Сила тока. Единицы силы тока. Амперметр (Гребенюк Ю.В.). Видеоурок. Физика 8 Класс
На данном уроке, тема которого «Сила тока. Единицы силы тока. Амперметр», мы познакомимся с такой характеристикой тока, как сила, поговорим о единицах её измерения, а также о приборе, с помощью которого можно измерять силу тока в цепи, – об амперметре.
На предыдущих уроках мы говорили о токе в металле, также обсудили электрическую цепь и её составные части, говорили о направлении тока. Однако мы не касались такого вопроса, как характеристики, с помощью которых можно описать электрический ток. Наверное, все вы слышали о выражении «скачок напряжения» и наблюдали мигание лампочки. То есть мы понимаем, что электрические токи бывают разными, а как же можно сравнивать электрические токи? Какие характеристики тока позволяют оценивать его величину и другие его параметры? Сегодня мы начнем изучать величины, которые характеризуют электрический ток, и начнем мы с такой характеристики, как сила тока.
Вы уже знаете, что в металлическом стержне достаточно большое количество носителей электрического заряда – электронов. Понятно, когда по стержню не течет электрический ток, эти электроны движутся хаотически, то есть можно считать, что количество электронов, которое проходит через сечение стержня слева направо, приблизительно равно количеству электронов, которое проходит через то самое сечение стрежня справа налево за одно и то же время. Если мы пропускаем по стержню электрический ток, то движение электронов становится упорядоченным и количество электронов, которое проходит через сечение стержня за промежуток времени, существенно возрастает (имеется в виду то количество электронов, которое проходит в одном направлении).
Сила тока – это физическая величина, характеризующая электрический ток и численно равная заряду, проходящему через поперечное сечение проводника за единицу времени. Силу тока обозначают символом и определяют по формуле: , где
– заряд, проходящий через поперечное сечение проводника за время .Чтобы лучше понять суть введенной величины, давайте обратимся к механической модели электрической цепи. Если рассмотреть водопроводную систему вашей квартиры, то она может оказаться поразительно похожей на электрическую цепь. Действительно, аналогом источника тока выступает насос, который создает давление и поставляет воду в квартиры (см. рис .1).
Рис. 1. Водопроводная система
Как только он перестанет работать, исчезнет вода в кранах. Краны выступают в роли ключей электрической цепи: когда кран открыт – вода течет, когда закрыт – нет. В роли заряженных частиц выступают молекулы воды (см. рис. 2).
Рис. 2. Движение молекул воды в системе
Если мы теперь введем величину, аналогичную только что введенной силе тока, то есть количеству молекул воды через сечение трубы за единицу времени, то фактически получим количество воды, проходящей через поперечное сечение трубки за одну секунду – то, что в быту часто называют напором. Соответственно, чем больше напор, тем больше воды вытекает из крана, аналогично: чем больше сила тока, тем сильнее ток и его действие.
Единицей силы тока является ампер: . Эта величина названа в честь французского ученого Андре-Мари Ампера. Ампер – одна из единиц интернациональной системы. Зная единицы силы тока, легко получить определение единицы электрического заряда в СИ. Поскольку
, то .Следовательно, . То есть 1 Кл – это заряд, проходящий через поперечное сечение проводника за 1 с при силе тока в проводнике 1 А. Кроме ампера, также применяют такие величины, как миллиампер (), микроампер (
Некоторые значения силы тока
Чтобы понимать величину такой силы тока, как 1А, давайте рассмотрим следующую таблицу.
Рентгеновский медицинский аппарат (см. рис. 3) – 0,1 А
Рис. 3. Рентгеновский медицинский аппарат
Лампочка карманного фонаря – 0,1–0,3 А
Переносной магнитофон – 0,3 А
Лампочка в классе – 0,5 А
Мобильный телефон в режиме работы – 0,53 А
Телевизор – 1 А
Стиральная машина – 2 А
Электрический утюг – 3 А
Электродоильная установка – 10 А
Двигатель троллейбуса – 160–220 А
Молния – более 1000 А
Кроме того, рассмотрим эффекты действия тока, которые он оказывает на организм человека, в зависимости от силы тока (в таблице приведена сила тока при частоте 50 Гц и эффект действия тока на человеческий организм).
0–0,5 мА Отсутствует
0,5–2 мА Потеря чувствительности
2–10 мА Боль, мышечные сокращения
10–20 мА Растущее воздействие на мышцы, некоторые повреждения
16 мА Ток, выше которого человек уже не может освободиться от электродов
20–100 мА Дыхательный паралич
100 мА – 3 А Смертельные желудочковые фибрилляции (необходима срочная реанимация)
Более 3 А Остановка сердца, тяжелые ожоги (если шок был кратким, то сердце можно реанимировать)
Вместе с тем большинство приборов рассчитано на значительно большее значение силы тока, поэтому при работе с ними очень важно соблюдать некоторые правила. Остановимся на главных моментах, которые нужно помнить всем, кто имеет дело с электричеством.
Нельзя:
1) Прикасаться к обнаженному проводу, особенно стоя на земле, сыром полу и т.п.
2) Пользоваться неисправными электротехническими устройствами.
Собирать, исправлять, разбирать электротехнические устройства, не отсоединив их от источника тока.
Для измерения силы тока используется прибор – амперметр. Он обозначается буквой А в кружочке при схематическом изображении в электрической цепи. Как и любой прибор, амперметр не должен влиять на значение измеряемой величины, поэтому он сконструирован таким образом, чтобы практически не менять значение силы тока в цепи.
Правила, которые необходимо соблюдать при измерении силы тока амперметром
1) Амперметр включают в цепь последовательно с тем проводником, в котором необходимо измерять силу тока (см. рис. 4).
2) Клемму амперметра, возле которой стоит знак +, нужно соединять с проводом, идущим от положительного полюса источника тока; клемму со знаком минус – с проводом, идущим от отрицательного полюса источника тока (см. рис. 5).
3) Нельзя подключать амперметр к цепи, где отсутствует потребитель тока (см. рис. 6).
Рис. 4. Последовательное соединение амперметра
Рис. 5. Правильно соединена клемма +
Рис. 6. Неверно подключенный амперметр
Давайте посмотрим на работу амперметра вживую. Перед нами электрическая цепь, которая состоит из источника тока, амперметра, который соединен последовательно, и лампочки, которая также соединена последовательно (см. рис. 7).
Рис. 7. Электрическая цепь
Если сейчас включим источник тока, то сможем пронаблюдать, какая сила в цепи с помощью амперметра. Вначале он указывает 0 (то есть тока в цепи нет), а теперь видим, что сила тока стала почти 0,2 А (см. рис. 8).
Рис. 8. Протекание тока в цепи
Если мы изменим ток в цепи, увидим, что сила тока увеличится (станет примерно 0,26 А), и при этом лампочка загорится ярче (см. рис .9), то есть, чем больше сила тока в цепи, тем ярче лампочка горит.
Рис. 9. Сила тока в цепи больше – лампочка горит ярче
Виды амперметров
Распространение получили амперметры электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные.
В электромагнитных амперметрах (см. рис. 10) измеряемый ток, проходя по катушке, втягивает внутрь ее сердечник из мягкого железа с силой, возрастающей с увеличением силы тока; при этом насаженная на одной оси с сердечником стрелка поворачивается и по градуированной шкале указывает силу тока в амперах.
Рис. 10. Электромагнитный амперметр
В тепловых амперметрах (см. рис. 11) измеряемый ток пропускается по натянутой металлической нити, которая вследствие нагревания током удлиняется и провисает, поворачивая при этом стрелку, указывающую на шкале силу тока.
Рис. 11. Тепловой амперметр
В магнитоэлектрическом амперметре (см. рис. 12) под влиянием взаимодействия измеряемого тока, пропускаемого по проволоке, намотанной на легкую алюминиевую рамку, и магнитного поля постоянного подковообразного магнита рамка вместе с указательной стрелкой поворачивается на больший или меньший угол в зависимости от величины силы тока.
Рис. 12. Магнитоэлектрический амперметр
В электродинамических амперметрах (без железа) (см. рис. 13) измеряемый ток пропускается последовательно по обмотке неподвижной и подвижной катушек; последняя благодаря взаимодействию проходящего по ней тока с током в неподвижной катушке поворачивается вместе со стрелкой, указывающей силу тока.
Рис. 13. Электродинамический амперметр
В индукционных приборах (см. рис. 14) подвижный металлический диск или цилиндр подвергается воздействию бегущего или вращающегося поля, создаваемого неподвижными катушками, соединенными магнитной системой.
Рис. 14. Индукционный амперметр
Тепловые и электродинамические амперметры пригодны для измерения как постоянного, так и переменного токов, электромагнитные – для постоянного тока и индукционные – для переменного
Решение задач
Рассмотрим решение нескольких типовых задач по данной теме.
Задача 1
Сколько электронов каждую секунду проходит через поперечное сечение проводника, если по нему течёт ток 0,32 А?
Решение
Мы знаем не только силу тока I = 0,32 A, время t = 1 c, но и заряд одного электрона: .
Воспользуемся определением силы тока: , а заряд, который проходит за единицу времени по модулю, равен сумме модулей зарядов электронов, которые проходят через сечение за 1 с. Получаем . Откуда .
Проверяем единицы искомой величины: .
Ответ: .
Задача 2
Почему амперметр, который показывает силу тока, идущего через провод, которым аккумулятор автомобиля соединяется с бортовой электрической сетью, имеет на шкале и положительные, и отрицательные значения?
Решение
Дело в том, что в автомобильном аккумуляторе происходят два процесса: иногда он заряжается (см. рис. 15), то есть получает заряд (заряды движутся в одну сторону), а иногда – питает бортовую сеть, то есть отдаёт заряд (соответственно, заряды движутся в другую сторону) (см. рис. 16). В этих двух случаях сила тока будет отличаться знаком.
Рис. 15. Зарядка аккумулятора
Рис. 16. Разрядка аккумулятора
Задача 3
В проводнике в каждом кубическом сантиметре содержится свободных электронов. С какой средней скоростью электроны упорядоченно двигаются по проводнику, если сила тока в нём 8 А? Площадь поперечного сечения проводника составляет 1 мм2.
Решение
Мы знаем силу тока I = 8 A, площадь сечения , заряд одного электрона , объём и количество электронов в этом объёме . Найти необходимо скорость .
Рассмотрим кубический сантиметр проводника. В нём содержится известное количество свободных электронов. Что такое средняя скорость их движения? . Как определить расстояние?
Для начала воспользуемся определением силы тока: , а заряд, который проходит за единицу времени, по модулю равен сумме модулей зарядов электронов, которые проходят через сечение за время. Получаем . Откуда – количество электронов, которые прошли через сечение проводника за единицу времени. Из несложной пропорции определяем объём, который занимают эти электроны: , откуда .
Теперь найти расстояние, пройденное электронами, несложно: если весь этот объём прошёл через сечение, то длина пути каждого электрона равна: .
Получаем итоговую формулу: .
Проверяем единицы измерения: .
Ответ:
На следующем уроке мы поговорим о еще одной характеристике тока – напряжении. На этом наш урок окончен, спасибо за внимание!
Домашнее задание
- Что такое сила тока? В чем она измеряется в СИ?
- Как в цепь подключают амперметр?
- Какие виды амперметров вы знаете? Опишите принцип их работы.
Список рекомендованной литературы
- Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
- Перышкин А.В. Физика: Учебник 8 класс. — Издательство: М.: 2013. – 240 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Интернет-портал Class-fizika.narod.ru (Источник).
- Интернет-портал Yaklass.ru (Источник).
Сила тока. Амперметр — урок. Физика, 8 класс.
В процессе своего движения вдоль проводника заряженные частицы (в металлах это электроны) переносят некоторый заряд. Чем больше заряженных частиц, чем быстрее они движутся, тем больший заряд будет ими перенесён за одно и то же время. Электрический заряд, проходящий через поперечное сечение проводника за 1 секунду, определяет силу тока в цепи.Сила тока \((I)\) — скалярная величина, равная отношению заряда (\(q\)), прошедшего через поперечное сечение проводника, к промежутку времени (\(t\)), в течение которого шёл ток.
I=qt, где \(I\) — сила тока, \(q\) — заряд, \(t\) — время.
Единица измерения силы тока в системе СИ — \([I] = 1 A\) (ампер).
В 1948 г. было предложено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током:
при прохождении тока по двум параллельным проводникам в одном направлении проводники притягиваются, а при прохождении тока по этим же проводникам в противоположных направлениях — отталкиваются.
За единицу силы тока \(1 A\) принимают силу тока, при которой два параллельных проводника длиной \(1\) м, расположенные на расстоянии \(1\) м друг от друга в вакууме, взаимодействуют с силой \(0,0000002\)\(H\).
Единица силы тока называется ампером (\(A\)) в честь французского учёного А.М. Ампера.
Андре-Мари Ампер (1775 — 1836) |
А.М. Ампер ввёл такие термины, как электростатика, электродинамика, соленоид, ЭДС, напряжение, гальванометр, электрический ток и т.д.
Ампер — довольно большая сила тока. Например, в электрической сети квартиры через включённую \(100\) Вт лампочку накаливания проходит ток с силой, приблизительно равной \(0,5A\). Ток в электрическом обогревателе может достигать \(10A\), а для работы карманного микрокалькулятора достаточно \(0,001A\).
Помимо ампера на практике часто применяются и другие (кратные и дольные) единицы силы тока, например, миллиампер (мА) и микроампер (мкА):
\(1 мA = 0,001 A\), \(1 мкA = 0,000001 A\), \(1 кA =1000 A\).
То есть \(1 A = 1000 мA\), \(1 A = 1000000 мкA\), \(1 A = 0,001 кA\).
Переменным называется ток, сила и направление которого периодически изменяются.
В бытовых электросетях используют переменный ток напряжением \(220\) В и частотой \(50\) Гц. Это означает, что ток за \(1\) секунду \(50\) раз движется в одном направлении и \(50\) раз — в другом. У многих приборов имеется блок питания, который преобразует переменный ток в постоянный (у телевизора, компьютера и т.д.).
Силу тока измеряют амперметром. В электрической цепи он обозначается так:
Обрати внимание!
Амперметр включают в цепь последовательно с тем прибором, силу тока в котором нужно измерить. Амперметр нельзя подсоединять к источнику тока, если в цепь не подключён потребитель!
Измеряемая сила тока не должна превышать максимально допустимую силу тока для измерения амперметром. Поэтому существуют различные амперметры.
Микроамперметр | Миллиамперметр |
Амперметр | Килоамперметр |
Обрати внимание!
Различают амперметры для измерения силы постоянного тока и силы переменного тока.
Их можно различить по обозначениям:
- «~» означает, что амперметр предназначен для измерения силы переменного тока;
- «—» означает, что амперметр предназначен для измерения силы постоянного тока.
Можно обратить внимание на клеммы прибора. Если указана полярность («\(+\)» и «\(-\)»), то это прибор для измерения постоянного тока.
Иногда используют буквы \(AC/DC\). В переводе с английского \(AC\) (alternating current) — переменный ток, а \(DC\) (direct current) — постоянный ток.
Для измерения силы постоянного тока | Для измерения силы переменного тока |
Для измерения силы тока можно использовать и мультиметр. Перед измерением необходимо прочитать инструкцию, чтобы правильно подключить прибор.
Обрати внимание!
Включая амперметр в цепь постоянного тока, необходимо соблюдать полярность (см. рисунок): провод, который идёт от положительного полюса источника тока, нужно соединять с клеммой амперметра со знаком «+»; провод, который идёт от отрицательного полюса источника тока, нужно соединять с клеммой амперметра со знаком «-».
Если полярность на источнике тока не указана, следует помнить, что длинная линия соответствует плюсу, а короткая — минусу.
В цепь переменного тока включается амперметр для измерения переменного тока. Он полярности не имеет.
Обрати внимание!
В цепи, состоящей из источника тока и ряда проводников, соединённых так, что конец одного проводника соединяется с началом другого, сила тока во всех участках одинакова.
Это видно из опыта, изображённого на рисунке.
Обрати внимание!
Безопасным для организма человека можно считать переменный ток силой не выше \(0,05 A\), ток силой более \(0,05 — 0,1 A\) опасен и может вызвать смертельный исход.
Источники:
Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.
http://class-fizika.narod.ru/8_28.htm
http://school.xvatit.com/index.php?title=%D0%A1%D0%B8%D0%BB%D0%B0_%D1%82%D0%BE%D0%BA%D0%B0
http://physics.kgsu.ru/index.php?option=com_content&view=article&id=217&Itemid=72
http://kamenskih3.narod.ru/untitled74.htm
Сила тока — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 августа 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 августа 2019; проверки требует 1 правка.Сила тока — физическая величина I{\displaystyle I}, равная отношению количества заряда ΔQ{\displaystyle \Delta Q}, прошедшего через некоторую поверхность за некоторое время Δt{\displaystyle \Delta t}, к величине этого промежутка времени[1]:
- I=ΔQΔt.{\displaystyle I={\frac {\Delta Q}{\Delta t}}.}
В качестве рассматриваемой поверхности часто используется поперечное сечение проводника.
Обычно обозначается символом I{\displaystyle I}, от фр. intensité du courant.
Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А; международное: A), ампер является одной из семи основных единиц СИ. 1 А = 1 Кл/с.
По закону Ома сила тока I{\displaystyle I} для участка цепи прямо пропорциональна приложенному напряжению U{\displaystyle U} к участку цепи и обратно пропорциональна сопротивлению R{\displaystyle R} проводника этого участка цепи:
- I=UR.{\displaystyle I={\frac {U}{R}}.}
По закону Ома для полной цепи
- I=εR+r{\displaystyle I={\frac {\varepsilon }{R+r}}}
Носителями заряда, движение которых приводит к возникновению тока, являются заряженные частицы, в роли которых обычно выступают электроны, ионы или дырки. Сила тока зависит от заряда q{\displaystyle q} этих частиц, их концентрации n{\displaystyle n}, средней скорости упорядоченного движения частиц vcp→{\displaystyle {\vec {v_{cp}}}}, а также площади S{\displaystyle S} и формы поверхности, через которую течёт ток.
Если n{\displaystyle n} и vcp→{\displaystyle {\vec {v_{cp}}}} постоянны по объёму проводника, а интересующая поверхность плоская, то выражение для силы тока можно представить в виде
- I=qnvcpcosαS,{\displaystyle I=qnv_{cp}\cos \alpha S,}
где α{\displaystyle \alpha } — угол между скоростью частиц и вектором нормали к поверхности.
В более общем случае, когда сформулированные выше ограничения не выполняются, аналогичное выражение можно записать только для силы тока dI{\displaystyle dI}, протекающего через малый элемент поверхности площадью dS{\displaystyle dS}:
- dI=qnvcpcosαdS.{\displaystyle dI=qnv_{cp}\cos \alpha dS.}
Тогда выражение для силы тока, протекающего через всю поверхность, записывается в виде интеграла по поверхности
- I=∫SqnvcpcosαdS.{\displaystyle I=\int \limits _{S}qnv_{cp}\cos \alpha dS.}
В металлах заряд переносят электроны, соответственно в этом случае выражение для силы тока имеет вид
- I=∫SenvcpcosαdS.{\displaystyle I=\int \limits _{S}env_{cp}\cos \alpha dS.}
где e{\displaystyle e} — элементарный электрический заряд.
Вектор qnvcp→{\displaystyle qn{\vec {v_{cp}}}} называют плотностью электрического тока. Как следует из сказанного выше, его величина равна силе тока, протекающей через малый элемент поверхности единичной площади, расположенный перпендикулярно скорости vcp→{\displaystyle {\vec {v_{cp}}}}, а направление совпадает с направлением упорядоченного движения заряженных частиц[2].
Для измерения силы тока используют специальный прибор — амперметр (для приборов, предназначенных для измерения малых токов, также используются названия миллиамперметр, микроамперметр, гальванометр). Его включают в разрыв цепи[3] в том месте, где нужно измерить силу тока. Основные методы измерения силы тока: магнитоэлектрический, электромагнитный и косвенный (путём измерения вольтметром напряжения на известном сопротивлении).
В случае переменного тока различают мгновенную силу тока, амплитудную (пиковую) силу тока и эффективную силу тока (равную силе постоянного тока, который выделяет такую же мощность).
Амперметр. Измерение силы тока (Ерюткин Е.С.). Видеоурок. Физика 8 Класс
На этом уроке мы рассмотрим измерение силы тока.
На предыдущем уроке мы говорили о том, что главной характеристикой действия электрического тока является сила тока. Поскольку сила тока – это физическая величина, то она может быть измерена. Для того чтобы измерить силу тока, используется прибор, который называется амперметр.
Слово «амперметр» состоит из двух слов. Ампер – это единица измерения силы тока, названная в честь французского учёного Ампера, а «метрио» – измерять, поэтому само название прибора говорит о том, что это – измеритель силы тока.
В основу всех амперметров положено магнитное и электромагнитное действие электрического тока: когда по проводнику протекает электрический ток, вокруг проводника наблюдается магнитное и электромагнитное действие.
Первые измерения силы тока были произведены в начале XIX века. Сам измерительный прибор был крайне примитивным: брали магнитную стрелку (компас), возле него располагали проводник, по которому протекал электрический ток, и по отклонению магнитной стрелки судили о том, электрический ток какой величины протекает по проводнику. То есть, по углу отклонения стрелки компаса делали выводы о величине силы тока.
Конечно, на сегодняшний день все эти приборы претерпели серьёзные изменения. Существует очень много различных видов амперметров. Однако все эти разновидности объединяет общий принцип: весь электрический заряд, который протекает по проводнику, должен проходить через амперметр.
Рассмотрим, как обозначается амперметр на схемах. Перед этим вспомним, что сила тока обозначается буквой I. А единицей измерения силы тока является 1 Ампер. Как мы уже говорили, единица силы тока названа в честь французского учёного, который много сделал для исследования электрического тока и его действий (Рис. 1).
Рис. 1. Ампер (Источник)
Сам амперметр на схемах, т. е. на рисунках, которые изображают соединения частей электрической цепи, обозначают следующим образом: кружок, внутри которого написана буква А (Рис. 2).
Рис. 2. Обозначение амперметра
Рассмотрим теперь непосредственно сами амперметры: какие они бывают, из чего состоят, как устроены.
На рис. 3 представлены фотографии различных видов амперметров.
Рис. 3. Различные амперметры (Источник) (Источник) (Источник)
Амперметры могут быть различных размеров, конструктивных особенностей, однако есть ещё одна вещь, кроме принципа работы, которая их объединяет: амперметры всегда включаются в электрическую цепь последовательно. Говорят так: мы разрываем цепь, и в место разрыва включаем прибор.
Как отличить амперметр от других приборов?
Во-первых, на всех амперметрах мы видим букву А, которая подчёркивает, что этот прибор – амперметр. Кроме того, у всех амперметров есть шкала с делениями, а также зажимы (клеммы), к которым подключаются проводники. При этом одна из клемм всегда подписывается как «+» (чтобы именно она подключалась к положительному полюсу источника тока). Вторая клемма иногда обозначается «-» (в противном случае это подразумевается по умолчанию).
Все приборы, которые представлены на рис. 3, используются для измерения постоянного тока, т. е. того тока, который создают аккумуляторы и гальванические элементы. И на всех этих приборах есть знак, который говорит об этом: горизонтальная прямая линия. Если бы на приборе была изображена волнистая линия, то это означало бы, что этот прибор используется для измерения переменного тока.
Как мы уже говорили, в основе всех амперметров лежит магнитное действие электрического тока. На рис. 4. изображено устройство амперметра: стрелка прибора укреплена на очень легкой рамке. Эта рамка находится в магните, по которому протекает ток и создается магнитное поле. В этом магнитном поле и находится рамка. Она отклоняется в магнитном поле, и стрелка показывает по шкале различные значения силы тока.
Рис. 4. Устройство амперметра (Источник)
Если шкала прибора рассчитана на отрицательные и положительные значения, то с помощью такого амперметра можно измерять не только силу тока, но и его направление.
Теперь подробнее рассмотрим то, как амперметры включаются в электрическую цепь (Рис. 5).
Рис. 5. Включение амперметра в цепь
На рис. 5. изображены две схемы с гальваническими элементами. Короткой палочкой обозначается «-» (отрицательный полюс), а длинной – «+» (положительный полюс). Перечёркнутым кружочком обозначается лампочка накаливания, а ключ, который обозначен наклонной палочкой, в данной цепи замкнут. Кроме того, в цепь включён амперметр (кружочек с буквой А внутри).
Когда мы говорили о том, как включается амперметр, то упоминали, что положительный полюс амперметра (отмечен знаком «+») подключается к положительному полюсу источника тока.
Важен также тот факт, что амперметр можно располагать и так, как указано на левом рисунке, и так, как указано на правом. То есть, от того, что мы поменяли местами амперметр и лампу накаливания, показания амперметра не изменятся.
Дело в том, что, как мы уже говорили, амперметр включается в цепь таким образом, чтобы весь электрический заряд прошел через этот прибор. Соответственно, на любом участке цепи количество электрических зарядов, прошедших по проводнику, одинаково. Следовательно, можно говорить и о том, что амперметр показывает в обеих цепях одинаковое значение.
Краткие выводы урока: амперметр – прибор для измерения силы тока, который включается в цепь последовательно, т. е. в разрыв цепи. Амперметр показывает значение силы тока. Принцип действия любого амперметра основан на магнитном, электромагнитном действии электрического тока.
В заключение хотелось бы уточнить ещё один немаловажный нюанс: использовать амперметр можно исключительно тогда, когда мы приблизительно знаем значение силы тока. Дело в том, что через амперметр проходит весь заряд, и если этот заряд будет слишком велик, то амперметр просто сгорит.
На следующем уроке мы познакомимся с такой характеристикой тока, как напряжение.
Список литературы
- Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. – М.: Мнемозина.
- Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
- Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Фестиваль педагогических идей «Открытый урок» (Источник).
- Физика для всех (Источник).
Домашнее задание
- П. 38, вопросы 1–3, стр. 89, упр. 15 (1–4), стр. 89–90. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
- Ученик утверждает, что амперметр, включённый в цепь перед лампочкой, покажет большую силу тока, чем включённый после неё. Прав ли ученик?
- Как определить максимальную силу тока, которую можно измерить с помощью данного амперметра?
Как измерять силу тока в электрической цепи амперметром самостоятельно
С какой целью может потребоваться замер силы тока? Какова для нас полезность от того, что станет известным количество заряженных частиц, протекающих через единицу сечения в единицу времени? Польза есть, и ценной этой информации велика!
При использовании только лишь амперметра можно быстро узнать правильность монтажа и избегнуть издержек на смену или починку испорченного электрооборудования. Показания амперметра подскажут: имеется ли в схеме короткое замыкание или другие утечки и неполадки. Знание тока потребления не станет лишним, при выборе того или иного предохранителя.
Характеристики тока
Постоянный ток характеризуют два основные параметра — сила тока и напряжение. Сила тока — это, просто число частиц, которые двигаются в проводнике в определенном направлении. Чем больше этих частиц, тем больше работа электрического тока.
Силу тока измеряют в амперах (необходимо знать, что микроампер — одна миллионная ампера, миллиампер — одна тысячная часть ампера).
Силу тока измеряют — амперметром. Амперметр необходимо включать в последовательно с токоприемником.
Кроме постоянного тока существует переменный ток. Переменный ток со временем меняет свои направление и амплитуду. Генераторы электроэнергии вырабатывают переменный ток. Переменный ток изменяется во времени по синусоидальному закону. Для его характеристики имеются дополнительные параметры —амплитуда и частота.
Приборы для измерения силы тока
Мультиметр это — специальный измерительное устройство , выполняющее ряд функций. В малом комплекте это: омметр, вольтметр, амперметр . Для простых задач более всего годятся миниатюрные модели мультиметров с цифровой шкалой.В современных экземплярах легкодоступны следующие функции:
- Измерение постоянного/переменного напряжения от 400 мВ до 1000 В;
- Измерение постоянного/переменного тока от 42 пА до 10 А;
- Прозвонка —замер электрического сопротивления с оповещением о низком сопротивлении цепи;
- Измерение сопротивления ? испытание диодов — испытание целостности полупроводниковых диодов и установление их «прямого напряжения»;
- Замер электрической емкости, замер электрической индуктивности, температур;
- Замер частоты сигнала гармонического.
Замер силы постоянного тока состоит в определении его значения и полярности. Для проведения прямых замеров постоянного электротока нередко употребляются магнитоэлектрические амперметры. По сопоставлению с другими амперметрами амперметры магнитоэлектрические – гарантируют наибольшую точность измерений и обладают максимальной чувствительностью .
Спектр значений измеряемых токов для амперметров магнитоэлектрической схемы располагается в пределах от 10-7 А до 50А (при измерении токов больше 0,05А используются внутренние шунты). Для замера значительных постоянных токов(от 50А до многих килоампер) применяются килоамперметры с наружными шунтами и магнитоэлектрические амперметры . Для замеров малых токов (в пределах от 10-12А) часто применяются магнитоэлектрические гальванометры.
Замер постоянного тока с увеличенной точностью делается косвенным способом. Для этого типовой резистор подключается в цепь измеряемого тока и на нем с помощью высокоточного цифрового вольтметра или компенсатора измеряется падение напряжения . Точно так же (применяя преобразование ток-напряжение) действуют цифровые и электронные аналоговые амперметры
Методика замеров
Что бы замерить силу постоянного тока, нужно один вывод амперметра, тестера или мультиметра подключить к плюсовой клемме аккумулятора или выводу питания трансформатора, а второй вывод- к проводу, подключенному к токоприемнику. После включения режима измерения постоянного тока с запасом по верхнему максимальному пределу- совершать замеры.
Необходимо работать аккуратно, т.к. при размыкании действующей цепи появляется дуга, значение которой увеличивается совместно с силой тока.
Для того что бы замерить ток для токоприемников, подключаемых прямо в розетку или к электрокабелю от домашней электросети, измерительное устройство переключается в режим замеров переменного тока с запасом по верхнему пределу. Далее прибор включаются в разрыв фазного провода.
Профессиональные электрики используют для замера силы тока токоизмерительные клещи.Они нечасто поставляются в одном корпусе с мультиметром.
Измерять ими элементарно — подключаем и переводим в режим замера переменного тока, далее разводим находящиеся сверху усы и пропускаем вовнутрь фазный провод, после этого следим что бы они плотно легли к друг другу и выполняем замеры.
Правила безопасности
Работу с электроизмерительными инструментами можно проводить только лицам имеющим группу по электробезопасности не ниже третьей, или под контролем этих лиц.
Необходимо иметь медицинскую аптечку и уметь ею пользоваться.
Небезопасное и вредоносное действие электротока, электромагнитных полей и электрической дуги приводит к тяжелым последствиям.
Ступень опасности и вредоносного действия на человека поражающих факторов электротока, лежит в зависимости от:
- Величины напряжения и рода тока ;
- Частоты колебаний электротока;
- Пути прохождения электротока чрез тело пострадавшего человека;
- Длительности воздействия электротока на организм пострадавшего человека;
При возникновении несчастных случаев с людьми, обесточивание участке электроцепи для избавления пострадавшего от поражающего действия электрического тока необходимо совершать немедленно , не дожидаясь предварительного разрешения.
Амперметр — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2016; проверки требуют 26 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2016; проверки требуют 26 правок. Токовые клещи — амперметр для бесконтактного измерения больших токов.Схема включения амперметра
Амперме́тр (от ампер + μετρέω «измеряю») — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора.
В электрическую цепь амперметр включается последовательно[1] с тем участком электрической цепи, силу тока в котором измеряют. Поэтому, чем ниже внутреннее сопротивление амперметра (в идеале — 0), тем меньше будет влияние прибора на исследуемый объект, и тем выше будет точность измерения[2]. Для увеличения предела измерений амперметр снабжается шунтом (для цепей постоянного и переменного тока), трансформатором тока (только для цепей переменного тока) или магнитным усилителем (для цепей постоянного тока). Очень опасно пытаться использовать амперметр в качестве вольтметра (подключать его непосредственно к источнику питания): это приведёт к короткому замыканию. В технике используются амперметры с разной ценой деления,в зависимости от назначения
Бесконтактное устройство из токоизмерительной головки и трансформатора тока специальной конструкции называется токоизмерительные клещи (на фото).
По конструкции амперметры делятся:
- со стрелочной измерительной головкой без электронных схем;
- со стрелочной измерительной головкой с использованием электронных схем;
- с цифровым индикатором.
Приборы со стрелочной головкой[править | править код]
Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол крена, пропорциональный величине измеряемого тока.
Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.
Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.
Приборы со стрелочной головкой могут снабжаться дополнительными электронными схемами для усиления сигнала, подаваемого на головку (для измерения токов, существенно меньших чем ток полного отклонения головки, который для большинства магнитоэлектрических приборов составляет 50 мкА и более), защиты головки от перегруза и прочее.
Приборы с цифровым индикатором[править | править код]
В последнее время приборы со стрелочной измерительной головкой стали вытесняться приборами с цифровым индикатором на основе жидких кристаллов и светодиодов.
Принцип действия стрелочной измерительной головки[править | править код]
Принцип действия самых распространённых в амперметрах систем измерения:
- В магнитоэлектрической системе прибора крутящий момент стрелки создаётся благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки (вращающий момент). С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки прямо пропорционален силе тока, поэтому шкала магнитоэлектрического прибора линейна. Направление поворота стрелки зависит от направления протекающего через рамку тока, поэтому магнитоэлектрические амперметры непригодны для непосредственного измерения силы переменного тока (стрелка будет дрожать возле нулевого значения), и требуют правильной полярности подключения в цепи постоянного тока (иначе стрелка будет отклоняться левее нуля).
- В электромагнитной системе прибора вращающий момент стрелки создаётся между катушкой и подвижным ферромагнитным сердечником, к которому прикрепляется указательная стрелка.
- В электродинамической системе измерительная головка состоит из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки.
Во всех вышеуказанных системах угол поворота стрелки устанавливается при равенстве вращающего момента и момента сопротивления пружины.
Включение амперметра в электрическую цепь[править | править код]
В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах — через трансформатор тока, магнитный усилитель или шунт. Для измерения токов может также применяться милливольтметр и калиброванный шунт (первичные токи шунтов могут быть выбраны из стандартного ряда, вторичное напряжение стандартизировано — чаще всего 75 мВ). При высоких напряжениях (выше 1000В) — в цепях переменного тока для гальванической развязки амперметров также применяют трансформаторы тока, а цепях постоянного тока — магнитные усилители.
- ↑ Важно знать! Подключение амперметра напрямую к источнику напряжения приводит к протеканию токов короткого замыкания, и может вызвать возгорание токовых шунтов, измерительного трансформатора и всего прибора. Для предотвращения такой ситуации, амперметр может быть оснащён цепями защиты на основе плавких предохранителей и быстродействующих автоматических выключателей.
- ↑ Это особенно заметно в низковольтных схемах, в которых падение напряжения на элементах схемы сравнимо с напряжением на зажимах амперметра (типичное значение — десятки милливольт).
Измерение силы тока и напряжения.
Наиболее распространенными видами электрических измерений являются измерения силы тока и напряжения.
В зависимости от вида тока (напряжения), его величины, частоты, формы, требуемой точности измерения, сопротивления цепи, в которой производится измерение, используются различные типы приборов.
При измерении силы тока на участке цепи сопротивлением R последовательно с R в разрыв цепи включается амперметр (рис 7а). Тогда сила тока, текущего через измерительный прибор и участок с сопротивлением R, будет одинаковой.
Вольтметр подсоединяется параллельно участку цепи с сопротивлением R, напряжение на котором измеряется (рис 7б). При параллельном подключении напряжение на измерительном приборе и участке цепи R одинаково. Подключение в электрическую цепь измерительного прибора оказывает влияние на режим работы этой цепи, что приводит к ошибкам в измерениях.
Рис. 7. Подключение амперметра (а) и вольтметра (б)
Последовательное подключение амперметра с сопротивлением rа увеличивает общее сопротивление участка цепи до значения R+ rа, что больше R. В результате ток уменьшится. Чтобы изменение тока было незначительным, необходимо, чтобы выполнялось условие: rа << R.
При параллельном подключении вольтметра с сопротивлением rv общее сопротивление становится равным
,
что меньше R. Измеренное напряжение будет заниженным. Чтобы вольтметр не вносил больших искажений в режим работы цепи, должно выполняться условие: rv >> R.
Шунты к амперметру
Ток, вызывающий отклонение подвижной части прибора на всю шкалу, называется током полного отклонения I0. Если с помощью амперметра необходимо измерить силу тока I больше, чем I0, к нему параллельно подключается дополнительное сопротивление Rш, называемое шунтом (рис 8)
.
Рис. 8. Подключение шунта к амперметру.
Измеряемый ток разветвляется и только часть его проходит через измерительный прибор. Так достигается расширение предела измерений амперметра. По первому правилу Кирхгофа величины токов связаны соотношением:
, (12)
где I– сила измеряемого тока,Ip– сила тока, текущего через измерительный механизм (рамку) прибора,Iш– сила тока, текущего через шунт.
По второмуправилу Кирхгофа имеем:
, (13)
где r — сопротивление рамки амперметра, Rш – сопротивление шунта. Из (12) и (13) следует, что
. (14)
Выражение (14) позволяет определить Rш, при котором отклонение стрелки измерительного прибора на всю шкалу будет соответствовать требуемому пределу измерения силы тока Iпр. Иначе говоря, при I = Iпр ток через амперметр Iр будет равен току полного отклонения: Iр = I0. В таком случае выражение (14) принимает вид:
. (15)
На практике используют коэффициент шунтирования (или коэффициент растяжения предела измерений) n для данного значения Iпр, который равен
(16)
Тогда выражение (15) принимает вид:
. (17)
С данным шунтом цена деления амперметра также возрастет в n раз.
Добавочные сопротивления к вольтметру
Предел измерения вольтметра зависит от силы тока полного отклонения подвижной части прибора Iои его внутреннего сопротивления r. Для расширения пределов измерения вольтметра последовательно с измерительным механизмом прибора подключают добавочное сопротивление (рис 9).
Напряжение на измерительном механизме Uр меньше измеряемого напряжения U и связано с ним соотношением:
,
где – напряжение на добавочном сопротивлении. По такой цепи течет ток
Из последней формулы следует, что
(18)
Рис. 9. Подключение добавочного сопротивления к вольтметру.
Из (18) можно определить величину , при котором отклонение стрелки на всю шкалу (I = I0 ) будет соответствовать требуемому пределу измерения напряжения U = Uпр
. (19)
Набор добавочных сопротивлений позволяет создать многопредельный вольтметр. Применяются также и наружные по отношению к прибору добавочные сопротивления.