования стабилизированного напряжения, резистор R1 в ней задаёт ток стабилизации стабилитрона. Резистор R2 нагрузочный. Транзистор в этой схеме гасит на себе всю разницу входного и выходного напряжения, поэтому на нём рассеивается приличное количество тепла. Данная схема не предназначена для подключения мощной нагрузки, но, тем не менее, транзистор стоит прикрутить к радиатору с использованием теплопроводящей пасты.
Напряжение на выходе схемы зависит от выбора стабилитрона и значения резисторов. Ниже показана таблица, в которой указаны номиналы элементов для получения на выходе 5, 6, 9, 12, 15 вольт.
Вместо транзистора КТ829А можно использовать импортные аналоги, например, TIP41 или BDX53. Диодный мост допустимо ставить любой, подходящий по току и напряжению. Кроме того, можно собрать его из отдельных диодов. Таким образом, при использовании минимума деталей получается работоспособный стабилизатор напряжения, от которого можно питать другие электронные устройства, потребляющие небольшой ток.
Фото собранного мной стабилизатора:
Плата устройства
Автор – Дмитрий С.
sdelaysam-svoimirukami.ru
Блок питания «Проще не бывает». Часть вторая
РадиоКот >Обучалка >Аналоговая техника >Собираем первые устройства >Блок питания «Проще не бывает». Часть вторая
Ага, все-таки зашел? Что, любопытство замучило? Но я очень рад. Нет, правда. Располагайся поудобнее, сейчас мы вместе произведем некоторые нехитрые расчеты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи. Хотя надо сказать, что эти расчеты могут пригодиться и в более сложных схемах.
Итак, наш блок питания состоит из двух основных узлов — это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.
Схема стабилизатора показана на рисунке.
Это, так называемый параметрический стабилизатор. Состоит он из двух частей:
2 — эмиттерный повторитель на транзисторе VT.
Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно — умощителя.
Два основных параметра нашего блока питания — напряжение на выходе и максимальный ток нагрузки.
Назовем их:
Uвых — это напряжение
и
Imax — это ток.
Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.
Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор,
чтобы на выходе получить необходимое Uвых.
Это напряжение определяется по формуле:
Uвх = Uвых + 3
Едем дальше.
Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.
Считаем:
Pmax=1.3(Uвх-Uвых)Imax
Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания.
Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП.
А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом,
поскольку максимальная мощность будет рассчитана неверно.
Смотри сам:
Если мы берем Uвых=14 вольтам, то получаем Pmax=1.3*(17-14)*1=3.9 Вт.
А если мы примем Uвых=1.5 вольта, то Pmax=1.3*(17-1.5)*1=20,15 Вт
То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.
Ну вот, теперь лезем в справочник и выбираем себе транзистор.
Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором
должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax.
Я выбрал КТ817 — вполне приличный транзистор…
Фу, ну вроде с этим справились. Пошли дальше.
Сначала определим максимальный ток базы свежевыбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все — даже базы транзисторов).
Iб max=Imax / h31Э min
Iб max=1/25=0.04 А (или 40 мА). Не мало.
Ну давайте будем теперь искать стабилитрон.
Искать его надо по двум параметрам — напряжению стабилизации и току стабилизации.
Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания,
то есть 14 вольтам, а ток — не менее 40 мА,
то есть тому, что мы посчитали.
Полезли опять в справочник…
По напряжению нам страшно подходит стабилитрон Д814Д, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок. Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h31Э раз. h31Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h31Э равен 30, то есть мы можем уменьшить ток до 40/30=1.33 мА, что нам вполне подходит.
Теперь посчитаем сопротивление и мощность балластного резистора Rб.
Rб=(Uвх-Uст)/(Iб max+Iст min)
где Uст — напряжение стабилизации стабилитрона,
Iст min — ток стабилизации стабилитрона.
Rб = (17-14)/((1.33+5)/1000) = 470 Ом.
Теперь определим мощность этого резистора
Prб=(Uвх-Uст)2/Rб.
То есть
Prб=(17-14)2/470=0,02 Вт.
Собственно и все. Таким образом, из исходных данных — выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.
Однако не расслабляемся — нас еще ждет выпрямитель. Уж считать так считать, я так считаю (каламбур однако).
Итак, смотрим на схему выпрямителя.
Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор — 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале — с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.
Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 вольт
.Теперь учтем, что на выпрямительном мосту мы теряем порядка 1,5-2 вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 вольт. Вполне может случится так, что такого трансформатора не найдется, не страшно — в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 вольт.
Едем дальше. Определим емкость конденсатора фильтра.
Cф=3200Iн/UнKн
где Iн — максимальный ток нагрузки,
Uн — напряжение на нагрузке,
Kн — коэффициент пульсаций.
В нашем случае
Iн = 1 Ампер,
Uн=17 вольтам,
Kн=0,01.
Cф=3200*1/14*0,01=18823.
Однако, поскольку за выпрямителем идет еще стабилизатор напряжения, мы можем уменьшить расчетную емкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.
Осталось выбрать выпрямительные диоды или диодный мост.
Для этого нам надо знать два основных параметра — максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.
Необходимое максимальное обратное напряжение считается так
Uобр max=2Uн, то есть Uобр max=2*17=34 Вольта.
А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.
Ну вот вроде бы и все про выпрямители и параметрические стабилизаторы.
Впереди у нас стабилизатор для самых ленивых — на интегральной микросхеме
и стабилизатор для самых трудолюбивых — компенсационный стабилизатор.
<<—Часть 1—-Часть 3—>>
Как вам эта статья? | Заработало ли это устройство у вас? |
www.radiokot.ru
Параметрический стабилизатор напряжения на транзисторе — radiohlam.ru
Итак, справа изображена схема простейшего транзисторного стабилизатора напряжения.
Обозначения:
- Iк — коллекторный ток транзистора
- Iн — ток нагрузки
- Iб — ток базы транзистора
- IR — ток через балластный резистор
- Uвх — входное напряжение
- Uвых — выходное напряжение (падение напряжения на нагрузке)
- Uст — падение напряжения на стабилитроне
- Uбэ — падение напряжения на p-n переходе база-эмиттер транзистора
Как такой стабилизатор работает и чем его работа отличается от работы параметрического стабилизатора на стабилитроне? Да почти ничем их работа не отличается, — напряжение на выходе схемы остаётся стабильным в результате наличия на вольт-амперных характеристиках (стабилитрона и p-n перехода база-эмиттер транзистора) участков, на которых падение напряжения слабо зависит от тока. То есть как и у всех параметрических стабилизаторов стабильность достигается внутренними свойствами компонентов.
Действительно, как видно из рисунка, падение напряжения на нагрузке равно разности падений напряжений на стабилитроне и на p-n переходе БЭ транзистора. Поскольку падение напряжения на стабилитроне слабо зависит от тока (на рабочем участке оно равно напряжению стабилизации), падение напряжения на прямосмещённом p-n переходе тоже слабо зависит от тока (для кремниевого транзистора его можно взять примерно таким же, как для обычного кремниевого диода — примерно 0,6 Вольт), то получается, что и выходное напряжение тоже постоянно.
Теперь добавим немного математики.
С напряжением на нагрузке (выходным напряжением) уже всё понятно: Uвых=Uст-Uбэ, давайте рассчитаем R0 и область нормальной работы стабилизатора. Но прежде нарисуем рядом два рисуночка — кусок схемы нашего стабилизатора и кусок простейшего параметрического стабилизатора на стабилитроне:
Похоже, не правда ли? Более того, рассуждения и выводимые из них соотношения для расчёта R0 и области нормальной работы тоже очень похожи.
Уравнение, описывающее токи и напряжения для выдранного выше куска схемы нашего стабилизатора:
Uвх=Uст+IRR0, учитывая что IR=Iст+Iб, получим
Uвх=Uст+(Iст+Iб)R0 (1)
Для нормальной работы стабилизатора (чтобы напряжение на стабилитроне всегда было в пределах от Uст min до Uст max) необходимо, чтобы ток через стабилитрон всегда был в пределах от Iст min до Iст max. Минимальный ток через стабилитрон будет течь при минимальном входном напряжении и максимальном токе базы транзистора. Зная это, найдём сопротивление балластного резистора:
R0=(Uвх min-Uст min)/(Iб max+Iст min) (2)
Если учесть, что в нашем случае, когда транзистор включен по схеме с общим коллектором, ток базы связан с током эмиттера соотношением Iэ=Iб(h21Э+1), ток эмиттера равен току нагрузки (потому что в цепь эмиттера же у нас нагрузка включена), а напряжение на стабилитроне в рабочем режиме меняется незначительно (вместо Uст min возьмём просто Uст), то получим, что
R0=(Uвх min-Uст)/(Iн max/(h21Э+1)+Iст min) (3)
h21Э+1 — это коэффициент усиления по току для схемы с общим коллектором (h21K), но поскольку h21Э обычно достаточно большой, то нередко слагаемое «+1» выкидывают и считают, что h21К=h21Э, тогда формула (3) становится чуть проще:
R0=(Uвх min-Uст)/(Iн max/h21Э+Iст min)
Максимальный ток через стабилитрон будет течь при минимальном токе базы транзистора и максимальном входном напряжении. Учитывая это и сказанное выше относительно минимального тока через стабилитрон, с помощью уравнения (1) можно найти область нормальной работы стабилизатора:
Перегруппировав это выражение, получим:
Или, по другому:
Если считать, что минимальное и максимальное напряжение стабилизации (Uст min и Uст max) отличаются незначительно (первое слагаемое в правой части можно считать равным нулю), а также то, что Iн=Iэ=Iбh21Э («+1» — выкинем), тогда уравнение, описывающее область нормальной работы стабилизатора, примет следующий вид:
(4)
Из этой формулы хорошо видно преимущество такого транзисторного стабилизатора над параметрическим стабилизатором на стабилитроне — при прочих равных параметрах у транзисторного стабилизатора выходной ток может меняться в более широких пределах.
Для примера опять возьмём стабилитрон КС147А (Iст=3..53мА), и прикинем на какой максимальный ток мы сможем рассчитывать при понижении напряжения с 6..10В до 5В при условии, что выходной ток может меняться от нуля до Imax. Транзистор возьмём КТ815А (h21Э=40). Решив совместно систему уравнений (3), (4), получим R0 около 110 Ом и максимальный ток порядка 550 мА.
Однако стоит заметить, что нестабильность выходного напряжения в данном случае будет ещё хуже, поскольку теперь к нестабильности напряжения на стабилитроне добавится ещё нестабильность падения напряжения на p-n переходе транзистора. Плюс мы ещё не учли, что выходное напряжение будет меньше, чем на стабилитроне на величину падения напряжения на p-n переходе, так что по хорошему нам бы надо было взять стабилитрон не на 4,7В, а на 5,1 или даже на 5,6 Вольт (я специально взял для примера такой же стабилитрон, как и в статье про параметрический стабилизатор на стабилитроне, чтобы нагляднее было видно насколько при одном и том же стабилитроне будет отличаться ток нагрузки).
Собственно, методы борьбы с нестабильностью здесь совершенно аналогичные — нужно как-то уменьшить нестабильность напряжения на стабилитроне. Для этого можно, как и в прошлый раз, взять более узкий рабочий участок ВАХ стабилитрона. Это естественно, также приведёт к сужению области нормальной работы (потому что диапазон изменения рабочего тока стабилитрона уменьшится), но в данном случае, когда область нормальной работы и так шире, чем у параметрического стабилизатора на стабилитроне (примерно в h21Э раз), мы вполне можем себе позволить отказаться от части диапазона выходного тока и/или части диапазона входного напряжения ради увеличения стабильности выходного напряжения.
Ещё больше увеличить область нормальной работы можно, если использовать два транзистора, включенные по схеме Дарлингтона или Шиклаи (рисунок слева). В этом случае h21Э будет гораздо больше.
Ну и самый писк — сделать компенсационный стабилизатор напряжения на операционном усилителе, поскольку коэффициент усиления ОУ не просто больше, а значительно, гораздо, во много — много раз больше, чем у любого транзистора (соответственно, мы сможем в ещё более узком диапазоне менять ток через стабилитрон, получим ещё меньшее изменение напряжения на нём и, как следствие, — ещё более стабильное выходное напряжение).
Есть другой вариант — можно вместо обычного стабилитрона взять интегральный стабилитрон, например, TL431. В этом случае, кроме значительно меньшей нестабильности, получим ещё и возможность регулирования выходного напряжения.
На закуску скажу, что лёгким движением руки такой стабилизатор напряжения можно превратить в стабилизатор тока (нужно просто стабилизировать напряжение не на нагрузке, а на специальном токоизмерительном резисторе).
radiohlam.ru
О стабилизаторах напряжения на транзисторах: схема правильного стабилитрона
Для работы электронной аппаратуры необходимо напряжение, обладающие точно заданными характеристиками. Но в промышленной сети напряжение постоянно меняется. Его уровень зависит от подключенных в систему предприятий, зданий и оборудования. Функционирование любого прибора напрямую зависит от напряжения, колебания данного параметра влияют на качество работы, например, при перепадах приемник может начать хрипеть или гудеть. Для того чтобы решить данную проблему, используют стабилизаторы на транзисторе.
Стабилизатор импульсного типа
Принцип работы стабилизатора
Одна часть этого оборудования отвечает за сравнение с эталонным значением, а другая – управляет параметрами. Если входящий параметр оказывается больше требуемого показателя, то система снижает его. Если же значение меньше, то характеристики повышаются. По этой же схеме регулируется вода в кране: когда поток меньше, чем надо, вентиль закручивается и наоборот.
Принцип стабилизации применяется на самом разном оборудовании, начиная от утюгов и заканчивая космической отраслью. Разница заключается только в технологии контроля и управления показателями.
Важно! Согласно существующему ГОСТу, напряжение в сети может изменяться в пределах до 5%, а в реальных условиях и 10% от указанного значения. Для качественного функционирования оборудования этот показатель не может превышать 0,1%.
Самая простая схема стабилизатора напряжения содержит всего лишь 2 элемента:
- источник опорного напряжения – стабилитрон VD1;
- балластный резистор R1.
Стабилитроном называют диод, который при определенных значениях напряжения стабилизации (обратно приложенного) начинает пропускать ток в обратном направлении. Если напряжение растет, при уменьшении внутреннего сопротивления стабилитрон продолжает удерживать напряжение в заданном значении. Принцип работы можно увидеть на схеме стабилизатора напряжения.
Схема и график работы стабилизатора
Если обратное напряжение растет, то стабилитрон оказывает сопротивление, а, значит, ток на выходе минимален. При достижении заданного параметра ток начинает расти. Затем, доходя до точки 1 на вольтамперной характеристике, напряжение перестает расти, несмотря на повышение показателей тока. На p-n переходе напряжение увеличивается только на резисторе, стабилитрон работает в заданном режиме. Конечно, любой стабилитрон может удерживать напряжение только в заданном значении, и после повышения показателей до точки 2 элемент может начать греться и выйти из строя. Расстояние между точками 1 и 2 называется рабочим участком.
Такой простой метод стабилизации подходит только для сетей, в которых применяют малые токи. Для того чтобы повысить нагрузочную способность, применяется эмиттерный повторитель в виде биполярного транзистора. Данный элемент повторяет приложенное напряжение. За счет этого нагрузка может быть на порядок больше. Можно использовать схему из нескольких транзисторов, тогда нагрузка еще сильнее увеличится.
При создании таких схем важно учесть, что из-за падения на участке p-n перехода выходное напряжение уменьшится. Поэтому необходимо выбирать стабилитрон с учетом потерь на переходах на транзисторах. На рисунке в схеме с двумя транзисторами также можно увидеть еще один резистор. Его используют для ликвидации реактивной составляющей второго транзистора.
Два простых стабилизатора
Принципы расчета характеристик
Основными показателями стабилизатора являются максимальное выходное напряжение Uвых, минимальное выходное напряжение Uвых1 и максимальный ток Imax. Допустим, что эти величины составляют 14 Вольт, 1,5 Вольта и 1 Ампер, соответственно. Вычисляем входное напряжение по формуле:
Uвх=Uвых+ 3, где 3 – это коэффициент падения напряжение на переходе коллектор – эмиттер.
Обратите внимание! Паспортные параметры транзистора должны обеспечивать функционирование в полуоткрытом режиме и выдерживать разницу напряжений, возникающую между выходным напряжением и выходными данными.
Далее следует рассчитать максимальную мощность Pmax, которую будет рассеивать транзистор:
- Pmax=1.3(Uвх-Uвых)Imax=1.3(17-14)=3.9 Вт;
- Pmax=1.3(Uвх-Uвых1)Imax=1.3(17-1.5)=20,15 Вт.
Как видно, большее значение получается при расчете для минимального входного напряжения, и эта величина будет правильной, для того чтобы подобрать транзистор по справочнику. У нас это будет КТ817.
Важно! Значение напряжение должно быть больше входного значения, а ток – больше заданного максимального значения. Иначе элемент будет работать на пределе возможностей и быстро выйдет из строя.
Схема на полевом транзисторе
Теперь нужно учесть Iб max – ток базы самого транзистора:
Iб max=Imax/h31Э min, где h31Э min – коэффициент передачи тока (в нашем случае эта величина равна 25).
Iб max=1/25=0.04 А.
Зная эти показатели, можно определить характеристики стабилизатора напряжения на транзисторе. Стабилизированное напряжение равно 14 вольтам, а ток по формуле – 0.04 А. По этим показателям подходит Д814Д, но в этом случае ток базы будет составлять 0,005 А, то есть надо понизить выходные значение. Для этого используется второй транзистор (КТ315). За счет его использования нагрузка уменьшится на величину максимального коэффициента передачи тока второго транзистора (у нас h31Э=30). Таким образом, ток будет составлять 0,04/30=0,00133 мА.
Теперь определим показатели для Rб – балластного резистора:
Rб=(Uвх-Uст)/(Iб max+Iст min)=(17-14)/(0,00133+0,005) = 474 Ом, где:
- Iст min – ток стабилизации;
- Uст – напряжение стабилизации стабилитрона.
Затем считаем балластную мощность:
Prб=(Uвх-Uст)2/Rб=(17-14)2/473=0,02 Вт.
Параметры дополнительного резистора рассчитывают редко, при выборе этой детали нужно учесть только одно, что его значение тока должно быть меньше максимально нагрузочного. У нас используется резистор с сопротивлением в 1 Ом.
Компенсационные стабилизаторы
Рассмотренные выше схемы представляют собой параметрические стабилизаторы, то есть устройства, работающие на стабилитроне. Более точными считаются компенсационные схемы, где присутствует обратная связь, и уже стабилизирующую составляющую сравнивают с эталонными значениями. Основным преимуществом таких устройств является точное выходное напряжение, на которое практически не оказывает влияния ток нагрузки, тогда, как у параметрических систем именно нагрузка влияет на всю работу транзисторного стабилизатора.
Схема стабилизатора компенсационного типа может быть последовательной и параллельной. В первом варианте регулирующими элементами обычно являются транзисторы.
Компенсационные стабилизаторы последовательного типа
На схеме:
- Р – регулирующий элемент;
- И – источник опорного (эталонного) напряжения;
- ЭС – элемент сравнения;
- У – усилитель постоянного тока.
Выходное напряжение для последовательного стабилизатора определяется по вышеуказанной формуле, где R4’ и R4’’, соответственно, верхняя и нижняя величина резистора R4. Транзистор VT1 выполняет роль регулирующего элемента, а VT2 стабилизирует, то есть сравнивает и при необходимости усиливает показатели. Источником опорного напряжения является стабилитрон VD1. Между базой и эмиттером VT2 напряжение определяется как разность UОП и UРЕГ. Если на нагрузке идет рост напряжения, то UРЕГ увеличивает и эмиттерные, и коллекторные токи VT2. Далее по схеме коллекторный ток идет на резистор R1, что вызывает падание напряжения. Это напряжение обратно по полярности для эмиттерной части VT1, поэтому коллекторные и эмиттерные токи данного транзистора падают, а номинальное напряжение на нагрузке восстанавливается.
Для плавной регулировки на выходной цепи стабилизатора используется делитель напряжения, состоящий из R3, R4, R5. Ступенчатое регулирование происходит с помощью опорного напряжения стабилитрона.
Типовая схема компенсационного стабилизатора параллельного типа
В компенсационном стабилизаторе напряжения параллельного типа при возникновении отклонения значения от номинального появляется сигнал рассогласования, который составляет разницу между опорным и выходным напряжением. Далее этот сигнал усиливается на регулирующей части, которая стоит параллельно нагрузке. За счет этого ток на регулирующем элементе изменяется, напряжение на резисторе R1 падает, а на выходе сохраняются постоянные показатели:
U1=U0–IBXR1=const.
Важно! КПД стабилизаторов параллельного типа небольшое, поэтому подобные схемы используются довольно редко.
Импульсные стабилизаторы
Кроме компенсационных и параметрических стабилизаторов, существуют импульсные схемы, в которых коэффициент полезного действия самый большой, даже если диапазон входных напряжений достаточно большой. Работа этих устройств основана на том, что регулирующий элемент отключается и выключается в импульсном режиме. Общая схема стабилизатора состоит из ключа, накопителя энергии и цепи управления. Накопитель и ключ вместе представляют силовую часть, вместе с цепью они составляют контур регулирования.
Импульсный стабилизатор напряжения можно собрать на основе 3 транзисторов. При этом VT1, VT2 составляют ключевой регулирующий элемент, а VT3 необходим для усиления сигнала рассогласования.
Схема импульсного стабилизатора
Алгоритм работы следующий:
- С коллектора VT2 через конденсатор С2 на базу VT1 поступает напряжение положительной обратной связи;
- VT2 при насыщении током от резистора R2 открывается;
- На коллекторно-эмиттерном переходе при насыщенном VT1 меньше, чем напряжение для открывания VT2, значит, когда VT1 открыт, VT2 закрытый;
- Усилитель на VT3 через эмиттер подключен к стабилитрону VD2, а база – к делителю выходного напряжения R5, R6, R7;
- Таким образом, VT1 управляет закрыванием и открыванием VT2 по сигналу от VT3;
- Когда VT2 открыт, происходит накопление энергии в дросселе, после закрывания энергия идет в нагрузку.
Каждая из представленных схем позволит собрать простейшей вариант стабилизаторов.
Видео
Оцените статью:jelectro.ru
Линейный стабилизатор напряжения с регулировкой на TL431 и NPN транзисторах
Всем привет!В последнее время я увлекся сборкой схем линейных стабилизаторов напряжения. Такие схемы не требуют редких деталей, а подборка компонентов и настройка также не вызывает особых сложностей. В этот раз я решил собрать схему линейного стабилизатора напряжения на «регулируемом стабилитроне» (микросхеме) TL431. TL431 выступает в качестве источника опорного напряжения, а силовую роль выполняет мощный NPN транзистор в корпусе ТО -220.
При входном напряжении 19В, схема способна служить источником стабилизированного напряжения в пределах от 2,7 до 16 В при токе до 4А. Стабилизатор оформлен в виде модуля, собранного на макетной плате. Выглядит следующим образом:
Видео:
Стабилизатор требует блок питания постоянного тока. Имеет смысл применять такой стабилизатор с классическим линейным блоком питания, состоящим из железного трансформатора, диодного моста и конденсатора большой емкости. Напряжение в сети может меняться в зависимости от нагрузки и как следствие, будет меняться напряжение на выходе трансформатора. Данная схема будет обеспечивать стабильное выходное напряжение при изменяющимся входном. Нужно понимать, что стабилизатор понижающего типа, а также на самой схеме падает 1-3 В напряжения, поэтому максимальное выходное напряжение будет всегда меньше входного.
В качестве блока питания для данного стабилизатора в принципе можно использовать и импульсные блоки питания, например от ноутбука на 19 В. Но в этом случае, роль именно стабилизации будет минимальной, т.к. заводские импульсные блоки питания и так на выходе выдают стабилизированное напряжение.
Схема:
Подбор компонентов
Максимальный ток, который может через себя пропустить микросхема TL431, согласно документации – 100 мА. В моем случае, я ограничил ток с запасом до примерно 80 мА при помощи резистора R1. Нужно рассчитать резистор по формулам.
Для начала нужно определить сопротивление резистора. При максимальном входном напряжении 19В по закону Ома сопротивление рассчитывается следующим образом:
R= U/I = 19В / 0,08A = 240 Ом
Нужно рассчитать мощность резистора R1:
P=I^2*R = 0,08 А * 0,08 А * 240 Ом = 1,5 Ватта
Я использовал советский резистор на 2 Ватта
Резисторы R2 и R3 образуют делитель напряжения, которое «программирует» TL431, причем резистор R3 переменный, что позволяет менять опорное напряжение, которое потом повторяется каскадом из транзисторов. Я использовал R2 – 1К Ом, R3 — 10К оМ. Мощность резистора R2 зависит от выходного напряжения. Например, при выходном напряжении 19В:
P=U^2/R = 19 * 19/ 1000 = 0,361 Ватт
Я использовал резистор в 1 Ватт.
Резистор R4 служит для ограничения тока на базе транзистора VT2. Номинал подбирать лучше опытным путем, контролируя выходное напряжение. Если сопротивление будет слишком большим, это заметно ограничит выходное напряжение схемы. В моем случае – это 100 Ом, мощность годится любая.
В качестве основного силового транзистора (VT1) лучше использовать транзисторы в корпусе ТО – 220 или более мощном (ТО247, ТО-3). Я использовал транзистор Е13009, купленный на Али Эксресс. Транзистор на напряжение до 400В и ток до 12А. Для подобной схемы высоковольтный транзистор – не самое оптимальное решение, но работать будет нормально. Транзистор скорее всего поддельный и 12 А не выдержит, а вот 5-6А вполне. В нашей схеме ток до 4А, поэтому для данной схемы годится. В данной схеме транзистор должен быть способен рассеять мощность до 30-35 Ватт.
Рассчитывается рассеваемая мощность как разница между входным и выходным напряжением умноженная на ток коллектора :
P = (U выход -U вход)*I коллектора
Например, входное напряжение у нас 19 В, мы выставили выходное напряжение 12 В, а ток коллектора у нас 3 А
Р = (19В-12В) *3А = 21 Ватт – вполне нормальная ситуация для нашего транзистора.
А если мы продолжим снижать выходное напряжение до 6В, то картина будет другая:
Р = (19В-6В) *3А = 39 Ватт , что не очень хорошо для транзистора в корпусе ТО-220 (еще нужно учитывать, что при закрытии транзистора ток тоже будет уменьшаться: на 6В ток будет около 2-2,5А, а не 3). В таком случае лучше либо использовать другой транзистор в более массивном корпусе, либо уменьшить разницу между входным и выходным напряжением (например, если блок питания трансформаторный, путем переключения обмоток).
Также транзистор должен быть рассчитан на ток от 5А и больше. Лучше брать транзистор со статическим коэффициентом передачи тока от 20. Китайский транзистор вполне соответствует данным требованиям. Перед запайкой в схему, я его проверил (ток и рассеиваемую мощность) на специальном стенде.
Т.к. TL431 может выдавать ток не более 100 мА, а для питания базы транзистора требуется больший ток, потребуется ещё один транзистор, который будет усиливать ток с выхода микросхемы TL431, повторяя опорное напряжение. Для этого и нужен транзистор VT2.
Транзистор VT2 должен быть способен подавать достаточный ток на базу транзистора VT1.
Грубо определить необходимый ток можно через статический коэффициент передачи тока (h31э или hFE или β) транзистора VT1. Если мы хотим на выходе иметь ток в 4 А, а статический коэффициент передачи тока VT1 равен 20, то:
I базы = I коллектора / β = 4 А / 20 = 0,2 А.
Статический коэффициент передачи тока будет меняться в зависимости от тока коллектора, так что это значение ориентировочное. Замер на практике показал, что нужно около 170 мА подать на базу транзистора VT1, чтобы ток коллектора был 4А. Транзисторы в корпусе ТО-92 начинают заметно греться при токах выше 0,1 А, поэтому в данной схеме я использовал транзистор КТ815А в корпусе ТО-126. Транзистор рассчитан на ток до 1,5А, статический коэффициент передачи тока — около 75. Небольшой радиатор для данного транзистора будет уместен.
Конденсатор С3 нужен для стабилизации напряжения на базе транзистора VT1, номинал — 100 мкФ, напряжение 25В.
На выходе и входе установлены фильтры из конденсаторов: С1 и С4 (электролитические на 25В, 1000 мкФ) и С2, С5 (керамические 2-10 мкФ).
Диод D1 служит для защиты транзистора VT1 от обратного тока. Диод D2 нужен для защиты от транзистора при питании коллекторных электродвигателей. Двигатели при отключении питания ещё какое-то время крутятся и в режиме торможения работают как генераторы. Вырабатываемый таким образом ток идет в обратном направлении и может повредить транзистор. Диод в данном случае замыкает двигатель на себя и ток не доходит до транзистора. Резистор R5 выполняет роль малой нагрузки для стабилизации в холостом режиме, номинал 10к Ом, мощность любая.
Сборка
Схема собирается в виде модуля на макетной плате. Я использовала радиатор из импульсного блока питания.
С радиатором такого размера не стоит максимально нагружать схему. При токе больше 1 А, необходимо заменить радиатор на более массивный, обдув вентилятором тоже не помешает.
Важно помнить, что чем больше разница между входным и выходным напряжением и чем больше ток, тем больше выделяется тепла и тем сильнее нужно охлаждение.
На пайку ушло около часа. В принципе хорошим тоном было бы сделать плату методом ЛУТ, но т.к. плата мне требуется только в одном экземпляре, не хотелось тратить время на проектирование платы.
Получился вот такой модуль:
После сборки проверил характеристики:
Схема практически не имеет защит (имеется в виду, что нет защиты от КЗ, защиты от переполюсовки, плавного старта, ограничения по току и т.д.), поэтому использовать ее нужно очень аккуратно. По той же причине не рекомендуется использовать подобные схемы в «лабораторных» блоках питания. Для этой цели лучше подойдут готовые микросхемы в корпусе ТО-220 на токи до 5А, например КР142ЕН22А. Либо как минимум для данной схемы нужно сделать дополнительный модуль для защиты от КЗ.
Схему можно назвать классической, как и большинство схем линейных стабилизаторов. Современные импульсные схемы имеют множество преимуществ, например: более высокий КПД, гораздо меньший нагрев, меньшие габариты и вес. В то же время линейные схемы проще освоить начинающим радиолюбителям, и если КПД и габариты не особо важны, они вполне годятся для питания устройств стабилизированным напряжением.
И конечно же ничто не сравниться с чувством, когда запитал какое-то устройство от самодельного источника питания, а линейные схемы для начинающих радиолюбителей более доступны, как ни крути. Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.usamodelkina.ru
Стабилитрон. Параметрические стабилизаторы напряжения | HomeElectronics
Доброго времени суток. Сегодня мой пост о стабилизаторах напряжения. Что же это такое? Прежде всего, любой радиоэлектронной схеме для работы необходим источник питания. Источники питания бывают разные: стабилизированные и нестабилизированные, постоянного тока и переменного тока, импульсные и линейные, резонансные и квазирезонансные. Такое большое разнообразие обусловлено различными схемами, от которых будут работать электронные схемы. Ниже приведена таблица сравнения схем источников питания.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Показатель | Линейный источник питания | Импульсный источник питания |
Стоимость | Низкая | Высока |
Масса | Большая | Небольшая |
ВЧ-шум | Отсутствует | Высокий |
КПД | 35 — 50 % | 70 — 90 % |
Несколько выходов | Нет | Есть |
Для питания электронных схем, которые не требуют высокой стабильности питающего напряжения постоянного тока или большой выходной мощности, целесообразно применять простые, надёжные и дешевые линейные источники напряжения. Основой любого линейного источника напряжения является параметрический стабилизатор напряжения. Основой таких устройств является элемент с нелинейной вольт-амперной характеристикой, у которого напряжение на электродах мало зависит от протекающего через элемент тока. Одним из таких элементов является стабилитрон.
Стабилитрон представляет собой особую группу диодов, режим работы которых характеризуется обратной ветвью вольт-амперной характеристики в области пробоя. Рассмотрим поподробнее вольт-амперную характеристику диода.
Вольт-амперная характеристика диода
Принцип работы стабилитрона
Когда диод включён в прямом направлении (анод – «+», катод – «–»), то он свободно начинает пропускать ток при напряжении Uпор, а при включении в обратном направлении (анод – «–», катод – «+») через диод может проходить лишь ток Iобр, который имеет значение нескольких мкА. Если увеличивать обратное напряжение Uобр на диоде до определённого значения Uобр.max произойдёт электрический пробой диода и если ток достаточно вели, то происходит тепловой пробой и диод выходит из строя. Диод можно заставить работать в области электрического пробоя, если ограничить ток, который проходит через диод (напряжение пробоя для разных диодов составляет 50 – 200 В).
Стабилитрон же разработан таким образом, что его вольт-амперная характеристика в области пробоя обладает высокой линейностью, а напряжение пробоя достаточно постоянно. Таким образом можно сказать, что стабилизация напряжения стабилитроном осуществляется при его работе на обратной ветви вольт-амперной характеристики, в области же прямой ветви стабилитрон ведёт себя аналогично обыкновенному диоду. Стабилитрон обозначается следующим образом
Обозначение стабилитрона
Основные параметры стабилитрона
Рассмотрим основные параметры стабилитрона по его вольт-амперной характеристике.
Вольт-амперная характеристика стабилитрона
Напряжение стабилизации Uст определяется напряжением на стабилитроне при протекании тока стабилизации Iст. В настоящее время выпускаютя стабилитроны с напряжением стабилизации от 0,7 до 200 В.
Максимально допустимый постоянный ток стабилизации Iст.max ограничен значением максимально допустимой рассеиваемой мощности Pmax, зависящей в свою очередь от температуры окружающей среды.
Минимальный ток стабилизации Iст.min определяется минимальным значением тока через стабилитрон, при котором ещё полностью сохраняется работоспособность прибора. Между значениями Iст.max и Iст.min вольт-амперная характеристика стабилитрона наиболее линейна и напряжение стабилизации изменяется незначительно.
Дифференциальное сопротивление стабилитрона rСТ – величина, определяемая отношением приращения напряжения стабилизации на приборе ΔUCT к вызвавшему его малому приращению тока стабилизации ΔiCT.
Стабилитрон, включённый в прямом направлении, как обычный диод, характеризуется значениями постоянного прямого напряжения Uпр и максимально допустимого постоянного прямого тока Iпр.max.
Параметрический стабилизатор
Основная схема включения стабилитрона, которая является схемой параметрического стабилизатора, а также источником опорного напряжения в стабилизаторах других типов приведена ниже.
Схема включения стабилитрона
Данная схема представляет собой делитель напряжения, состоящий из балластного резистора R1 и стабилитрона VD, параллельно которому включено сопротивление нагрузки RН. Такой стабилизатор напряжения обеспечивает стабилизацию выходного напряжения при изменении напряжения питания UП и тока нагрузки IН.
Рассмотрим принцип работы данной схемы. Увеличении напряжения на входе стабилизатора приводит к увеличению тока который проходит через резистор R1 и стабилитрон VD. За счёт своей вольт-амперной характеристики напряжение на стабилитроне VD практически не изменится, а соответственно напряжение на сопротивлении нагрузки Rн тоже. Таким образом практически всё изменение напряжение будет приложено к резистору R1. Таким образом достаточно легко подсчитать необходимые параметры схемы.
Расчёт параметрического стабилизатора.
Исходными данными для расчёта для расчёта простайшего параметрического стабилизатора напряжения являются:
входное напряжение U0;
выходное напряжение U1 = Ust – напряжение стабилизации;
выходной ток IH = IST;
Для примера возьмём следующие данные: U0 = 12 В, U1 = 5 В, IH = 10 мА = 0,01 А.
1. По напряжению стабилизации выбираем стабилитрон типа BZX85C5V1RL (Ust = 5,1 В, дифференциальное сопротивление rst = 10 Ом).
2. Определяем необходимое балластное сопротивление R1:
3. Определяем коэффициент стабилизации:
4. Определяем коэффициент полезного действия
Увеличение мощности параметрического стабилизатора
Максимальная выходная мощность простейшего параметрического стабилизатора напряжения зависит от значений Iст.max и Pmax стабилитрона. Мощность параметрического стабилизатора может быть увеличена, если в качестве регулирующего компонента использовать транзистор, который будет выступать в качестве усилителя постоянного тока.
Параллельный стабилизатор
Схема ПСН с параллельным включением транзистора
Схема представляет собой эмиттерный повторитель, параллельно транзистору VT включено сопротивление нагрузки RH. Балластный резистор R1 может быть включён как в коллекторную, так ив эмиттерную цепи транзистора. Напряжение на нагрузке равно
Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UCT) на выходе стабилизатора, происходит увеличение напряжения база-эмиттер (UEB) и коллекторного тока IK, так как транзистор работает в области усиления. Возрастание коллекторного тока приводит к увеличению падения напряжения на балластном резисторе R1, что компенсирует рост напряжения на выходе стабилизатора (U1 = UCT). Поскольку ток IСТ стабилитрона является одновременно базовым током транзистора, очевидно, что ток нагрузки в этой схеме может быть в h21e раз больше, чем в простейшей схеме параметрического стабилизатора. Резистор R2 увеличивает ток через стабилитрон, обеспечивая его устойчивую работу при максимальном значении коэффициента h31e, минимальном напряжении питания U0 и максимальном токе нагрузки IН.
Коэффициент стабилизации будет равен
где RVT – входное сопротивление эмиттерного повторителя
где Re и Rb – сопротивления эмиттера и базы транзистора.
Сопротивление Re существенно зависит от эмиттерного тока. С уменьшением тока эмиттера сопротивление Re быстро возрастает и это приводит к увеличению RVT, что ухудшает стабилизирующие свойства. Уменьшить значение Re можно за счёт применения мощных транзисторов или составных транзисторов.
Последовательный стабилизаттор
Параметрический стабилизатор напряжения, схема которого представлена ниже, представляет собой эмиттерный повторитель на транзисторе VT с последовательно включённым сопротивлением нагрузки RH. Источником опорного напряжения в данной схеме является стабилитрон VD.
Схема ПСН с последовательным включением транзистора
Выходное напряжение стабилизатора:
Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UST) на выходе стабилизатора происходит уменьшение отпирающего напряжения UEB транзистора и его базовый ток уменьшается. Это приводит к росту напряжения на переходе коллектор – эмиттер, в результате чего выходное напряжение практически не изменяется. Оптимальное значение тока опорного стабилитрона VD определяется сопротивлением резистора R2, включённого в цепь источника питания U0. При постоянном значении входного напряжения U0 базовый ток транзистора IB и ток стабилизации связаны между собой соотношением IB + IST = const.
Коэффициент стабилизации схемы
где Rk – сопротивление коллектора биполярного транзистора.
Обычно kST ≈ 15…20.
Коэффициент стабилизации параметрического стабилизатора напряжения может быть существенно увеличен при введении в его схему отдельного вспомогательного источника с U’0 > U1 и применении составного транзистора.
Схема ПСН с составным транзистором и питанием стабилитрона от отдельного источника напряжения
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
www.electronicsblog.ru
Блок питания на стабилитроне и транзисторе своими руками
Рассмотренный далее стабилизированный блок питания является одним из первых устройств, которые собираются начинающими радиолюбителями. Это очень простой, но весьма полезный прибор. Для его сборки не нужны дорогостоящие компоненты, которые достаточно легко подобрать новичку в зависимости от требуемых характеристик блока питания.Материал будет также полезен тем, кто желает более детально разобраться в назначении и расчете простейших радиодеталей. В том числе, вы подробно узнаете о таких компонентах блока питания, как:
- силовой трансформатор;
- диодный мост;
- сглаживающий конденсатор;
- стабилитрон;
- резистор для стабилитрона;
- транзистор;
- нагрузочный резистор;
- светодиод и резистор для него.
Также в статье детально рассказано, как подобрать радиодетали для своего блока питания и что делать, если нет нужного номинала. Наглядно будет показана разработка печатной платы и раскрыты нюансы этой операции. Несколько слов сказано конкретно о проверке радиодеталей перед пайкой, а также о сборке устройства и его тестировании.
Типовая схема стабилизированного блока питания
Всевозможных схем блоков питания со стабилизацией напряжения существует сегодня очень много. Но одна из самых простых конфигураций, с которой и стоит начинать новичку, построена всего на двух ключевых компонентах – стабилитроне и мощном транзисторе. Естественно, в схеме присутствуют и другие детали, но они вспомогательные.
Схемы в радиоэлектронике принято разбирать в том направлении, в котором по ним протекает ток. В блоке питания со стабилизацией напряжения все начинается с трансформатора (TR1). Он выполняет сразу несколько функций. Во-первых, трансформатор понижает сетевое напряжение. Во-вторых, обеспечивает работу схемы. В-третьих, питает то устройство, которое подключено к блоку.
Диодный мост (BR1) – предназначен для выпрямления пониженного сетевого напряжения. Если говорить другими словами, то в него заходит переменное напряжение, а на выходе получается уже постоянное. Без диодного моста не будет работать ни сам блок питания, ни устройства, которые будут к нему подключаться.
Сглаживающий электролитический конденсатор (C1) нужен для того, чтобы убирать пульсации, присутствующие в бытовой сети. На практике они создают помехи, которые отрицательно сказываются на работе электроприборов. Если для примера взять усилитель звука, запитанный от блока питания без сглаживающего конденсатора, то эти самые пульсации будут отчетливо слышны в колонках в виде постороннего шума. В других приборах помехи могут привести к некорректной работе, сбоям и прочим проблемам.
Стабилитрон (D1) – это компонент блока питания, который стабилизирует уровень напряжения. Дело в том, что трансформатор будет выдавать желаемые 12 В (например) только тогда, когда в сетевой розетке будет ровно 230 В. Однако на практике таких условий не бывает. Напряжение может как просаживаться, так и повышаться. То же самое трансформатор будет давать и на выходе. Благодаря своим свойствам стабилитрон выравнивает пониженное напряжение независимо от скачков в сети. Для корректной работы этого компонента нужен токоограничивающий резистор (R1). О нем более детально сказано ниже.
Транзистор (Q1) – нужен для усиления тока. Дело в том, что стабилитрон не способен пропускать через себя весь потребляемый прибором ток. Более того, корректно он будет работать только в определенном диапазоне, например, от 5 до 20 мА. Для питания каких-либо приборов этого откровенно мало. С данной проблемой и справляется мощный транзистор, открывание и закрывание которого управляется стабилитроном.
Сглаживающий конденсатор (C2) – предназначен для того же, что и вышеописанный C1. В типовых схемах стабилизированных блоков питания присутствует также нагрузочный резистор (R2). Он нужен для того, чтобы схема сохраняла работоспособность тогда, когда к выходным клеммам ничего не подключено.
В подобных схемах могут присутствовать и другие компоненты. Это и предохранитель, который ставится перед трансформатором, и светодиод, сигнализирующий о включении блока, и дополнительные сглаживающие конденсаторы, и еще один усиливающий транзистор, и выключатель. Все они усложняют схему, однако, повышают функциональность устройства.
Расчет и подбор радиокомпонентов для простейшего блока питания
Трансформатор подбирается по двум основным критериям – напряжению вторичной обмотки и по мощности. Есть и другие параметры, но в рамках материала они не особо важны. Если вам нужен блок питания, скажем, на 12 В, то трансформатор нужно подбирать такой, чтобы с его вторичной обмотки можно было снять чуть больше. С мощностью все то же самое – берем с небольшим запасом.
Основной параметр диодного моста – это максимальный ток, который он способен пропускать. На эту характеристику и стоит ориентироваться в первую очередь. Рассмотрим примеры. Блок будет использоваться для питания прибора, потребляющего ток 1 А. Это значит, что диодный мост нужно брать примерно на 1,5 А. Допустим, вы планируете питать какой-либо 12-вольтовый прибор мощностью 30 Вт. Это значит, что потребляемый ток будет около 2,5 А. Соответственно, диодный мост должен быть, как минимум, на 3 А. Другими его характеристиками (максимальное напряжение и прочее) в рамках такой простой схемы можно пренебрегать.
Дополнительно стоит сказать, что диодный мост можно не брать уже готовый, а собрать его из четырех диодов. В таком случае каждый из них должен быть рассчитан на ток, проходящий по схеме.
Для расчета емкости сглаживающего конденсатора применяются достаточно сложные формулы, которые в данном случае ни к чему. Обычно берется емкость 1000-2200 мкФ, и этого для простого блока питания будет вполне достаточно. Можно взять конденсатор и побольше, но это существенно удорожит изделие. Другой важный параметр – максимальное напряжение. По нему конденсатор подбирается в зависимости от того, какое напряжение будет присутствовать в схеме.
Здесь стоит учитывать, что на отрезке между диодным мостом и стабилитроном после включения сглаживающего конденсатора напряжение будет примерно на 30% выше, чем на выводах трансформатора. То есть, если вы делаете блок питания на 12 В, а трансформатор выдает с запасом 15 В, то на данном участке из-за работы сглаживающего конденсатора будет примерно 19,5 В. Соответственно, он должен быть рассчитан на это напряжение (ближайший стандартный номинал 25 В).
Второй сглаживающий конденсатор в схеме (C2) обычно берется небольшой емкости – от 100 до 470 мкФ. Напряжение на этом участке схемы будет уже стабилизированным, например, до уровня 12 В. Соответственно, конденсатор должен быть рассчитан на это (ближайший стандартный номинал 16 В).
А что делать, если конденсаторов нужных номиналов нет в наличии, и в магазин идти неохота (или банально нет желания их покупать)? В таком случае вполне возможно воспользоваться параллельным подключением нескольких конденсаторов меньшей емкости. При этом стоит учесть, что максимальное рабочее напряжение при таком подсоединении суммироваться не будет!
Стабилитрон подбирается в зависимости от того, какое напряжение нам нужно получить на выходе блока питания. Если подходящего номинала нет, то можно соединить несколько штук последовательно. Стабилизируемое напряжение, при этом, будет суммироваться. Для примера возьмем ситуацию, когда нам надо получить 12 В, а в наличии есть только два стабилитрона на 6 В. Соединив их последовательно мы и получим желаемое напряжение. Стоит отметить, что для получения усредненного номинала параллельное подключение двух стабилитронов не сработает.
Максимально точно подобрать токоограничивающий резистор для стабилитрона можно только экспериментально. Для этого в уже рабочую схему (например, на макетной плате) включается резистор номиналом примерно 1 кОм, а между ним и стабилитроном в разрыв цепи ставится амперметр и переменный резистор. После включения схемы нужно вращать ручку переменного резистора до тех пор, пока через участок цепи не потечет требуемый номинальный ток стабилизации (указывается в характеристиках стабилитрона).
Усиливающий транзистор подбирается по двум основным критериям. Во-первых, для рассматриваемой схемы он обязательно должен быть n-p-n структуры. Во-вторых, в характеристиках имеющегося транзистора нужно посмотреть на максимальный ток коллектора. Он должен быть немного больше, чем максимальный ток, на который будет рассчитан собираемый блок питания.
Нагрузочный резистор в типовых схемах берется номиналом от 1 кОм до 10 кОм. Меньшее сопротивление брать не стоит, так как в случае, когда блок питания не будет нагружен, через этот резистор потечет слишком большой ток, и он сгорит.
Разработка и изготовление печатной платы
Теперь вкратце рассмотрим наглядный пример разработки и сборки стабилизированного блока питания своими руками. В первую очередь, необходимо найти все присутствующие в схеме компоненты. Если нет конденсаторов, резисторов или стабилитронов нужных номиналов – выходим из ситуации вышеописанными путями.
Далее нужно будет спроектировать и изготовить печатную плату для нашего прибора. Начинающим лучше всего использовать для этого простое и, самое главное, бесплатное программное обеспечение, например, Sprint Layout.
Размещаем на виртуальной плате все компоненты согласно выбранной схемы. Оптимизируем их расположение, корректируем в зависимости от того, какие конкретно детали есть в наличии. На этом этапе рекомендуется перепроверять реальные размеры компонентов и сравнивать их с добавляемыми в разрабатываемую схему. Особое внимание обратите на полярность электролитических конденсаторов, расположение выводов транзистора, стабилитрона и диодного моста.
Если вы заходите добавить в блок питания сигнальный светодиод, то его можно будет включить в схему как до стабилитрона, так и после (предпочтительнее). Чтобы подобрать для него токоограничивающий резистор, необходимо выполнить следующий расчет. Из напряжения участка цепи вычитаем падение напряжения на светодиоде и делим результат на номинальный ток его питания. Пример. На участке, к которому мы планируем подключать сигнальный светодиод, имеется стабилизированные 12 В. Падение напряжения у стандартных светодиодов около 3 В, а номинальный ток питания 20 мА (0,02 А). Получаем, что сопротивление токоограничивающего резистора R=450 Ом.
Проверка компонентов и сборка блока питания
После разработки платы в программе переносим ее на стеклотекстолит, травим, лудим дорожки и удаляем излишки флюса.
После этого выполняем установку радиокомпонентов. Здесь стоит сказать, что не лишним будет сразу же перепроверить их работоспособность, особенно, если они не новые. Как и что проверять?
Обмотки трансформатора проверяются омметром. Где сопротивление больше – там первичная обмотка. Далее его нужно включить в сеть и убедиться, что он выдает требуемое пониженное напряжение. При его измерении соблюдайте предельную осторожность. Также учтите, что напряжение на выходе переменное, потому на вольтметре включается соответствующий режим.
Резисторы проверяются омметром. Стабилитрон должен «звониться» только в одном направлении. Диодный мост проверяем по схеме. Встроенные в него диоды должны проводить ток только в одном направлении. Для проверки конденсаторов потребуется специальный прибор для измерения электрической емкости. В транзисторе n-p-n структуры ток должен протекать от базы к эмиттеру и к коллектору. В остальных направлениях он протекать не должен.
Начинать сборку лучше всего с мелких деталей – резисторов, стабилитрона, светодиода. Затем впаиваются конденсаторы, диодный мост.
Особое внимание обращайте на процесс установки мощного транзистора. Если перепутать его выводы – схема не заработает. Кроме того, этот компонент будет достаточно сильно греется под нагрузкой, потому его необходимо устанавливать на радиатор.
Последним устанавливается самая большая деталь – трансформатор. Далее к выводам его первичной обмотки припаивается сетевая вилка с проводом. На выходе блока питания тоже предусматриваются провода.
Осталось только хорошенько перепроверить правильность установки всех компонентов, смыть остатки флюса и включить блок питания в сеть. Если все сделано правильно, то светодиод будет светиться, а на выходе мультиметр покажет желаемое напряжение.
sdelaysam-svoimirukami.ru