Posted on

Содержание

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

  • Понятие теплопроводности
  • Теплопроводность при строительстве

Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.

Иржи Зак, Станислав Стастник Институт технологии строительных материалов и компонентов, Технологический университет Брно, факультет гражданского строительства, Брно, Чешская Республика. Нестационарное измерительное оборудование означает прогресс в методах простого, надежного и быстрого определения теплопроводности строительных материалов. В настоящем документе описывается новый метод определения коэффициента теплопроводности строительных материалов, включая все задействованные процедуры, и оценивается преимущества, связанные с использованием этого метода.

Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.

Понятие теплопроводности

В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

Коэффициент теплопроводности является наиболее важным теплотехническим свойством строительных материалов — он характеризует способность материалов проводить тепловую энергию. На практике используются две группы методов испытаний для измерения теплопроводности как свойства материалов.

Принцип плоского источника тепла

Эти методы достаточно точны, но они отнимают много времени, и применение этого метода возможно только в случае образцов с точно определенными размерами, и они очень требовательны к подготовке образца. Нестационарные методы — ударные методы с использованием вторичных измерительных приборов. Стационарные методы. . Для расчетов теплопередачи от плоского источника тепла мы исходим из приложения фундаментального уравнения Фурье для теплопроводности в виде.

Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

Принцип нестационарного плоского измерительного оборудования

Зонд нестационарного измерительного прибора образует полуограниченную область с известными параметрами и термически чувствительную границу с плоским источником тепла на ее поверхности. В принципе этот метод основан на ударном «методе горячей проволоки», но в отличие от этого метода заменяет линейный источник тепла плоским источником тепла, который гарантирует приближение измеренной величины по всей поверхности испытательного зонда и исключает возможный эффект локальных неоднородностей материала.

Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

Температура находится на измеренной границе, контролируемой с помощью контрольной термопары. Измеренные значения здесь хранятся и оцениваются. Выход источника тепла контролируется с помощью программного обеспечения для обеспечения оптимальной тепловой защиты на границе между зондом и испытанным материалом по теплотехническим параметрам испытуемого образца.

При оценке результатов измерений коэффициента теплопроводности нестационарным плоским измерительным оборудованием с использованием сравнительного метода мы обычно предполагаем сходство температурного курса при регулярном нагревании материалов. Следующий график формулирует типичный температурный курс при регулярном нагревании.

Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.

Вернуться к оглавлению

Факторы, влияющие на величину теплопроводности

Теплопроводность материалов, используемых в строительстве, зависит от их параметров:

В начале измерения принимается начальное стационарное состояние температуры. Измерительный датчик и образец образуют две полубесконечные области. Линейная часть кривой параметризуется используемой емкостью плоского источника и теплоизоляционными свойствами обоих смежных полупространств.

В общем случае расчет значения теплопроводности может быть выражен уравнением. Во время практических измерений результаты измерений на эталонных материалах были применены для выбора оптимального интервала измерения и оптимальной выходной мощности источника тепла в отношении максимизации результатов измерений точно и воспроизводимости.

  1. Пористость – наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
  2. Структура пор – малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
  3. Плотность – при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
  4. Влажность – значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
  5. Влияние температуры на теплопроводность материала отражается через формулу:

λ=λо*(1+b*t), (1)

Определение коэффициента теплопроводности строительных материалов с использованием нестационарного плоского измерительного оборудования. Нестационарное плоское измерительное оборудование благодаря своей конструкции обладает многими выгодными свойствами. В этом аппарате можно легко и быстро измерить значение коэффициента теплопроводности в случае любого строительного материала.

Само измерение длится всего несколько секунд, и поэтому можно определить значение коэффициента теплопроводности в зависимости от влажности испытуемого образца. Плоский датчик обеспечивает возможность определения коэффициента теплопроводности значительно неоднородных материалов. Требования, касающиеся размера выборки, по сравнению с другими методами существенно меньше. По этим причинам можно определить коэффициент теплопроводности даже в части строительных изделий, поскольку со стандартными образцами тепловые технические свойства могут сильно отличаться от свойств конечных продуктов. Точность измерения. Как и в случае любого метода измерения, даже в случае нестационарного плоского измерительного п

Теплопроводность строительных материалов и коэффициенты теплопотерь

Из чего построить дом? Его стены должны обеспечить здоровый микроклимат без лишней влаги, плесени, холода. Это зависит от их физических свойств: плотности, водостойкости, пористости. Самым главным является теплопроводность строительных материалов, означающая их свойство пропускать сквозь себя тепловую энергию при разнице температур. Для того, чтобы количественно оценить этот параметр, используют коэффициент теплопроводности.

Для того, чтобы кирпичный дом был таким же теплым, как и деревянный сруб (из сосны), толщина его стен должна втрое превышать толщину стен сруба.

Что такое коэффициент теплопроводности

Эта физическая величина равна количеству теплоты (измеряемой в килокалориях), проходящей через материал толщиной 1 м за 1 час. При этом разница температур на противоположных сторонах его поверхности должна быть равной 1 °С. Исчисляется теплопроводность в Вт/м град (Ватт, деленный на произведение метра и градуса).

Использование данной характеристики продиктовано необходимостью грамотного подбора типа фасада для создания максимальной теплоизоляции. Это необходимое условие для комфорта живущих или работающих в здании людей. Также теплопроводность строительных материалов учитывается при выборе дополнительного утепления дома. В данном случае ее расчет особенно важен, так как ошибки приводят к неправильному смещению точки росы и, как следствие — стены мокнут, в доме сыро и холодно.

Сравнительная характеристика теплопроводности строительных материалов

Коэффициент теплопроводности материалов различный. К примеру, у сосны этот показатель равен 0,17 Вт/м град, у пенобетона – 0,18 Вт/м град: то есть, по способности сохранять тепло они примерно идентичны. Коэффициент теплопроводности кирпича – 0,55 Вт/м град, а обыкновенного (полнотелого) – 0,8 Вт/м град. Из всего этого следует, что для того, чтобы кирпичный дом был таким же теплым, как и деревянный сруб (из сосны), толщина его стен должна втрое превышать толщину стен сруба.

Практическое использование материалов с низкой теплопроводностью

Современные технологии производства теплоизолирующих материалов предоставляют широкие возможности для строительной индустрии. Сегодня совершенно не обязательно строить дома с большой толщиной стен: можно удачно комбинировать различные материалы для возведения энергоэффективных построек. Не очень высокую теплопроводность кирпича можно компенсировать использованием дополнительного внутреннего или наружного утеплителя, например, пенополистирола, коэффициент теплопроводности которого – всего 0,03 Вт/м град.

Взамен дорогих домов из кирпича и не эффективных с точки зрения энергосбережения монолитных и каркасно-панельных домов из тяжелого и плотного бетона сегодня строят здания из ячеистого бетона. Его параметры такие же, как у древесины: в доме из данного материала стены не промерзают даже в самые холодные зимы.

Потери тепла дома в процентном соотношении.

Такая технология позволяет возводить более дешевые здания. Это связано с тем, что низкий коэффициент теплопроводности строительных материалов упростил возведение минимальными затратами по финансированию. Уменьшается также и время, затрачиваемое на строительные работы. Для более легких сооружений не требуется устраивать тяжелый глубоко заглубленный фундамент: в ряде случаев достаточно легкого ленточного или столбчатого.

Особенно привлекательным данный принцип строительства стал для возведения легких каркасных домов. Сегодня с использованием материалов низкой теплопроводности возводится все больше коттеджей, супермаркетов, складских помещений и производственных зданий. Такие строения могут эксплуатироваться в любой климатической зоне.

Принцип каркасно-щитовой технологии строительства заключается в том, что между тонкими листами фанеры или плит OSB помещается теплоизолятор. Это может быть минеральная вата либо пенополистирол. Толщина материала выбирается с учетом его теплопроводности. Тонкие стены вполне справляются с задачей тепловой изоляции. Таким же образом устраивается кровля. Данная технология позволяет в короткие сроки возводить здание с минимальными финансовыми затратами.

Сравнение параметров популярных материалов для изоляции и возведения домов

Пенополистирол и минеральная вата заняли лидирующие позиции при утеплении фасадов. Мнения специалистов разделились: одни утверждают, что вата накапливает конденсат и пригодна к эксплуатации лишь при одновременном использовании с паронепроницаемой мембраной. Но тогда стены теряют дышащие свойства, и качественное применение оказывается под вопросом. Другие уверяют, что создание вентилируемых фасадов решает данную проблему. При этом пенополистирол имеет низкую проводимость тепла и хорошо дышит. У него она пропорционально зависит от плотности листов: 40/100/150 кг/м3 = 0,03/0,04/0,05 Вт/м*ºC.

Еще одна важная характеристика, которую обязательно учитывают при строительстве — паропроницаемость. Она означает возможность стен пропускать изнутри влажность. При этом не происходят потери комнатной температуры и нет необходимости проветривать помещение. Низкая теплопроводность и высокая паропроницаемость стен обеспечивают идеальный для проживания человека микроклимат в доме.

Исходя из этих условий, можно определить самые эффективные дома для проживания человека. Наиболее низкой проводимостью тепла обладает пенобетон (0,08 Вт
м*ºC) при плотности 300 кг/м3. Этот строительный материал имеет также одну из самых высоких степеней паропроницаемости (0,26 Мг/м*ч*Па). Второе место по праву занимает древесина, в частности — сосна, ель, дуб. Их теплопроводность достаточно низкая (0,09 Вт/м*ºC) при условии обработки дерева поперек волокон. А паропроницаемость этих сортов наиболее высокая (0,32 Мг/м*ч*Па). Для сравнения: использование сосны, обработанной вдоль волокон, повышает выпуск тепла до 0,17-0,23 Вт/м*ºC.

Таким образом, для возведения стен подходят лучше всего пенобетон и древесина, так как они обладают лучшими параметрами по обеспечению экологической чистоты и хорошего микроклимата внутри помещений. Для изоляции фасада подходят пенополиуретан, пенополистирол, минеральная вата. Отдельно следует сказать о пакле. Ее закладывают для исключения мостиков холода во время кладки сруба. Она увеличивает и без того отличные свойства деревянного фасада: коэффициент проводимости тепла у пакли самый низкий (0,05 Вт/м*ºC), а паропроницаемость самая высокая (0,49 Мг/м*ч*Па).

Теплопроводность и теплоемкость строительных материалов :: EPLAN.HOUSE

       
Алюминий (ГОСТ 22233-83) 2600 221 897
Асбест волокнистый 470 0.16 1050
Асбестоцементный лист 1600 0.4 1500
Асбошифер с высоким содержанием асбеста 1800 0.17…0.35
Асбошифер с 10-50% асбеста 1800 0.64…0.52
Асбоцемент войлочный 144 0.078
Асфальт 1100…2110 0.7 1700…2100
Асфальтобетон (ГОСТ 9128-84) 2100 1.05 1680
Аэрогель (Aspen aerogels) 110…200 0.014…0.021 700
Базальт 2600…3000 3.5 850
Бакелит 1250 0.23
Береза 510…770 0.15 1250
Бетон на гравии или щебне из природного камня 2400 1.51 840
Бетон на каменном щебне 2200…2500 0.9…1.5
Бетон на песке 1800…2500 0.7 710
Бетон силикатный плотный 1800 0.81 880
Бетон термоизоляционный 500 0.18
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) 1000…1400 0.17…0.27 1680
Блок газобетонный 400…800 0.15…0.3
Блок керамический поризованный 0.2
Бумага 700…1150 0.14 1090…1500
Бут 1800…2000 0.73…0.98
Вата минеральная легкая 50 0.045 920
Вата минеральная тяжелая 100…150 0.055 920
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 100…200 0.064…0.076 840
Вермикулит вспученный (ГОСТ 12865-67) — засыпка 100…200 0.064…0.074 840
Вермикулитобетон 300…800 0.08…0.21 840
Воздух сухой при 20°С 1.205 0.0259 1005
Газо- и пенобетон, газо- и пеносиликат 280…1000 0.07…0.21 840
Гипс формованный сухой 1100…1800 0.43 1050
Гипсокартон 500…900 0.12…0.2 950
Гипсоперлитовый раствор 0.14
Глина 1600…2900 0.7…0.9 750
Глина огнеупорная 1800 1.04 800
Гравий (наполнитель) 1850 0.4…0.93 850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка 200…800 0.1…0.18 840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка 400…800 0.11…0.16 840
Гранит (облицовка) 2600…3000 3.5 880
Грунт 10% воды 1.75
Грунт 20% воды 1700 2.1
Грунт песчаный 1.16 900
Грунт сухой 1500 0.4 850
Грунт утрамбованный 1.05
Дуб вдоль волокон 700 0.23 2300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) 700 0.1 2300
Дюралюминий 2700…2800 120…170 920
Железо 7870 70…80 450
Железобетон 2500 1.7 840
Известняк (облицовка) 1400…2000 0.5…0.93 850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) 300…400 0.067…0.11 1680
Изделия пенобетонные 400…500 0.19…0.22
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ 810…840 0.14…0.185
Камни многопустотные из легкого бетона 500…1200 0.29…0.6
Камни полнотелые из легкого бетона DIN 18152 500…2000 0.32…0.99
Камень строительный 2200 1.4 920
Картон асбестовый изолирующий 720…900 0.11…0.21
Картон гофрированный 700 0.06…0.07 1150
Картон плотный 600…900 0.1…0.23 1200
Картон пробковый 145 0.042
Картон строительный многослойный (ГОСТ 4408-75) 650 0.13 2390
Картон термоизоляционный (ГОСТ 20376-74) 500 0.04…0.06
Каучук вспененный 82 0.033
Каучук натуральный 910 0.18 1400
Кедр красный 500…570 0.095
Керамзит 800…1000 0.16…0.2 750
Керамзитовый горох 900…1500 0.17…0.32 750
Керамзитобетон легкий 500…1200 0.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон 500…1800 0.14…0.66 840
Керамзитобетон на перлитовом песке 800…1000 0.22…0.28 840
Керамика 1700…2300 1.5
Кирпич доменный (огнеупорный) 1000…2000 0.5…0.8
Кирпич красный плотный 1700…2100 0.67 840…880
Кирпич красный пористый 1500 0.44
Кирпич клинкерный 1800…2000 0.8…1.6
Кирпич облицовочный 1800 0.93 880
Кирпич пустотелый 0.44
Кирпич силикатный с тех. пустотами 0.7
Кирпич силикатный щелевой 0.4
Кирпич строительный 800…1500 0.23…0.3 800
Кладка бутовая из камней средней плотности 2000 1.35 880
Кладка газосиликатная 630…820 0.26…0.34 880
Кладка из газосиликатных теплоизоляционных плит 540 0.24 880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе 1600 0.47 880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе 1800 0.56 880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе 1000…1400 0.35…0.47 880
Кладка из малоразмерного кирпича 1730 0.8 880
Кладка из пустотелых стеновых блоков 1220…1460 0.5…0.65 880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе 1500 0.64 880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе 1400 0.52 880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе 1800 0.7 880
Кладка из ячеистого кирпича 1300 0.5 880
Клен 620…750 0.19
Краска масляная (эмаль) 1030…2045 0.18…0.4 650…2000
Лед -20°С 920 2.44 1950
Лед 0°С 917 2.21 2150
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) 1600…1800 0.33…0.38 1470
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) 1400…1800 0.23…0.35 1470
Липа, (15% влажности) 320…650 0.15
Лиственница 670 0.13
Листы асбестоцементные плоские (ГОСТ 18124-75) 1600…1800 0.23…0.35 840
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 800 0.15 840
Листы пробковые легкие 220 0.035
Маты, холсты базальтовые 25…80 0.03…0.04
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) 50…125 0.048…0.056 840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) 100…150 0.038
Мел 1800…2800 0.8…2.2 800…880
Медь (ГОСТ 859-78) 8500 407 420
Мрамор (облицовка) 2800 2.9 880
Настил палубный 630 0.21 1100
Опилки древесные 200…400 0.07…0.093
Пакля 150 0.05 2300
Панели стеновые из гипса DIN 1863 600…900 0.29…0.41
Паркет дубовый 1800 0.42 1100
Паркет штучный 1150 0.23 880
Паркет щитовой 700 0.17 880
Пенобетон 300…1250 0.12…0.35 840
Пенопласт ПС-1 100 0.037
Пенопласт ПС-4 70 0.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) 65…125 0.031…0.052 1260
Пенопласт резопен ФРП-1 65…110 0.041…0.043
Пенополистирол (ГОСТ 15588-70) 40 0.038 1340
Пенополистирол (ТУ 6-05-11-78-78) 100…150 0.041…0.05 1340
Пенополистирол Пеноплэкс 22…47 0.03…0.036 1600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) 40…80 0.029…0.041 1470
Пенополиуретановые листы 150 0.035…0.04
Пенополиэтилен 0.035…0.05
Пенополиуретановые панели 0.025
Пеностекло легкое 100..200 0.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) 200…400 0.07…0.11 840
Пенофол 44…74 0.037…0.039
Пергамент 0.071
Пергамин (ГОСТ 2697-83) 600 0.17 1680
Перекрытие армокерамическое с бетонным заполнением без штукатурки 1100…1300 0.7 850
Перекрытие из железобетонных элементов со штукатуркой 1550 1.2 860
Перекрытие монолитное плоское железобетонное 2400 1.55 840
Перлит 200 0.05
Перлит вспученный 100 0.06
Песок 0% влажности 1500 0.33 800
Песок 10% влажности 0.97
Песок 20% влажности 1.33
Песок для строительных работ (ГОСТ 8736-77) 1600 0.35 840
Песок речной мелкий 1500 0.3…0.35 700…840
Песчаник обожженный 1900…2700 1.5
Пихта 450…550 0.1…0.26 2700
Плита бумажная прессованая 600 0.07
Плита пробковая 80…500 0.043…0.055 1850
Плитка облицовочная, кафельная 2000 1.05
Плиты алебастровые 0.47 750
Плиты из гипса ГОСТ 6428 1000…1200 0.23…0.35 840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) 200…1000 0.06…0.15 2300
Плиты из керзмзито-бетона 400…600 0.23
Плиты из полистирол-бетона ГОСТ Р 51263-99 200…300 0.082
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) 50 0.056 840
Плиты из ячеистого бетона ГОСТ 5742-76 350…400 0.093…0.104
Плиты льнокостричные изоляционные 250 0.054 2300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 150…200 0.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 225 0.054
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 200 0.052 840
Плиты минераловатные повышенной жесткости на органофосфатном связующем
(ТУ 21-РСФСР-3-72-76)
200 0.064 840
Плиты минераловатные полужесткие на крахмальном связующем 125…200 0.056…0.07 840
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) 50…350 0.048…0.091 840
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые 30…35 0.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 32 0.029
Плиты строительный из пористого бетона 500…800 0.22…0.29
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе 300…800 0.07…0.16 2300
Покрытие ковровое 630 0.2 1100
Покрытие синтетическое (ПВХ) 1500 0.23
Пол гипсовый бесшовный 750 0.22 800
Поливинилхлорид (ПВХ) 1400…1600 0.15…0.2
Поликарбонат (дифлон) 1200 0.16 1100
Полипропилен (ГОСТ 26996– 86) 900…910 0.16…0.22 1930
Полистирол УПП1, ППС 1025 0.09…0.14 900
Полистиролбетон (ГОСТ 51263) 150…600 0.052…0.145 1060
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах 200…500

Статья о паропроницаемости, теплопроводности, теплоустойчивости строительных материалов

На микроклимат помещения влияют физические свойства материалов из которого оно построено, а так же их последовательность внутри ограждающей конструкции. Основные физические свойства материалов: плотность, паропроницаемость, теплопроводность, теплоустойчивость и теплоусвоение.

Паропроницаемость. Многие слышали, что «дышащие» стены – это вроде бы хорошо. Но далеко не все знают, что это вообще такое. Так вот материал называют «дышащим», если он пропускает не только воздух, но и пар, то есть имеет паропроницаемость. Керамзит, дерево и пенобетон имеют хорошую паропроницаемостью. Некоторой паропроницаемостью облажает кирпич и бетон, но очень маленькой. Выдыхаемый человеком, выделяемый при приготовлении пищи или принятии ванной, пар, если в доме нет вытяжки, создаёт повышенную влажность. Признаком этого является появление конденсата на окнах или на трубах с холодной водой. Считается, что если стена имеет высокую паропроницаемость, то в доме легко дышится.

На самом деле это не совсем так. В современном доме, даже если стены в доме из «дышащего» материала, 96% пара, удаляется из помещений через вытяжку и форточку, и только 4% через стены. Если на стены наклеены виниловые или флизиленовые обоями, то стены влагу не пропускают. А если стены действительно «дышащие», то есть без обоев и прочей пароизоляции, в ветреную погоду из дома выдувает тепло. А ещё они менее долговечны. Чем выше паропроницаемость материала, тем больше он может набрать влаги, и как следствие, у него более низкая морозостойкость. Пар, выходя из дома через стену, в «точке росы»  превращается в воду. Производители строительных материалов, таких как газоблок и пенобетон, хитрят, когда рассчитывают теплопроводность материала, они всегда считают, что материал идеально сухой. Теплопроводность отсыревшего газоблока увеличивается в 5 раз, то есть в доме будет, мягко говоря, очень холодно. Но самое страшное, что при падении ночью температуры, точка росы смещается внутрь стены, а конденсат, находящийся в стене замерзает. Вода при замерзании расширяется и частично разрушает структуру материала. Несколько сотен таких циклов приводят к полному разрушению материала. Поэтому паропроницаемость строительных материалов вещь не только бесполезная, но и вредная.

В многослойной конструкции на паропроницаемость влияет последовательность слоев и расположение утеплителя. На рис 1 видно, что вероятность распределения температуры, давления насыщенного пара Рн и давления не насыщенного пара Рр предпочтительнее, если утеплитель находиться с фасадной стороны ограждающей конструкции. При расположении утеплителя внутри здания между ним и несущей конструкциеей образуется конденсат, который ухудшает микроклимат помещения и постепенно разрушает несущую сину.

паропроницаемость (1).jpg

Рис 1 — Расположение утеплителя внутри и снаружи ограждающей конструкции

Теплопроводность — один из видов переноса теплоты (энергии теплового движения микрочастиц) от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. Если материал стен обладает высокой теплопроводностью, то жить в таком доме будет крайне не комфортно. Стены будут быстро проводить тепло или холод с улицы в помещение.

Теплоемкость – количество теплоты, которое нужно подвести к объему вещества, для изменения его температуры.

Теплоусвоение. Теплофизические свойства ограждающей конструкции выравнивать колебания температуры в помещении, за счет поглощения ее материалом стен. Это свойство особенно полезно в условиях теплого кубанского климата. Днем материал стен поглощает тепло и отдает прохладу, ночью поглощает прохладу, отдает тепло. Усвоение тепла материалом ограждающей конструкции определяется коэффициентом теплоусвоения и зависит от величины теплопроводности, теплоемкости и объемной массы стены. Чем выше эти параметры, тем сильнее материал будет сглаживать температуру. Из таблицы 1 видно, что наибольшим теплоусвоением обладают металлы, из каменных конструкций бетон и железобетон.

Теплоустойчивость. Свойство ограждающей конструкции сохранять при колебаниях потока тепла относительное постоянство температуры на поверхности, обращенной в помещение, называется теплоустойчивостью. От постоянства температуры на внутренней поверхности ограждающих конструкций зависит обеспечение условий комфорта для пребывающих в помещении людей.

Теплоустойчивость ограждающей конструкции обеспечивается преимущественно теплоемкостью слоя резких колебаний. В часы действия отопления тепло накапливается в этом слое, а при перерывах в работе отопительной системы поступает в помещение, согревая внутренний воздух и обеспечивая относительное постоянство его температуры.
Такая теплоемкость может быть названа активной. Если указанный слой будет выполнен из материала с большим теплоусвоением, то в значительной мере будет обеспечена теплоустойчивость всей ограждающей конструкции. 

Таблица 1. Плотности, теплопроводности и паропроницаемости строительных материалов.

Материал

Плотность, кг/м3

Теплопроводность, Вт/(м*С)

Паропроницаемость,
Мг/(м*ч*Па)

Железобетон 2500 1.69 0.03
Бетон 2400 1.51 0.03
Керамзитобетон 1800 0.66 0.09
Керамзитобетон 500 0.14 0.30
Кирпич красный глиняный 1800 0.56 0.11
Кирпич, силикатный 1800 0.70 0.11
Кирпич керамический пустотелый (брутто1400) 1600 0.41 0.14
Кирпич керамический пустотелый (брутто1000) 1200 0.35 0.17
Пенобетон 1000 0.29 0.11
Пенобетон 300 0.08 0.26
Гранит 2800 3.49 0.008
Мрамор 2800 2.91 0.008
Сосна, ель поперек волокон 500 0.09 0.06
Дуб поперек волокон 700 0.10 0.05
Сосна, ель вдоль волокон 500 0.18 0.32
Дуб вдоль волокон 700 0.23 0.30
Фанера клееная 600 0.12 0.02
ДСП, ОСП 1000 0.15 0.12
ПАКЛЯ 150 0.05 0.49
Гипсокартон 800 0.15 0.075
Картон облицовочный 1000 0.18 0.06
Минвата 200 0.070 0.49
Минвата 100 0.056 0.56
Минвата 50 0.048 0.60
ПЕНОПОЛИСТИРОЛЭКТРУДИРОВАННЫЙ 33 0.031 0.013
ПЕНОПОЛИСТИРОЛЭКТРУДИРОВАННЫЙ 45 0.036 0.013
Пенополистирол 150 0.05 0.05
Пенополистирол 100 0.041 0.05
Пенополистирол 25 0.038 0.05
Пенопласт ПВХ 125 0.052 0.23
ПЕНОПОЛИУРЕТАН 80 0.041 0.05
ПЕНОПОЛИУРЕТАН 60 0.035 0.0
ПЕНОПОЛИУРЕТАН 40 0.029 0.05
ПЕНОПОЛИУРЕТАН 30 0.020 0.05
Керамзит 800 0.18 0.21
Керамзит 200 0.10 0.26
Песок 1600 0.35 0.17
Пеностекло 400 0.11 0.02
Пеностекло 200 0.07 0.03
АЦП 1800 0.35 0.03
Битум 1400 0.27 0.008
ПОЛИУРЕТАНОВАЯМАСТИКА 1400 0.25 0.00023
ПОЛИМОЧЕВИНА 1100 0.21 0.00023
Рубероид, пергамин 600 0.17 0.001
Полиэтилен 1500 0.30 0.00002
Асфальтобетон 2100 1.05 0.008
Линолеум 1600 0.33 0.002
Сталь 7850 58 0
Алюминий 2600 221 0
Медь 8500 407 0
Стекло 2500 0.76 0

Подведем итог. Ограждающая конструкция дома (стена), должна обладать минимальной паропроницаемостью и теплопроводностью и в то же время быть теплоемкой и теплоустойчивой. Из таблицы видно, что такого эффекта нельзя добиться, используя для возведения стены один материал. Фасадная (наружная) часть стены должна сдерживать холод (минимальная теплопроводность) и не давать ему пройти к внутреннему теплоемкому материалу, который будет сглаживать температуру внутри дома. Для внутреннего материала идеально подходит армированный бетон, он обладает максимальной теплоемкостью и плотностью, также это один из самых прочных строительных материалов. Применение бетона для несущей стены позволит сгладить разницу дневной и ночной температуры в помещении (см. рис 2) и даст вам увеличение в полезной площади дома. (рис 3)

График колебания летних.jpg

Рис. 2 — График колебания летних температур в краснодарском крае.

1 — колебания температуры на улице;
2 — коллебания температуры в помещении построенном из пено- или газоблока;
3 — температура в утепленном монолитном доме (система «ТЕХНОБЛОК»)

Как наружный утеплитель можно использовать пенополистирол, пенополиуретан или минвату, все три материала обладают небольшой теплопроводностью и давно используются в строительстве. Для защиты слоя утеплителя можно использовать штукатурку, мокрый фасад или облицовочные панели. Наша компания использует панели «ТЕХНОБЛОК», которые зарекомендовали себя как надежный материал, позволяют существенно сэкономить время и деньги. 

Паропроницаемость внутреннего слоя должна быть ниже, чем наружного, для свободного выходы пара за стены дома. При таком решении «точка расы» так же расположена за пределами несущей стены и не разрушает стен здания. Для предотврощения выпадения конденсата внутри ограждающей конструкции сопротивление теплопередаче в стене должно уменьшаться, а сопротивление паропроницанию возрастать снаружи внутрь. Все это предусмотрено в предложенной конструкции (рис 2).

Статья выполнена специалистами компании «ТЕХНОБЛОК».

Коэффициент теплопроводности материалов

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.  

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум0
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2019, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы

Название материала, плотностьКоэффициент теплопроводности
в сухом состояниипри нормальной влажностипри повышенной влажности
ЦПР (цементно-песчаный раствор)0,580,760,93
Известково-песчаный раствор0,470,70,81
Гипсовая штукатурка0,25
Пенобетон, газобетон на цементе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементе, 800 кг/м30,210,330,37
Пенобетон, газобетон на цементе, 1000 кг/м30,290,380,43
Пенобетон, газобетон на извести, 600 кг/м30,150,280,34
Пенобетон, газобетон на извести, 800 кг/м30,230,390,45
Пенобетон, газобетон на извести, 1000 кг/м30,310,480,55
Оконное стекло0,76
Арболит0,07-0,17
Бетон с природным щебнем, 2400 кг/м31,51
Легкий бетон с природной пемзой, 500-1200 кг/м30,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м30,35-0,58
Бетон на котельном шлаке, 1400 кг/м30,56
Бетон на каменном щебне, 2200-2500 кг/м30,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м30,3-0,7
Керамическийй блок поризованный0,2
Вермикулитобетон, 300-800 кг/м30,08-0,21
Керамзитобетон, 500 кг/м30,14
Керамзитобетон, 600 кг/м30,16
Керамзитобетон, 800 кг/м30,21
Керамзитобетон, 1000 кг/м30,27
Керамзитобетон, 1200 кг/м30,36
Керамзитобетон, 1400 кг/м30,47
Керамзитобетон, 1600 кг/м30,58
Керамзитобетон, 1800 кг/м30,66
ладка из керамического полнотелого кирпича на ЦПР0,560,70,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3)0,350,470,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3)0,410,520,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3)0,470,580,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3)0,70,760,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот0,640,70,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот0,520,640,76
Известняк 1400 кг/м30,490,560,58
Известняк 1+600 кг/м30,580,730,81
Известняк 1800 кг/м30,70,931,05
Известняк 2000 кг/м30,931,161,28
Песок строительный, 1600 кг/м30,35
Гранит3,49
Мрамор2,91
Керамзит, гравий, 250 кг/м30,10,110,12
Керамзит, гравий, 300 кг/м30,1080,120,13
Керамзит, гравий, 350 кг/м30,115-0,120,1250,14
Керамзит, гравий, 400 кг/м30,120,130,145
Керамзит, гравий, 450 кг/м30,130,140,155
Керамзит, гравий, 500 кг/м30,140,150,165
Керамзит, гравий, 600 кг/м30,140,170,19
Керамзит, гравий, 800 кг/м30,18
Гипсовые плиты, 1100 кг/м30,350,500,56
Гипсовые плиты, 1350 кг/м30,230,350,41
Глина, 1600-2900 кг/м30,7-0,9
Глина огнеупорная, 1800 кг/м31,4
Керамзит, 200-800 кг/м30,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м30,23-0,41
Керамзитобетон, 500-1800 кг/м30,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м30,22-0,28
Кирпич клинкерный, 1800 — 2000 кг/м30,8-0,16
Кирпич облицовочный керамический, 1800 кг/м30,93
Бутовая кладка средней плотности, 2000 кг/м31,35
Листы гипсокартона, 800 кг/м30,150,190,21
Листы гипсокартона, 1050 кг/м30,150,340,36
Фанера клеенная0,120,150,18
ДВП, ДСП, 200 кг/м30,060,070,08
ДВП, ДСП, 400 кг/м30,080,110,13
ДВП, ДСП, 600 кг/м30,110,130,16
ДВП, ДСП, 800 кг/м30,130,190,23
ДВП, ДСП, 1000 кг/м30,150,230,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м30,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м30,38
Линолеум ПВХ на тканевой основе, 1400 кг/м30,20,290,29
Линолеум ПВХ на тканевой основе, 1600 кг/м30,290,350,35
Линолеум ПВХ на тканевой основе, 1800 кг/м30,35
Листы асбоцементные плоские, 1600-1800 кг/м30,23-0,35
Ковровое покрытие, 630 кг/м30,2
Поликарбонат (листы), 1200 кг/м30,16
Полистиролбетон, 200-500 кг/м30,075-0,085
Ракушечник, 1000-1800 кг/м30,27-0,63
Стеклопластик, 1800 кг/м30,23
Черепица бетонная, 2100 кг/м31,1
Черепица керамическая, 1900 кг/м30,85
Черепица ПВХ, 2000 кг/м30,85
Известковая штукатурка, 1600 кг/м30,7
Штукатурка цементно-песчаная, 1800 кг/м31,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

НаименованиеКоэффициент теплопроводности
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Сосна, ель поперек волокон0,090,140,18
Сосна, ель вдоль волокон0,180,290,35
Дуб вдоль волокон0,230,350,41
Дуб поперек волокон0,100,180,23
Пробковое дерево0,035
Береза0,15
Кедр0,095
Каучук натуральный0,18
Клен0,19
Липа (15% влажности)0,15
Лиственница0,13
Опилки0,07-0,093
Пакля0,05
Паркет дубовый0,42
Паркет штучный0,23
Паркет щитовой0,17
Пихта0,1-0,26
Тополь0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

НазваниеКоэффициент теплопроводности НазваниеКоэффициент теплопроводности
Бронза22-105Алюминий202-236
Медь282-390Латунь97-111
Серебро429Железо92
Олово67Сталь47
Золото318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5  кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

Теплопроводность строительных материалов

Разные материалы имеют различную теплопроводность, и чем она ниже, тем меньше теплообмен внутренней среды обитания с внешней. Это значит, что зимой в таком доме сохраняется тепло, а летом – прохлада

Теплопроводность — количественная характеристика способности тел к проведению тепла. Для того чтобы иметь возможность сравнения, а также точных расчетов при строительстве, представляем цифры в таблице теплопроводности, а также прочности, паропроницаемости большинства строительных материалов.

Выделяют следующие виды теплообменных процессов:

  1. теплопроводность;
  2. конвекция;
  3. тепловое излучение.

Теплопроводность — это перенос на молекулярном уровне тепла между телами либо частицами одного и того же тела, имеющими разные температуры, когда происходит достаточно активный обмен двигательной энергией молекул, атомов и свободных электронов, т. е. мельчайших частиц тела.

Данный процесс осуществляется передвигающимися в хаотическом порядке структурными частицами тел (подразумеваются молекулы, атомы и т.п.). Подобный обмен тепла происходит в любом физическом теле, имеющем неоднородное распределение температур. Сам же механизм теплопередачи так или иначе зависит от того, в каком агрегатном состоянии вещество находится в текущий момент.

Тепловое излучение — перенос энергии от одного тела к иному телу, происходящий при посредстве электромагнитных волн.

Все способы передачи тепла зачастую реализуются совместно. Так, конвекцию сопровождает теплопроводность, ведь при этом неизбежно происходит соприкосновение частиц с различной температурой.
Процесс конвекции  осуществляется при перемещении в пространстве неравномерно нагретых участков  среды. При этом перенос тепла не­разрывным образом связан с переносом этой самой среды.

Чтобы достичь такого же тепла в доме из кирпича, какое дает деревянный сруб, толщина кирпичных стен должна превышать в три раза толщину стен постройки из дерева

Процесс совместного переноса тепла способом конвекции и теплопроводности именуют конвективным теплообменом. Теплоотдача — по своей сути конвективный теплообмен между перемещающейся средой и неподвижной (твердой) стеной.  Теплоотдача нередко сопровождается тепловым излучением. Перенос тепла в таком случае осуществляется совместно посредством таких процессов, как теплопроводность, конвекция и тепловое излучение.

Происходит перенос вещества, так называемый массообмен, проявляющийся в равновесной  концентрации вещества.

Совместное одновременное течение процессов теплообмена и массообмена называют тепломассообменом.

Теплопроводность выражается в тепловом перемещении мельчайших частиц тел. Явление теплопроводности можно наблюдать как в твердых телах, так и в неподвижных газах, и в жидкостях при условии, что в них не возникают конвективные токи. При возведении разного рода конструкций, включая жилые дома, необходимы знания о теплопроводности строительных материалов, в том числе таких, как минеральная вата, пенополистирол, пенополиуретан и др.

Показателем теплопроводности материалов служит коэффициент теплопроводности

Говоря о теплопроводности, также имеют в виду количественные  характеристики способности тел к проведению тепла. Способность того или иного вещества проводить тепло различна. Ее измеряют такой единицей, как коэффициент теплопроводности, означающем удельную теплопроводность.  В численном выражении данная характеристика равняется количеству тепла, проходящего сквозь тот или материал толщиною в 1 м и площадью 1 кв.м/сек при единичном температурном диапазоне.

Прежде предполагалось, что тепловая энергия передается в зависимости от перетекания  теплорода тел от одного к другому. Впрочем, впоследствии опыты опровергли само понятие теплорода в качестве самостоятельного вида материи. В наше время считается, что явление теплопроводности обусловлено естественным  стремлением объектов к состоянию, максимально близкому к термодинамическому равновесию, что и проявляется выравниванием их температур.

Интересно рассмотреть с этой точки зрения коэффициент теплопроводности вакуума. Он близок нулю — причем, чем вакуум глубже вакуум, тем его теплопроводность ближе к нулевой. Почему? Дело в том, что в вакууме крайне низкая концентрация материальных частиц, которые способны переносить тепло. Но тепло в вакууме всё же передаётся — при помощи излучения. Так, например, чтобы довести до минимума теплопотери, термос делают с двойными стенками, откачивая между ними воздух. А также делают «серебрение». На том же качестве, что зеркальная поверхность отражает излучение лучше, основаны свойства таких материалов, как фольгированный пенофол и другие подобные изоляционные материалы.
Ниже смотрим познавательные видеоматериалы для более полного представления такого физического понятия, как теплопроводность, на конкретных примерах.

МатериалПлотность, кг/м3Теплопроводность, Вт/(м*С)Паропроницаемость,
Мг/(м*ч*Па)
Эквивалентная1(при сопротивлении теплопередаче = 4,2м2*С/Вт)   толщина, мЭквивалентная2(при сопротивление паропроницанию =1,6м2*ч*Па/мг) толщина, м
Железобетон25001.690.037.100.048
Бетон24001.510.036.340.048
Керамзитобетон18000.660.092.770.144
Керамзитобетон5000.140.300.590.48
Кирпич красный глиняный18000.560.112.350.176
Кирпич, силикатный18000.700.112.940.176
Кирпич керамический пустотелый (брутто1400)16000.410.141.720.224
Кирпич керамический пустотелый (брутто 1000)12000.350.171.470.272
Пенобетон10000.290.111.220.176
Пенобетон3000.080.260.340.416
Гранит28003.490.00814.60.013
Мрамор28002.910.00812.20.013
Сосна, ель поперек волокна5000.090.060.380.096
Дуб поперек волокна7000.100.050.420.08
Сосна, ель вдоль волокна5000.180.320.750.512
Дуб вдоль волокна7000.230.300.960.48
Фанера6000.120.020.500.032
ДСП10000.150.120.630.192
Пакля1500.050.490.210.784
Гипсокартон8000.150.0750.630.12
Картон облицовочный10000.180.060.750.096
Минвата2000.0700.490.300.784
Минвата1000.0560.560.230.896
Минвата500.0480.600.200.96
Пенополистирол экструдированный330.0310.0130.130.021
Пенополистирол экструдированный450.0360.0130.130.021
Пенополистирол1500.050.050.210.08
Пенополистирол1000.0410.050.170.08
Пенополистирол400.0380.050.160.08
Пенопласт ПВХ1250.0520.230.220.368
Пенополиуретан800.0410.050.170.08
Пенополиуретан600.0350.00.150.08
Пенополиуретан400.0290.050.120.08
Пенополиуретан300.0200.050.090.08
Керамзит8000.180.210.750.336
Керамзит2000.100.260.420.416
Песок16000.350.171.470.272
Пеностекло4000.110.020.460.032
Пеностекло2000.070.030.300.048
АЦП18000.350.031.470.048
Битум14000.270.0081.130.013
Полиуретановая мастика14000.250.000231.050.00036
Полимочевина11000.210.000230.880.00054
Рубероид, пергамин6000.170.0010.710.0016
Полиэтилен15000.300.000021.260.000032
Асфальтобетон21001.050.0084.410.0128
Линолеум16000.330.0021.380.0032
Сталь78505802430
Алюминий260022109280
Медь8500407017090
Стекло25000.7603.190

Коэффициент теплопроводности материала. Теплопроводность строительных материалов: таблица

Процесс передачи энергии от более нагретой части тела к менее нагретой называется теплопроводностью. Числовое значение такого процесса отражает коэффициент теплопроводности материала. Это понятие является очень важным при строительстве и ремонте зданий. Правильно подобранные материалы позволяют создать в помещении благоприятный микроклимат и сэкономить на отоплении существенную сумму.

Понятие теплопроводности

Теплопроводность – процесс обмена тепловой энергией, который происходит за счет столкновения мельчайших частиц тела. Причем этот процесс не прекратится, пока не наступит момент равновесия температур. На это уходит определенный промежуток времени. Чем больше времени затрачивается на тепловой обмен, тем ниже показатель теплопроводности.

коэффициент теплопроводности материала

Данный показатель выражают как коэффициент теплопроводности материалов. Таблица содержит уже измеренные значения для большинства материалов. Расчет производится по количеству тепловой энергии, прошедшей сквозь заданную площадь поверхности материала. Чем больше вычисленное значение, тем быстрее объект отдаст все свое тепло.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

  • Плотность материала. При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
  • Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
  • Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.
коэффициент теплопроводности теплоизоляционных материаловВыбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.

Понятие теплопроводности на практике

Теплопроводность учитывается на этапе проектирования здания. При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно. Во время эксплуатации будут существенно экономиться денежные средства на отопление.

Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.

Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи.

Конструкционные материалы и их показатели

Для строительства зданий используют материалы с низким коэффициентом теплопроводности. Наиболее популярными являются:

  • Бетон. Его теплопроводность находится в пределах 1,29-1,52Вт/м*К. Точное значение зависит от консистенции раствора. На этот показатель также влияет плотность исходного материала, которая составляет 500-2500 кг/м3. Используют данный материал в виде раствора для фундаментов, в виде блоков – для возведения стен и фундамента.материалы с низким коэффициентом теплопроводности
  • Железобетон, значение теплопроводности которого составляет 1,68Вт/м*К. Плотность материала достигает 2400-2500 кг/м3.
  • Древесина, издревле использующаяся как строительный материал. Ее плотность и теплопроводность в зависимости от породы составляют 150-2100 кг/м3 и 0,2-0,23Вт/м*К соответственно.

Еще один популярный строительный материал – кирпич. В зависимости от состава он обладает следующими показателями:

  • саманный (изготовленный из глины): 0,1-0,4 Вт/м*К;
  • керамический (изготовленный методом обжига): 0,35-0,81 Вт/м*К;
  • силикатный (из песка с добавлением извести): 0,82-0,88 Вт/м*К.

Материалы из бетона с добавлением пористых заполнителей

Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:

  • Пенобетон. Производится с добавлением пенообразующих веществ, за счет которых характеризуется пористой структурой с плотностью 500-1000 кг/м3. При этом способность передавать тепло определяется значением 0,1-0,37Вт/м*К.коэффициент теплопроводности материалов таблица
  • Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают пустотелые блоки, которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то плотность керамзитобетона составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.
  • Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.

Показатели теплоизоляционных материалов

Коэффициент теплопроводности теплоизоляционных материалов, наиболее популярных в наше время:

  • пенопласт, который обладает плотностью 15-50кг/м3, при теплопроводности – 0,031-0,033Вт/м*К;материалы с высоким коэффициент теплопроводности
  • пенополистирол, плотность которого такая же, как и у предыдущего материала. Но при этом коэффициент передачи тепла находится на уровне 0,029-0,036Вт/м*К;
  • стекловата. Характеризуется коэффициентом, равным 0,038-0,045Вт/м*К;

Таблица показателей

Для удобства работы коэффициент теплопроводности материала принято заносить в таблицу. В ней кроме самого коэффициента могут быть отражены такие показатели как степень влажности, плотность и другие. Материалы с высоким коэффициент теплопроводности сочетаются в таблице с показателями низкой теплопроводности. Образец данной таблицы приведен ниже:

расчетный коэффициент теплопроводности материала

Использование коэффициента теплопроводности материала позволит возвести желаемую постройку. Главное: выбрать продукт, отвечающий всем необходимым требованиями. Тогда здание получится комфортным для проживания; в нем будет сохраняться благоприятный микроклимат.

Правильно подобранный изоляционный материал снизит потери тепла, по причине чего больше не нужно будет «отапливать улицу». Благодаря этому финансовые затраты на отопление существенно снизятся. Такая экономия позволит в скором времени вернуть все деньги, которые будут затрачены на приобретение теплоизолятора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *