Posted on

Содержание

Объем воздуха в воздуховоде. Рекомендуемая скорость воздуха в воздуховодах по снип

Этот материал любезно предоставлен моим другом — Spirit»ом.

Согласно санитарным нормам, система вентиляции должна обеспечивать замену воздуха в помещении за один час, это значит что за час в помещение должен поступить и удалиться из него объём воздуха, равный объёму помещения. Поэтому первым шагом мы считаем этот объём, перемножив площадь помещения на высоту потолков. Если у вас допустим помещение площадью 40 м2 с высотой потолков 2.5м, то его объём будет 40*2.5=100 м3. Значит производительность приточной и вытяжной систем должны быть по 100 м3/ч. Это минимальный расход, я рекомендую вдвое больше. Ищете вентилятор с такой производительностью, а лучше ещё больше, потому что производительность указывается при условии отсутствия противодавления, а когда вы поставите в приточную систему фильтр, противодавление появится и уменьшит производительность. Если у вас производительность 200 м3/ч, то в трубе 125мм примерная скорость потока будет 4.5 м/с, в трубе 100 мм — 6.5 м/с, а в трубе 160мм – чуть меньше 3 м/с. Считается, что комфортная скорость воздуха для человека – до 2 м/с. Если у вас есть анемометр, то зная эти цифры вы можете проверить производительность системы вентиляции.

Далее, допустим вы хотите поставить в приточный канал нагреватель. С помощью четвёртой таблицы вы можете определить его мощность. Допустим на улице -10°С, а вам хочется чтобы в помещении было +20°С, значит разница температур 30°С. Находим строчку 200 м3/ч, смотрим пересечение столбца 30°С, получаем мощность 2010 Вт. Понятно, что это при отсутствии других источников тепла, так что в реале потребуется существенно меньше.

Следующий момент – расчёт влажности. В тёплом воздухе помещается больше воды, чем в холодном. Поэтому при нагревании его влажность уменьшается, а при охлаждении увеличивается. Допустим у нас за бортом -10°С при 80% влажности, а в помещении воздух нагревается до +20°С. Содержание воды в одном кубометре 2.1*0.8=1.68 г/м3, а влажность нагретого воздуха получится 1.68/17.3=0.097 то есть примерно 10%. Сколько же надо испарить воды, чтобы получить влажность, допустим, 50% при расходе 200 м3/ч?

Ответ: 200*(17.3*0.5-1.68)=1394 г/ч=1.4 кг/ч

Сечения и расходы

Диаметр круга, см

Площадь, м 2

Относительно круга 10см

Габариты, см

Площадь, м 2

Относительно круга 10см

Расход воздуха, м 3 в час (без учёта турбулентностей)

Диаметр круглого сечения,см

Скорость потока

14.128.342.456.670.784.8113141170226283
22.144.266.388.4110132177221265353442
31.863.695.4127159191254318382509636
36.272.3108.5144.7180.9217289362434579724
56.61131702262833394525656789041130
88.4177265353442530707883106014131770
12725538250963576310171272152620352550
2264526799051130135718092261271336174520
353707106014141766212028263533423956527070

В 1 часе 60*60=3600 секунд.

Площадь круга S=pr 2 =pd 2 /4

S=0.0000785*r 2 m W:=3600*S*V;

V=S*v*3600=0.000314*r 2 *3600=0.263*r 2 *v

Габариты воздуховода,см

Скорость потока

sebiz.ru

Скорость в воздуховоде

Какой должна быть скорость воздуха, что транспортируется по воздуховоду и как ее рассчитать?

Естественно, что скорость в воздуховоде, зависит в первую очередь от количества, воздуха перемещающегося внутри воздуховода за единицу времени, а также от площади поперечного сечения воздуховода. Чем больше расход воздуха и, конечно, чем меньше размеры воздуховода, тем выше значение скорости воздуха в нем.

Содержание статьи:

Скорость в воздуховоде строго не регламентируется нормативными документами, но в справочниках проектировщиков можно найти рекомендуемые значение этого параметра. Различают рекомендуемую скорость движения воздуха в воздуховоде для гражданских и для промышленных зданий. Значение рекомендуемой скорости для гражданских зданий равно 5-6 м/с, в то же время для промышленных — от 6-12 м/с. Ниже приведены значения скоростей в различных типах (участках) воздуховодов.

 

Таблица 1  — Значения рекомендуемой скорости движения воздуха по воздуховодам.

Тип зданияТип участкаРекомендуемая скорость, м/с
ПромышленноеМагистральные каналы вентиляции6-12
ГражданскоеМагистральные каналы вентиляции5-6
Промышленные и гражданскиеБоковые ответвления воздуховодов4-5
Промышленные и гражданскиеРаспределительный канал с
вентиляционными решетками
и дефлекторами
1,5-2,0

Проектировщики определяют скорость в воздуховоде во время выполнения аэродинамического расчета системы вентиляции. Но нет необходимости производить аэродинамический расчет для того, чтобы только определить скорость воздуха в вентиляционном канале. Поэтому, приведем пример простого расчета скорости в воздуховоде.

Пример расчета скорости воздуха в воздуховоде

Исходными данными в этом случае послужат: 

  • расход воздуха на участке;
  • рекомендуемая скорость движения воздуха, которую мы принимаем по таблице 1.

Алгоритм расчета скорости в воздуховоде:

  • определение расчетной площади сечения воздуховода;
  • по расчетной площади определяют фактическое значение скорости в воздуховоде.

Итак, начнем. Для примера возьмем гражданское здание. Допустим у нас есть расход на участке 1-2, который составляет 3000 м3/ч. Для удобства и наглядности занесем данные в таблицу:

Определим расчетную площадь Fр в м2 по формуле:

Fр = G/(3600*Vp),

где G — расход воздуха на участке, м3/ч;
Vp  — рекомендуемая скорость воздуха на участке, м/с.

Расчетная площадь в нашем случае равна:

Fр = 3000/(3600*5)= 0,167 (м2).

Внесем данные в таблицу:

Далее воспользуемся каталогом воздуховодов, чтобы заполнить ячейки «размеры» и «стандартная площадь».

По расчетной площади принимаем на наш участок, воздуховод размером 300х500 мм площадью сечения 0,15 м2. Данные заносим в нашу таблицу:

Теперь нам осталось посчитать только фактическую скорость, которая и будет скоростью движения воздуха по участку 1-2. Расчет ведется по такой формуле:

 = G/(3600*Fст),

где G — расход воздуха на участке, м3/ч;
Fст — стандартная (принятая по каталогу) площадь сечения воздуховода, м2;

Для нашего участка:

 = 3000/(3600*0,15)= 5,56 (м/с).

Окончательный вариант таблицы:

Вот мы и определили скорость в воздуховоде, которая равна 5,56 м/с, а это значит, что фактическая скорость соответствует рекомендуемым значениям.

Как Вы могли бы заметить, расчет скорости воздуха в воздуховоде влечет за собой подбор размеров воздуховода. После установки воздуховодов проверяют фактическую скорость воздуха в них. Для этого используют специальные приборы — анемометры.

Заключение

Этот несложный расчет является частью аэродинамического расчета системы вентиляции и кондиционирования воздуха. Такие расчеты выполняются в специализированных программах или, например, в Excel.

Следует помнить о том, что слишком высокие значения скоростей в воздуховодах являются негативным фактором, так как из-за них образуется шум и свист в сетях воздуховодов, что приводит к несоответствиям нормам акустики. Материалы для снижения шума в воздуховодах представлены в этом разделе нашего сайта.

Читайте также:

airducts.ru

правильный расчет допустимого объёма воздушных масс, санитарные нормы

Режим микроклимата в любом помещении влияет на работоспособность и самочувствие людей в целом. Для того чтобы определить, каким должен быть состав воздуха, необходимо обратиться к утверждённым законодательным нормам, которые и регулируют этот вопрос. Скорость воздуха в воздуховоде при этом играет ключевую роль для обеспечения такого микроклимата.

Необходимость качественной вентиляции

Сначала необходимо определить, почему важно обеспечить попадание воздуха в помещение через вентиляционные каналы.

Согласно строительным и гигиеническим нормам, каждый промышленный или частный объект должен иметь качественную систему вентиляции. Главной задачей такой системы является обеспечение оптимального микроклимата, температуры воздуха и уровня влажности, чтобы человек при работе или отдыхе мог себя чувствовать комфортно. Это возможно только тогда, когда воздух не является слишком тёплым, переполненным различными загрязнителями и имеет довольно высокий уровень влаги.

Некачественная вентиляция способствует появлению инфекционных заболеваний и патологий дыхательных путей. Кроме этого, быстрее портятся продукты питания. Если воздух имеет очень большой процент влаги, то на стенах может образоваться грибок, который может в последующем перейти на мебель.

Свежий воздух может попасть в помещение разными способами, но основным его источником всё же является качественно вмонтированная система вентиляции. При этом в каждом отдельном помещении она должна просчитываться под его конструктивные особенности, состав воздуха и объём.

Стоит отметить, что для частного дома или квартиры небольших размеров будет достаточно установить шахты с естественной циркуляцией воздуха. Для больших коттеджей или производственных цехов нужно монтировать дополнительное оборудование, вентиляторы для принудительной циркуляции воздушных масс.

При планировке здания любого предприятия, цехов или общественных учреждений больших размеров необходимо следовать таким правилам:

  • в каждой комнате или помещении необходима качественная система вентиляции;
  • состав воздуха должен отвечать всем установленным нормам;
  • на предприятиях следует устанавливать дополнительное оборудование, с помощью которого можно регулировать скорость обмена воздуха, а в целях частного использования — менее мощные вентиляторы, если естественная вентиляция не справляется;
  • в разных помещениях (кухня, санузел, спальня) требуется монтировать разные типы систем вентиляции.

Для того чтобы вентиляция соответствовала таким требованиям, нужно сделать необходимые расчёты. Кроме этого, важно правильно подобрать оборудование — устройства для подачи и отвода воздуха.

Также следует проектировать систему таким образом, чтобы воздух был чистым в том месте, где он будет забираться. В противном случае в вентиляционные шахты и затем в комнаты может попадать загрязнённый воздух.

Во время составления проекта вентиляции, после того как необходимый объём воздуха рассчитан, проделываются отметки, где должны находиться вентиляционные шахты, кондиционеры, воздуховоды и прочие комплектующие. Это относится как к частным коттеджам, так и к многоэтажным домам.

От размеров шахт будет зависеть эффективность работы вентиляции в целом. Необходимые к соблюдению правила по требуемому объёму указаны в санитарной документации и нормах СНиП. Скорость воздуха в воздуховоде в них также предоставлена.

Санитарные нормы

Санитарные нормы

Скорость движения воздуха в воздуховодах непосредственно зависит от таких не менее важных показателей, как уровень шума и вибрации. Воздух, который проходит по каналам, с увеличением количества различных изгибов шахты и поворотов пропорционально увеличивает количество издаваемого шума и вибрации от движения.

По мере уменьшения сопротивления будет снижаться давление в вентиляционной системе и, конечно же, скорость движения кислорода. Для того чтобы понять общие правила выбора оборудования и его правильного расчёта, нужно узнать нормы основных факторов, которые влияют на выбор.

Уровень шума

Нормы, которые можно найти в СНиПах по этому вопросу, касаются всех видов жилых помещений: многоквартирных и частных домов, производственных и общественных зданий.

Согласно таким нормам, необходимо не превышать максимально допустимый уровень шума в следующих помещениях:

  • палаты, больницы, санатории — днём до 50 Дб, а ночью до 40 Дб;
  • учебные кабинеты — до 55 Дб;
  • жилые квартиры — до 55 Дб днём и до 45 Дб ночью;
  • в зданиях, которые прилегают к больницам и санаториям — днём до 60 Дб, ночью до 50 Дб;
  • территории, которые прилегают к жилым зданиям — днём до 70 Дб, а ночью до 60 Дб;
  • непосредственно возле здания школы — до 70 Дб.

Одной из причин увеличения уровня шумов в доме и, соответственно, превышения допустимых норм является неправильно сформированная сеть воздуховодов.

Показатель вибрации

Так же, как и уровень шума, вибрация напрямую влияет на скорость движения кислорода в шахтах. При этом такой показатель зависит от множества факторов. К ним можно отнести качество прокладок (их функция заключается в снижении уровня вибрации), размер воздуховода, скорость кислорода (который движется по каналам), материал для изготовления шахт и прочие нюансы.

Что касается цифр, то уровень вибрации должен быть в пределах 109—115 Дб. Если при проверке эти показатели будут превышены, то необходимо исправлять технические недочёты, допущенные при проектировании, или заменить вентилятор, который работает очень громко.

Скорость потока воздуха в вентиляции по нормам СНиП не должна влиять на увеличение таких показателей, как излишний шум или вибрация.

Кратность воздухообмена

Очищение воздуха в помещении происходит благодаря системе вентиляции. Этот процесс может быть как естественным, так и принудительным. В первом варианте вентиляция происходит в первую очередь через оборудованную систему шахт без вмонтированного дополнительного оборудования. К этому можно отнести постоянное открывание и закрывание дверей, окон, форточек и просто все щели в помещении.

Нужно понимать, что за определённое количество времени воздух в комнате должен несколько раз меняться, чтобы оставаться постоянно очищенным в пределах норм. Число смен воздуха за день — это кратность. Этот показатель также очень важный для определения скорости воздуха в воздуховодах.

Кратность можно вычислить по такой формуле: N=V/W.

Значения в формуле можно подставлять следующие:

  • N — кратность воздуха за 1 час.
  • V — объём кислорода, попадающего с улицы в комнату за 1 час.
  • W — объём помещения.

Если нормы не будут соблюдены, это чревато последствиями — будет увеличиваться уровень шума, вибрации и т. п. Кроме этого, в помещении не будет достаточно свежего воздуха.

Также это может привести к следующей ситуации:

  1. Показатель завышен. Такой вариант возникает, когда скорость воздуха в шахтах превышает норму. Последствия — неправильный температурный режим в помещении. Оно просто не будет успевать прогреваться. Если воздух очень сухой, то это будет провоцировать различные болезни дыхательных путей, кожи и т. п.
  2. Показатель занижен. При возникновении такой ситуации свежий воздух не поступает в помещение в достаточном количестве, поэтому уровень загрязнения довольно высок. В кислороде присутствует большая концентрация вредных веществ, бактерий, болезнетворных организмов, опасных газов. Количество кислорода уменьшается, а углекислого газа — увеличивается. Кроме этого, может наблюдаться повышенный уровень влажности, что чревато появлением плесени.

Для того чтобы такой показатель, как кратность, отвечал всем санитарным нормам, необходимо проверить его. Если он не соответствует общим требованиям, то требуется заменить отвечающее за это оборудование — вентиляторы или другие нагнетающие приборы для механического удаления неприятных запахов. При необходимости меняется и система шахт полностью.

Рекомендованная скорость

Определив максимальную скорость воздуха в воздуховоде, можно получить качественный результат. При составлении проекта необходимо для каждого помещения высчитывать нормы вентиляции отдельно. К примеру, на производстве — это цеха, в жилых многоэтажках — квартиры, а в частных коттеджах — поэтажные блоки.

Перед тем как устанавливать систему вентиляции, следует определиться с ключевыми элементами и зафиксировать их местонахождение. Нужно знать, какие маршруты будут проложены, систему магистралей и её размеры, форму вентиляционных шахт и их габариты.

Движение воздушных потоков внутри жилых и производственных зданий является очень сложным, поэтому ими занимаются только специалисты с соответствующим опытом работы.

Согласно общепринятым нормам, внутри помещения скорость воздуха не должна превышать показателя 0,3 метра за секунду. В качестве исключения из правила могут выступать ремонтные или другие строительные работы, при которых максимальный показатель может увеличиваться максимум на 30%.

Стоит отметить, что в больших производственных цехах должна работать система вентиляции, состоящая из двух шахт, а не одной, как это допустимо в квартирах или частных домах. В связи с этим скорость каждого из воздуховодов должна составлять 50% от необходимого максимума для каждой шахты.

Бывают форс-мажорные обстоятельства, кода необходимо полностью закрыть вентиляционные шахты или уменьшить количество вытекаемого воздуха за единицу времени. При этом сделать это нужно оперативно. К примеру, в случае возникновения пожара вентиляцию требуется перекрыть до минимального уровня в целях предотвращения распространения огня по другим помещениям здания. Для этого дополнительно в систему монтируются клапаны и отсекатели.

Правильный выбор

Правильный выбор

Кроме расчёта скорости в воздуховоде, необходимо правильно выбрать сам материал для монтажа шахт. Если все расчёты сделаны, следует выбрать диаметр круглых труб или сечение квадратных для создания системы вентиляции. Кроме этого, не помешает приобрести и металлические решётки во избежание попадания твёрдых частей в каналы.

Также можно предварительно купить вентилятор для нагнетания воздуха и определить, какую скорость и давление он создаёт. Зная такие показатели, как скорость воздуха и необходимое количество для определённой комнаты, можно определить, какого сечения должны быть вентиляционные шахты. Для этих целей используется формула S = L/3600*V.

Определив такой результат, можно подсчитать и диаметр труб по формуле D = 1000*√(4*S/π), где

  • D — диаметр воздуховода.
  • S — внутренний объём шахт.
  • n — число «пи» равно 3.14.

  • D — диаметр воздуховода.
  • S — внутренний объём шахт.
  • n — число «пи» равно 3.14.

Полученные результаты сопоставляют с нормами СНиП и по этим параметрам выбирают сечения труб, самые близкие к полученному результату.

Стоит отметить, что для таких расчётов необязательно пользоваться формулами или таблицами СНиП. Сегодня существует достаточно много онлайн-калькуляторов, с помощью которых очень просто просчитать расход приточного кислорода, скорости, давления и других показателей, просто введя исходные данные.

Таким образом, скорость в вентиляционных шахтах играет важную роль для обеспечения поступления воздуха в помещение, а также дымоудаления и выкачки из комнаты других вредных веществ.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

sarstroyka.ru

Пример подбора вентиляторов для вентиляции

  Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый вентилятором. Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

 

Рекомендуемая скорость движения воздуха в воздуховодах:

 

 Тип Скорость воздуха, м/с
 Магистральные воздуховоды 6,0-8,0
 Боковые ответвления 4,0-5,0
 Распределительные воздуховоды 1,5-2,0
 Приточные решетки у потолка 1,0-3,0
 Вытяжные решетки 1,5-3,0

Определение скорости движения воздуха в воздуховодах:

V= L / 3600*F (м/сек)

 

где L – расход воздуха, м3/ч; F – площадь сечения канала, м2.

Рекомендация 1.

Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.

 

 

Рекомендация 2.

В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.

 

 

Пример расчета вентиляционной системы:

Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.

 Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.

Участок 1: расход воздуха будет составлять 220 м3/ч. Принимаем диаметр воздуховода равным 200 мм, скорость – 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).

Участок 2: повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м3/ч. Принимаем диаметр воздуховода равным 250 мм, скорость – 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.

Участок 3: расход воздуха через этот участок будет составлять 1070 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.

 

Участок 4: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость – 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.

Участок 5: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.

Участок 6: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.

 

Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4-х отводов в сумме будут составлять 8 Па).

 

Определение потерь давления на изгибах воздуховодов

График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.

Пример. Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м3/ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2Па.

Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.

Теперь просуммируем все величины потери давления для прямых участков воздуховодов, сетевых элементов, отводов и решеток. Искомая величина 186,3 Па.

Мы рассчитали систему и определили, что нам нужен вентилятор, удаляющий 1570 м3/ч воздуха при сопротивлении сети 186,3 Па. Учитывая требуемые для работы системы характеристики нас устроит вентилятор требуемые для работы системы характеристики нас устроит вентилятор ВЕНТС ВКМС 315.

 

Определение потерь давления в воздуховодах.

 

 

 

Определение потерь давления в обратном клапане.

 

 

 

Подбор необходимого вентилятора.

 

 

 

Определение потерь давления в шумоглушителях.

 

 

 

Определение потерь давления на изгибах воздухуводов.

 

 

 

Определение потерь давления в диффузорах.

 

 

ventportal.com

Как расчитать потери напора воздуха в системе вентиляции

Табл. № 1. Рекомендованная скорость движения воздуха для различных помещений

Назначение

Основное требование
БесшумностьМин. потери напора
Магистральные каналыГлавные каналыОтветвления
ПритокВытяжкаПритокВытяжка
Жилые помещения35433
Гостиницы57.56.565
Учреждения686.565
Рестораны79776
Магазины89776

Исходя из этих значений следует рассчитывать линейные параметры воздуховодов.

Алгоритм расчета потерь напора воздуха

Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.

Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.

Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных

Размеры

150200250300350400450500
250210245275
300230265300330
350245285325355380
400260305345370410440
450275320365400435465490
500290340380425455490520545
550300350400440475515545575
600310365415460495535565600
650320380430475515555590625
700390445490535575610645
750400455505550590630665
800415470520565610650685
850480535580625670710
900495550600645685725
950505560615660705745
1000520575625675720760
1200620680730780830
1400725780835880
1600830885940
1800870935990

По горизонтали указана высота квадратного воздуховода, а по вертикали ширина. Эквивалентное значение круглого сечения находится на пересечении линий.

Потери давления воздуха в изгибах берутся из таблицы № 3.

Табл. № 3. Потери давления на изгибах

Потери давления на изгибах

Для определения потерь давления в диффузорах используются данные из таблицы № 4.

Табл. № 4. Потери давления в диффузорах

Потери давления в диффузорах

В таблице № 5 дается общая диаграмма потерь на прямолинейном участке.

Табл. № 5. Диаграмма потерь давления воздуха в прямолинейных воздуховодах

Диаграмма потерь давления воздуха в прямолинейных воздуховодах

Все отдельные потери на данном участке воздуховода суммируются и корректируются с таблицей № 6. Табл. № 6. Расчет понижения давления потока в системах вентиляции

Расчет потери давления в воздуховодах в системе вентиляции и кондиционирования
Во время проектирования и расчетов существующие нормативные акты рекомендуют, чтобы разница в величине потерь давления между отдельными участками не превышала 10%. Вентилятор нужно устанавливать в участке системы вентиляции с наиболее высоким сопротивлением, самые удаленные воздуховоды должны иметь минимальное сопротивление. Если эти условия не выполняются, то необходимо изменять план размещения воздуховодов и дополнительного оборудования с учетом требований положений.

Калькулятор

plast-product.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *