Автомобильный преобразователь напряжения с 12 вольт на 5 вольт ?
Всем хорошо известно, что номинальное бортовое напряжение легковых автомобилей составляет 12 вольт. Может в некоторых случаях оно может быть 24 вольта, поскольку аккумуляторы на такое напряжение тоже встречаются, но мы об этом не знаем:)…
Однако напряжение 12 вольт не всегда является подходящим для многих электронных устройств, где применяется цифровая логика. Исторически сложилось так, что большинство логических микросхем работают с напряжением 5 вольт. Именно это напряжение зачастую и обеспечивается в машине с помощью зарядных устройств, адаптеров, стабилизаторов… Кстати, о таком зарядном устройстве мы уже рассказывали в одной из наших статей «Зарядной устройство на 5 вольт для применения в машине». Если сказать более того, то по сути, эта статья является неким продолжением приведенной нами статьи выше, с одним лишь исключением. Здесь будут собраны все возможные варианты обеспечивающие преобразование 12 вольт в 5 вольт.
Как из 12 вольт сделать 5 вольт с помощью резисторов
Использование резистора для снижения питающего напряжения нагрузки это один из самых «неблагодарных» способов. Такое заключение можно сделать даже из самого определения резистора. Резистор — пассивный элемент электрической цепи, обладающий определенным сопротивлением для электрического тока. Здесь ключевым будет слово «пассивный». Действительно, такая пассивность не позволяет гибко реагировать на изменения напряжения, обеспечивая стабилизацию питания для нагрузки.
Второй минус резистора это его относительно небольшая мощность. Применять резистор, более чем на 3-5 Ватт смысла нет. Если необходимо рассеять большую мощность, то резистор будет слишком большим, а ток при рассеиваемой мощности не трудно посчитать.
Все же ради интереса и ради тех, кому надо небольшой ток и нестабилизированное напряжение мы посчитаем и этот вариант. Так напряжение бортовой сети машины (автомобиля) 14 вольт, а надо 5 вольт. 14-5=9 вольт, которые надо сбросить. Ток скажем ток нагрузки будет те же 0,25 А при 3 Ваттном резисторе. R=9/0.25=36 Ом. То есть можно взять 36 Омный резистор при токе потребления нагрузки 250 мА и на ней получится питающее напряжение 5 вольт.
Теперь давайте поговорим о более «цивилизованных» вариантах преобразователя напряжения с 12 на 5 вольт.
Как из 12 вольт сделать 5 вольт с помощью транзистора
Эта схема на транзисторе не самая простая в производстве, но при этом самая простая в функциональности. Сейчас мы говорим о том, что схема не защищена от короткого замыкания, от перегрева. Отсутствие такой защиты является неким недостатком. Актуальность этой схемы можно отнести к еще тем временам, когда не существовало микросборок (микросхем), преобразователей.
Первоначально транзистор закрыт и не пропускает напряжение. Но после прохождения напряжения через резистор R1 и стабилитрон VD1 он открывается на уровень соответствующий напряжению стабилитрона. Ведь именно стабилитрон обеспечивает опорное напряжение для базы транзистора. В итоге, транзистор всегда открыт (закрыт) прямо пропорционально входному напряжению. Именно так обеспечивается снижение напряжения, а также его стабилизация. Конденсаторы выполняют функцию неких «электрических буферов», в случае резких скачков и провалов. Это придает схеме больше стабильности. Итак, схема на транзисторе вполне работоспособна и применима.
Ток для питания нагрузки здесь будет уже гораздо больше. Так скажем для транзистора указанного в схеме КТ815, это ток 1,5 А. Этого уже вполне достаточно, чтобы подключить навигатор, планшет или ведеорегистратор, но не все сразу!Как из 12 вольт сделать 5 вольт с помощью микросхемы
На смену транзисторным сборкам пришли микросхемы. Их плюсы очевидны. Здесь и электронщиком совсем не надо быть, можно все собрать без представлений, как и что работает. Хотя даже специалист не скажет, что же вшил в корпус производитель той или иной микросхемы, коих развелось на нашем рынке великое множество. Это собственно на руку нам, мы можем выбрать лучшее, за меньшие деньги. Также плюсами микросборок будет использование всевозможных защит, которые были недоступны в предыдущих вариантах. Это защита от КЗ и от перегрева. Как правило, это по умолчанию. Теперь давайте разберем подобные примеры.
Применения таких микросборок оправдано для случая, если вам необходимо питать одно из устройств, так как питающий ток соизмерим с предыдущим вариантом, порядка 1,5 А. Однако ток также будет зависеть и от корпуса сборки. Ниже приведены те же микросхемы, но в других типах корпусов. В этих случаях ток питания будет порядка 100 мА. Это вариант для маломощных потребителей. В любом случае ставим на микросхемы радиаторы.
Итак, в случае подключения нескольких устройств, придется подключать микросборки параллельно, по одной микросхеме на каждое устройство. Согласитесь, сто это не совсем корректный вариант. Здесь лучше идти по пути увеличения выходного тока питания, и повышения КПД. Именно этот вариант нам предлагают микросхемы с ШИМ. О нем далее…
Как из 12 вольт сделать 5 вольт с помощью микросхемы с ШИМ
Очень кратко и непрофессионально расскажем о широтно-импульсной модуляции. Вся ее суть сводится к тому, что питание осуществляется не постоянным током, а импульсами. Частота импульсов и их диапазон подбирается таким образом, чтобы питающая нагрузка воспринимала питание, словно ток постоянен, то есть не было отклонений в работе, отключений, миганий и т. д. Однако за счет того, что ток импульсный, и за счет того что он прерывистый, все элементы схемы работают уже со своеобразными «перерывам на отдых». Это позволяет сэкономить на потреблении, а также разгрузить рабочие элементы схемы. Именно из-за этого импульсные блоки питания и преобразователи такие маленькие, то такие «удаленькие». Использование ШИМ позволяет повысить КПД схемы до 95-98 процентов. Поверьте это очень хороший показатель. Итак, приводим схему для преобразователя с 12 на 5 вольт использующего ШИМ.
Вот так она выглядит «вживую».
Более подробно об этом варианте все в той же статье про зарядное устройство на 5 вольт, которое мы упоминали ранее.
Подводя итог о преобразователе напряжения с 12 на 5 вольт
Все схемы и варианты преобразователей, про которые мы вам рассказали в этой статье, имеют право на жизнь. Самый простой вариант с резистором будет незаменим для варианта, когда вам необходимо подключить что-то маломощное и не требующее стабилизированного напряжения. Скажем пару светодиодов, подключенных последовательно. Кстати, о подключении светодиодов к 12 вольтам, вы можете узнать из статьи «Как подключить светодиод к 12 вольтам».
Второй вариант будет уместен тогда, когда преобразователь вам нужен уже сейчас, а времени или возможности, сходить в магазин, нет. Найти транзистор и стабилитрон можно практически в любой технике под списание.
Последнее по хронологии статьи, но не по информативности нам хотелось напомнить о том, как должно подключаться питание к USB разъемам, будь то mini, micro разъемы.
Теперь вы сможете не только выбрать и собрать нужный вам вариант преобразователя, но и подключить его вашему электронному девайсу через разъем USB, ориентируясь на принятые стандарты питания.
Преобразователь напряжения 5 Вольт 8 Ампер с четырьмя USB выходами. Технический обзор и тест преобразователя напряжения с USB
Решил заказать на пробу разных недорогих платок преобразователей и сегодня обзор первой из них. Собственно ничего необычного, обычный преобразователь, даже без QC, зато с выходной мощностью до 40 Ватт.В описании заявлялось что это преобразователь напряжения, без гальванической развязки, со входным напряжением 8-35 Вольт и выходным 5 Вольт с током до 8 Ампер.
Платка компактная, если не учитывать разъемы, то примерно как спичечный коробок.
На сторону противоположную USB разъемам вынесен входной разъем и клеммник, на который разведены входные клеммы и выходные. Т.е. данный преобразователь можно использовать и без подключения к USB выходам, что иногда может быть полезно.
На второй стороне соответственно 4 USB гнезда, разделенные на две пары. Разъемы поначалу были очень тугими, но после 2- подключений пришли в норму.
Сверху находится пара транзисторов (преобразователь с синхронным выпрямлением) со стертой маркировкой, силовой дроссель, а также четыре конденсатора 220мкФ 35 Вольт.
Так как выходной ток уже довольно приличный, то дроссель намотан не обычным проводом, а медной шиной для повышения КПД и соответственно уменьшения нагрева.
Снизу все остальные компоненты, предохранитель, транзистор защиты от переполюсовки, контроллер, защитные супрессоры.
Схемотехника приятно порадовала, здесь помимо предохранителя есть нормальная защита от переполюсовки питания, реализованная не на диоде, а на полевом транзисторе, я уже как-то рассказывал принцип ее работы.
Также радует наличие керамических конденсаторов по линиям питания и два супрессора установленные параллельно выходу 5 Вольт, предназначенные для защиты нагрузки в случае пробоя силовых транзисторов. Конечно такая защита не дает 100% гарантии, но шанс выживаемости увеличивает.
По выходу стоят контроллеры, которые подбирают напряжение на линиях данных USB чтобы нагрузка могла взять максимальный ток. Это не QC, но тем не менее совместимость с различными потребителями становится выше. Тем более что QC в преобразователе с более чем одним выходом требует наличия соответствующего количества преобразователей.
Отмечу что параллельно силовым контактам USB разъемов также стоят керамические конденсаторы.
Но мало того, производитель для повышения надежности, а точнее — устойчивости к внешним воздействиям, покрыл плату резиноподобным компаундом, что встречается крайне редко.
Подключаем блок питания, при этом о наличии напряжения на выходе сигнализирует небольшой красный SMD светодиод, при необходимости можно заменить его на обычный, рядом есть соответствующие отверстия.
1. Выходное напряжение 5.28 Вольта, что немного превышает допуск по стандарту, составляющий 4.75-5.25 Вольта, но не сильно и думаю что не критично.
2. Поддерживается несколько режимов эмуляции. Но что любопытно, при первых тестах один выход стабильно отображал режим QC 5 Вольт, но когда я начал через время готовить обзор и повторил тесты, то больше такого не встречал…
3. При подключении телефона Самсунг ток заряда составлял 650мА, судя по всему «договориться» они не смогли.
4. Зато при попытке подключить китайский UMIdigi без проблем получил 2-2.18 Ампера, хотя мое привычное зарядное вообще не хочет его нормально заряжать.
Нагрузочный тест показал две вещи:
1. Хорошую стабилизацию напряжения, в диапазоне от нулевого тока до максимальной нагрузки напряжение падает всего на 60-70мВ. Нагрузка и измерение производилось на клеммнике, а не USB разъеме.
2. 8 Ампер это максимальный выходной ток, дальше срабатывает защита, причем иногда защита срабатывала и при меньшем токе, например при тех же 8 Ампер.
Для измерения уровня пульсаций использовался все тот же «стенд», правда в этот раз произошли некоторые изменения. Для уменьшения количества помех от измерительных приборов я питал нагрузку от трансформаторного БП.
Кроме того, так как ко мне едут две новые нагрузки, то в планах потом мою основную доработать, перенеся ее в другой корпус, установив там трансформаторный блок питания, а не импульсный и кроме того добавив гальваническую развязку интерфейса подключения к компьютеру. Данные доработки должны убрать образование возможных земляных петель.
А вот пульсации я бы не назвал маленькими, основные, которые сложнее погасить, составляют 180мВ в любом режиме. На осциллограммах нагрузка 0-33-66-100%
Есть пульсации в виде «иголок», которые легче гасить, но которые зависит от тока нагрузки и которые имеют заметно ольший размах.
Напряжение питания здесь 12 Вольт.
Тот же тест, те же режимы, но входное напряжение 24 Вольта.
Собственно ничего кроме размаха пульсаций «иголок» не изменилось. Я бы в качестве простой доработки рекомендовал увеличить емкость выходных конденсаторов.
Выше на фото видно, что земля щупа осциллографа подключена проводом, а не пружинкой, что дает некоторое искажение результатов теста. Но так как разница в данном случае не очень велика, то я ею пренебрег.
Входное напряжение 24 Вольта, ток нагрузки 8 Ампер, слева с проводом, справа с пружинкой.
Нагрев проверялся в трех режимах, с током нагрузки 2.5, 5.0 и 7.5 Ампера, первый тест был минут 10-15, дальше можно увидеть по таймингу тепловизора.
В общем 7.5 Ампера преобразователь держит уверенно, греется не очень сильно, но в компактную закрытую коробочку я бы не стал его ставить, так как возможен перегрев.
Измерение КПД. Попутно измерил ток потребления без нагрузки, при обоих вариантах входного напряжения он одинаков и составляет 40мА.
При входном напряжении 12 Вольт КПД лучше на малых токах нагрузки, при 24 Вольта на больших, собственно это видно на графике.
В качестве резюме могу сказать, что преобразователь очень понравился, единственное нарекание, которое я меня есть, это к уровню пульсаций, в остальном как по мне, то все отлично, как качество изготовления, так и наличие защит, стабильность выходного напряжения, схемотехника, особенно с учетом цены. На мой взгляд вещь весьма полезная для радиолюбителя.
На этом у меня все, надеюсь что обзор был полезен.
Блок питания. Блок питания Как сделать из 12 вольт 3.7 вольта
DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.
При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.
Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода. Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки , на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.
После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.
Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.
Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.
Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.
Напряжение 12 Вольт используется для питания большого количества электроприборов: приемники и магнитолы, усилители, ноутбуки, шуруповерты, светодиодные ленты и прочее. Часто они работают от аккумуляторов или от блоков питания, но когда те или другие выходят из строя перед пользователем возникает вопрос: «Как получить 12 Вольт переменного тока»? Об этом мы расскажем далее, предоставив обзор наиболее рациональных способов.
Получаем 12 Вольт из 220
Наиболее часто стоит задача получить 12 вольт из бытовой электросети 220В. Это можно сделать несколькими способами:
- Понизить напряжение без трансформатора.
- Использовать сетевой трансформатор 50 Гц.
- Использовать импульсный блок питания, возможно в паре с импульсным или линейным преобразователем.
Понижение напряжения без трансформатора
Преобразовать напряжение из 220 Вольт в 12 без трансформатора можно 3-мя способами:
- Понизить напряжение с помощью балластного конденсатора. Универсальный способ используется для питания маломощной электроники, например светодиодных ламп, и для заряда небольших аккумуляторов, как в фонариках. Недостатком является низкий косинус Фи у схемы и невысокая надежность, но это не мешает её повсеместно использовать в дешевых электроприборах.
- Понизить напряжение (ограничить ток) с помощью резистора. Способ не очень хороший, но имеет право на существование, подойдет, чтобы запитать какую-то очень слабую нагрузку, типа светодиода. Его основной недостаток – это выделение большого количества активной мощности в виде тепла на резисторе.
- Использовать автотрансформатор или дроссель с подобной логикой намотки.
Гасящий конденсатор
Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:
- Блок питания не универсальный, поэтому его рассчитывают и используют только для работы с одним заведомо известным прибором.
- Все внешние элементы блока питания, например регуляторы, если вы будете использовать дополнительные компоненты для схемы, должны быть изолированы, а на металлических ручках потенциометров надеты пластиковые колпачки. Не касайтесь платы блока питания и проводов для подключения выходного напряжения, если к ним не подключена нагрузка или если в схеме не установлен стабилитрон или стабилизатор для низкого постоянного напряжения.
Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.
Схема изображена на рисунке ниже:
R1 – нужен для разрядки гасящего конденсатора, C1 – основной элемент, гасящий конденсатор, R2 – ограничивает токи при включении схемы, VD1 – диодный мост, VD2 – стабилитрон на нужное напряжение, для 12 вольт подойдут: Д814Д, КС207В, 1N4742A. Можно использовать и линейный преобразователь.
Или усиленный вариант первой схемы:
Номинал гасящего конденсатора рассчитывают по формуле:
С(мкФ) = 3200*I(нагрузки)/√(Uвход²-Uвыход²)
С(мкФ) = 3200*I(нагрузки)/√Uвход
Но можно и воспользоваться калькуляторами, они есть в онлайн или в виде программы для ПК, например как вариант от Гончарука Вадима, можете поискать в интернете.
Конденсаторы должны быть такими – пленочными:
Или такие:
Остальные перечисленные способы рассматривать не имеет смысла, т.к. понижение напряжения с 220 до 12 Вольт с помощью резистора не эффективно ввиду большого тепловыделения (размеры и мощность резистора будут соответствующие), а мотать дроссель с отводом от определенного витка чтобы получить 12 вольт нецелесообразно ввиду трудозатрат и габаритов.
Блок питания на сетевом трансформаторе
Классическая и надежная схема, идеально подходит для питания усилителей звука, например колонок и магнитол. При условии установки нормального фильтрующего конденсатора, который обеспечит требуемый уровень пульсаций.
В дополнение можно установить стабилизатор на 12 вольт, типа КРЕН или L7812 или любой другой для нужного напряжения. Без него выходное напряжение будет изменяться соответственно скачкам напряжения в сети и будет равно:
Uвых=Uвх*Ктр
Ктр – коэффициент трансформации.
Здесь стоит отметить, что выходное напряжение после диодного моста должно быть на 2-3 вольта больше, чем выходное напряжение БП – 12В, но не более 30В, оно ограничено техническими характеристиками стабилизатора, и КПД зависит от разницы напряжений между входом и выходом.
Трансформатор должен выдавать 12-15В переменного тока. Стоит отметить, что выпрямленное и сглаженное напряжение будет в 1,41 раз больше входного. Оно будет близко к амплитудному значению входной синусоиды.
Также хочется добавить схему регулируемого БП на LM317. С его помощью вы можете получить любое напряжение от 1,1 В до величины выпрямленного напряжения с трансформатора.
12 Вольт из 24 Вольт или другого повышенного постоянного напряжения
Чтобы понизить напряжение постоянного тока из 24 Вольт в 12 Вольт можно использовать линейный или импульсный стабилизатор. Такая необходимость может возникнуть, если нужно запитать 12 В нагрузку от бортовой сети автобуса или грузовика напряжением в 24 В. Кроме того вы получите стабилизированное напряжение в сети автомобиля, которое часто изменяется. Даже в авто и мотоциклах с бортовой сетью в 12 В оно достигает 14,7 В при работающем двигателе. Поэтому эту схему можно использовать и для питания светодиодных лент и светодиодов на транспортных средствах.
Схема с линейным стабилизатором упоминалась в предыдущем пункте.
К ней можно подключить нагрузку током до 1-1,5А. Чтобы усилить ток, можно использовать проходной транзистор, но выходное напряжение может немного снизится – на 0,5В.
Подобным образом можно использовать LDO-стабилизаторы, это такие же линейные стабилизаторы напряжения, но с низким падением напряжения, типа AMS-1117-12v.
Или импульсные аналоги типа AMSR-7812Z, AMSR1-7812-NZ.
Схемы подключения аналогичны L7812 и КРЕНкам. Также эти варианты подойдут и для понижения напряжения от блока питания от ноутбука.
Эффективнее использовать импульсные понижающие преобразователи напряжения, например на базе ИМС LM2596. На плате подписаны контактные площадки In (вход +) и (- Out выход) соответственно. В продаже можно найти версию с фиксированным выходным напряжением и с регулируемым, как на фото сверху в правой части вы видите многооборотный потенциометр синего цвета.
12 Вольт из 5 Вольт или другого пониженного напряжения
Вы можете получить 12В из 5В, например, от USB-порта или зарядного устройства для мобильного телефона, также можно использовать и с популярными сейчас литиевыми аккумуляторами с напряжением 3,7-4,2В.
Если речь вести о блоках питания, можно и вмешаться во внутреннюю схему, править источник опорного напряжения, но для этого нужно иметь определенные знания в электронике. Но можно сделать проще и получить 12В с помощью повышающего преобразователя, например на базе ИМС XL6009. В продаже имеются варианты с фиксированным выходом 12В либо регулируемые с регулировкой в диапазоне от 3,2 до 30В. Выходной ток – 3А.
Он продаётся на готовой плате, и на ней есть пометки с назначением выводов – вход и выход. Еще вариант — использовать MT3608 LM2977, повышает до 24В и выдерживает выходной ток до 2А. Также на фото отчетливо видны подписи к контактным площадкам.
Как получить 12В из подручных средств
Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.
Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.
Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.
Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.
Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео
Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?
Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.
Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:
Вариант №1
Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):
Вариант №2
На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!
Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:
Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .
U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).
Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:
Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.
Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.
Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.
Вариант №3
Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).
Итак, схему в студию!
Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.
Итак, что на выходе?
Почти 5.7 Вольт;-), что и требовалось доказать.
Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:
На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.
Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…
Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.
Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.
Блок питания 3 — 24в
Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.
Схема блока питания на 1,5 в
Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.
Схема регулируемого блока питания от 1,5 до 12,5 в
Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.
Схема блока питания с фиксированным выходным напряжением
Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.
Схема блока питания мощностью 20 Ватт с защитой
Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.
Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.
Самодельный блок питания на 3.3v
Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.
Трансформаторный блок питания на КТ808
У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.
При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта
Блок питания на 1000в, 2000в, 3000в
Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.
В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.
Еще по теме
Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Ремонт и доработка китайского блока питания для питания адаптера.
Как сделать из 12 вольт 3.7 вольта. Как получить нестандартное напряжение. Повышающий преобразователь напряжения
Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?
Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.
Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:
Вариант №1
Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):
Вариант №2
На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!
Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:
Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .
U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).
Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:
Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.
Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.
Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.
Вариант №3
Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).
Итак, схему в студию!
Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.
Итак, что на выходе?
Почти 5.7 Вольт;-), что и требовалось доказать.
Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:
На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.
С помощью данного преобразователя напряжения можно получить 220 вольт от аккумуляторной батареи, напряжением 3.7 вольт. Схема не сложная и все детали доступы, этим преобразователям можно запитать энергосберегающую или светодиодную лампу. К сожалению более мощные приборы подключить не получится, так как преобразователь маломощный и больших нагрузок не выдержит.
Итак, для сборки преобразователя нам понадобится:
- Трансформатор от старого зарядного устройства для телефона.
- Транзистор 882P или его отечественные аналоги КТ815, КТ817.
- Диод IN5398, аналог КД226 или вообще любой другой рассчитанный на обратный ток до 10 вольт средней или большой мощности.
- Резистор (сопротивление) на 1 кОм.
- Макетная плата.
Еще естественно понадобится паяльник с припоем и флюсом, кусачки, провода и мульти метр (тестер). Можно конечно изготовить и печатную плату, но для схемы из нескольких деталей не стоит тратить время на разработку разводки дорожек их прорисовку и травление фольгированного текстолита или гетинакса. Проверяем трансформатор. Плата старого зарядного устройства.
Аккуратно выпаиваем трансформатор.
Дальше нам надо проверить трансформатор и найти выводы его обмоток. Берем мультиметр, переключаем его в режим омметра. По очереди проверяем все выводы, находим те которые парой «звонятся» и записываем их сопротивления.1. Первая 0,7 Ом.
2. Вторая 1,3 Ом.
3. Третья 6,2 Ом.
Та обмотка, у которой наибольшее сопротивление была первичной, на нее подавалось 220 В. В нашем устройстве она будет вторичной, то есть выходом. С остальных снималось пониженное напряжение. У нас они будут служить как первичная (та, которая с сопротивлением 0,7 ом) и часть генератора (с сопротивлением 1,3). Результаты замеров у разных трансформаторов могут отличаться, нужно ориентироваться на их соотношение между собой.
Схема устройства
Как видите она простейшая. Для удобства мы пометили сопротивления обмоток. Трансформатор не может преобразовывать постоянный ток. Поэтому на транзисторе и одной из его обмоток собран генератор. Он подает пульсирующее напряжение от входа (батареи) на первичную обмотку, напряжение около 220 вольт снимается с вторичной.
Собираем преобразователь
Берем макетную плату.
Устанавливаем трансформатор на нее. Выбираем резистор в 1 килоом. Вставляем его в отверстия платы, рядом с трансформатором. Загибаем выводы резистора так чтобы соединить их с соответствующими контактами трансформатора. Припаиваем его. Удобно при этом закрепить плату в каком ни будь зажиме, как на фото, чтобы не возникала проблема недостающей «третьей руки». Припаянный резистор. Лишнюю длину вывода обкусываем. Плата с обкусанными выводами резистора. Дальше берем транзистор. Устанавливаем его на плату с другой стороны трансформатора, так как на скриншоте (расположения деталей я подобрал так, чтобы было удобнее их соединять согласно принципиальной схеме). Изгибаем выводы транзистора. Припаиваем их. Установленный транзистор. Берем диод. Устанавливаем его на плату параллельно транзистору. Припаиваем. Наша схема готова.
Припаиваем провода для подключения постоянного напряжения (DC input). И провода для съема пульсирующего высокого напряжения (AC output).
Для удобства провода на 220 вольт берем с «крокодилами».
Наше устройство готово.
Тестируем преобразователь
Для того чтобы подать напряжение выбираем аккумулятор на 3-4 вольта. Хотя можно использовать и любой другой источник питания.
Припаиваем провода входа низкого напряжения к нему, соблюдая полярность. Замеряем напряжение на выходе нашего устройства. Получается 215 вольт.
Внимание. Не желательно прикасаться к деталям при подключенном питании. Это не столь опасно, если у вас нет проблем со здоровьем, особенно с сердцем (хотя две сотни вольт, но ток слабый), но неприятно «пощипать» может.Завершаем тестирование, подключив люминесцентную энергосберегающую лампу на 220 вольт. Благодаря «крокодилам» это несложно сделать без паяльника. Как видите, лампа горит.
Наше устройство готово.Совет.Увеличить мощность преобразователя можно установив транзистор на радиатор.Правда емкости аккумулятора хватит не на долго. Если вы собираетесь постоянно использовать преобразователь, то выберите более емкую батарею и сделайте для него корпус.
kavmaster.ru
Светодиод 3 вольта
Светодиоды разного цвета имеют свою рабочую зону напряжения. Если мы видим светодиод на 3 вольта, то он может давать белый, голубой или зеленый свет. Напрямую подключать его к источнику питания, который генерирует более 3 вольт нельзя.
Расчет сопротивления резистора
Чтобы понизить напряжение на светодиоде, в цепь перед ним последовательно включают резистор. Основная задача электрика или любителя будет заключаться в том, чтобы правильно подобрать сопротивление.
В этом нет особой сложности. Главное, знать электрические параметры светодиодной лампочки, вспомнить закон Ома и определение мощности тока.
R=Uна резисторе/Iсветодиода
Iсветодиода – это допустимый ток для светодиода. Он обязательно указывается в характеристиках прибора вместе с прямым падением напряжения. Нельзя, чтобы ток, проходящий по цепи, превысил допустимую величину. Это может вывести светодиодный прибор из строя.
Зачастую на готовых к использованию светодиодных приборах пишут мощность (Вт) и напряжение или ток. Но зная две из этих характеристик, всегда можно найти третью. Самые простые осветительные приборы потребляют мощность порядка 0,06 Вт.
При последовательном включении общее напряжение источника питания U складывается из Uна рез. и Uна светодиоде. Тогда Uна рез.=U-Uна светодиоде
Предположим, необходимо подключить светодиодную лампочку с прямым напряжением 3 вольта и током 20 мА к источнику питания 12 вольт. Получаем:
R=(12-3)/0,02=450 Ом.
Обычно, сопротивление берут с запасом. Для того ток умножают на коэффициент 0,75. Это равносильно умножению сопротивления на 1,33.
Следовательно, необходимо взять сопротивление 450*1,33=598,5=0,6 кОм или чуть больше.
Мощность резистора
Для определения мощности сопротивления применяется формула:
P=U²/ R= Iсветодиода*(U-Uна светодиоде)
В нашем случае: P=0,02*(12-3)=0,18 Вт
Такой мощности резисторы не выпускаются, поэтому необходимо брать ближайший к нему элемент с большим значением, а именно 0,25 ватта. Если у вас нет резистора мощность 0,25 Вт, то можно включить параллельно два сопротивления меньшей мощности.
Количество светодиодов в гирлянде
Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.
Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.
Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.
N=12:3:1,15=3,48
К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.
Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.
На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током. Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.
Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.
le-diod.ru
Модуль питания DC-DC, расширяющий возможности платы Arduino Pro mini.Я решил уменьшить габариты и стоимость своей домашней метеостанции на GY-BMP280-3.3 и Ds18b20.Подумав, я пришел к выводу, что самой дорогой и объёмной частью метеостанции является плата Arduino Uno. Самым дешевым вариантом замены может стать плата Arduino Pro Mini. Плата Arduino Pro Mini производится в четырех вариантах. Для решения моей задачи подходит вариант с микроконтроллером Mega328P и напряжением питания 5 вольт. Но есть еще вариант на напряжение 3,3 вольта. Чем эти варианты отличаются? Давайте разберемся. Дело в том, что на платах Arduino Pro Mini устанавливается экономичный стабилизатор напряжения. Например такой, как MIC5205 c выходным напряжением 5 вольт. Эти 5 вольт подаются на вывод Vcc платы Arduino Pro Mini, поэтому и плата будет называться «плата Arduino Pro Mini с напряжением питания 5 вольт». А если вместо микросхемы MIC5205 будет поставлена другая микросхема с выходным напряжением 3,3 вольта, то плата будет называться «плата Arduino Pro Mini с напряжением питания 3,3 вольт»
Плата Arduino Pro Mini может получать энергию от внешнего нестабилизированного блока питания с напряжением до 12 вольт. Это питание должно подаваться на вывод RAW платы Arduino Pro Mini. Но, ознакомившись с даташитом (техническим документом) на микросхему MIC5205, я увидел, что диапазон питания, подаваемого на плату Arduino Pro Mini, может быть шире. Если, конечно, на плате стоит именно микросхема MIC5205.
Даташит на микросхема MIC5205:
Входное напряжение, подаваемое на микросхему MIC5205, может быть от 2,5 вольт до 16 вольт. При этом на выходе схемы стандартного включения должно быть напряжение около 5 вольт без заявленной точности в 1%. Если воспользоваться сведениями из даташита: VIN = VOUT + 1V to 16V (Vвходное = Vвыходное + 1V to 16V) и приняв Vвыходное за 5 вольт, мы получим то, что напряжение питания платы Arduino Pro Mini, подаваемое на вывод RAW, может быть от 6 вольт до 16 вольт при точности в 1%.
Даташит на микросхему MIC5205:Для питания платы GY-BMP280-3.3 для измерения барометрического давления и температуры я хочу применить модуль с микросхемой AMS1117-3.3. Микросхема AMS1117 — это линейный стабилизатор напряжения с малым падением напряжения.Фото модуль с микросхемой AMS1117-3.3:
Даташиты на микросхему AMS1117:Схема модуля с микросхемой AMS1117-3.3:
Я указал на схеме модуля с микросхемой AMS1117-3.3 входное напряжение от 6,5 вольт до 12 вольт, основывая это документацией на микросхему AMS1117.
Продавец указывает входное напряжение от 4,5 вольт до 7 вольт. Самое интересное, что другой продавец на Aliexpress.com указывает другой диапазон напряжений — от 4,2 вольт до 10 вольт.
В чем же дело? Я думаю, что производители впаивают во входные цепи конденсаторы с максимально допустимым напряжением меньшим, чем позволяют параметры микросхемы — 7 вольт, 10 вольт. И, может быть, даже ставят бракованные микросхемы с ограниченным диапазоном питающих напряжений. Что произойдет, если на купленную мной плату с микросхемой AMS1117-3.3, подать напряжение 12 вольт, я не знаю.Возможно для повышения надежности китайской платы с микросхемой AMS1117-3.3 надо будет поменять керамические конденсаторы на электролитические танталовые конденсаторы. Такую схему включения рекомендует производитель микросхем AMS1117А минский завод УП «Завод ТРАНЗИСТОР».
Даташит на микросхему AMS1117А:Удачных покупок!
Стоимость: ~23
Подробнее на Aliexpress
usamodelkina.ru
как сделать в авто с 12 вольт на 3 вольта?
погасить сопротивлением. Вначале переменным резистором, затем, замерив полученное, можно вставлять постоянное.
Схема электродвигатель-генератор.
Поставить стабилизатор на 3 вольта импортную кренку
Я бы просто спаял простейший стабилизатор напряжения: мощный проходной транзистор (например, КТ-805), стабилитрон (если не найдёте на нужное напряжение, то ставите любой другой, делитель и повторитель на транзисторе меньшей мощности) , резистор и парочка электролитических конденсаторов. (Вот типовая схема, электролитические конденсаторы не показаны) . А можно идти по другому пути: в компьютерных магазинах продают преобразователи, втыкаемые в гнездо прикуривателя, на выходе — различные напряжения, как больше, так и меньше 12 вольт (такие приборы используют, например, для питания нетбуков от бортсети) . Не знаю, правда, бывает ли на выходе 3 вольта.
touch.otvet.mail.ru
Делаем DC-DC преобразователь 12>3 Вольт своими руками
DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт. Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода.При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.
Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки, на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.
После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.
Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.
Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.
Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.
Читайте так-же:
Преобразователь напряжения с 12 В на 220 В / 50 Гц
Повышающий преобразователь напряжения.
Питание цифрового фотоаппарата от внешнего аккумулятора
Автомобильное зарядное usb
acule.ru
Ремонт усилителя воспроизведена плейера иностранного производства часто бывает затруднителен из-за использования в нем низковольтной микросхемы, аналог которой найти очень трудно Поэтому приходится делать новую конструкцию на транзисторах или микросхемах отечественного производства, но в этом случае радиолюбитель испытывает определенные затруднения в выборе нужной схемы с низким значением напряжения источника питания. Для примера, при повторении схем, описанных в , необходимо использовать 53 радиодетали в варианте на микросхемах или 72 радиодетали при транзисторном исполнении. Оптимальнее применить упрощенную схему . У этой схемы очевидные преимущества — один активный элемент (микросхема К157УД2), малое количество используемых деталей, достаточно хорошие характеристики. Но есть один существенный и вроде бы непреодолимый для низковольтного плейера недостаток: высокое напряжение питания микросхемы (в данном усилителе 9В). Из создавшегося положения есть выход — использовать преобразователь первичного напряжения питания плейера, обычно 3 В, во вторичное, более высокое, от которого уже и питать усилитель. В таком варианте для конструкции потребуются всего 10 элементов для преобразователя и 21 для усилителя.
Разработанный вариант преобразователя питания усилителя воспроизведения плейера (питание коллекторного электродвигателя осуществляется непосредственно от источника тока) имеет следующие технические характеристики:
Выходное напряжение, В, при выходном токе 15 мА и входном напряжении 2-3 В……………..7 — 10
Коэффициент пульсаций вторичного напряжения, %, не более……………………………………………0,001
Частота преобразования, кГц……………………………………………………………………………………………100…200
КПД, %, не менее………………………………………………………………………………………………………………… 55
Габариты, мм…………………………………………………………………………………………………………………..14х10х10
Преобразователь напряжения построен по схеме двухтактного генератора (рис. 1), что позволило получить достаточно высокий КПД. Роль переключателей выполняют транзисторы VТ1 и VТ2, которые поочередно открываются и закрываются подобно транзисторам симметричного мультивибратора. Фазировка их работы осуществлена соответствующим включением коллекторных и базовых обмоток трансформатора Т1. Делитель напряжения R2R1 обеспечивает запуск преобразователя. При включении напряжения питания падение напряжение на резисторе R2 (порядка 0,7 В) плюсом приложено к базам транзисторов и открывает их. Вследствие разброса параметров транзисторов токи коллекторов (и токи в коллекторных обмотках трансформатора Т1) не могут быть совершенно одинаковыми, а увеличение тока в одном из плеч генератора приводит к появлению положительной обратной связи на базу данного транзистора и, как следствие, лавинообразному нарастанию тока до его насыщения. При уменьшении скорости нарастания тока в коллекторной обмотке противоЭДС создает положительную связь на базу транзистора другого плеча, ток коллектора в первом плече спадает и лавинообразно увеличивается в цепи коллектора и обмотке другого транзистора. Таким образом, в магни-топроводе трансформатора наводится переменный во времени магнитный поток, который будет создавать во вторичной обмотке (выводы 7-8) ЭДС. Диодный мост VD1 — VD4 переменное напряжение преобразует в пульсирующее, а его сглаживание осуществляется элементами цепи питания усилителя воспроизведения. В устройстве преобразователя конденсатор С1 повышает надежность процесса самовозбуждения.
В конструкции применены самые распространенные транзисторы КТ315, причем можно взять транзисторы с любым буквенным индексом и параметром h 21Э >50. Однако не следует выбирать транзисторы с слишком большим h 21Э, так как при этом падает экономичность устройства. Использование других транзисторов (кроме КТ373Г) нежелательно, так как напряжение насыщения перехода коллектор-эмиттер рекомендованных транзисторов составляет всего 0,4 В, и они обладают небольшими габаритами. Резисторы и конденсатор любые малогабаритные. Тарнсформатор выполнен на кольцевом магнитопроводе К7Х4Х2 из феррита марок 600НН, 400НН. Коллекторная обмотка намотана в два провода (диаметром 0,2 мм) и содержит 11 витков, а базовая (тоже в два провода диаметром 0,13 мм) имеет 17 витков. Вторичная (выходная) обмотка содержит 51 виток провода диаметром 0,13 мм. Намотка производится внавал проводом ПЭВ или ПЭЛ. Вместо диодов КД522Б можно использовать германиевые малогабаритные диоды, при соответствующем изменении числа витков трансформатора. Это даже приведет к повышению КПД преобразователя на 10-15 %. Если в преобразователе применить двухполупериод-ную схему выпрямления с выводом от средней точки вторичной обмотки, то это позволит уменьшить число диодов на два и дополнительно повысить КПД, так как последовательно с нагрузкой (усилителем) будет включен один выпрямляющий диод вместо двух. При этом необходимо произвести перерасчет преобразователя.
Монтаж преобразователя — любой, его детали можно расположить на одной плате с деталями усилителя или оформить в виде отдельного блока. В авторской конструкции был использован второй вариант (рис. 2). Детали преобразователя склеены между собой в объемную конструкцию, состоящую из трех слоев. Слой первый — конденсатор С1 и резисторы R1, R2. Второй — трансформатор и диодный мост, спаянный из VD1- VD4. Третий — транзисторы VТ1, VТ2, спаянные между собой выводами эмиттеров. Перед установкой транзисторов для уменьшения габаритов блока их следует сточить с боков до длины 7 мм. Выводы трансформатора припаяны прямо к выводам деталей. Остальные соединения сделаны тонкими проводниками. После этого следует припаять входные и выходные проводники и проверить работоспособность блока. При использовании исправных элементов и правильно выполненном монтаже конструкция сразу заработает. Если этого не произошло, то надо проверить правильность подключения обмоток трансформатора. После этого всю конструкцию следует залить эпоксидной смолой. Полностью изготовленный и проверенный на работоспособность блок помещают в коробочку из тонкой бумаги, предварительно в ней сделать отверстия для выводов и заполнить объем компаундом.
Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?
Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.
Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:
Вариант №1
Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):
Вариант №2
На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!
Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:
Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .
U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).
Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:
Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.
Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.
Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.
Вариант №3
Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).
Итак, схему в студию!
Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.
Итак, что на выходе?
Почти 5.7 Вольт;-), что и требовалось доказать.
Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:
На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.
DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.
При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.
Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода. Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки , на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.
После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.
Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.
Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.
Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.
Стабилизаторы напряжения или как получить 3,3 вольта
Исходные данные: мотор-редуктор рабочее напряжение у которого 5 Вольт при токе 1 А и микроконтроллер ESP-8266 с чувствительным на изменение рабочим напряжением питания 3,3 Вольт и с пиковым током до 600 миллиампер. Все это необходимо учесть и запитать от одной аккумуляторной литий-ионной батареи 18650 напряжением 2,8 -4,2 Вольт.
Собираем схему приведенную ниже: аккумулятор литий-ионный 18650 напряжением 2,8 — 4,2 Вольт без внутренней схемы зарядного устройства -> присоединяем модуль на микросхеме TP4056 предназначенный для зарядки литий-ионных аккумуляторов с функцией ограничения разряда аккумулятора до 2,8 Вольт и защитой от короткого замыкания (не забываем что этот модуль запускается при включенном аккумуляторе и кратковременной подачи питания 5 Вольт на вход модуля от USB зарядного устройства, это позволяет не использовать выключатель питания, ток разряда в ждущем режиме не очень большой и при долгом не использования всего устройства оно само выключиться при падении напряжения на аккумуляторе ниже 2,8 Вольт)
К модулю TP4056 подключаем модуль на микросхеме MT3608 — повышающий DC-DC (постоянного в постоянный ток) стабилизатор и преобразователь напряжения с 2,8 -4,2 Вольт аккумулятора до стабильных 5 Вольт 2 Ампера — питания мотор-редуктора.
Параллельно к выходу модуля MT3608 подключаем понижающий DC-DC стабилизатор-преобразователь на микросхеме MP1584 EN предназначенный для стабильного питания 3,3 Вольта 1 Ампер микропроцессора ESP8266.
Стабильная работа ESP8266 очень зависит от стабильности напряжения питания. Перед подключением последовательно модулей DC-DC стабилизаторов-преобразователей не забудьте настроить переменными сопротивлениями нужное напряжение, поставьте конденсатор параллельно клеммам мотор-редуктора что бы тот не создавал высокочастотных помех работе микропроцессору ESP8266.
Как видим из показаний мультиметра при присоединении мотор-редуктора напряжение питания микроконтроллера ESP8266 НЕ ИЗМЕНИЛОСЬ!
Небольшой обзор стабилизаторов напряжения и тока
Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения
Знакомство со стабилитронами, расчет параметрического стабилизатора; использование интегральных стабилизаторов; конструкция простого тестера стабилитронов и другое.AMS1117 Технический паспорт
Наименование | RT9013 | Richtek технологии |
Описание | Стабилизатор-преобразователь на нагрузку с током потребления 500мА, с малым падением напряжения, низким уровенем собственных шумов, сверхбыстродействующий, с защитой выхода по току и от короткого замыкания, CMOS LDO. | |
RT9013 PDF Технический паспорт (datasheet) : | ||
*Описание MP1584EN
**Приобрести можно в магазине Your Cee
MP2307N
*Приобрести можно в магазине Your Cee
Наименование | LM2596 | Во-первых компонентов Международной |
Описание | Простой понижающий стабилизатор-преобразователь питания 3A с внутренней частотой 150 кГц | |
LM2596 Технический паспорт PDF (datasheet) : | ||
Наименование | MC34063A | Крыло Шинг International Group | ||
Описание | DC-DC управляемый преобразователь | |||
MC34063A Технический паспорт PDF (datasheet) : | ||||
|
Наименование | XL6009 | XLSEMI | ||||||||||||||||||||||||||||||||||||||
Описание | 4A, 400kHz, входное напряжение 5~32V / выходное напряжение 5~35V, коммутируемый повышающий преобразователь DC / DC | |||||||||||||||||||||||||||||||||||||||
XL6009 Технический паспорт PDF (datasheet) : | ||||||||||||||||||||||||||||||||||||||||
|
http://dwiglo.ru/mp2307dn-PDF.html
Китайские стабилизаторы для самоделкиных. Часть 1.
Китайские стабилизаторы для самоделкиных. Часть 2.
Китайские стабилизаторы для самоделкиных. Часть 3.
Простой преобразователь напряжения 12в — 5в на usb
Для зарядки мобильных устройств обычно используются 5-вольтовые блоки питания, работающие от сетевого напряжения. Напряжение в 5 В можно также получить из 12-вольтовой сети автомобиля или от сетевого блока питания на 12 В. Это можно осуществить, используя несложные схемы с различными стабилизаторами напряжения.
В таких схемах стабилизатор будет ощутимо греться, что ухудшит его параметры выходного тока. Чтобы стабилизатор не перегрелся и не вышел из строя, его необходимо поместить на теплоотвод. Напряжение на входе в стабилизатор не должно быть выше 15 В.
Большинство мобильных устройств определяют подключение к зарядному устройству по наличию перемычки между вторым и третьим пинами. Но схемы коммутации USB могут быть и другими. Об этом лучше почитать в статье о проблемах зарядки через USB.
В схеме используются всего три компонента: сам стабилизатор напряжения и два 16-вольтовых конденсатора номиналом 100 и 330 нФ.
Стабилизаторы напряжения можно использовать советские: 2-амперный КР142ЕН5А или 1,5-амперный КР142ЕН5B. Естественно, возможна их замена на зарубежные аналоги, указанные на картинке, где изображен преобразователь на стабилизаторе КР142ЕН5:
В том случае если ваш преобразователь имеет на выходе ток не больше 0,1 А, то можно воспользоваться стабилизаторами, исполненными в корпусе SO-8, SOT-89 или TO-92. Схемы с такими конвертерами представлены на рисунках ниже:
Стоит добавить, что наипростейший способ сделать преобразователь — это вытащить плату из готового автомобильного адаптера для прикуривателя. Плату этого адаптера необходимо приспособить для работы вне автомобиля. Об этом можно найти много информации.
Дополнительная информация:
Такие стабилизаторы напряжения можно найти в телевизорах с кинескопами. Чаще всего там встречаются микросхемы серии 7805 и 7809.
При отсутствии конденсаторов схема вполне работоспособна. Стабилизатор обладает защитой от перегрева, правда, диапазон достаточно большой — от 65 до 140. Потом наблюдается резкое падение напряжения, и появляются пульсации микросхемы.
Другими словами, если схема питается от батареи, то во входном конденсаторе нет необходимости. Конденсатор на выходе рекомендуется ставить номиналом 1 мкФ и менее, иначе его разряд может сжечь схему, если произойдет короткое замыкание на входе (с той стороны, где располагается батарея).
Чтобы схема была более стабильной, рекомендуется на выходе установить дроссель и пару конденсаторов: керамический номиналом 100-200 нФ и ниобиевый номиналом 500 нФ.
Броски от индуктивной нагрузки не критичны для этой схемы.
Автор: Алексей Алексеевич.
Схема изготовления стабилизатора на 12в своими руками
Стабилизаторы напряжения являются важнейшей частью всех электронных схем, они дают непрерывное, устойчивое питание компонентам системы, обеспечивая стабильность её параметров и защиту при неисправностях в схеме или в первичном источнике напряжения. 12 вольт постоянного напряжения – наиболее востребованное, применяется для питания множества устройств, используемых отдельно или встроенных в различные конструкции.
Стабилизация с помощью стабилитрона
Классический стабилизатор
Большинство систем питания построено по схеме линейного стабилизатора напряжения на 12 вольт, которая может иметь несколько вариантов исполнения:
- Параллельный – регулировка с помощью включённого параллельно управляющего элемента;
- Последовательный – включение элемента регулировки последовательно с нагрузкой.
Простейшим стабилизатором напряжения является стабилитрон, также называемый диодом Зенера – это диод, работающий постоянно в режиме пробоя. Напряжение, при котором наступает пробой, – это напряжение стабилизации, основной параметр стабилитрона. При параллельном включении нагрузки получается элементарный стабилизатор напряжения, примерно равного напряжению стабилизации.
Балластное сопротивление R определяет ток стабилитрона, указанный в спецификации. Такое решение отличается низким коэффициентом стабилизации, зависимостью от температуры и применяется при малых токах нагрузки для питания отдельных компонентов основной схемы. Возможно значительно увеличить выходной ток, если последовательно с нагрузкой установить мощный транзистор.
Линейный стабилизатор с транзистором
В этой схеме транзистор подключён последовательно с нагрузкой как эмиттерный повторитель, весь ток течёт через его переход. Уровнем на базе управляет стабилитрон: при возрастании тока на выходе на базу подаётся большее напряжение, проводимость транзистора увеличивается, и выходное напряжение восстанавливается. Мощность такого стабилизатора определяется типом транзистора и может достигать десятков ватт.
Важно отметить! В таком виде стабилизатор не защищён от перегрузки и короткого замыкания, при котором мгновенно выходит из строя. Для практического применения схема значительно усложняется: вводятся элементы ограничения тока и различные защитные функции.
Интегральный стабилизатор
Стабилизатор напряжения 12 вольт легко может быть реализован, если применить специализированный интегральный линейный стабилизатор из серии 78ХХ с фиксированным выходным напряжением. Для выходного напряжения 12 вольт выпускаются микросхемы 7812, у разных производителей они носят наименование LM7812, L7812, K7812 и т.д.
Отечественный аналог – КР142ЕН8Б. Производятся в корпусах TO – 220, TO – 3, D2PAK с тремя выводами. Эти микросхемы можно найти в блоках питания любой аппаратуры, они практически вытеснили стабилизаторы на дискретных элементах.
Основные характеристики стабилизатора в широко распространённом корпусе TO – 220:
- Выходное стабилизированное напряжение – от 11,5 до 12,5 В;
- Входное напряжение – до 30 В;
- Выходной ток – до 1А;
- Встроенная защита от перегрузки и короткого замыкания.
Входное напряжение должно превышать выходное (12 вольт) минимум на 3 вольта во всём диапазоне выходного тока. На выходной ток до 100 мА выпускается вариант микросхемы –78L12. Типовая схема включения позволяет своими руками собрать надёжный стабилизатор напряжения 12 вольт с характеристиками, подходящими для многих задач.
Включение микросхемы 7812
Конденсатор фильтров рекомендуется устанавливать не далее 30 мм от выводов микросхемы. Если выходного тока 1 ампер недостаточно, можно установить дополнительный транзистор.
Увеличение выходного тока
Схема имеет параметры стабилизации, аналогичные применённой микросхеме.
В некоторых случаях целесообразно использование микросхем серии 1083/84/85. Это интегральные стабилизаторы с выходным током 3, 5, и 7, 5 ампер. Устройства относятся к типу Low Dropout (с низким падением напряжения) – для них разница между входным и выходным напряжением может быть 1 вольт. Схема включения полностью соответствует микросхемам типа 7812.
Видео
Оцените статью:Преобразователь с 12 В на 5 В — 4 простых схемы для проектов
Прежде чем перейти к схеме преобразователя с 12 В на 5 В с использованием различных методов, позвольте взглянуть на потребность в источнике питания 5 В.
Для работы широкого спектра микросхем и контроллеров автоматизации требуется источник постоянного тока напряжением 5 В, при отсутствии источника питания 5 В нам может потребоваться получить его из существующего источника питания, и тогда вам на помощь приходит этот линейный преобразователь. Вот список всех возможных схем, но их применение отличается от схемы к схеме.Мы уже обсуждали схему преобразователя 9В в 5В ранее.
Эти схемы представляют собой базовые регуляторы напряжения, первая из которых представляет собой простой делитель напряжения на резисторах.
Все схемы имеют разную производительность. Схема делителя напряжения не рекомендуется для использования в сильноточных приложениях, поскольку она имеет низкий выходной ток и меньшую эффективность.
Преобразователь 12 В в 5 В с использованием делителя напряжения:
Вот схема преобразователя постоянного тока 12 В в 5 В для слаботочных приложений (<70 мА) , в основном для измерения эталонной ЭДС / напряжения и в цепи отвода небольшого тока, например Светодиодный индикатор.
Вы можете подключить два светодиода последовательно через резистор R2, получая вход от свинцово-кислотной батареи 12 В или адаптера 12 В в качестве входа.
Необходимые компоненты:
Одна батарея 12 В, резистор 1,8 кОм, резистор 1,3 кОм, соединительные провода.
Эта схема представляет собой схему делителя напряжения. Вы можете рассчитать его для требуемого «выходного напряжения» по следующей формуле:
Здесь Vout — это выходное напряжение, снимаемое на резисторе R2.Vin — это входное напряжение, которое нужно понизить. Выберите стандартное сопротивление резистора (более 1 кОм) любого сопротивления и решите другое. Затем выберите стандартное значение, ближайшее к полученному значению резистора.
Проверить лучшие схемы преобразователя 12 В в 6 В
Преобразователь 12 В в 5 В с использованием стабилитрона:
Схема, показанная ниже, предназначена для цепей среднего тока, она полезна для (1-70 мА) дренажной цепи среднего тока, например .светоизлучающие диодные индикаторы, схемы драйверов, операции с низковольтными транзисторами и многое другое.
Вы можете использовать эту схему понижающего преобразователя постоянного тока с 12 В на 5 В в сочетании с другой схемой на выходе стабилитрона (с батареей на 12 В в качестве входа). На стабилитроне получается примерно 5 В.
Важно:
Нагрузочный резистор или выходная цепь являются обязательными на выходе при внедрении или тестировании в цепи, чтобы предотвратить возгорание стабилитрона.
Необходимые компоненты:
Одна батарея 12 В, резистор 100 Ом (рекомендуется более высокое значение), стабилитрон 5,1 В (более 1 Вт), несколько соединительных проводов и паяльник для неразъемных соединений.
Рабочий:
Это очень распространенная схема стабилитрона в качестве схемы регулятора напряжения. Вы можете регулировать напряжение o / p в соответствии с приложением, меняя диод и резистор (Rs).
Пошаговый метод стабилизации напряжения:
Разработайте стабилизированный источник питания «Vout» для получения от нерегулируемого источника питания постоянного тока «Vs».Максимальная мощность стабилитрона P Z указана в ваттах. Используя стабилитрон и рассчитайте по следующим формулам:
Максимальный ток, протекающий через стабилитрон.
Id = (Вт / напряжение)
Минимальное значение резистора серии R S .
Rs = (Vs — Vz) / Iz
Ток нагрузки I L , если нагрузочный резистор 1 кОм подключен к стабилитрону.
I L = V Z / R L
Ток стабилитрона I Z при полной нагрузке.
Iz = Is — I L
Где,
I L = ток через нагрузку
Is = ток через резистор серии RS
Iz = ток через стабилитрон (проверьте таблицы или предположите 10-20 мА, если не указано)
Vo = V R = Vz = напряжение стабилитрона = выходное напряжение
R L = Нагрузочный резистор
LM7805 Преобразователь 12В в 5В:
Стабилизатор напряжения 12В — 5В постоянного тока также может быть реализован с LM7805 линейный преобразователь напряжения.Он используется для подачи среднего тока (от 10 мА до 1 А) в прикладные цепи с высоким током.
Он поддерживает тот же выходной ток, что и на входе.
Важно:
Входной конденсатор и выходной конденсатор должны быть внешне подключены к IC 7805, эти конденсаторы действуют как понижающие пульсации, если они присутствуют в источнике питания в соответствии с таблицей данных. Радиатор необходим, потому что падение напряжения в 7 вольт преобразуется в тепло через радиатор.
Если вы не установите радиатор, он может вывести из строя ИС, применяя его в сильноточных цепях, и остаться с поврежденной ИС. Напряжение источника должно быть на> 2,5 В больше требуемого регулируемого выходного постоянного напряжения.
Необходимые компоненты:
Одна батарея 12 В / адаптер питания 12 В, конденсатор 10 мкФ, конденсатор 1 мкФ, микросхема LM7805, радиатор, несколько соединительных проводов и паяльник (для пайки).
Рабочий:
Для получения постоянного и нулевого выходного напряжения пульсаций используются ИС линейных регуляторов напряжения.Это интегральные схемы, предназначенные для линейного преобразования и регулирования напряжения, часто называемые ИС понижающего трансформатора. Давайте обсудим преобразователь постоянного тока 12В в 5В с использованием IC 7805.
Трансформатор IC 7805 является частью серии ИС преобразователей постоянного тока LM78xx. Это ИС линейного понижающего трансформатора. Цифры «xx » представляют значение регулируемого o / p в вольтах. IC7805 выдает 5 В постоянного тока в виде цифры ‘ xx ‘ , показывающей (05), что составляет 5 вольт.Выходной сигнал будет постоянным на уровне 5 вольт для всех значений на входе от 6,5 до 35 вольт. (см. техническое описание)
Номер контакта 1 — это клемма питания источника . Контакт № 2 — это клемма заземления . Контакт номер 3 — это выход напряжения .
Посмотрите это видео для справки: (входной конденсатор не используется, но рекомендуется), также значения конденсатора могут отличаться в зависимости от наличия и в зависимости от области применения)
LM317 Преобразователь 12 В в 5 В:
Преобразователь постоянного тока 12 В в 5 В также может быть реализован с помощью ИС регулятора напряжения LM317.Это очень полезно в приложениях со средним и высоким током (1 А и более). Он также используется в настольных компьютерах в качестве схем защиты от перенапряжения.
Эта схема также может выдавать такой же выходной ток, как и от нерегулируемого источника.
Как правило, LM317 представляет собой ИС переменного источника питания, который может обеспечивать переменное, но регулируемое выходное напряжение от 1,25 В до 37 В в зависимости от «Vref» (опорное напряжение), напряжения на контакте № 1 (Adjust), которое является опорным напряжением. снято с потенциометра.Прил. напряжение для регулировки. Ниже приведена схема делителя напряжения с использованием LM317, которая дает фиксированное напряжение 5 В на выводе 2.
Важно:
Для работы рекомендуется подключить входной конденсатор Cin (а также рекомендуется на выходе. ‘). Радиатор, как показано на рисунке ниже, должен быть там для рассеивания тепла (своего рода дополнительный i / p-потенциал).
Правильно подключенный радиатор является обязательным, иначе он может вывести из строя IC317. Входное напряжение должно быть 1.На 5 В или больше требуемого выходного напряжения.
Необходимые компоненты:
Одна батарея 12 В / источник питания 12 В, резистор 1,6 кОм, резистор 4,7 кОм, конденсатор 10 мкФ, конденсатор 1 мкФ, IC LM317, радиатор, некоторые соединительные провода, макетная плата, если выполняется экспериментально, и пайка утюг.
Рабочий:
LM317 — это регулируемый регулятор напряжения IC, способный подавать ток более 1,0 А с широким диапазоном выходного напряжения от 1,25 В до 37 Вольт.Его регулировка немного лучше, чем у других микросхем фиксированного стабилизатора напряжения, таких как LM7805, 7806, 7808, 7810…
Формула для выходного напряжения преобразователя 12 В в 5 В с использованием LM317 написана выше. Это дает приблизительное значение «Vo», когда R2 и R1 выбраны так, чтобы удовлетворять формуле.
Ставьте любой std. значение любого резистора (рекомендуется более высокое значение резистора для уменьшения потерь мощности), затем подставьте значение требуемого выходного напряжения в данную формулу, чтобы найти значение другого резистора.
На изображении ниже показана ИС регулятора напряжения без радиатора и с радиатором. Иногда радиаторы продаются отдельно. Убедитесь, что радиатор правильно подсоединен с помощью токопроводящей пасты, применяемой для сильноточных приложений.
* Перед окончательным применением схемы преобразователя 12В в 5В в ваших проектах убедитесь, что выходное напряжение соответствует тому, для чего вы разработали. Значение тока, указанное в статье, приведено только для справки, поскольку значение тока изменяется в соответствии с импедансом цепи на выходе.
Преобразователь 12 В в 5 В | Понизить регулятор постоянного тока можно разными способами.
Если вы ищете источник питания 5 В постоянного тока для цифровой схемы. Но у вас есть источник 12В, аккумулятор. Я покажу вам понижающий стабилизатор преобразователя с 12 В на 5 В.
Во многом это зависит от имеющихся у вас деталей и другой пригодности.
Как выбрать преобразователь 5В
Мы должны использовать подходящую схему. Как? Экономия самая лучшая. Я использую эти рекомендации.
- Экономьте деньги — если он есть в моем магазине, это очень хорошо.Кроме того, сэкономьте время на покупке, а не на долгое ожидание.
- Простота сборки — простые и отработанные схемы всегда хорошо.
- Маленький размер — у некоторых проектов ограниченное пространство.
Сначала посмотрите на нагрузку!
Предположим, что нагрузка потребляет ток около 30 мА. Вы должны использовать преобразователь 5 В на 60 мА. Для этого случая достаточно. Когда ток небольшой, его легко построить. Кроме того, экономьте энергию.
Не следует использовать большую цепь источника тока 1А. Это похоже на езду на слоне, чтобы поймать кузнечика.Что это расточительно и ненужно.
Например, схемы
- Токовый выход на 3 А — если у вас есть нагрузка, которая использует ток более 2 А. Например, цифровая камера, GPS, Raspberry Pi, Arduino и другие.
- Ниже 50 мА — малая схема, например, цифровая CMOS
- Как преобразовать 12 В постоянного тока в 5 В постоянного тока 1 А
- Схема преобразователя 12 В в 5 В 2 А
Стабилитрон 5 В — ниже 50 мА
Некоторые схемы потребляют ток от 20 мА до 50 мА (0.05A) только. Можно схему стабилизатора напряжения на стабилитроне.
Стабилитрон поддерживает фиксированное напряжение 5 В. Ему нужен резистор, чтобы ограничить ток и нагрузку.
Как рассчитать прибор
Запитать его от источника 12 В. Вы снова смотрите на схему. Есть три тока.
- IZ = Максимальный ток стабилитрона
- IR = Ток через R1
- IL = Максимальный ток нагрузки
IR всегда постоянен.Даже IL изменится с 0 мА до запланированного максимального значения (50 мА). IZ нужно изменить, чтобы напряжение на выходе оставалось 5В.
Во-первых, используйте стабилитрон 5 В, потому что нам нужно 5 В, VZ. Тогда IR составляет около 50 мА.
R1 = (Vin — VZ) / IR
= (12 В — 5 В) / 50 мА
= 140 Ом
или около 150 Ом .
PR — Мощность R1.
PR = VR x IR
= 7V x 50mA
= 0,35 Вт или 0,5 Вт.
Но мы забываем, мощность стабилитрона, PZ
PZ = VZ x IZ
Примечание: IZ составляет около IR, 50 мА.
PZ = 5 В x 50 мА
PZ = 0,25 Вт
Итак, мы используем стабилитрон 5 В 0,5 Вт .
Кроме того, C1 — это конденсатор фильтра для сглаживания постоянного напряжения.
100mA 5V схема преобразователя
В цифровых схемах, которые имеют много частей. Они могут использовать ток более 100 мА, но ниже 300 мА.
Мы можем использовать много схем. В предыдущей схеме он имеет слабый ток. Если хочешь 100мА. Вам нужно использовать стабилитрон с низким сопротивлением (R1) и большей мощностью.
Это лучшая идея.Если добавить в схему транзистор. Это увеличит более высокий ток больше. Но выходное напряжение составляет всего 4,4 В. Из-за некоторого падения напряжения на BE транзистора Q1 0,6В.
Нужно поменять стабилитрон 5,6В. Если у тебя его нет. Вы можете добавить диод и стабилитрон последовательно. Вы можете получить их как стабилитрон на 5,6 В.
Так как транзистор хорош для увеличения тока. Итак, мы можем изменить R1 на 1 кОм, как показано на схеме ниже. Для уменьшения тока смещения стабилитрон и база Q1.
200 мА, регулятор напряжения 5 В
Регулятор напряжения серии транзисторов 5 В
Если вы используете 2N2222 вместо BC548. Он может использовать 200 мА при нагрузке . Поскольку 2N2222 имеет токоприемник (Ic) около 0,8А в таблице данных. Но в реальном использовании он может использовать максимум 0,5 А.
500 мА, регулятор 5 В от 12 В
500 мА, транзистор 5 В и стабилизатор напряжения
Если вам необходимо использовать нагрузку от 300 мА до 500 мА. Следует сменить транзистор на BD139.
Он имеет Ic около 2 А макс. Но я могу получить только около 0,5А. Пока работает. Может быть тепло. Так часто лучше работать с радиатором.
Конденсаторы C1, C2 используются для уменьшения пульсаций на выходе. А C3 уменьшит скачок напряжения.
Как преобразовать 12 В постоянного тока в 5 В постоянного тока 1A
Многие друзья хотят преобразовать 12 В постоянного тока в 5 В постоянного тока при 1 А. Это популярная ставка в большинстве схем.
У меня есть два варианта на выбор. Это зависит от пригодности ваших деталей и времени.
Первый, 5V 1A транзисторный регулятор . Он аналогичен приведенным выше схемам.
Я использую силовой транзистор TIP41. Потому что он может получить максимум 4А в спецификации. Но при реальном использовании он может дать мне максимум около 2А. Кроме того, его корпус выполнен из TO-220, поэтому его легко использовать с радиаторами любого размера.
Раньше мне нравилась эта схема. Если у меня есть все комплектующие в моем магазине. Я сделаю это первым.
Но в последнее время мне нравится использовать этот компонент, Регулятор 7805.
Second, 7805 Регулятор популярный .
Это так просто, быстрее, чем другие. Потому что его корпус такой же, как у TIP41, без стабилитрона и резистора смещения.
Преобразователь 12 В в 5 В 1A с использованием 7805
Кроме того, он имеет низкий уровень пульсаций на выходе около 10 мВ, с электролитическими конденсаторами (C1, C4) на входе и выходе. И оба фильтрующих конденсатора, C2, C3, для уменьшения всплесков напряжения.
Примечание : 7805 распиновка
Так как это линейный регулятор. Так что пока работает. Напряжение на входе и выходе IC1 составляет около 7 В.
При полной нагрузке ток 1А. Таким образом, выходная мощность составляет около 7 Вт. Жарко. Надо установить его на достаточном количестве радиатора.
Преобразователь 12 В в 5 В, выход 1,5 А
Иногда нам нужен выходной ток около 1,5 А. У нас есть 3 способа сделать это.
- Подключение 7805 параллельно
- Аккумулятор 12 В к преобразователю постоянного тока 5 В 1,5 А
- Транзистор более высокого тока для регулятора 7805
- Транзистор 2 А Регулятор
Подключение 7805 параллельно
Если мы подключим 7805 параллельно.Это делает более высокий ток больше. Это подходит для тех, кто поддерживает или не имеет силовых транзисторов.
Но долго не годится. Можешь попробовать!
Оба IC-7805 должны быть абсолютно одинаковыми.
Аккумулятор 12 В на преобразователь постоянного тока 5 В 1,5 А
Если нам нужно использовать регулятор напряжения 12 В на 5 В. Это схема регулятора постоянного тока 5 В 1500 мА.
Это простая схема с использованием IC-7805, фиксированного стабилизатора 5 вольт и силового транзистора TIP41-NPN для увеличения тока до 2А.
Пример эксперимента
Я использую источник питания 7805 с аккумулятором 12 В. Для уменьшения постоянного напряжения на 5 вольт.
Пробую использовать в нагрузке резисторы 4,7 Ом 5Вт. В качестве принципов он будет использовать ток около 5 В / 4,7 Ом = 1 А.
Я измеряю ток около 0,7 А и падение напряжения 4,9 В, но его можно использовать. Как показано на рисунке 1
Тестирование чистого IC-7805 с током не более 1А.
Требуется транзистор для увеличения выходного тока.
Использую транзистор TIP41. В принципе может подавать ток около 2А. Которого достаточно использовать.
На принципиальной схеме.
Схема простейшего регулятора 5 В, 1,5 А
Затем я тестирую цепь примерно с нагрузкой, резистором 2,4 Ом. Затем измерьте ток примерно 1,3 А, а падение напряжения составит 4,9 В. Его можно использовать как захотим.
Рисунок 3 Испытания с сильноточной нагрузкой.
Продолжайте читать: Четыре небольших 5-вольтовых схемы регулятора постоянного тока »
Я подавал напряжение на диод-1N4007, чтобы компенсировать потерю транзистора между контактом BE.
Мы вставляем светодиод 1 для индикации включения питания этой цепи, а последовательный резистор R1 используется для ограничения тока до безопасного значения.
C1, C3 — конденсаторы с фильтром для сглаживания входной и выходной последовательности постоянного тока.
C2, C4 — искровой ток шумового фильтра.
Во время работы Q1 будет очень жарко, поэтому мы должны установить его с большим радиатором.
Примечание: Имеет минусы. Если это короткое замыкание. IC-7805 может быть поврежден.
Транзистор более высокого тока для регулятора 7805
Если вы хотите, чтобы ток был больше 1А, используйте 7805 в более чем двух схемах, указанных выше.
Требуется помощь от силового транзистора PNP со схемой ниже.
Принципиальная схема преобразователя с 12 В на 5 В 2a
Сильный ток будет протекать через силовой транзистор Q1, TIP42. В то время как 7805 получает меньший ток. Потому что R1 снижает этот ток.
Таким образом, 7805 поддерживает фиксированное регулируемое напряжение, только 5 В. Хорошо работает без радиатора.
Пока Q1 работает. Это так жарко. Нам нужно установить его с достаточным количеством радиатора.
Если есть готовые запчасти.Этой схемой можно пользоваться долгое время.
Тогда, если вам нужен ток 3А. Просто используйте MJ2955 вместо TIP42.
Хотя эту схему можно хорошо использовать. Но минусы все же есть.
При коротком замыкании силовой транзистор может быть поврежден.
Посмотрите на ниже.
Преобразователь 12В в 5В 5А
Если вам нужен выход 5В 5А. Вы можете изменить предыдущую схему. Используйте TIP2955 вместо TIP42.
Может пропускать ток до 5А.
Или, если у вас есть другой, TIP42.Можно добавить параллельно. Выходной ток тоже будет до 5А.
Токовый выход 3А, преобразователь 5В
Это преобразователь 12В в 5В понижающий регулятор при нагрузке 3А.
Понижающий преобразователь с 12 В на 5 В Регулятор
Цифровая камера также может снимать фотографии и видео. Но у него есть недостаток — долго не разряжается аккумулятор. При использовании на открытом воздухе. Нам приходилось часто подзаряжать аккумулятор. Это пустая трата времени.
При покупке дополнительных запасных аккумуляторов.Стоит дорого и все равно часто менять как то же самое.
На его боковой стороне находится разъем для подключения адаптера постоянного тока 5В, ток 2А. Если доработать свинцово-кислотный аккумулятор на 12В, чтобы снизить напряжение до 5 вольт. Это хорошая идея.
Потому что этот аккумулятор дешевле и долго используется. Например, аккумулятор 12В на 10Ач можно взять фотоаппарат на 5 часов.
Как это работает
У нас есть много способов сделать это. Но я покажу вам эту схему ниже. Мне нравится линейная схема, чем схема с переключением режимов.
В схеме много компонентов. Как указано выше, эта схема может питать ток до 3 А с увеличивающимся током Q3-MJ2955. Кроме того, в нем много интересных деталей.
При перегрузке или коротком замыкании нагрузки. Тогда напряжение на R2 составляет около 0,6 В. Итак, Q2 получает напряжение смещения, он работает. После этого VBE Q3 становится низким, Q3 работает ниже до остановки.
Пока Q1 работает для подключения тока через LED1. Это указывает на перегрузку.
Список компонентов регулятора напряжения от 12 В до 5 В
IC1: LM7805, регулятор постоянного тока 5 В IC
Q1: BC558, 0.Транзистор 4A 40V
Q2: BD140, 1,5A 30V PNP-транзистор
Q3: MJ2955 или TIP2955, 4A 50V PNP-транзистор
C1: 4700uF 25V, электролитический
LED1: светодиод любого цвета на ваш выбор
Resistors R1 9000 : 330 Ом 0,25 Вт
R2: 0,22 Ом 5 Вт
R3: 470 Ом 0,5 Вт
R4: 47 Ом 1 Вт
R5: 18 Ом 1 Вт
Радиатор, провода и т. Д.
Приложение
У меня старый GPS Обычно я использую его в машине. Нам нужна схема преобразователя постоянного тока в постоянный, которая может снизить напряжение с 12 В до 5 В при токе более 2 А.
Какая из принципиальных схем может это сделать.
Мне нравится, что нужно покупать некоторые детали, так как они есть у меня в магазинах.
Как показано на рисунке 2, я собираю их на универсальной плате
Также Смотрите другие в более простой схеме . Регулятор 3A 5V с использованием LM350
Простая защита от перенапряжения 5V
Обычно вы можете использовать вышеуказанную схему. Потому что это просто и недорого.
Вы просто добавляете предохранитель F1 для защиты от перегрузки более 2А. Также, если в цепи запитывается высокое напряжение более 5,1 В. Он имеет слишком много токов через ZD1 и D1 в качестве сверхтока. Так что предохранитель внезапно сгорит.
Преобразователь 12 В в 5 В на 2 А с использованием 7805 и транзистор с защитой от перенапряжения
Источник питания 5 В 2 А с использованием 78S05
Другой способ, мой друг хочет схему источника питания 5 В 2 А . Чтобы модель была простой, используйте немного оборудования, стройте легко.
Затем я выбрал для него эту схему.
Почему? В нем используется опорное оборудование, положительный стабилизатор напряжения 5В, / 2А в ТО220, 78S05. И мало деталей, видимых в схеме, качественная и малошумная.
Схема будет работать без дополнительных компонентов, но для защиты от обратной полярности , на входе предусмотрен диод 1N5402, дополнительное сглаживание обеспечивается C1-220uF 50V.
Выходной каскад включает C2-47uF 25V для дополнительной фильтрации.
Также адаптер постоянного тока 5 В
- Источник питания микропроцессорного регулятора постоянного тока 5 В 3 А от LM323K
- Импульсный источник питания 5 В 3 А от LM2576
- LM2673 -5 В 3 А Регулятор напряжения питания 902 902 5A с 7812 и LM723
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
Pololu 12V повышающий / понижающий стабилизатор напряжения S18V20F12
Уведомление об ограничении поставок (обновлено 27 мая 2021 г.): Из-за нехватки компонентов во всем мире мы серьезно ограничены в производстве этого изделия.
Обзор
Эти повышающие / понижающие регуляторы принимают входное напряжение от 3 В до 30 В и увеличивают или понижают его по мере необходимости для получения фиксированного выходного напряжения 5 В, 6 В, 9 В, 12 В или 24 В, в зависимости от версия. Это импульсные стабилизаторы (также называемые импульсными источниками питания (SMPS) или преобразователями постоянного тока в постоянный) с топологией несимметричного первичного индуктивного преобразователя (SEPIC), и они имеют типичный КПД от 80% до 90%.Доступный выходной ток является функцией входного напряжения, выходного напряжения и КПД (см. Раздел «Типичный КПД и выходной ток » ниже), но он будет около 2 А, когда входное напряжение близко к выходному напряжению.
Семейство регуляторов S18V20x состоит из пяти версий с фиксированным выходом, упомянутых выше, а также двух версий с регулируемым выходом: S18V20ALV предлагает выходной диапазон от 4 до 12 В, а S18V20AHV предлагает выходной диапазон от 9 до 30 В.Все разные версии доски выглядят очень похоже, поэтому нижняя шелкография включает пустое место, где вы можете добавить свои собственные отличительные знаки или метки. Эта страница продукта относится ко всем четырем версиям с фиксированным выходом семейства S18V20x.
Гибкость входного напряжения, предлагаемая этими регуляторами, особенно хорошо подходит для приложений с батарейным питанием, в которых напряжение батареи начинается выше желаемого выходного напряжения и падает ниже целевого значения по мере разряда батареи.Без типичного ограничения на то, чтобы напряжение батареи оставалось выше требуемого в течение всего срока службы, можно рассмотреть новые аккумуляторные блоки и форм-факторы. Например:
- Держатель 4-элементной батареи, который может иметь выход 6 В для свежих щелочей или выход 4,0 В для частично разряженных никель-металлгидридных элементов, может использоваться с версией этого регулятора на 5 В для питания цепи 5 В.
- Одноразовая батарея на 9 В, питающая цепь 5 В, может быть разряжена до 3 В вместо отключения 6 В, как в обычных линейных или понижающих регуляторах.
- Версия этого регулятора на 6 В может использоваться для включения широкого диапазона вариантов источника питания для проекта сервопривода хобби.
Ток покоя без нагрузки обычно составляет около 1 мА для большинства комбинаций входного и выходного напряжений, хотя сочетание очень высокого выходного напряжения и очень низкого входного напряжения (например, при повышении с 3 В до 30 В на выходе. ) может привести к токам покоя порядка нескольких десятков миллиампер.
Вывод ENABLE можно использовать для перевода платы в состояние низкого энергопотребления, которое снижает ток покоя до 10-20 мкА на вольт на VIN (например,грамм. приблизительно 30 мкА при 3 В на входе и 500 мкА при 30 В на входе).
Этот регулятор имеет встроенную защиту от обратного напряжения, защиту от перегрузки по току, тепловое отключение (которое обычно активируется при 165 ° C) и блокировку пониженного напряжения, которая вызывает отключение регулятора, когда входное напряжение ниже 2,5 В. (типичный).
В качестве мощных регуляторов только для повышения мощности рассмотрите наше семейство регуляторов U3V70x, которые обычно более подходят, если вы знаете, что ваше входное напряжение всегда будет ниже, чем ваше выходное напряжение.
Характеристики
- Входное напряжение: от 2,9 до 32 В
- Фиксированный выход 5 В, 6 В, 9 В, 12 В или 24 В с точностью 4%
- Типичный максимальный выходной ток: 2 А (когда входное напряжение близко к выходному; в разделе Типичный КПД и выходной ток ниже показано, как достижимый выходной ток зависит от входного и выходного напряжений)
- Встроенная защита от обратного напряжения (до 30 В), защита от перегрузки по току, отключение при перегреве и блокировка при пониженном напряжении
- Типичный КПД от 80% до 90%, в зависимости от входного напряжения, выходного напряжения и нагрузки
- Четыре 0.086 ″ монтажные отверстия для винтов № 2 или M2
- Компактный размер: 1,7 ″ × 0,825 ″ × 0,38 ″ (43 × 21 × 10 мм)
- Отверстия меньшего размера для штырей разъема 0,1 ″ и отверстия большего размера для клеммных колодок предлагают несколько вариантов подключения к плате.
Использование регулятора
Подключения
Этот повышающий / понижающий регулятор имеет четыре соединения: входное напряжение (VIN), заземление (GND) и выходное напряжение (VOUT) и ENABLE.
Входное напряжение VIN должно быть в пределах 2.9 В и 32 В. Более низкое входное напряжение может привести к отключению или нестабильному поведению регулятора; более высокое входное напряжение может вывести из строя регулятор, поэтому вы должны убедиться, что шум на входе не является чрезмерным. 32 В следует рассматривать как абсолютное максимальное входное напряжение. Рекомендуемое максимальное рабочее напряжение составляет 30 В, что является пределом защиты от обратного напряжения.
Регулятор включен по умолчанию: подтягивающий резистор 100 кОм на плате подключает контакт ENABLE к VIN с обратной защитой.На вывод ENABLE можно подавать низкий уровень (ниже 0,7 В), чтобы перевести плату в состояние низкого энергопотребления. Потребляемый ток покоя в этом спящем режиме определяется током в подтягивающем резисторе от ENABLE до VIN и схемой защиты от обратного напряжения, которая потребляет от 10 до 20 мкA на вольт на VIN, когда ENABLE удерживается на низком уровне. (например, приблизительно 30 мкА при 3 В на входе и 500 мкА при 30 В на входе). Если вам не нужна эта функция, оставьте контакт ENABLE отключенным. Обратите внимание, что топология SEPIC имеет собственный конденсатор от входа до выхода; поэтому выход не полностью отключается от входа, даже когда регулятор выключен.
|
|
Соединения обозначены на задней стороне печатной платы, и плата предлагает несколько вариантов выполнения электрических соединений.Вы можете припаять входящие в комплект 2-контактные клеммные колодки с шагом 5 мм к двум парам больших отверстий на концах платы. В качестве альтернативы, если вы хотите использовать этот регулятор с беспаечной макетной платой, разъемами с шагом 0,1 дюйма или другими прототипами, использующими сетку 0,1 дюйма, вы можете припаять части входящей в комплект прямой штыревой полоски 9 × 1 к 0,1 ″ — расположенные на расстоянии меньшие отверстия (каждое большое сквозное отверстие имеет соответствующую пару этих меньших отверстий). Для максимально компактной установки можно припаять провода прямо к плате.
На плате есть четыре монтажных отверстия 0,086 ″, предназначенных для винтов №2 или M2. В тех случаях, когда монтажные винты не используются, а провода припаяны непосредственно к плате, изолированную часть проводов можно пропустить через монтажные отверстия для снятия натяжения. На изображении выше показан пример этого с проводом 20 AWG, что близко к пределу того, что может пройти через монтажные отверстия.
Типичный КПД и выходной ток
КПД регулятора напряжения, определяемый как (выходная мощность) / (входная мощность), является важным показателем его производительности, особенно когда речь идет о сроке службы батареи или нагреве.Как показано на графиках ниже, эти импульсные стабилизаторы имеют КПД от 80% до 90% для большинства комбинаций входного напряжения, выходного напряжения и нагрузки.
Мы производим эти платы на собственном предприятии в Лас-Вегасе, что дает нам возможность производить партии регуляторов с индивидуальными компонентами, чтобы лучше соответствовать потребностям вашего проекта.Например, если у вас есть приложение, в котором входное напряжение всегда будет ниже 20 В, а эффективность очень важна, мы можем сделать эти регуляторы немного более эффективными при высоких нагрузках, заменив полевой МОП-транзистор с защитой от обратного напряжения 30 В на 20 В. Мы также можем настроить установленное выходное напряжение. Если вы заинтересованы в настройке, свяжитесь с нами.
Максимально достижимый выходной ток платы зависит от входного напряжения, но также зависит от других факторов, включая температуру окружающей среды, воздушный поток и теплоотвод.На графиках ниже показаны выходные токи, при которых защита от перегрева этого регулятора напряжения обычно срабатывает через несколько секунд. Эти токи представляют собой предел возможностей регулятора и не могут поддерживаться в течение длительного времени, поэтому постоянные токи, которые может обеспечить регулятор, обычно на несколько сотен миллиампер ниже.
Во время нормальной работы этот продукт может стать достаточно горячим, чтобы вас обжечь. Будьте осторожны при обращении с этим продуктом или другими подключенными к нему компонентами.
Люди часто покупают этот товар вместе с:
Pololu 12V, 2.2A Понижающий стабилизатор напряжения D24V22F12
Обзор
Уведомление об ограниченных поставках (обновлено 27 мая 2021 г.): Из-за глобальной нехватки компонентов мы серьезно ограничены в производстве этого изделия.
Семейство понижающих регуляторов напряжения D24V22Fx генерирует более низкие выходные напряжения при входном напряжении до 36 В. Это синхронные импульсные регуляторы (также называемые импульсными источниками питания (SMPS) или DC-to- Преобразователи постоянного тока) с типичным КПД от 85% до 95%, что намного эффективнее линейных регуляторов напряжения, особенно когда разница между входным и выходным напряжением велика.Эти регуляторы обычно могут поддерживать непрерывные выходные токи от 1,4 A до 2,6 A, хотя фактический доступный выходной ток является функцией входного напряжения и эффективности (см. Разделы «Типичный КПД» и «Максимальный непрерывный выходной ток» ниже). Как правило, доступный выходной ток для версий с более низким напряжением немного выше, чем для версий с более высоким напряжением, и уменьшается с увеличением входного напряжения.
Эти регуляторы имеют типичный потребляемый ток покоя (без нагрузки) около 1 мА, а разрешающий вывод может использоваться для перевода плат в состояние низкого энергопотребления, которое снижает ток покоя приблизительно до 5-10 мкА на вольт на VIN.
Модули имеют встроенную защиту от обратного напряжения, защиту от короткого замыкания, функцию теплового отключения, которая помогает предотвратить повреждение от перегрева, и функцию плавного пуска, которая снижает пусковой ток.
Доступно несколько различных фиксированных выходных напряжений:
Различные версии этого регулятора напряжения выглядят очень похоже, поэтому вам следует подумать о добавлении собственных отличительных знаков или этикеток, если вы будете работать одновременно с несколькими версиями.Эта страница продукта относится ко всем версиям семейства D24V22Fx.
Семейство D24V22Fx предназначено для замены нашего более старого семейства понижающих стабилизаторов напряжения D24V25Fx. Эти две конструкции имеют одинаковый размер и одинаковые токи и диапазоны входного напряжения, но у них разное расположение выводов и они основаны на разных внутренних схемах, поэтому существуют фундаментальные различия в работе. В частности, эти новые регуляторы D24V22Fx имеют гораздо меньшее падение напряжения и обеспечивают сигнал «хорошее энергопотребление», а новая конструкция допускает более высокие выходные напряжения (например.грамм. 12 В).
В качестве альтернативы более высокой мощности, пожалуйста, рассмотрите наше семейство понижающих регуляторов D36V28Fx, которые могут выдерживать ток от 2 до 4 А и принимать входное напряжение до 50 В.
Мы производим эти платы собственными силами на нашем предприятии в Лас-Вегасе, что дает нам гибкость в изготовлении этих регуляторов с индивидуальными компонентами, чтобы лучше соответствовать потребностям вашего проекта. Например, если у вас есть приложение, в котором входное напряжение всегда будет ниже 20 В, а эффективность очень важна, мы можем сделать эти регуляторы немного более эффективными при высоких нагрузках, заменив полевой МОП-транзистор с защитой от обратного напряжения 40 В на 20 В.Мы также можем настроить выходное напряжение. Если вы заинтересованы в настройке, свяжитесь с нами.
Характеристики
- Входное напряжение:
- От 4 В до 36 В для версии с выходом 3,3 В
- [ выходное напряжение + падение напряжения ] до 36 В для выходного напряжения 5 В и выше (подробности см. В разделе «Падение напряжения»)
- Фиксированный выход 3,3 В, 5 В, 6 В, 7,5 В, 9 В или 12 В (в зависимости от версии регулятора) с точностью 4%
- Типичные максимальные длительные выходные токи в пределах 1.4 А и 2,6 А (см. График максимального продолжительного выходного тока ниже)
- Типичный КПД от 85% до 95%, в зависимости от входного напряжения, выходного напряжения и нагрузки (см. График КПД ниже)
- Частота переключения: ~ 400 кГц
- Встроенная защита от обратного напряжения, защита от перегрузки по току и короткого замыкания, отключение при перегреве и плавный пуск
- Типичный ток покоя без нагрузки 1 мА; его можно уменьшить примерно до 5–10 мкА на вольт на VIN, отключив плату (см. график тока покоя ниже)
- Выход «Power good» указывает, что регулятор не может должным образом поддерживать выходное напряжение
- Компактный размер: 0.7 ″ × 0,7 ″ × 0,31 ″ (17,8 мм × 17,8 мм × 8 мм)
- Два монтажных отверстия 0,086 ″ для винтов №2 или M2
Использование регулятора
Подключения
Эти понижающие стабилизаторы имеют пять основных точек подключения для пяти различных электрических узлов: исправное питание (PG), включение (EN), входное напряжение (VIN), заземление (GND) и выходное напряжение (VOUT). Плата также имеет вторую точку заземления вне основного ряда соединений, что может быть удобно для приложений, в которых вы припаиваете провода непосредственно к плате, а не используете их в макете.
Входное напряжение, VIN , питает регулятор. К VIN можно подавать напряжения от 4 В до 36 В, но для версий регулятора с выходным напряжением выше 4 В эффективный нижний предел VIN равен VOUT плюс падение напряжения регулятора, которое примерно линейно изменяется с нагрузкой. (см. ниже график выпадающих напряжений в зависимости от нагрузки).
Выходное напряжение VOUT является фиксированным и зависит от версии регулятора: версия D24V22F3 выдает 3.3 В, версия D24V22F5 выдает 5 В, версия D24V22F6 выдает 6 В, версия D24V22F7 выдает 7,5 В, версия D24V22F9 выдает 9 В, а версия D24V22F12 выдает 12 В.
Регулятор включен по умолчанию: подтягивающий резистор 270 кОм на плате соединяет вывод EN с VIN с обратной защитой. На вывод EN можно подавать низкий уровень (ниже 1 В), чтобы перевести плату в состояние низкого энергопотребления. Потребляемый ток покоя в этом спящем режиме определяется током в подтягивающем резисторе от EN к VIN и схемой защиты от обратного напряжения, которая в целом потребляет от 5 мкА до 10 мкА на вольт на VIN, когда удерживается EN. низкий.Если вам не нужна эта функция, оставьте контакт EN отключенным.
Индикатор «power good», PG , представляет собой выход с открытым стоком, который становится низким, когда выходное напряжение регулятора падает ниже примерно 85% от номинального напряжения, и становится высокоомным, когда выходное напряжение поднимается выше примерно 90%. Для использования этого вывода требуется внешний подтягивающий резистор.
|
|
Пять основных точек подключения помечены на верхней части печатной платы и расположены с шагом 0,1 дюйма для совместимости с беспаечными макетными платами, разъемами и другими прототипами, использующими сетку 0,1 дюйма. В эти отверстия можно припаять либо прилагаемую прямую штыревую полоску 5 × 1, либо прямоугольную штыревую полоску 5 х 1.Для максимально компактной установки можно припаять провода прямо к плате.
Понижающий регулятор напряжения Pololu D24V22Fx, вид сбоку. |
---|
На плате есть два монтажных отверстия диаметром 0,086 ″ (2,18 мм), предназначенных для винтов №2 или M2. Монтажные отверстия находятся в противоположных углах платы и разделены на 0,52 дюйма (13,21 мм) по горизонтали и вертикали. Все размеры платы указаны на размерной диаграмме (204 КБ pdf).
Подробная информация о товаре №2855
КПД типовой
КПД регулятора напряжения, определяемый как (выходная мощность) / (входная мощность), является важным показателем его производительности, особенно когда речь идет о сроке службы батареи или нагреве. Это семейство импульсных регуляторов обычно имеет КПД от 85% до 95%, хотя фактический КПД в данной системе зависит от входного напряжения, выходного напряжения и выходного тока. См. Диаграмму эффективности ниже для получения дополнительной информации.
Типичное падение напряжения
Падение напряжения понижающего регулятора — это минимальная величина, на которую входное напряжение должно превышать целевое выходное напряжение регулятора, чтобы гарантировать достижение целевого выходного сигнала.Например, если стабилизатор 5 В имеет падение напряжения 1 В, входное напряжение должно быть не менее 6 В, чтобы на выходе были полные 5 В. Как правило, падение напряжения увеличивается с увеличением выходного тока. На приведенном ниже графике показано падение напряжения при различных выходных токах для D24V22F12.
Максимальный длительный выходной ток
Максимально достижимый выходной ток этих регуляторов зависит от входного напряжения, но также зависит от других факторов, включая температуру окружающей среды, воздушный поток и теплоотвод.На приведенном ниже графике показаны максимальные выходные токи, которые эти регуляторы могут обеспечивать непрерывно при комнатной температуре в неподвижном воздухе и без дополнительного теплоотвода.
Во время нормальной работы этот продукт может стать достаточно горячим, чтобы вас обжечь. Будьте осторожны при обращении с этим продуктом или другими подключенными к нему компонентами.
Ток покоя
Ток покоя — это ток, который регулятор использует только для своего питания, и на графике ниже это показано для различных версий регулятора как функция входного напряжения.На входе EN модуля может быть установлен низкий уровень, чтобы перевести плату в состояние низкого энергопотребления, при котором она обычно потребляет от 5 мкА до 10 мкА на вольт на VIN.
Люди часто покупают этот товар вместе с:
Эффективное преобразование 12 В постоянного тока в 5 В для маломощной электроники, оценка шести модулей
В настоящее время я работаю над проектом Arduino, устанавливаемым на автомобиле. Устройство рассчитано на постоянное питание, и я решил использовать автомобильный аккумулятор в качестве источника постоянного питания.Я проектирую устройство с низким энергопотреблением, потребляющим 50 мА или меньше, потому что кто хочет застрять с разряженной батареей, верно?
Автомобильный аккумулятор обычно обеспечивает напряжение от 7 до 15 вольт, но в некоторых стандартах упоминается, что возможны скачки напряжения 40 В. Напряжение автомобильного аккумулятора обычно составляет около 12 В, но падает до ~ 7 В, когда вы запускаете двигатель, и до ~ 14 В, когда двигатель работает и аккумулятор заряжается. Поскольку мы не хотим, чтобы наше устройство сбрасывалось во время пусков, мы хотели бы выполнить преобразование входного напряжения от 7 до 20 вольт в фиксированное выходное напряжение 5 вольт, которое ожидает Arduino Uno.
Регуляторы напряжения
На плате Arduino Uno есть стабилизатор напряжения, который мы могли бы использовать. Рекомендуется для напряжений от 7 до 12 вольт. Это означает, что нам нужно сначала снизить высокое напряжение автомобильного аккумулятора с помощью внешнего компонента, прежде чем мы сможем подать его на плату Arduino Uno. К сожалению, одно это не решило бы наших проблем, поскольку не удовлетворило бы наши требования к эффективности.
Arduino Uno с обведенным регулятором напряжения. [Фото http: // www.electricrcaircraftguy.com]
Проблема с использованием регулятора напряжения заключается в том, что регулятор расточителен. Любое дополнительное напряжение, которое необходимо сбросить, преобразуется в тепло. Формула эффективности: eff (reg) = Vout / Vin. Стабилизатор напряжения также имеет некоторые преимущества, одно из них — стабильность, что означает, что он может поддерживать очень стабильное и точное выходное напряжение. Еще одно преимущество — компактные размеры.Чтобы выполнить эффективное преобразование, мы должны использовать импульсный источник питания, в частности понижающий преобразователь, который будет понижать для нас напряжение.Понижающий преобразователь будет включать и выключать вход настолько быстро, насколько это необходимо для обеспечения необходимого напряжения и мощности на выходе. В оставшейся части этой статьи будут сравниваться шесть различных понижающих (понижающих) модулей. Если вы не знакомы с принципом работы понижающего преобразователя с переключением режимов, прочтите эту статью, в которой также сравниваются некоторые модули при более высоких нагрузках.
Кандидатские модули
Одна реализация, которую я рассмотрел, — это понизить напряжение батареи примерно до 7 вольт, а затем запитать Arduino через его регулятор напряжения.Преимущество заключается в более стабильном напряжении для Arduino, однако будет потеря энергии 1-eff (reg) = 1-5 / 7 = 28%. Кроме того, каждый процесс преобразования требует некоторого запаса между Vin и Vout, поэтому при наличии двух этапов нам становится трудно поддерживать нижний предел диапазона напряжения автомобильного аккумулятора, что создает потенциальные проблемы со сбросами во время запуска двигателя.
Итак, я закончил поиск модулей, которые могут работать от автомобильного аккумулятора и выдавать 5 вольт. Это может быть регулируемый модуль или фиксированный на 5 вольт.Я бы подключил эти модули к USB-порту Arduino (предпочтительнее из-за присутствующей там дополнительной защиты) или напрямую к контакту Arduino 5V. Это означает, что предпочтение отдается модулям со встроенным выходным USB-портом типа «мама», хотя адаптеры или кабели преобразователя могут компенсировать его отсутствие.
Модули
Модули, которые я тестировал, происходят с Дальнего Востока, и большинство из них были куплены на eBay по цене от 1 до 2 долларов США (включая доставку). Это означает, что у большинства из них нет четкого номера модели или названия производителя.Я придумываю короткое название для каждого модуля, чтобы я мог легко их упомянуть. Я признаю, что качество фотографий могло быть лучше. Я старался изо всех сил с имеющимся у меня оборудованием. Также обратите внимание, что каждая фотография имеет собственный масштаб. Вот модули в произвольном порядке.
Сигара
Конвертер «Сигарный»
Этот адаптер имеет штекер прикуривателя на одном конце и предназначен для подключения к гнезду прикуривателя в автомобиле. Выходной разъем — это женский USB-порт.Такие модули продаются конечным пользователям для зарядки USB-устройств в автомобиле. Я понятия не имею, где я это взял, но я нашел его в своей корзине запчастей, разобрал и использовал в этом исследовании.
Поскольку такие преобразователи продаются конечным пользователям, их списки обычно не показывают фотографии печатной платы, так что это рулетка в отношении того, какой чип и эффективность вы получаете.
Регулируемый
«Регулируемый» преобразователь, передний
«Регулируемый» преобразователь, задний
Этот адаптер продавался на eBay как «Регулируемый понижающий модуль питания DC-DC LM2596 4.От 75-24В до 0,93-18В ». На самом деле чипа LM2596 там нет, что не должно быть большим сюрпризом для покупателей eBay. Это регулируемый понижающий модуль, который отлично подходит для создания прототипов. Вы регулируете выходное напряжение с помощью многооборотного потенциометра. Входные и выходные разъемы представляют собой винтовые клеммы, и вы можете видеть, что я подключил их к цилиндрической вилке для удобства использования.
Амперметр
Преобразователь амперметра, передний
Преобразователь «Амперметр», Задний
Этот модуль продавался на eBay как «Понижающий преобразователь постоянного тока 2А постоянного напряжения с вольтметром и амперметром».Он имеет регулируемое напряжение, ток и дисплей, который может отображать входное / выходное напряжение и выходной ток. Очень хорошо для прототипирования. Для некоторых людей это может быть даже альтернативой правильному настольному источнику питания. Этот модуль имеет разъемы, аналогичные модулю «Регулируемый», метод регулировки также аналогичен.
штраф
Преобразователь «Fine», передний
Преобразователь «Fine», задний
Этот модуль от QSKJ был внесен в список «Fine 6-24V 12V / 24V to 5V 3A CAR USB Charger Module DC Buck step down Converter».Это один из самых маленьких модулей в тесте. Он явно предназначен для интеграции в другие проекты, поскольку имеет две контактные площадки для ввода. На выходе получается довольно симпатичный женский USB-порт. В листинге упоминается множество дополнительных функций, таких как новейшая схема идентификации USB, схемы защиты, сверхнизкий статический ток (0,85 мА) и многое другое.
600 мА
Преобразователь «600 мА», передний
Преобразователь «600 мА», задний
Этот модуль с пометкой «DM01» на 100% предназначен для интеграции.Входы и выходы через контактные площадки. Похоже, этот модуль также выпускается в версиях на 3,3, 9 и 12 В. Он был выставлен на продажу как «понижающий понижающий модуль постоянного / постоянного тока 600 мА с 6-55 В до 5 В с фиксированным выходным напряжением». Это может быть самый маленький модуль из 6, но отсутствие порта USB делает его нечестным сравнением. Одна особенность, которая отличает этот модуль от других, участвовавших в тесте, заключается в том, что он имеет панель «EN». Вы можете управлять этим разъемом для выключения и запуска модуля при необходимости. Заявленный ток отключения составляет менее 1 мкА.Если вы просто собираетесь подключить эту площадку к «Vin +», не беспокойтесь, «ток холостого хода» этого модуля составляет всего 0,7 мА.
Точный
Преобразователь «Precise», передний
Преобразователь «Прецизионный», задний
Этот модуль имеет те же соединения, что и «Fine», но он немного больше. Он продавался как «3A DC-DC 9V / 12V / 24V to 5V USB Step Down Power Module 2A Precise Vehicle Charger».
Напряжение и ток
Вот некоторые электрические свойства 6 модулей.У меня не было свойств модуля для «Сигары», поэтому диапазоны основаны на спецификациях микросхем и могут быть лучше, чем фактические диапазоны модулей.
Модуль | Входное напряжение | Выходное напряжение | Максимальный выходной ток | Пиковый выходной ток |
---|---|---|---|---|
Сигара | 3 — 40 В | 5,4 — 5,5 В | 1.5A | ? |
Регулируемый | 4,75 — 24 В | 0,93 — 18 В | 2.5A | 5A |
Амперметр | 4,5 — 24 В | 0,93 — 20 В | 2A | ? |
Тонкий | 6 — 24 В | 5,1 — 5,2 В | 2,1 A | 3A |
600 мА | 6 — 55 В | 5 В | 0,6 A | 1A |
Precise | 7,5 — 28V | 5V | 2A | 3A |
Пиковый ток означает способность обеспечивать высокий ток в течение ограниченного периода времени.Максимальный ток означает максимальный ток, который модуль может обеспечить постоянно. Имейте в виду, что в некоторых модулях упоминается, что для работы с максимальным током может потребоваться дополнительный радиатор или охлаждающее решение.
Несколько моментов, о которых стоит упомянуть: во-первых, «Сигара» с фиксированным выходным USB-разъемом выдает слишком высокое напряжение по стандартам USB. Это могло быть из-за старости или просто плохого качества. Разница составляет около 10%, и я считаю ее непригодной для использования. Во-вторых, большинство модулей способны работать с входным напряжением примерно до 25 вольт, но немногие из них могут работать с напряжением 40 вольт и выше.Престижность за это.
Свойства коммутационной цепи
Модуль | Микросхема | Частота | Индуктор | Заявленный КПД |
---|---|---|---|---|
Сигара | MC34063A | 100 кГц | 220 мкГн? | 83% при 24 В и 500 мА |
Регулируемый | MP23070N | 340 кГц | 10 мкГн? | до 98% |
Амперметр | MP23070N | 340 кГц | 10 мкГн? | ? |
Fine | MP2315 (знак AGCG) | 500 кГц | 4.7 мкГн | от 12 В до 5 В 1 А может до 94% |
600 мА | HT7463A (марка 463A) | 1250 кГц | 22 мкГн | до 96% |
Точный | MP1584EN | 500 кГц | 15 мкГн? | до 96% |
Более высокая частота переключения будет означать меньшую пульсацию на выходе (более точное напряжение / ток), но вызывает больше накладных расходов из-за переключения, что немного снижает эффективность.
Рядом с некоторыми значениями индуктивности стоит знак «?». Это означает, что компонент не был отмечен, а значение было оценено на основе рекомендаций в таблице данных. Обычно для более низкой частоты требуется индуктор большего размера и большей мощности.
Тестирование
Измерение тока с обеих сторон
Сначала я измерил ток, используемый моим устройством на выходе преобразователя, который составил около 50 мА. Затем я создал фиктивную нагрузку 100 Ом, подключив два резистора по 200 Ом параллельно.Я использовал массив резисторов, чтобы уменьшить нагрузку на каждый отдельный резистор, который был рассчитан на 0,25 Вт. В соответствии с законом Ома резистор на 100 Ом будет вызывать нагрузку 50 мА при напряжении 5 вольт, аналогично тому, что делает устройство.
Затем я измерил ток, используемый преобразователем на входе, как для нагрузки устройства, так и для фиктивной нагрузки. Я заметил, что реальная нагрузка и фиктивная нагрузка с одинаковым средним током имеют одинаковую эффективность. Разница могла возникнуть, поскольку потребляемая мощность фиктивной нагрузки является фиксированной, в то время как устройство может потреблять мощность пачками, но это не оказало существенного влияния на результаты.Я пришел к выводу, что использование фиктивных резисторов — достаточно хорошее приближение для этого теста.
Затем я сделал фиктивные нагрузки для токов 25 мА, 50 мА и 100 мА, используя 1, 2 и 4 резистора, включенных параллельно.
Измерение тока с имитацией нагрузки
Чтобы как можно меньше повлиять на измерение, я использовал амперметр на входе (последовательно) и рассчитал ток на выходе, используя закон Ома I = V / R. Таким образом, не было никакого воздействия на выходную сторону, которое могло бы добавить падение напряжения и повлиять на результаты.Напряжение V измерялось параллельно, а сопротивление R известно и зависит от фиктивной нагрузки, используемой для каждого испытания.
Блок питания для теста был на 12 В, но из-за падения напряжения на амперметре входное напряжение модулей немного ниже.
Результаты
Я рассчитал эффективность каждого модуля для каждого типа нагрузки как:
eff = Pin / Pout = (Vin * Iin) / (Vout * Iout)
Таблицы данных некоторых микросхем, используемых в модулях, содержат график эффективности.Эффективность зависит от напряжения и тока. Если возможно, я добавил в последний столбец перечисленную эффективность микросхемы для соответствующих Vin и Iout. У некоторых модулей есть диаграммы эффективности, которые не охватывают диапазоны малых токов, что может указывать на тип нагрузки, для которой (не) были разработаны микросхемы.
Выходной ток 25 мА
Модуль | In V | Out V | In mA | Эффективность | Эффективность микросхемы |
---|---|---|---|---|---|
Сигара | 11.82 | 5,46 | 21 | 60% | |
Регулируемый | 11,63 | 5,08 | 35,65 | 31% | |
Амперметр | 11,58 | 5,04 | 40,04 | 27% | |
Мелкое | 11,91 | 5,12 | 13,7 | 80% | 87% |
600 мА | 11,9 | 5.04 | 14,2 | 75% | 74% |
Precise | 11,9 | 4,98 | 14,75 | 71% | 75% |
Выходной ток 50 мА
Модуль | In V | Out V | In mA | Эффективность | Эффективность микросхемы |
---|---|---|---|---|---|
Сигара | 11,52 | 5,49 | 38,6 | 68% | |
Регулируемый | 11.45 | 5,08 | 47,44 | 48% | |
Амперметр | 11,39 | 5,05 | 52,2 | 43% | |
Мелкое | 11,73 | 5,13 | 26,98 | 83% | 89% |
600 мА | 11,72 | 5,01 | 26,66 | 80% | 86% |
Precise | 11,72 | 4,98 | 27.3 | 78% | 77,5% |
Выходной ток 100 мА
Модуль | In V | Out V | In mA | Эффективность | Эффективность микросхемы |
---|---|---|---|---|---|
Сигара | 11,15 | 5,54 | 76,3 | 72% | |
Регулируемый | 11,22 | 5,08 | 79,8 | 58% | |
Амперметр | 11.18 | 5,04 | 76,1 | 60% | |
Мелкое | 11,41 | 5,12 | 54,6 | 84% | 91% |
600 мА | 11,46 | 4,9 | 51 | 82% | 88% |
Precise | 11,38 | 4,96 | 53,5 | 81% | 82% |
Заключение
Различия могут быть значительными, как показано выше.При тесте с наименьшей нагрузкой (25 мА) худший исполнитель потребляет в 3 раза больше энергии, чем лучший.
Различия в эффективности между модулями становятся более тонкими по мере увеличения нагрузки: 2x для 50 мА и 1,5x для 100 мА.
Входные напряжения разные. Более высокий ток на входе означает большее падение напряжения на амперметре, что приводит к более низкому входному напряжению по сравнению с выходным напряжением источника питания.
Указанный КПД микросхемы находится в пределах 5-10% от измеренного КПД модуля. Дельта может быть связана с неэффективностью самого модуля или с различиями в общих условиях (температура и т. Д.).
И победитель: «Отлично»! Этот модуль явно лучше всего подходит для сценариев с низким энергопотреблением. При достижении токов 100 мА разница между 3 ведущими модулями минимальна.
Чем «Fine» лучше других? Это относительно новая микросхема. Таблица относится к 2014 году, а MP2307 — с 2008 года. Он также имеет очень низкие значения Rds (on) (90 мОм / 40 мОм), но, что наиболее интересно, MP2315 имеет режим энергосбережения AAM (Advanced Asynchronous Modulation) для легкая нагрузка.
Расширенная асинхронная модуляция (AAM) — это запатентованная технология MPS. Используя эту технологию, ИС будет снижать свою частоту при обнаружении низких нагрузок, тем самым уменьшая накладные расходы на переключение, но потенциально вызывая нестабильность и колебания. Значение резистора на выводе AAM определяет, когда начать это поведение. Не стесняйтесь поправлять меня в комментариях, если я неправильно это объясняю.
В заключение, если вам нужен эффективный модуль для легких нагрузок, вы можете попробовать его от QSKJ с чипом MPS MP2315, помеченным как AGCx (я видел, как AGCG или AGCE используются специально).Если у вас есть другие рекомендации, поделитесь ими в комментариях ниже. Удачного проекта!
Понижающий стабилизатор напряжения Pololu 12V, 4.5A D36V50F12 Этот мощный синхронный импульсный понижающий стабилизатор принимает входное напряжение до 50 В и снижает его до 12 В.Плата имеет размеры 1 ″ × 1 ″, но обеспечивает типичный максимальный непрерывный выходной ток от 2,3 A до 6,5 A. TE-390-000 21,95 долл. США 39 Готово к отправке! | Повышающий / понижающий стабилизатор напряжения Pololu 24V Повышающий / понижающий регулятор, обеспечивающий постоянное выходное напряжение 24 В.Это надежный стабилизатор напряжения, сделанный из качественных комплектующих. TE-386-024 $ 16,95 9 Готово к отправке! |
Понижающий регулятор напряжения Pololu 5V, 500mA D24V5F5 Компактный (0.4 ″ × 0,5 ″) импульсный понижающий (или понижающий) стабилизатор напряжения D24V5F5 принимает входное напряжение от 7 В до 36 В и эффективно снижает его до 5 В, обеспечивая максимальный выходной ток 500 мА. TE-176-505 4,95 долл. США 294 Готово к отправке! | Пололу 12В, 2.Понижающий регулятор напряжения на 2А D24V22F12 Этот небольшой синхронный импульсный понижающий стабилизатор принимает входное напряжение до 36 В и снижает его до 12 В. Размер платы составляет всего 0,7 ″ × 0,7 ″, но при этом он обеспечивает типичный непрерывный выходной ток до 2,2 А и имеет защиту от обратного напряжения. . TE-297-000 9 долларов.95 5 Готово к отправке! |
Понижающий регулятор напряжения Pololu 5V, 5A D24V50F5 Этот небольшой синхронный импульсный понижающий (или понижающий) стабилизатор принимает входное напряжение до 38 В и эффективно снижает его до 5 В.Размер платы составляет всего 0,7 ″ × 0,8 ″, но она обеспечивает типичный постоянный выходной ток до 5 А. TE-296-000 14,95 долл. США 87 Готово к отправке! | Преобразователь постоянного тока 5 В, 50 Вт Компактный 46 x 32 x 18 мм (1.8 x 1,26 x 0,71 дюйма) регулятор напряжения — отличный компонент для снижения напряжения с 24 до 5 вольт. TE-278-005 9,99 долл. США 22 Готово к отправке! |
Преобразователь постоянного тока в постоянный, 12 В, 60 Вт Компактный 46 x 32 x 18 мм (1.8 x 1,26 x 0,71 дюйма) регулятор напряжения — отличный компонент для снижения напряжения с 24 до 12 вольт. TE-277-012 6,99 долл. США 87 Готово к отправке! | Преобразователь постоянного тока в постоянный, 5 В, 25 Вт Компактный 46 x 32 x 18 мм (1.8 x 1,26 x 0,71 дюйма) регулятор напряжения — отличный компонент для снижения напряжения с 24 до 5 вольт. TE-277-005 5,99 долл. США 65 Готово к отправке! |
Пололу 3.Повышающий стабилизатор напряжения на 3 В NCP1402 Этот компактный повышающий (или повышающий) стабилизатор генерирует 3,3 В при напряжении всего 0,8 В и выдает до 200 мА, что делает его идеальным для питания небольших электронных проектов на 3,3 В от одного или двух NiMH, NiCd или щелочных элементов. TE-175-003 4,95 долл. США 43 Готово к отправке! | Пололу 3.Понижающий стабилизатор напряжения 3 В, 600 мА D24V6F3 Компактный (0,4 ″ × 0,5 ″) импульсный понижающий (или понижающий) стабилизатор напряжения D24V6F3 принимает входное напряжение от 4,8 В до 42 В и эффективно снижает его до 3,3 В, обеспечивая максимальный выходной ток 600 мА. TE-174-003 5,95 долл. США 24 Готово к отправке! |
Повышающий стабилизатор напряжения Pololu 5V U3V12F5 Компактный (0.32 «× 0,515») Импульсный повышающий стабилизатор напряжения U3V12F5 принимает входное напряжение от 2,5 В и эффективно повышает его до 5 В. Расстояние между выводами составляет 0,1 дюйма. TE-173-005 3,95 $ 58 Готово к отправке! | Повышающий / Понижающий регулятор напряжения Pololu 5V Импульсный повышающий / понижающий стабилизатор S7V7F5 эффективно вырабатывает 5 В при входном напряжении между 2.7В и 11,8В. TE-172-005 $ 4,49 53 Готово к отправке! |
Силовой модуль двигателя PowerBotix — ПРОДАЖА Модуль питания двигателя является частью роботизированной системы питания PowerBotix.Эта плата подключается к модулю ввода батареи и подает отфильтрованное питание для различной электроники, двигателей и других компонентов в вашем роботизированном проекте. TE-149-000 86,24 $ 65,00 $ 4 Готово к отправке! | Модуль ввода батареи PowerBotix — ПРОДАЕТСЯ Модуль ввода батареи является частью роботизированной системы питания PowerBotix.Эта плата подключается к двум банкам батарей и подает питание на различную электронику, двигатели и другие компоненты в вашем робототехническом проекте. TE-148-000 429,57 долл. США 320,00 долл. США 5 Готово к отправке! |
AnyVolt Micro Универсальный преобразователь постоянного тока в постоянный Dimension Engineering AnyVolt Micro — это миниатюрный повышающий / понижающий импульсный преобразователь постоянного тока в постоянный.Выход регулируется от 2,6 В до 14 В и может потребляться ток до 0,5 А. TE-112-ADJ $ 19,99 19 Готово к отправке! | Комплект регулируемой платы регулятора переключения 25 Вт Это плата регулятора напряжения.Он имеет клеммную колодку с общим заземлением, входом и регулируемым выходом. Включает предохранитель, фильтр и индикатор питания. В нем используется импульсный источник питания Dimension Engineering 3 А для максимальной эффективности и изоляции. TE-111-ADJ $ 34,90 13 Готово к отправке! |
Понижающий регулируемый импульсный регулятор мощностью 25 Вт Dimension Engineering DE-SWADJ 3 — это увеличенная версия регулируемого понижающего регулятора напряжения DE-SWADJ.Он может обрабатывать ток 3А, типичная пульсация составляет 25 мВ, а в идеальных условиях регулятор может иметь КПД до 96%. TE-110-ADJ 25,00 долл. США 24 Готово к отправке! | Регулируемый понижающий импульсный регулятор мощностью 10 Вт Dimension Engineering DE-SWADJ — это регулируемая версия наших понижающих регуляторов напряжения SW0XX.Это самый простой способ добавить регулируемый источник напряжения в новый или существующий проект. TE-092-ADJ $ 15,00 19 Готово к отправке! |
Комплект регулируемой платы регулятора переключения Это плата регулятора напряжения.Он имеет клеммную колодку с общим заземлением, входом и выходом 5 В. Включает предохранитель, фильтр и индикатор питания. В нем используется импульсный источник питания Dimension Engineering, обеспечивающий максимальную эффективность и изоляцию. TE-090-ADJ 24,90 долл. США 12 Готово к отправке! | Комплект платы регулятора 9 В Это плата регулятора напряжения.Он имеет клеммную колодку с общим заземлением, входом и выходом 9 В. Включает предохранитель, фильтр и индикатор питания. TE-045-009 9,90 долл. США 11 Готово к отправке! |
Комплект платы регулятора 6 В Это плата регулятора напряжения.Он имеет клеммную колодку с общим заземлением, входом и выходом 6 В. Включает предохранитель, фильтр и индикатор питания. Можно добавить дополнительный радиатор. TE-045-006 9,90 долл. США 28 Готово к отправке! | Комплект платы регулятора 5V Это плата регулятора напряжения.Он имеет клеммную колодку с общим заземлением, входом и выходом 5 В. Включает предохранитель, фильтр и индикатор питания. Можно добавить дополнительный радиатор. TE-045-005 9,90 долл. США 29 Готово к отправке! |
Как правильно выбрать регулятор (ы) напряжения для вашей конструкции
В этой статье показано, как выбрать лучший тип стабилизатора напряжения для вашего конкретного электронного продукта.
Вероятно, более 90% продукции требуют регулятора напряжения того или иного типа, что делает их одними из наиболее часто используемых электрических компонентов.
Если у вас нет возможности работать напрямую от напряжения батареи или внешнего адаптера постоянного / переменного тока, требуется стабилизатор напряжения. Скорее всего, потребуется несколько регуляторов напряжения.
Эта статья — ваше руководство по выбору регуляторов напряжения, подходящих для вашей конструкции. Мы расскажем обо всем, от определения того, какой тип регулятора напряжения вам нужен, до выбора того, который соответствует вашим конкретным требованиям.
Выбор необходимого регулятора
Первым шагом в выборе правильного регулятора напряжения является определение входного напряжения, выходного напряжения и максимального тока нагрузки.
Несмотря на то, что существует множество других спецификаций, эти три помогут вам начать работу и помогут сузить круг необходимого вам регулятора.
Регуляторы напряженияможно разделить на две широкие классификации:
- Понижающий : Выходное напряжение ниже входного
- Повышающий : выдает напряжение, превышающее входное
Знание входного и выходного напряжения поможет вам легко решить, к какой группе относится ваш регулятор.
Регуляторы напряжения, которым требуется выходное напряжение меньше входного, являются наиболее распространенным типом регуляторов напряжения. Например, вы вводите 5 В и выдает 3,3 В, или вы вводите 12 В и выдает 5 В.
Вам необходимо рассмотреть два типа регуляторов:
- Линейные регуляторы : простые, дешевые и бесшумные, но могут иметь низкий КПД. Линейные регуляторы способны только понижать напряжение.
- Импульсные регуляторы : высокий КПД по мощности, но более сложный и дорогой, и более шумный на выходе.Импульсные регуляторы могут использоваться как для понижения, так и для повышения напряжения.
Если вам требуется выходное напряжение ниже входного, начните с линейного регулятора, а не импульсного регулятора.
Рисунок 1. Линейный регулятор использует транзистор и контур управления с обратной связью для регулирования выходного напряжения. Линейный регулятор может производить только выходное напряжение ниже входного.
Линейные регуляторынамного дешевле и проще в использовании, чем импульсные регуляторы, поэтому, как правило, они должны быть вашим первым выбором.
Единственный случай, когда вы не хотите использовать линейный стабилизатор, — это если рассеиваемая мощность слишком велика или вам нужно повысить напряжение.
Определите рассеиваемую мощность
Хотя линейные регуляторы дешевы и просты в использовании, основным недостатком является то, что они могут тратить много энергии. Это может вызвать чрезмерный разряд батареи, перегрев или повреждение продукта.
Если у вас есть аккумулятор, мощность которого расходуется на тепло, аккумулятор разряжается быстрее.Если это не аккумулятор, но он по-прежнему выделяет значительное количество тепла, это может вызвать другие проблемы с вашей конструкцией.
Фактически, при определенных условиях линейный регулятор может выделять столько тепла, что фактически разрушает себя. Очевидно, вы этого не хотите.
При использовании линейного регулятора начните с определения того, сколько мощности будет рассеиваться регулятором.
Для линейных регуляторов используйте уравнение:
Мощность = (Входное напряжение — Выходное напряжение) x Ток (Уравнение 1)
Можно предположить, что выходной ток (также называемый током нагрузки) примерно такой же, как входной ток для линейных регуляторов.
На самом деле, входной ток равен выходному току плюс ток покоя, который потребляет линейный регулятор для выполнения функции регулирования.
Однако для большинства регуляторов ток покоя чрезвычайно мал по сравнению с током нагрузки, поэтому достаточно предположить, что выходной ток равен входному току.
Как видно из уравнения 1, если у вас большой перепад напряжения (Vin — Vout) на регуляторе и / или большой ток нагрузки, то ваш регулятор будет рассеивать большое количество энергии.
Например, если на входе 12 В, а на выходе 3,3 В, разность напряжений будет рассчитана как 12 В — 3,3 В = 8,7 В.
Если ток нагрузки составляет 1 ампер, это означает, что регулятор должен рассеивать 8,7 Вт мощности. Это огромная потеря мощности, с которой не справится любой линейный регулятор.
Если, с другой стороны, у вас есть высокий перепад напряжения, но вы используете ток нагрузки всего в несколько миллиампер, тогда мощность будет небольшой.
Например, в приведенном выше случае, если вы теперь используете ток нагрузки только 100 мА, рассеиваемая мощность упадет до 0,87 Вт, что гораздо более приемлемо для большинства линейных регуляторов.
При выборе линейного регулятора недостаточно просто убедиться, что входное напряжение, выходное напряжение и ток нагрузки соответствуют спецификациям регулятора.
Например, у вас есть линейный регулятор, рассчитанный на 15 В и ток 1 А. Вы думаете: «Хорошо, если это так, я могу подать на вход 12 В, взять 3.3 В на выходе и запустить его при 1 А, не так ли? »
Неправильно! Вы должны убедиться, что линейный регулятор может выдерживать даже такое количество мощности. Способ сделать это — определить, насколько нагревается регулятор, в зависимости от мощности, которую он должен рассеять.
Для этого сначала вычислите, сколько мощности будет рассеивать линейный регулятор, используя уравнение 1 выше.
Во-вторых, посмотрите в таблице данных регулятора в разделе «тепловые характеристики» параметр под названием «Theta-JA», выраженный в единицах ° C / Вт (° C на ватт).
Theta-JA указывает на количество градусов, на которое микросхема будет нагреваться выше температуры окружающего воздуха, на каждый ватт мощности, которую он должен рассеять.
Просто умножьте рассчитанную рассеиваемую мощность на Theta-JA, и вы узнаете, насколько сильно этот линейный регулятор будет нагреваться при такой мощности:
Мощность x Theta-JA = Температура выше окружающей (Уравнение 2)
Допустим, ваш регулятор соответствует спецификации Theta-JA 50 ° C на ватт.Это означает, что если ваш продукт рассеивает:
- 1 ватт, он нагреется до 50 ° C.
- 2 Вт нагреется до 100 ° С.
- ½ ватта нагреется до 25 ° C.
Важно отметить, что рассчитанная выше температура представляет собой разницу температур выше температуры окружающего воздуха.
Допустим, вы подсчитали, что при ваших условиях питания регулятор будет рассеивать 2 Вт мощности. Вы умножаете это на Theta-JA, и вы определяете, что он нагреется до 100 ° C.
Здесь важно не забыть добавить температуру окружающего воздуха. Комнатная температура обычно составляет 25 ° C. Следовательно, вы должны добавить 25 ° C к 100 ° C. Теперь у вас температура 125 ° C.
125 ° C — это максимальная температура, на которую рассчитано большинство электронных компонентов, поэтому вы никогда не захотите намеренно превышать 125 ° C.
Обычно вы не повредите свой продукт, пока температура не достигнет 170–200 ° C. К счастью, у большинства регуляторов также есть тепловое отключение, которое срабатывает при температуре около 150 ° C, поэтому они отключатся, прежде чем причинят какой-либо ущерб.
Однако некоторые регуляторы не имеют теплового отключения, поэтому вы можете повредить их, если они рассеивают слишком много энергии.
В любом случае, вы не хотите, чтобы ваш продукт постоянно перегревался и ему приходилось отключаться, чтобы остыть.
Также следует учитывать, что температура воздуха не всегда может быть 25 ° C.
Допустим, ваш регулятор все еще нагревается до 100 ° C под нагрузкой, но теперь температура окружающей среды составляет 50 ° C (например, в закрытой машине в жаркий летний день).
Теперь у вас 50 ° C плюс 100 ° C и температура до 150 ° C при загрузке. Вы превысили указанную максимальную температуру и находитесь на грани срабатывания теплового отключения.
Очевидно, этого следует избегать. Эксплуатация регулятора таким образом, чтобы он регулярно превышал заданную температуру 125 ° C, может не вызвать немедленного повреждения, но может сократить срок службы компонента.
Регуляторы с малым падением напряжения (LDO)
В некоторых случаях линейные регуляторы могут быть чрезвычайно эффективными, потребляя очень мало энергии.Это происходит, когда они работают с очень низким входным напряжением к выходному напряжению.
Например, если Vin — Vout составляет всего 300 мВ, то даже при токе нагрузки 3 А рассеиваемая мощность составляет всего 0,9 Вт, что является достаточно низкой мощностью, чтобы выдерживать нагрузку большинством регуляторов.
Минимальный дифференциал Vin-Vout, с которым может работать линейный регулятор, называется падением напряжения. Если разница между Vin и Vout падает ниже напряжения отключения, то регулятор находится в режиме отключения.
Регулятор в режиме отпускания просто выглядит как небольшой резистор от входа к выходу. Это означает, что выход, по сути, просто соответствует входному питанию, и на самом деле регулирование не выполняется.
В большинстве случаев вы не хотите использовать линейный регулятор в режиме отключения. Это никоим образом не повредит чему-либо, но вы потеряете многие преимущества регулятора.
Например, если у вас много шума на входе, он обычно будет отфильтрован линейным регулятором.Однако эта фильтрация не будет происходить в режиме отключения, поэтому весь шум входного источника питания передается прямо на выходное напряжение.
Причина, по которой стабилизаторы с малым падением напряжения так полезны, заключается в том, что они позволяют управлять регулятором с очень малой рассеиваемой мощностью. Это связано с тем, что линейный регулятор наиболее эффективен, когда разница между Vin и Vout небольшая.
Многие старые линейные регуляторы имели очень высокое падение напряжения. Например, у популярных регуляторов серии 7800 значение падения напряжения составляет 2 В.Это означает, что входное напряжение должно быть как минимум на 2 В выше выходного напряжения.
Рисунок 2 — Старые трехконтактные линейные регуляторы требуют большего перепада напряжения Vin-Vout и, следовательно, расходуют больше энергии, чем более новые регуляторы LDO.
Хотя 2 В — это не так уж и много, если вы пропускаете через этот регулятор ток в 1 ампер и у вас есть разница в 2 В, то это 2 Вт энергии, теряемой зря.
Регуляторы LDO нового поколения могут иметь очень низкое падение напряжения менее 200 мВ при полной нагрузке.
LDO, работающий только с перепадом напряжения 200 мВ, может пропускать в 10 раз больше тока при той же рассеиваемой мощности, что и линейный стабилизатор, работающий с перепадом напряжения 2 В. Таким образом, 1 ампер тока с дифференциалом Vin-Vout 200 мВ соответствует лишь 0,2 Вт рассеиваемой мощности.
Краткое описание линейных регуляторов
Линейные регуляторы полезны, если:
- Разница между входным и выходным напряжением мала
- У вас низкий ток нагрузки
- Вам требуется исключительно чистое выходное напряжение
- Дизайн должен быть максимально простым и дешевым
Как мы обсудим дальше, импульсные стабилизаторы создают много шума на выходе и могут создавать нечеткое выходное напряжение.
Это может быть приемлемо для некоторых приложений, но во многих случаях требуется очень чистое напряжение питания. Например, при генерации напряжения питания для аналого-цифрового преобразователя или какой-либо звуковой схемы.
Таким образом, линейные регуляторы не только проще в использовании, но и обеспечивают гораздо более чистое выходное напряжение по сравнению с импульсными регуляторами, без пульсаций, всплесков или шума любого типа.
Таким образом, если рассеиваемая мощность не слишком велика или вам не требуется повышающий регулятор, линейный регулятор будет вашим лучшим вариантом.
Регуляторы переключения
Импульсные регуляторы намного сложнее для понимания, чем линейные регуляторы. Линейный регулятор основан на силовом транзисторе, который регулирует величину тока, разрешенного для подачи на выход.
ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .
Если система управления линейного регулятора определяет, что выходное напряжение ниже, чем должно быть, то от входа к выходу может проходить больший ток.И наоборот, если обнаруживается, что выходное напряжение выше, чем должно быть, регулятор позволит меньшему току течь от входа к выходу, действуя таким образом, чтобы снизить выходное напряжение.
С другой стороны, импульсные регуляторы используют катушки индуктивности и конденсаторы для временного хранения энергии перед передачей ее на выход.
В этом уроке я проектирую печатную плату с использованием простого линейного регулятора, а в этом более глубоком курсе я проектирую индивидуальную плату с использованием более сложного импульсного регулятора.
Существует два основных типа импульсных регуляторов: повышающий и понижающий.
Понижающий импульсный стабилизатор также называется понижающим стабилизатором и, как линейный регулятор, выдает выходное напряжение ниже входного.
Рис. 3. Понижающий импульсный стабилизатор использует индуктор в качестве временного накопителя энергии для эффективного создания выходного напряжения ниже входного.
Если вы начали планировать использование линейного регулятора (понижающего), но определили, что рассеиваемая мощность слишком велика, тогда вам следует использовать понижающий импульсный стабилизатор.
В то время как повышающий импульсный стабилизатор создает выходное напряжение, превышающее входное, и называется повышающим регулятором.
Импульсные регуляторы очень эффективны, даже при очень больших разностях между входом и выходом.
КПД равен выходной мощности, деленной на входную. Это отношение того, какая часть мощности от входа поступает на выход.
КПД = Pout / Pin = (Vout x Iout) / (Vin x Iin) (Уравнение 3)
Уравнение эффективности то же самое для линейного регулятора.Однако, поскольку выходной ток равен входному току для линейного регулятора, уравнение 3 упрощается до простого:
КПД (линейный регулятор) = Vout / Vin (уравнение 4)
Например, предположим, что у вас на входе 24 В, а на выходе необходимо 3 В при токе нагрузки 1 А. Если бы это был линейный регулятор, он работал бы с чрезвычайно низким КПД, и почти вся мощность рассеивалась бы в виде тепла.
КПД линейного регулятора будет только 3 В / 24 В = 12.5%. Это означает, что только 12,5% мощности от входа поступает на выход. Остальные 87,5% передаваемой мощности теряются в виде тепла!
С другой стороны, импульсные регуляторы обычно имеют КПД 90% или больше независимо от разницы между входным и выходным напряжениями. Для импульсного регулятора около 90% мощности передается на выход и только 10% тратится впустую.
Только когда Vin и Vout близки друг к другу, линейный регулятор может сравниться по эффективности с импульсным регулятором.
Например, если у вас входное напряжение 3,6 В (напряжение литий-полимерной батареи), а на выходе выдается 3,3 В, то линейный регулятор будет иметь КПД 3,3 В / 3,6 В = 91,7%.
Повышающие регуляторы напряжения
В большинстве случаев выходное напряжение будет ниже входного. В этом случае следует использовать линейный регулятор или понижающий импульсный стабилизатор, как обсуждалось.
Однако есть и другие случаи, когда вам может потребоваться выходное напряжение выше входного.Например, если у вас аккумулятор 3,6 В и вам нужно питание 5 В.
Рис. 4. В повышающем импульсном стабилизаторе индуктивность используется в качестве временного накопительного элемента для эффективного создания выходного напряжения, превышающего входное.
Многие новички в электронике удивляются, узнав, что можно генерировать более высокое напряжение из более низкого напряжения. Для выполнения этой функции необходим импульсный регулятор, называемый повышающим регулятором.
В отличие от линейных регуляторов выходной ток импульсного регулятора не равен входному току. Вместо этого вы должны смотреть на входную мощность, выходную мощность и эффективность.
Рассчитаем входной ток для повышающего регулятора. Предположим, что входное напряжение — 3 В, выходное напряжение — 5 В, выходной ток — 1 А, а энергоэффективность — 90% (как указано в таблице данных).
Чтобы выяснить это, нам нужно использовать небольшую базовую алгебру для уравнения 3, чтобы найти входную мощность:
Pin = Pout / КПД (Уравнение 5)
Мы знаем, что эффективность составляет 90% (или 0.90), и мы знаем, что выходная мощность составляет 5 В x 1 А = 5 Вт. Мы можем рассчитать, что входная мощность составляет 5 Вт / 0,9 = 5,56 Вт.
Поскольку входная мощность составляет 5,56 Вт, а выходная мощность 5 Вт, это означает, что регулятор рассеивает только 0,56 Вт.
Далее, поскольку мы знаем, что мощность равна напряжению, умноженному на ток, это означает, что входной ток равен:
Входной ток = 5,56 Вт / Vin = 5,56 Вт / 3 В = 1,85 A (Уравнение 6)
Для повышающего регулятора входной ток всегда будет выше, чем выходной ток.С другой стороны, входной ток понижающего регулятора всегда будет меньше выходного тока.
Понижающие регуляторы
Допустим, вы получаете питание от двух последовательно соединенных батареек AA. При полной зарядке две батареи AA могут выдавать около 3,2 В, но когда они почти полностью разряжены, они выдают только 2,4 В.
В этом случае напряжение вашего источника питания может находиться в диапазоне от 2,4 В до 3,2 В.
Теперь предположим, что вам нужно выходное напряжение ровно 3 В независимо от состояния батарей.Когда батареи полностью заряжены (выходное напряжение 3,2 В), вам необходимо понизить напряжение батареи с 3,2 В до 3 В.
Однако, когда батареи близки к разряду (выходное напряжение 2,4 В), вам необходимо увеличить напряжение батареи с 2,4 В до 3 В.
В этом сценарии вы должны использовать так называемый повышающий-понижающий импульсный стабилизатор, который представляет собой просто комбинацию повышающего и понижающего регуляторов.
Для решения этой проблемы потенциально можно использовать отдельный понижающий регулятор, за которым следует повышающий регулятор (или наоборот).Но обычно лучше использовать одинарный понижающе-повышающий регулятор.
Импульсный регулятор + линейные регуляторы
Помните о трех преимуществах линейных регуляторов: дешевизне, простоте и чистоте выходного напряжения.
Может быть много случаев, когда вы хотите использовать линейный стабилизатор, потому что вам нужно чистое выходное напряжение, но вы не можете, потому что они тратят слишком много энергии.
В этой ситуации вы можете использовать импульсный регулятор, за которым следует линейный регулятор.
Допустим, у вас есть входное напряжение от литий-полимерной батареи, равное 3.6 В, но вам понадобится источник питания clean 5 В.
Для этого вы должны использовать повышающий стабилизатор, чтобы поднять напряжение до значения чуть выше целевого выходного напряжения. Например, вы можете использовать повышающий регулятор для повышения напряжения с 3,6 В до 5,5 В.
Затем вы следуете этому с помощью линейного регулятора, который берет 5,5 В и понижает его до 5 В, а также очищает шум и пульсации для получения чистого сигнала.
Это очень распространенный метод получения КПД импульсного регулятора и бесшумного выходного напряжения линейного регулятора.
Если вы выбрали эту опцию и специально пытаетесь отфильтровать коммутационные шумы, обязательно обратите внимание на коэффициент отклонения источника питания (PSRR) линейного регулятора.
PSSR данного линейного регулятора изменяется в зависимости от частоты. Таким образом, PSSR обычно представляется в виде графика, который показывает, как линейный регулятор подавляет любые пульсации на входном питании на различных частотах.
Рисунок 5 — Коэффициент отклонения блока питания (PSRR) в зависимости от частоты для TPS799 от Texas Instruments.
Чтобы использовать этот график, посмотрите на частоту переключения вашего импульсного стабилизатора (или любых других источников шума в вашей цепи). Затем посмотрите на PSSR линейного регулятора на этой конкретной частоте.
Затем вы можете рассчитать, какая часть шума импульсного регулятора будет удалена линейным регулятором.
Сводка
Чтобы выбрать регулятор напряжения для вашей системы, начните с предположения, что линейный регулятор может использоваться, если входное напряжение выше, чем выходное.
Только если при этом расходуется слишком много энергии, используйте понижающий импульсный стабилизатор.
Если вам нужно выходное напряжение выше, чем входное, используйте импульсный импульсный стабилизатор.
Если у вас есть ситуация, когда входное напряжение может быть выше или ниже выходного напряжения, вам нужен импульсный импульсный стабилизатор.
Наконец, если вам нужен чистый выходной сигнал, но требуется энергоэффективность импульсного регулятора, используйте импульсный регулятор, а затем линейный регулятор для очистки напряжения питания.
Наконец, не забудьте загрузить бесплатный PDF-файл : Окончательное руководство по разработке и продаже нового электронного оборудования . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.