Posted on

Содержание

Стабилизаторы напряжения или как получить 3,3 вольта

 

Исходные данные:  мотор-редуктор рабочее напряжение у которого 5 Вольт при токе 1 А и микроконтроллер ESP-8266 с чувствительным на изменение рабочим напряжением питания 3,3 Вольт и с пиковым током до 600 миллиампер. Все это необходимо учесть и запитать от одной аккумуляторной литий-ионной батареи 18650 напряжением 2,8 -4,2 Вольт.

Собираем схему приведенную ниже:  аккумулятор литий-ионный 18650 напряжением 2,8 — 4,2 Вольт без внутренней схемы зарядного устройства  -> присоединяем  модуль на микросхеме TP4056 предназначенный для зарядки литий-ионных аккумуляторов с функцией ограничения разряда аккумулятора до 2,8 Вольт и защитой от короткого замыкания (не забываем что этот модуль запускается при включенном аккумуляторе и кратковременной подачи питания 5 Вольт на вход модуля от USB зарядного устройства, это позволяет не использовать выключатель питания, ток разряда в ждущем режиме не очень большой и при долгом не использования всего устройства оно само выключиться при падении напряжения на аккумуляторе ниже

2,8 Вольт)

К модулю TP4056  подключаем модуль на микросхеме  MT3608  — повышающий DC-DC (постоянного в постоянный ток) стабилизатор и преобразователь напряжения с 2,8 -4,2 Вольт аккумулятора до стабильных 5 Вольт 2 Ампера — питания мотор-редуктора.

Параллельно к выходу модуля MT3608 подключаем понижающий DC-DC стабилизатор-преобразователь на микросхеме MP1584 EN предназначенный для стабильного питания 3,3 Вольта 1 Ампер микропроцессора ESP8266.

Стабильная работа ESP8266 очень зависит от стабильности напряжения питания. Перед подключением последовательно модулей

DC-DC стабилизаторов-преобразователей не забудьте настроить переменными сопротивлениями нужное напряжение, поставьте конденсатор параллельно клеммам мотор-редуктора что бы тот не создавал высокочастотных помех работе микропроцессору ESP8266.

 

Как видим из показаний мультиметра при присоединении мотор-редуктора напряжение питания микроконтроллера ESP8266 НЕ ИЗМЕНИЛОСЬ!

 

Небольшой обзор стабилизаторов напряжения и тока


Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения

Знакомство со стабилитронами, расчет параметрического стабилизатора; использование интегральных стабилизаторов; конструкция простого тестера стабилитронов и другое.AMS1117 Технический паспорт

НаименованиеRT9013
Richtek технологии 
ОписаниеСтабилизатор-преобразователь на нагрузку с током потребления 500мА, с малым падением напряжения, низким уровенем собственных шумов, сверхбыстродействующий, с защитой выхода по току и от короткого замыкания, CMOS LDO.   
RT9013 PDF Технический паспорт (datasheet) :

 

*Описание MP1584EN

**Приобрести можно в магазине Your  Cee

MP2307N

*Приобрести можно в магазине Your  Cee

НаименованиеLM2596
Во-первых компонентов Международной 
ОписаниеПростой понижающий стабилизатор-преобразователь питания 3A с внутренней частотой 150 кГц 
LM2596 Технический паспорт PDF (datasheet) :
НаименованиеMC34063A
Крыло Шинг International Group 
ОписаниеDC-DC управляемый преобразователь
MC34063A Технический паспорт PDF (datasheet) :
ОПИСАНИЕ
MC34063A представляет собой монолитную схему управления , содержащую основные функции , необходимые для преобразователей постоянного тока в постоянный ток.
ОСОБЕННОСТИ
Работа от  0.3 Вольт до 40Вольт.
Низкое потребление в режиме ожидания.
Выходная защита по току до 1.5A.
Регулируемая рабочая частота до 42kHz.
Точность 2% от заданного значения.Применение: DC-DC преобразователь

 

НаименованиеXL6009
XLSEMI 
Описание4A, 400kHz, входное напряжение 5~32V / выходное напряжение 5~35V, коммутируемый повышающий преобразователь DC / DC
XL6009 Технический паспорт PDF (datasheet) :

Готовый модуль повышающего преобразователя напряжения XL6009

 

Общее описание
XL6009 является повышающим преобразователем постоянного в постоянный ток с широким диапазоном входного напряжением,  который способен генерировать положительное или отрицательное выходное напряжение.
Повышающий DC / DC конвертер  XL6009 служит для поднятия напряжения. Используется при подаче питания к ESP8266, Arduino и других микроконтроллеров от аккумулятора или блока питания с низким напряжением. А также для питания подключенных сенсорных и исполнительных модулей  к ESP8266, Arduino и другим микроконтроллерам  работающих от напряжения  выше 3.3 Вольт прямо от источника питания самого контроллера.Характеристики:
  • Входное напряжение 5~32V
  • Выходное напряжение 5~35V
  • Входной ток 4А (макс), 18мА без нагрузки
  • Конверсионная эфективность более 94%
  • Частота 400кГц
  • Габариты 43x14x21мм

Таблица характеристик при различных напряжениях:

Входное, VВыходное, Vсила тока, Aмощность,Вт
5120,89,6
7,4121,518
1215230
1216232
12181,628,8
12191,528,5
1224124
3120,44,8

 

Повышающий преобразователь напряжения XL6009 (Видео)

http://dwiglo. ru/mp2307dn-PDF.html

Китайские стабилизаторы для самоделкиных. Часть 1.

Китайские стабилизаторы для самоделкиных. Часть 2.

Китайские стабилизаторы для самоделкиных. Часть 3.

 

 

О стабилизаторах напряжения и стабилизаторах тока «Крен» привет

В обсуждениях электрических схем часто встречаются термины «стабилизатор напряжения» и «стабилизатор тока». Но какая между ними разница? Как работают эти стабилизаторы? В какой схеме нужен дорогой стабилизатор напряжения, а где достаточно простого регулятора? Ответы на данные вопросы вы найдёте в этой статье.

Рассмотрим стабилизатор напряжения на примере устройства LM7805.В его характеристиках указано: 5В 1,5А.  Это значит стабилизирует он именно напряжение и именно до 5В. 1,5А — это максимальный ток, который может проводить стабилизатор. Пиковая сила тока. То есть от может отдать и 3 миллиампера, и 0,5 ампер, и 1 ампер. Столько, сколько тока требует нагрузка. Но не больше полутора. Это главное отличие стабилизатора напряжения от стабилизатора тока.

Виды стабилизаторов напряжения

Различают всего 2 основных типа стабилизаторов напряжения:

  • линейные
  • импульсные

Линейные стабилизаторы напряжения

Например, микросхемы КРЕН или LM7805LM1117LM350.

Кстати, КРЕН — это не аббревиатура, как многие думают. Это сокращение. Советская микросхема-стабилизатор, аналогичная LM7805 имела обозначение КР142ЕН5А. Ну а ещё есть КР1157ЕН12В, КР1157ЕН502, КР1157ЕН24А и куча других. Для краткости всё семейство микросхем стали называть «КРЕН». КР142ЕН5А тогда превращается в КРЕН142.

Советский стабилизатор КР142ЕН5А. Аналог LM7805.

Стабилизатор LM7805

Наиболее распространенный вид. Недостаток их в том, что они не могут работать на напряжении ниже, чем заявленное выходное напряжение. Если LM7805 стабилизирует напряжение на 5 вольтах, то на вход ему подать нужно как минимум на полтора вольта больше. Если подать меньше 6,5 В, то выходное напряжение «просядет», и мы уже не получим 5 В. Еще один минус линейных стабилизаторов — сильный нагрев при нагрузке. Собственно, в этом и заключается принцип их работы — всё, что выше стабилизируемого напряжения, просто превращается в тепло. Если мы на вход LM7805 подадим 12 В, то 7 потратятся на нагрев корпуса, а 5 пойдут потребителю. Корпус при этом нагреется настолько сильно, что без радиатора микросхема просто сгорит. Из всего этого вытекает ещё один серьёзный недостаток — линейный стабилизатор не стоит применять в устройствах с питанием от батареек. Энергия батареек будет тратиться на нагрев стабилизатора. Всех этих недостатков лишены импульсные стабилизаторы.

Импульсные стабилизаторы напряжения

Импульсные стабилизаторы — лишены недостатков линейных, но и стоят дороже. Это уже не просто микросхема с тремя выводами. Выглядят они, как плата с детальками.

Один из вариантов исполнения импульсного стабилизатора.

Импульсные стабилизаторы бывают трех видов: понижающие, повышающие и всеядные. Наиболее интересные — всеядные. Независимо от напряжения на входе, на выходе будет именно то, которое нам нужно. Всеядному импульснику все равно, что на входе напряжение ниже или выше нужного. Он сам автоматом переключается в режим повышения или понижения напряжения и держит заданное на выходе. Если в характеристиках заявлено, что стабилизатору на вход можно подать от 1 до 15 вольт и на выходе будет стабильно 5, то так оно и будет. Кроме того, нагрев импульсных стабилизаторов настолько незначителен, что в большинстве случаев им можно пренебречь. Если ваша схема будет питаться от батареек или размещаться в закрытом корпусе, где сильный нагрев линейного стабилизатора недопустим — ставьте импульсный.

Купить  —  LM7805 10 штук на Алиєкспресс

Импульсный стабилизатор (повышайка) MT3608 2A на Алиєкспресс

Импульсный стабилизатор 5А (понижайка) XL4015на Алиэкспресс

Хорошо.

А что со стабилизатором тока?

Не открою Америку, если скажу, что стабилизатор тока стабилизирует ток.
Токовые стабилизаторы ещё иногда называют светодиодным драйвером. Внешне они похожи на импульсные стабилизаторы напряжения. Хотя сам стабилизатор — маленькая микросхема, а всё остальное нужно для обеспечения правильного режима работы. Но обычно драйвером называют всю схему сразу.

Примерно так выглядит стабилизатор тока. Красным кружком обведена та самая схема, которая и является стабилизатором. Всё остальное на плате — обвязка.

Итак. Драйвер задаёт ток. Стабильно! Если написано, что на выходе будет ток в 350мА, то будет именно 350мА. А вот напряжение на выходе может меняется в зависимости от требуемого потребителем напряжения. Не будем пускаться в дебри теории о том. как всё это работает. Просто запомним, что вы напряжение не регулируете, драйвер сделает все за вас исходя из потребителя.

Ну так и зачем всё это нужно то?

Теперь вы знаете, чем стабилизатор напряжения отличается от стабилизатора тока и можете ориентироваться в их многообразии. Возможно, вам так и не стало понятно, зачем эти штуки нужны.

Пример: вы хотите запитать 3 светодиода от бортовой сети автомобиля. Главное  для светодиода важно контролировать именно силу тока. Используем самый распространенный вариант соединения светодиодов: последовательно соединены 3 светодиода и резистор. Напряжение питания — 12 вольт.

Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели. Падение напряжения на светодиоде пусть будет у нас 3.4 вольта.
После первого светодиода остается 12-3.4= 8.6 вольт.
Нам пока хватает.
На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.
И для третьего светодиода тоже хватит.
А после третьего останется 5.2-3.4=1.8 вольта.
При желании добавить четвёртый светодиод — уже не хватит.
Если напряжение питания поднять до 15В, то тогда хватит. Но тогда и резистор тоже надо будет пересчитать. Резистор — простейший стабилизатор (ограничитель) тока. Их часто ставят на те же ленты и модули. У него есть минус — чем ниже напряжение, тем меньше будет и ток на светодиоде (закон Ома, с ним не поспоришь). Значит, если входное напряжение нестабильно (в автомобилях обычно так и есть), то предварительно нужно стабилизировать напряжение, а потом можно ограничить резистором ток до необходимых значений. Если используем резистор, как токовый ограничитель там, где напряжение не стабильно, нужно стабилизировать напряжение.

Стоит помнить, что резисторы имеет смысл ставить только до определенной силы тока. После некоторого порога резисторы начинают сильно греться и приходится ставить более мощные резисторы . Тепловыделение растёт, КПД падает.

Импульсный стабилизатор тока

Импульсный стабилизатор тока тоже называют светодиодным драйвером. Часто те, кто не сильно разбирается в этом, стабилизатор напряжения называют просто драйвером светодиодов, а импульсный стабилизатор тока — хорошим светодиодным драйвером. Он выдаёт сразу стабильное напряжение и ток. И почти не нагревается. Вот так он выглядит:


Стабилизатор напряжения на 2 5 вольта

Схема устройства

Схема, изображенная на рисунке 1, представляет собой регулируемый стабилизатор напряжения и позволяет получить выходное напряжение в пределах 1.25 — 30 вольт. Это позволяет использовать данный стабилизатор для питания пейджеров с 1.5 вольтовым питанием (например Ultra Page UP-10 и т.п.), так и для питания 3-х вольтовых устройств. В моем случае она используется для питания пейджера «Moongose PS-3050», то есть выходное напряжение установлено в 3 вольта.

Работа схемы

При помощи переменного резистора R2 можно установить необходимое выходное напряжение. Выходное напряжение можно рассчитать по формуле Uвых=1.25(1 + R2/R1) .
В качестве регулятора напряжения используется микросхема SD 1083/1084 . Без всяких изменений можно использовать российские аналоги этих микросхем 142 КРЕН22А/142 КРЕН22 . Они различаются только выходным током и в нашем случае это несущественно. На микросхему необходимо установить небольшой радиатор, так как при низком выходном напряжении регулятор работает в токовом режиме и существенно нагревается даже на «холостом» ходу.

Монтаж устройства

Устройство собрано на печатной плате размером 20х40мм. Так как схема очень простая рисунок печатной платы не привожу. Можно собрать и без платы с помощью навесного монтажа.
Собранная плата помещается а отдельную коробочку или монтируется непосредственно в корпусе блока питания. Я разместил свою в корпусе AC-DC адаптера на 12 вольт для радиотелефонов.

Примечание.

Необходимо сначала установить рабочее напряжение на выходе стабилизатора (при помощи резистора R2) и лишь, затем подключать нагрузку.

Другие схемы стабилизаторов.

Это одна из самых простых схем, которую можно собрать на доступной микросхеме LM317LZ . Путем подключения/отключения резистора в цепи обратной связи мы получаем на выходе два разных напряжения. При этом, ток нагрузки может достигать 100 мА.


Только обратите внимание на распиновку микросхемы LM317LZ. Она немного отличается от привычных стабилизаторов.

Простой стабилизатор на различные фиксированные напряжения (от 1,5 до 5 вольт) и ток до 1А. можно собрать на микросхеме AMS1117 -X.X (CX1117-X.X) (где X.X — выходное напряжение). Есть экземпляры микросхем на следующие напряжения: 1.5, 1.8, 2.5, 2.85, 3.3, 5.0 вольт. Также есть микросхемы с регулируемым выходом с обозначением ADJ. Этих микросхем очень много на старых компьютерных платах. Одним из достоинств этого стабилизатора является низкое падение напряжения — всего 1,2 вольта и небольшой размер стабилизатора адаптированный под СМД-монтаж.

Для его работы требуется всего пара конденсаторов. Для эффективного отвода тепла при значительных нагрузках необходимо предусмотреть теплоотводную площадку в районе вывода Vout. Этот стабилизатор также доступен в корпусе TO-252.

Интегральные микросхемы серии LM2931 производства фирм Motorola и Texas Instruments представляют собой линейные стабилизаторы напряжения положительной полярности с малым напряжением насыщения. Эти микросхемы выпускаются в корпусах ТО-220, ТО-263, DIP-8, ТО-92 и рассчитаны на фиксированные выходные напряжения 3,3 В, 5,0В, также есть микросхемы этой серии с регулируемым выходным напряжением. Микросхемы на фиксированное выходное напряжение выпускаются в корпусах с тремя выводами, микросхемы с регулируемым выходным напряжением выпускаются в корпусах с пятью и восемью выводами. Структурный состав микросхем показан на рис. 1, у микросхем на фиксированное выходное напряжение выводы «ADJ» и «ON/OFF» отсутствуют.

Имея в наличии микросхемы типа LM2931AZ-3.3, выпускаемые в трёхвыводном корпусе ТО-92 можно собрать простой стабилизатор на выходное напряжение +3,3 В, рис. 2. Стабилизатор рассчитан на диапазон входных напряжений +4…18 В, максимальный ток нагрузки 100 мА. Рассеиваемая корпусом микросхемы мощность не должна превышать 0,6 Вт. Максимальное входное рабочее напряжение для всех микросхем серии LM2931 26 В. Ток покоя авторского экземпляра стабилизатора составил 0,3 мА при входном напряжении 9 В при отключенной нагрузке.

При токе нагрузки 80 мА напряжение насыщения микросхемы составило 0,35В, это означает, что при выходном напряжении 3,3 В минимальное входное напряжение стабилизатора, при котором сохраняется стабилизация выходного напряжения, будет около 3,65 В. При меньшем токе нагрузки напряжение насыщения регулирующего двухколлекторного p-n-р транзистора Q1 будет меньше. Если напряжение на входе стабилизатора будет меньше суммы выходного напряжения и напряжения насыщения, то ток покоя стабилизатора увеличивается на несколько миллиампер. Малый ток покоя микросхемы LM2931AZ-3.3 и её малое напряжение насыщения позволяет использовать её в качестве стабилизатора напряжения в устройствах с автономным питанием, например, питаемых от литиевых аккумуляторов с номинальным напряжением 3,7В, эксплуатируемых периодически, например, малогабаритные радиоприёмники, радиомикрофоны, измерительные приборы.

Для устройств, работающих круглосуточно от автономных источников энергии, целесообразно применять более экономичные интегральные стабилизаторы напряжения положительной полярности с меньшим током покоя, например, LP2950, LP2951 (75 мкА), МС78ВСхх (50 мкА), MC78FCxx (1,1 мкА).

На рис. 3 представлена схема блока питания с переключаемым выходным напряжением. Это функционально законченное устройство представляет собой блок питания с линейным стабилизатором выходного напряжения, рассчитанным на максимальный ток нагрузки 1,5 А. Выходное напряжение можно установить равным 3,3 В, 5,0 В, 6,5 В или 9,3 В. Напряжение сети переменного тока 220 В поступает на первичную обмотку понижающего трансформатора Т 1 через замкнутые контакты выключателя SA 1, плавкий предохранитель FU1 и защитный резистор R 1. Напряжение переменного тока около 12 В через полимерный самовосстанавливающийся предохранитель FU2 поступает на мостовой диодный выпрямитель VD 1- VD 4, выполненный на диодах Шотки.

Применение таких диодов примерно вдвое уменьшает потери мощности и напряжения на диодам выпрямительного моста, в сравнении, с выпрямительным мостом на обычных кремниевых диодах. Варистор RU 1 защищает трансформатор и диоды Шотки от всплесков напряжения сети. Пульсации выпрямленного напряжения сглаживает конденсатор большой ёмкости С 5. Для увеличения выходного тока и мощности стабилизатора напряжения, установлен мощный дискретный р-п-р транзистор VT 1, который начинает открываться при токе нагрузки более 50 мА. Конденсатор С 7 устраняет самовозбуждение микросхемы DA 1.

Выходное напряжение стабилизатора выбирается с помощью переключателя SA 2. Когда переключаемый контакт находится в верхнем по схеме положении, выходное напряжение стабилизатора будет около 3,3 В. Если переключатель установить на ступеньку ниже, то выходное напряжение стабилизатора увеличится на суммарное рабочее напряжение последовательно включенных диода Шотки VD 5 и светодиода HL 1. Конденсатор С 8 уменьшает броски выходного напряжения при изменении позиции переключателя SA2. Резистор R4 уменьшает ток разрядки конденсатора С8 при переключении выходного напряжения с большего на меньшее. Напряжение насыщения стабилизатора, собранного по схеме рис. 3, без учёта пульсаций напряжения на выводах конденсатора С 5 будет 1,5 В при токе нагрузки 1,5 А, или 1,2 при токе нагрузки 1 А, или 1 В при токе нагрузки 0,5 В.

Это примерно в два…три раза меньше, чем у стабилизаторов напряжения, собранных на распространённых микросхемах интегральных стабилизаторов напряжения серий 78хх, 78Мхх, КР142ЕНхх. При изменении тока нагрузки от 0 до 1,5 А выходное напряжение изменяется не более чем на 10 мВ.

Если в устройстве, собранным по схеме рис. 3, конденсатор С 8 установить ёмкостью 0,047 мкФ, переключатель SA 2 и резистор R4 исключить, а вместо цепочки последовательно включенных светодиодов HL1 — HL3 и диода Шотки VD 5 включить мигающий одноцветный светодиод, зашунтированный маломощным стабилитроном с рабочим напряжением 9 В, например, BZV55C-9V1, и подключить к выходу стабилизатора лампу накаливания на рабочее напряжение 12… 13,5 В, то такая лампа будет вспыхивать в паузах свечения светодиода. В этом случае, желательно конденсатор С 10 установить ёмкостью 47 мкФ.

Большинство деталей блока питания, собранного по схеме рис. 3, можно смонтировать на печатной плате размерами 80×50 мм, рис. 4. Плавкий предохранитель FU1 размещён в держателе предохранителя типа ДВП4-1, закрепленном на корпусе устройства. Варистор FNR-14К471 припаян к клеммам первичной обмотки понижающего трансформатора. Вместо такого варистора можно установить FNR-20K471, MYG20-431, MYG20-471, LF14K471. Постоянные резисторы типов РПМ, МЛТ, С1-4, С2-23, С2-33 или аналогичные общего применения соответствующей мощности. Оксидные конденсаторы типов К50-35, К50-68 или импортные аналоги. Неполярные конденсаторы керамические или малогабаритные плёночные на рабочее напряжение не менее 25 В. Диоды Шотки 1N5822 можно заменить аналогичными MBRS340T3, MBRS360T3, MBRD340, MBR340, MBR350, SR360, 5GWZ47. Диод SB140 можно заменить на любой из 1N5817 — 1N5819, MBRS130LT3, MBR0520LT1, MBR0520LT3.

Упомянутые в вариантах возможных замен диоды Шотки выполнены в различных корпусах. Транзистор VT 1 должен быть с коэффициентом передачи тока базы не менее 40 при токе коллектора 1 А. Можно заменить любым из серий КТ818, 2Т818, КТ855, 2SA1293, 2SA1441, 2SA473. Транзистор устанавливают на дюралюминиевый теплоотвод. Упомянутые транзисторы имеют различия в цоколёвках выводов и типе корпуса. Перед установкой обязательно измеряйте у транзистора коэффициент передачи тока базы, особенно это касается мощных отечественных транзисторов упомянутых серий, среди которых часто встречаются экземпляры с h31э меньше 10. Микросхемы серии LM2931, выпускаемые в корпусах различных типов, имеют различия в цоколёвках выводов.

На принципиальной схеме указана цоколёвка для микросхем в корпусе ТО-92 (КТ-26) — пластмассовый корпус как у отечественных транзисторов КТ502, КТ209. Светодиоды HL1, HL2 отечественные красного цвета свечения с прямым рабочим напряжением около 1,5В. Светодиод RL50-CB744D синего цвета свечения с прямым рабочим напряжением 2,8 В. От рабочего напряжения светодиодов зависят выходные напряжения стабилизатора. Вместо светодиодов можно установить по несколько последовательно включенных маломощных кремниевых диодов, например, КД522, 1N4148, или маломощные стабилитроны на необходимое рабочее напряжение. Выключатель питания SA1 малогабаритный клавишный типа SS21 (4 А, ~250 В). Переключатель SA 2 любого типа на 4 положения свободные группы контактов соединяют параллельно. Полимерный самовосстанавливающийся предохранитель MF-R160 можно заменить на LP30-160, LP60-160.

Унифицированный понижающий трансформатор ТП8-25-220-50 можно заменить на ТП8-26-220-50. Эти трансформаторы имеют по две вторичные обмотки, которые нужно соединить параллельно, соблюдая фазировку. Подойдут и другие трансформаторы с габаритной мощностью 20…30 Вт, вторичная обмотка которых рассчитана на выходное напряжение 11… 14 В при токе нагрузки 1,5 А . Резистор R 1 устанавливают сопротивлением, примерно равным половине сопротивления первичной обмотки трансформатора.

Бутов А.Л.

Литература:

1.Миниатюрные силовые трансформаторы HR. —

  1. Тороидальные силовые трансформаторы HR. — Радиоконструктор, 2011, № 6, № 9.
  2. Бутов А.Л. Стабилизаторы на микросхемах AMS1117- хх. — Радиоконструктор, 2008, № 6, с. 24, 25.
  3. Бутов А.Л. Стабилизаторы напряжения на ИМС L88MS33T. — Радиоконструктор, 2011, №11, с. 14-16.
  4. Бутов А.Л. Мощный низковольтный регулируемый блок питания на LX8384-00CP. —

Радиоконструктор, 2012, №11, с. 13- 16.

Ниже приведены сразу две схемы 3-х Вольтовых блоков питания .
Они собраны на разных элементах, а конкретную вы сможете выбрать сами, познакомившись с их особенностями и исходя из своих потребностей м возможностей.
На первом рисунке приведена простая схема блока питания на 3 В (ток в нагрузкеке 200 мА) с электронной защитой от перегрузки (Iз = 250 мА). Уровень пульсации выходного напряжения не превышает 8 мВ.

Для нормальной работы стабилизатора напряжение после выпрямителя (на диодах VD1…VD4) может быть от 4,5 до 10 В, но лучше, если оно будет 5…6 В, ≈ меньшая мощность источника теряется на тепловыделение транзистором VT1 при работе стабилизатора. В схеме в качестве источника опорного напряжения используется светодиод HL1 и диоды VD5, VD6. Светодиод является одновременно и индикатором работы блока питания.

Транзистор VT1 крепится на теплорассеивающей пластине. Как рассчитать размер теплоотводящего радиатора можно более подробно посмотреть .
Трансформатор Т1 можно приобрести из унифицированной серии ТН любой, но лучше использовать самые малогабаритные ТИ1-127/220-50 или ТН2-127/220-50. Подойдут также и многие другие типы трансформаторов со вторичной обмоткой на 5…6 В. Конденсаторы С1…СЗ типа К50-35.

Вторая схема использует интегральный стабилизатор DA1, но в отличие от транзисторного стабилизатора, приведенного на первом рисунке, для нормальной работы микросхемы необходимо, чтобы входное напряжение превышало выходное не менее чем на 3,5 В. Это снижает КПД стабилизатора за счет тепловыделения на микросхеме.

При низком выходном напряжении мощность, теряемая в блоке питания, будет превышать отдаваемую в нагрузку. Необходимое выходное напряжение устанавливается подстроечным резистором R2. Микросхема устанавливается на радиатор. Интегральный стабилизатор обеспечивает меньший уровень пульсации выходного напряжения (1 мВ), а также позволяет использовать емкости меньшего номинала.

В настоящее время множество домашних устройств требуют подключения напряжения стабильной величины на 3 вольта, и нагрузочный ток 0,5 ампер. К ним могут относиться:

  • Плееры.
  • Фотоаппараты.
  • Телефоны.
  • Видеорегистраторы.
  • Навигаторы.

Эти устройства объединены видом источника питания в виде аккумулятора или батареек на 3 вольта.

Как создать питание от бытовой сети дома, не тратя деньги на аккумуляторы или батарейки? Для этих целей не нужно проектировать многоэлементный блок питания, так как в продаже имеются специальные микросхемы в виде стабилизаторов на низкие напряжения.

Схема стабилизатора на 3 вольта

Изображенная схема выполнена в виде регулируемого стабилизатора, и дает возможность создания напряжения на выходе от 1 до 30В. Следовательно, можно применять этот прибор для питания различных устройств для питания 1,5 В, а также для подключения устройств на 3 вольта. В нашем случае устройство применяется для плеера, напряжение на выходе настроено на 3 В.

Работа схемы

С помощью изменяемого сопротивления устанавливается необходимое напряжение на выходе, которое рассчитывается по формуле: U вых=1.25*(1 + R2 / R1). Вместо регулятора напряжение применяется микросхема SD1083 / 1084. Без изменений применяются отечественные подобные микросхемы 22А / 142КРЕН 22, которые различаются током выхода, что является незначительным фактором.

Для нормального режима микросхемы необходимо смонтировать для нее маленький радиатор. В противном случае при малом напряжении выхода регулятор функционирует в токовом режиме, и значительно нагревается даже без нагрузки.

Монтаж стабилизатора

Прибор собирается на монтажной плате с габаритами 20 на 40 мм. Схема довольно простая. Есть возможность собрать стабилизатор без использования платы, путем навесного монтажа.

Выполненная готовая плата может разместиться в отдельной коробочке, либо прямо в корпусе самого блока. Необходимо в первую очередь настроить рабочее напряжение стабилизатора на его выходе, с помощью регулятора в виде резистора, а потом подсоединять нагрузку потребителя.

Переключаемый стабилизатор на микросхеме

Такая схема является наиболее легкой и простой. Ее можно смонтировать самостоятельно на обычной микросхеме LZ. С помощью отключения и включения сопротивления в цепи обратной связи образуется два различных напряжения на выходе. в этом случае нагрузочный ток может возрасти до 100 миллиампер.


Нельзя забывать про цоколевку микросхемы, так как она имеет отличие от обычных стабилизаторов.

Стабилизатор на микросхеме AMS 1117

Это элементарный стабилизатор с множественными фиксированными положениями регулировки напряжения 1,5-5 В, током до 1 ампера. Его можно монтировать самостоятельно на сериях — X.X (CX 1117 — X.X) (где XX — напряжение на выходе).


Есть образцы микросхем на 1,5 – 5 В, с регулируемым выходом. Они применялись раньше на старых компьютерах. Их преимуществом является малое падение напряжения и небольшие габариты. Для выполнения монтажа необходимы две емкости. Чтобы хорошо отводилось тепло, устанавливают радиатор возле выхода.

Мощный блок питания на напряжение 5-35В и ток 5A-30A и более (LM338, 741)

Приведена принципиальная схема простого в изготовлении стабилизированного и мощного блока питания с регулируемым выходным напряжением от 5В до 35В и током нагрузки 5А, 10А, 20А, 30А, 40А и более (в зависимости от количества микросхем).

Источник питания может обеспечить токи до 5А (одна микросхема), 10А(две микросхемы), 20А(4шт), 30А(6шт), 40А(8шт) и т.д. Напряжение можно регулировать, например можно выставить часто используемые напряжения 5В, 12В, 24В, 28В, 30В и другие.

Принципиальная схема

В основе блока питания лежат мощные интегральные стабилизаторы LM338, каждый из которых может обеспечить выходной ток до 5А при напряжении от 1,2 до 35В (данные из даташита).

Рис. 1. Принципиальная схема мощного блока питания на напряжение 5В-30В и ток 5А, 10А, 20А, 30А и более.

Вторичная обмотка силового трансформатора должна выдавать переменное напряжение со значением не менее 18-25В. Мощность трансформатора желательно выбрать с запасом, в зависимости от требуемого напряжения и тока на выходе будущего блока питания.

Детали

Транзистор BD140 нужно установить на небольшой радиатор. Все интегральные стабилизаторы LM338 должны быть установлены на отдельные радиаторы достаточной площади для надежного отвода тепла.

Рис. 2. Внешний вид мощных интегральных стабилизаторов LM338.

Рис. 3. Цоколевка (расположение выводов) у микросхем LM338.

Все мощные микросхемы можно установить на один общий радиатор через слюдяные прокладки, поскольку корпуса микросхем не должны соединяться вместе.

Ток выдаваемый на выходе блока питания может быть увеличен или уменьшен соответственно добавлением или уменьшением количества применяемых пар «стабилизатор LM338 + резистор Rx».

К радиатору можно применить активное охлаждение — установить небольшой вентилятор от компьютера, подав для него питание через стабилизатор на 5-12В (7805, 7812), это позволит уменьшить размеры радиатора и увеличить эффективность теплоотвода.

Диодный мост можно применить готовый на нужный ток, также его можно собрать из четырех отдельных мощных диодов (D1-D4). Эти диоды должны быть рассчитаны на ток, который планируется получить на выходе стабилизатора.

Рис. 4. Цоколевка транзистора BD140 (P-N-P).

Например, диодный мост из четырех выпрямительных диодов Д242 обеспечит рабочие токи до 10А. Диоды или диодный мост желательно установить на отдельный небольшой радиатор.

В качестве резисторов R3, R4…Rx можно установить керамические цементные или использовать проволочные, поскольку на каждом таком резисторе будет рассеиваться примерно 4-7 Ватт мощности (в зависимости от общей нагрузки на стабилизатор).

Печатная плата

Разводку печатной платы в формате Sprint Layout 6 нам прислал Александр. На ней отсутствует конденсатор С4 — его припаиваем к выводам переменного резистора R1, который будет крепиться на корпусе устройства и послужит для регулировки напряжения.

Рис. 4. Печатная плата для схемы мощного блока питания на микросхемах LM338.

Печатная плата в формате Sprint Layout 6 — Скачать (330 КБ):

  • PCB+High+power+regulater+0-30V+20A.jpg  — печатная плата с зарубежного сайта, конденсатор 4700мкФ установлен на выходе стабилизатора.
  • lm338-power-supply-layout-v1 — первый вариант печатной платы: на входе и выходе стабилизатора установлены конденсаторы 4700мкФ (C1 и C6), защитный диод (D6) отсутствует. Мощные резисторы по 0,3 Ом.
  • lm338-power-supply-layout-v2 — конечный вариант печатной платы: на входе два конденсатора по 4700мкФ (C1), на выходе — 22мкФ (C6), установлен защитный диод D6. Мощные резисторы по 0,1 Ом.

Даташит на микросхему LM338 — Скачать (220 КБ).

Подготовлено для сайта RadioStorage.net.

Стабилизатор напряжения 3 3 вольта 3 ампера. Миниатюрные стабилизаторы напряжения

Светодиоды разного цвета имеют свою рабочую зону напряжения. Если мы видим светодиод на 3 вольта, то он может давать белый, голубой или зеленый свет. Напрямую подключать его к источнику питания, который генерирует более 3 вольт нельзя.

Расчет сопротивления резистора

Чтобы понизить напряжение на светодиоде, в цепь перед ним последовательно включают резистор. Основная задача электрика или любителя будет заключаться в том, чтобы правильно подобрать сопротивление.

В этом нет особой сложности. Главное, знать электрические параметры светодиодной лампочки, вспомнить закон Ома и определение мощности тока.

R=Uна резисторе/Iсветодиода

Iсветодиода – это допустимый ток для светодиода. Он обязательно указывается в характеристиках прибора вместе с прямым падением напряжения. Нельзя, чтобы ток, проходящий по цепи, превысил допустимую величину. Это может вывести светодиодный прибор из строя.

Зачастую на готовых к использованию светодиодных приборах пишут мощность (Вт) и напряжение или ток. Но зная две из этих характеристик, всегда можно найти третью. Самые простые осветительные приборы потребляют мощность порядка 0,06 Вт.

При последовательном включении общее напряжение источника питания U складывается из Uна рез. и Uна светодиоде. Тогда Uна рез.=U-Uна светодиоде

Предположим, необходимо подключить светодиодную лампочку с прямым напряжением 3 вольта и током 20 мА к источнику питания 12 вольт. Получаем:

R=(12-3)/0,02=450 Ом.

Обычно, сопротивление берут с запасом. Для того ток умножают на коэффициент 0,75. Это равносильно умножению сопротивления на 1,33.

Следовательно, необходимо взять сопротивление 450*1,33=598,5=0,6 кОм или чуть больше.

Мощность резистора

Для определения мощности сопротивления применяется формула:

P=U²/ R= Iсветодиода*(U-Uна светодиоде)

В нашем случае: P=0,02*(12-3)=0,18 Вт

Такой мощности резисторы не выпускаются, поэтому необходимо брать ближайший к нему элемент с большим значением, а именно 0,25 ватта. Если у вас нет резистора мощность 0,25 Вт, то можно включить параллельно два сопротивления меньшей мощности.

Количество светодиодов в гирлянде

Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.

Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.

Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.

N=12:3:1,15=3,48

К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.

Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.

На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током. Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.

Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.

С разных компьютерных плат, я их иногда применяю для стабилизации нужных напряжений в зарядках от сотовых телефонов. И вот недавно понадобился носимый и компактный БП на 4,2 В 0,5 А для проверки телефонов с подзарядкой аккумуляторов, и сделал так — взял подходящую зарядку, добавил туда платку стабилизатора на базе данной микросхемы, работает отлично.

И вот для общего развития подробная информация о данной серии. APL1117 это линейные стабилизаторы напряжения положительной полярности с низким напряжением насыщения, производятся в корпусах SOT-223 и ID-Pack. Выпускаются на фиксированные напряжения 1,2, 1,5, 1,8, 2,5, 2,85, 3,3, 5,0 вольт и на 1,25 В регулируемый.

Выходной ток микросхем до 1 А, максимальная рассеиваемая мощность 0,8 Вт для микросхем в корпусе SOT-223 и 1,5 Вт выполненных в корпусе D-Pack. Имеется система защиты по температуре и рассеиваемой мощности. В качестве радиатора может использоваться полоска медной фольги печатной платы, небольшая пластинка. Микросхема крепится к теплоотводу пайкой теплопроводящего фланца или приклеивается корпусом и фланцем с помощью теплопроводного клея.

Применение микросхем этих серий обеспечивает повышенную стабильность выходного напряжения (до 1%), низкие коэффициенты нестабильности по току и напряжению (менее 10 мВ), более высокий КПД, чем у обычных 78LХХ, что позволяет снизить входные напряжения питания. Это особенно актуально при питании от батарей.

Если требуется более мощный стабилизатор, который выдаёт ток 2-3 А, то типовую схему нужно изменить, добавив в нее транзистор VT1 и резистор R1.

Стабилизатор на микросхеме AMS1117 с транзистором

Транзистор серии КТ818 в металлическом корпусе рассеивает до 3 Вт. Если требуется большая мощность, то транзистор следует установить на теплоотвод. С таким включением максимальный ток нагрузки может быть для КТ818БМ до 12 А. Автор проекта — Igoran.

Обсудить статью МИНИАТЮРНЫЕ СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ

Основой стабилизатора напряжения (см. рис.1)является микросхема К157ХП2. Прекрасный и не справедливо забытый стабилизатор, с дополнительным транзистором, например КТ972А, может работать с током до 4А.

В данной схеме выходное напряжение стабилизатора равно 3В. Стабилизатор предназначен для питания низковольтной радиоаппаратуры. Вообще, при указанных на схеме номиналах резисторов, выходное напряжение можно устанавливать от 1,3 до 6В. При больших токах нагрузки транзистор должен быть установлен на соответствующий радиатор. Входное напряжение, подаваемое на стабилизатор, должно быть не менее семи вольт, хотя практически оно может быть вплоть до сорока. Такой стабилизатор хорошо работает от автомобильного аккумулятора. Главное, чтобы выделяющаяся мощность на транзисторе не превышала максимально допустимую 8Вт. Выключателем SB1 можно коммутировать выходное напряжение. При больших токах нагрузки это очень удобно — возможно применение маломощных тумблеров.

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

7805 параметры цоколевка. Блок питания. Блок питания своими руками

В обсуждениях электрических схем часто встречаются термины «стабилизатор напряжения» и «стабилизатор тока». Но какая между ними разница? Как работают эти стабилизаторы? В какой схеме нужен дорогой стабилизатор напряжения, а где достаточно простого регулятора? Ответы на данные вопросы вы найдёте в этой статье.

Рассмотрим стабилизатор напряжения на примере устройства LM7805.В его характеристиках указано: 5В 1,5А. Это значит стабилизирует он именно напряжение и именно до 5В. 1,5А — это максимальный ток, который может проводить стабилизатор. Пиковая сила тока. То есть от может отдать и 3 миллиампера, и 0,5 ампер, и 1 ампер. Столько, сколько тока требует нагрузка. Но не больше полутора. Это главное отличие стабилизатора напряжения от стабилизатора тока.

Виды стабилизаторов напряжения

Различают всего 2 основных типа стабилизаторов напряжения:

  • линейные
  • импульсные

Линейные стабилизаторы напряжения

Например, микросхемы КРЕН или , LM1117 , LM350 .

Кстати, КРЕН — это не аббревиатура, как многие думают. Это сокращение. Советская микросхема-стабилизатор, аналогичная LM7805 имела обозначение КР142ЕН5А. Ну а ещё есть КР1157ЕН12В, КР1157ЕН502, КР1157ЕН24А и куча других. Для краткости всё семейство микросхем стали называть «КРЕН». КР142ЕН5А тогда превращается в КРЕН142.

Советский стабилизатор КР142ЕН5А. Аналог LM7805.


Стабилизатор LM7805

Наиболее распространенный вид. Недостаток их в том, что они не могут работать на напряжении ниже, чем заявленное выходное напряжение. Если стабилизирует напряжение на 5 вольтах, то на вход ему подать нужно как минимум на полтора вольта больше. Если подать меньше 6,5 В, то выходное напряжение «просядет», и мы уже не получим 5 В. Еще один минус линейных стабилизаторов — сильный нагрев при нагрузке. Собственно, в этом и заключается принцип их работы — всё, что выше стабилизируемого напряжения, просто превращается в тепло. Если мы на вход подадим 12 В, то 7 потратятся на нагрев корпуса, а 5 пойдут потребителю. Корпус при этом нагреется настолько сильно, что без радиатора микросхема просто сгорит. Из всего этого вытекает ещё один серьёзный недостаток — линейный стабилизатор не стоит применять в устройствах с питанием от батареек. Энергия батареек будет тратиться на нагрев стабилизатора. Всех этих недостатков лишены импульсные стабилизаторы.

Импульсные стабилизаторы напряжения

Импульсные стабилизаторы — лишены недостатков линейных, но и стоят дороже. Это уже не просто микросхема с тремя выводами. Выглядят они, как плата с детальками.

Один из вариантов исполнения импульсного стабилизатора.

Импульсные стабилизаторы бывают трех видов: понижающие, повышающие и всеядные. Наиболее интересные — всеядные. Независимо от напряжения на входе, на выходе будет именно то, которое нам нужно. Всеядному импульснику все равно, что на входе напряжение ниже или выше нужного. Он сам автоматом переключается в режим повышения или понижения напряжения и держит заданное на выходе. Если в характеристиках заявлено, что стабилизатору на вход можно подать от 1 до 15 вольт и на выходе будет стабильно 5, то так оно и будет. Кроме того, нагрев импульсных стабилизаторов настолько незначителен, что в большинстве случаев им можно пренебречь. Если ваша схема будет питаться от батареек или размещаться в закрытом корпусе, где сильный нагрев линейного стабилизатора недопустим — ставьте импульсный. Я использую настраиваемые импульсные стабилизаторы напряжения за копейки, которые заказываю с Aliexpress. Купить можно .

Хорошо. А что со стабилизатором тока?

Не открою Америку, если скажу, что стабилизатор тока стабилизирует ток.
Токовые стабилизаторы ещё иногда называют светодиодным драйвером. Внешне они похожи на импульсные стабилизаторы напряжения. Хотя сам стабилизатор — маленькая микросхема, а всё остальное нужно для обеспечения правильного режима работы. Но обычно драйвером называют всю схему сразу.


Примерно так выглядит стабилизатор тока. Красным кружком обведена та самая схема, которая и является стабилизатором. Всё остальное на плате — обвязка.

Итак. Драйвер задаёт ток. Стабильно! Если написано, что на выходе будет ток в 350мА, то будет именно 350мА. А вот напряжение на выходе может меняется в зависимости от требуемого потребителем напряжения. Не будем пускаться в дебри теории о том. как всё это работает. Просто запомним, что вы напряжение не регулируете, драйвер сделает все за вас исходя из потребителя.

Ну так и зачем всё это нужно то?

Теперь вы знаете, чем стабилизатор напряжения отличается от стабилизатора тока и можете ориентироваться в их многообразии. Возможно, вам так и не стало понятно, зачем эти штуки нужны.

Пример: вы хотите запитать 3 светодиода от бортовой сети автомобиля. Как вы можете узнать из , для светодиода важно контролировать именно силу тока. Используем самый распространенный вариант соединения светодиодов: последовательно соединены 3 светодиода и резистор. Напряжение питания — 12 вольт.

Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели. Падение напряжения на светодиоде пусть будет у нас 3.4 вольта.
После первого светодиода остается 12-3.4= 8.6 вольт.
Нам пока хватает.
На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.
И для третьего светодиода тоже хватит.
А после третьего останется 5.2-3.4=1.8 вольта.
При желании добавить четвёртый светодиод — уже не хватит.
Если напряжение питания поднять до 15В, то тогда хватит. Но тогда и резистор тоже надо будет пересчитать. Резистор — простейший стабилизатор (ограничитель) тока. Их часто ставят на те же ленты и модули. У него есть минус — чем ниже напряжение, тем меньше будет и ток на светодиоде (закон Ома, с ним не поспоришь). Значит, если входное напряжение нестабильно (в автомобилях обычно так и есть), то предварительно нужно стабилизировать напряжение, а потом можно ограничить резистором ток до необходимых значений. Если используем резистор, как токовый ограничитель там, где напряжение не стабильно, нужно стабилизировать напряжение.

Стоит помнить, что резисторы имеет смысл ставить только до определенной силы тока. После некоторого порога резисторы начинают сильно греться и приходится ставить более мощные резисторы (зачем резистору мощность рассказано в о этом приборе) . Тепловыделение растёт, КПД падает.

Тоже называют светодиодным драйвером. Часто те, кто не сильно разбирается в этом, стабилизатор напряжения называют просто драйвером светодиодов, а импульсный стабилизатор тока — хорошим светодиодным драйвером. Он выдаёт сразу стабильное напряжение и ток. И почти не нагревается. Вот так он выглядит:


Покупал по акции колонки на JD — тут мой обзор на них — Переделал усилитель на колонках на копеечный D-class модуль на PAM8403. Колонки играть стали громче, появился типа бас. Доволен. Но появилась одна проблема — если подавать питание на колонки от обычной (импульсной) зарядки на 5В шли большие искажения по питанию. На маленькой громкости еще слушать можно было, на большой невозможно. Решил спаять блок питания с линейной стабилизацией.


Схема такого БП простая:


Первый порыв — купить все детали в местной «Электронике» и быстренько спаять на макетке схему БП. Подсчитал только цену деталей стабилизатора — получилось около 700 р. Жаба придушала. Посмотрим готовые варианты на али и ебее. Тут все шоколадно. Есть копеечные конструкторы (самому на печатную плату паять), есть готовые модули по 110 р. Купил в итоге на ебее — там дешевле было. Дошло недели за три. Стабилизатор болтался на радиаторе — привинтил его покрепче.

Остальные детали — трансформатор, предохранитель, корпус, кнопку включения, ножки под корпус, usb-разъем в «Электронике». Ушло на все про все 500 р.

Характеристики модуля и стабилизатора LM7805:

1. Board size. 57mm*23mm

2. Input voltage input voltage polarity, AC and DC can, range. 7.5-20V

3. The output voltage 5V

4. The maximum output current. 1.2A

5. Provided fixed bolt hole, convenient installation

Как видно, на модуль можно подавать напряжение от 7.5V до 20V. На выходе — 5V.

Стабилизатор внутри устроен достаточно сложно:

Трансформатор купил такой ТП112 (7,2 Вт) 2*12В хх —


Кнопку включения на 220 В взял такую — достаточно большая.

Кнопка с фиксацией и подсветкой. Как подключить подсветку при нажатии — не понял (может подскажите, кто знает?). Сделал без подсветки.

Собрал стенд для тестирования:


Колонки играют без искажений на максимальной громкости. В БП ничего не греется сильно. Цель достигнута:


Попробовал зарядить телефон — ток 0.5А


При резисторе на 1 А — все совсем печально:


Вывод — данный БП как зарядник использовать не получиться. Видимо трансформатор нужно ставить мощнее.

Собрал все в корпус:


Дырочку сверху сделал для того, чтобы было видно светодиод — индикатор на модуле для индикации работы. С обратной стороны дырочку заклеил прозрачной пленкой.

Спасибо за внимание.

Планирую купить +13 Добавить в избранное Обзор понравился +23 +38

Устройства, которые входят в схему блока питания, и поддерживают стабильное выходное напряжение, называются стабилизаторами напряжения. Эти устройства рассчитаны на фиксированные значения напряжения выхода: 5, 9 или 12 вольт. Но существуют устройства с наличием регулировки. В них можно установить желаемое напряжение в определенных доступных пределах.

Большинство стабилизаторов предназначены на определенный наибольший ток, который они выдерживают. Если превысить эту величину, то стабилизатор выйдет из строя. Инновационные стабилизаторы оснащены блокировкой по току, обеспечивающей выключение устройства при достижении наибольшего тока в нагрузке и защищены от перегрева. Вместе со стабилизаторами, которые поддерживают положительное значение напряжения, есть и устройства, действующие с отрицательным напряжением. Они применяются в двухполярных блоках питания.

Стабилизатор 7805 изготовлен в корпусе, подобном транзистору. На рисунке видны три вывода. Он рассчитан на напряжение 5 вольт и ток 1 ампер. В корпусе есть отверстие для фиксации стабилизатора к радиатору. Модель 7805 является устройством положительного напряжения.

Зеркальное отображение этого стабилизатора — это его аналог 7905, предназначенный для отрицательного напряжения. На корпусе будет положительное напряжение, на вход поступит отрицательное значение. С выхода снимается -5 В. Чтобы стабилизаторы работали в нормальном режиме, нужно подавать на вход 10 вольт.

Распиновка

Стабилизатор 7805 имеет распиновку, которая показана на рисунке. Общий вывод соединен с корпусом. Во время установки устройства это играет важную роль. Две последние цифры обозначают выдаваемое микросхемой напряжение.

Стабилизаторы для питания микросхем

Рассмотрим методы подключения к питанию цифровых приборов, сделанных самостоятельно, на микроконтроллерах. Любое электронное устройство требует для нормальной работы правильное подключение питания. Блок питания рассчитывается на определенную мощность. На его выходе устанавливается конденсатор значительной величины емкости для выравнивания импульсов напряжения.

Блоки питания без стабилизации, применяемые для роутеров, сотовых телефонов и другой техники, не сочетаются с питанием микроконтроллеров напрямую. Выходное напряжение этих блоков изменяется, и зависит от подключенной мощности. Исключением из этого правила являются зарядные блоки для смартфонов с USB портом, на котором выходит 5 В.

Схема работы стабилизатора, сочетающаяся со всеми микросхемами этого типа:

Если разобрать стабилизатор и посмотреть его внутренности, то схема выглядела бы следующим образом:

Для электронных устройств не чувствительных к точности напряжения, такой прибор подойдет. Но для точной аппаратуры нужна качественная схема. В нашем случае стабилизатор 7805 выдает напряжение в интервале 4,75-5,25 В, но нагрузка по току не должна быть больше 1 А. Нестабильное входное напряжение колеблется в интервале 7,5-20 В. При этом выходное значение будет постоянно равно 5 В. Это является достоинством стабилизаторов.

При возрастании нагрузки, которую может выдать микросхема (до 15 Вт), прибор лучше обеспечить охлаждением вентилятором с установленным радиатором.

Работоспособная схема стабилизатора:


Технические данные

  • Наибольший ток 1,5 А.
  • Интервал входного напряжения – до 40 вольт.
  • Выход – 5 В.

Во избежание перегрева стабилизатора, необходимо поддерживать наименьшее входное напряжение микросхемы. В нашем случае входное напряжение 7 вольт.

Лишнюю величину мощности микросхема рассеивает на себе. Чем выше входное напряжение на микросхеме, тем выше потребляемая мощность, которая преобразуется в нагревание корпуса. В итоге микросхема перегреется и сработает защита, устройство отключится.

Стабилизатор напряжения 5 вольт

Такое устройство имеет отличие от аналогичных приборов в своей простоте и приемлемой стабилизации. В нем использована микросхема К155J1А3. Этот стабилизатор использовался для цифровых устройств.


Устройство состоит из рабочих узлов: запуска, источника образцового напряжения, схемы сравнения, усилителя тока, ключа на транзисторах, накопителя индуктивной энергии с коммутатором на диодах, фильтров входа и выхода.

После подключения питания начинает действовать узел запуска, который выполнен в виде стабилизатора напряжения. На эмиттере транзистора возникает напряжение 4 В. Диод VD3 закрыт. В итоге включается образцовое напряжение и усилитель тока.

Ключ на транзисторах закрыт. На выходе усилителя образуется импульс напряжения, который открывает ключ, пропускающий ток на накопитель энергии. В стабилизаторе включается схема отрицательной связи, устройство переходит в режим работы.

Все применяемые детали тщательно проверяются. Перед установкой на плату резистора, его значение делают равным 3,3 кОм. Стабилизатор вначале подключают на 8 вольт с нагрузкой 10 Ом, далее, при необходимости устанавливают его на 5 вольт.

Широкое применение в электронике нашли интегральные стабилизаторы напряжения и особенно один их вид — стабилизаторы с фиксированным выходным напряжением в трехвыводных корпусах. Они хороши тем что не требуют внешних элементов (кроме конденсаторов фильтров), регулировок и имеют широкий диапазон токов в нагрузках. Не буду приводить здесь их технические характеристики, а приведу только основные данные и схемы возможного применения.

Стандартные линейные стабилизаторы выпускаются многими производителями и имеют не одно обозначение, мы рассмотрим их на примере наиболее характерного типа:

  • серия L78 (для положительных напряжений ),
  • и серия L79 (для отрицательныхнапряжений ).

В свою очередь стандартные регуляторы делятся на:

  • слаботочные с выходным током в районе 0,1 А (L78Lхх) — вид на рис. 1а,
  • со средним значением тока порядка 0,5 А (L78Мхх) — вид на рис. 1б,
  • сильноточные 1…1,5 А (L78хх) — вид на —рис.1в.

Невысокая стоимость, простота применения и большое разнообразие выходных напряжений и корпусов делают эти компоненты весьма популярными при создании простых схем электропитания. Надо отметить, что эти регуляторы обладают рядом дополнительных функций, обеспечивающих безопасность функционирования. К ним относятся защита от перегрузки по току и температурная защита от перегрева микросхемы.

Рисунок 1

Интегральные стабилизаторы используют корпуса типов: КТ-26 , КТ-27, КТ-28-2, ТО-220,
КТ-28-2, КТ-27-2, ТО-92, ТО-126, ТО-202, которые близки к изображенным на рис.1.

Микросхемы серии 78xx

Это серия ИМС линейных стабилизаторов с фиксированным выходным напряжением — 78xx (также известная как LM78xx).

Их популярность связана, как уже говорилось выше, с их простотой использования и относительной дешевизной. При указании определённых микросхем серии, «xx» заменяется на двухзначный номер, обозначающий выходное напряжение стабилизатора (к примеру, микросхема 7805 имеет выходное напряжение в 5 вольт, а 7812 — 12В). Стабилизаторы 78-ой серии имеют положительное относительно земли рабочее напряжение, а серия 79xx отрицательное, имеет аналогичную систему обозначений. Их можно использовать для обеспечения и положительного, и отрицательного напряжений питания нагрузок в одной схеме.

Кроме того, их популярность серии продиктована несколькими преимуществами перед другими стабилизаторами напряжения:

  • Микросхемы серии не нуждаются в дополнительных элементах для обеспечения стабильного питания, что делает их удобными в использовании, экономичными и эффективно использующими место на печатной плате. В отличие от них большинство других стабилизаторов требуют дополнительные компоненты или для установки нужного значения напряжения, или для помощи в стабилизации. Некоторые другие варианты (например, импульсные стабилизаторы) требуют не только большого количества дополнительных компонентов, но могут требовать большой опыт разработки.
  • Устройства серии обладают защитой от превышения максимального тока, а также от перегрева и коротких замыканий, что обеспечивает высокую надёжность в большинстве случаев. Иногда ограничение тока также используется и для защиты других компонентов схемы,
  • Линейные стабилизаторы не создают ВЧ помех, в виде магнитных полей рассеяния и ВЧ пульсаций выходного напряжения.

К недостаткам линейных стабилизаторов можно отнести более низкий КПД по сравнению с импульсными, но при оптимальном расчете он может превышать 60%.

Структура интегрального стабилизатора показана на рис. 2

Рисунок 2

Требование к применению стабилизаторов:

    падение напряжения на нем не должно быть ниже 2 вольт,

    максимальный ток через него, не должен превышать указанного в соотношении:

I max

P — допустимая мощность рассеяния микросхемы, U in-out — падение напряжения на микросхеме (U in-out = U in — U out ).

Типовая схема включения стабилизатора напряжения в техвыводном корпусе


с фиксированным выходным напряжением

Типовая схема включения интегрального стабилизатора напряжения в трехвыводном корпусе с фиксированным выходным напряжением показана на рис. 3.

Рисунок 3

Мы видим, микросхемы подобного типа не требуют дополнительных элементов, кроме конденсаторов фильтрующих напряжение — которые фильтруют питающее напряжение и защищают стабилизатор от помех проникающих с нагрузки и от источника питающего напряжения.

Для обеспечения устойчивой работы микросхем серии 78хх во всем диапазоне допустимых значений входных и выходных напряжений и токов нагрузки рекомендуется применять шунтирующие вход и выход стабилизатора конденсаторы. Это должны быть твердотельные (керамические или танталловые) конденсаторы емкостью до 2 мкф на входе и 1 мкф на выходе. При использовании алюминиевых конденсаторов их емкость должна быть более 10 мкф. Подключать конденсаторы необходимо как можно более короткими проводниками как можно ближе к выводам стабилизатора.

и током делителя I2 (возможно регулирование), в) стабилизатора напряжения.

Варианты применения интегрального стабилизатора с фиксированным напряжением

Микросхемы позволяют создавать множество схем на основе стабилизаторов.

Регулировка выходного напряжения

Как я уже писал выше (см. рис. 5б) линейные стабилизаторы позволяют изменять выходное напряжение. Подробная схема показана на рис. 7.

По той же схеме возможно и функциональное регулирование выходного напряжения.

Например возможно регулирование выходного напряжения в зависимости от температуры для применения в системах стабилизации температуры — термостатах. В зависимости от типа температурного датчика он может включаться вместо резисторов R 1 или R 2 .

Рисунок 7

Параллельное включение стабилизаторов

Рисунок 7

Данный регулятор имеет ту особенность, что (для устойчивой раскрутки вентилятора) в начальный момент времени на вентилятор подается полное напряжение (12В). После того как конденсатор С1 зарядится напряжение на выходе будет определяться резистором R 2.

Стабилизатор с плавным выходом на номинальное напряжение

Рисунок 8

Данная схема отличается тем, что в начальный момент времени напряжение на выходе стабилизатора равно 5В (для данного типа), после чего напряжение плавно поднимается до величины определяемой регулирующими элементами.

Собрал А.Сорокин,

Трехвыводной стабилизатор напряжения L7805. Микросхема выпускается в двух видах: пластик ТО-220 и металл ТО-3.

Три вывода (слева на право) ввод — минус — выход.

Последних две цифры указывают на стабилизированное напряжение микросхемы: 7805 — 5 вольт, 7806 — 6 вольт, 7824 — 24 вольт.
Схема подключения стабилизатора, распространяется на все микросхемы этой серии:

Принципиальная схема стабилизатора:

Output voltage — выходное напряжение.

Input voltage — входное напряжение.

7805 выдает выходное напряжение 5 Вольт.

Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено. Для электронных безделушек доли вольт не ощущаются, но для прецизионной аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4.75 — 5.25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать одного Ампера. Не стабилизированное постоянное напряжение может варьироваться в диапазоне от 7.5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт. В этом то и есть большой плюс стабилизаторов.
При большой нагрузке, а эта микросхема способна отдавать мощность порядка 15 Ватт, стабилизатор лучше оснастить радиатором и по возможности с вентилятором.

Более полная схема стабилизатора:


Для того, чтобы стабилизатор не перегревать, нужно придерживаться нужного минимального напряжения на входе микросхемы, то есть если у нас L7805, то на вход подаем 7-8 вольт.
Это связано с тем, что излишнюю мощность стабилизатор будет рассеивать на себе.

Формула мощности P=IU, где U — напряжение, а I — сила тока.

Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им.

А излишняя мощность — это нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается.

Регулируемый стабилизатор на 7805 схема

В этой статье мы рассмотрим возможности и способы питания цифровых устройств собранных своими руками, в частности на микроконтроллерах. Ни для кого не секрет, что залогом успешной работы любого устройства, является его правильное запитывание. Разумеется, блок питания должен быть способен выдавать требуемую для питания устройства мощность, иметь на выходе электролитический конденсатор большой емкости, для сглаживания пульсаций и желательно быть стабилизированным.

Стабилизированное зарядное устройство

Последнее подчеркну особенно, разные нестабилизированные блоки питания типа зарядных устройств от сотовых телефонов, роутеров и подобной техники не подходят для питания микроконтроллеров и других цифровых устройств напрямую. Так как напряжение на выходе таких блоков питания меняется, в зависимости от мощности подключенной нагрузки. Исключение составляют стабилизированные зарядные устройства, с выходом USB, выдающие на выходе 5 вольт, вроде зарядок от смартфонов.

Измерение мультиметром напряжения на блоке питания

Многих начинающих изучать электронику, да и просто интересующихся, думаю шокировал тот факт: на адаптере питания например от приставки Денди, да и любом другом подобном нестабилизированном может быть написано 9 вольт DC (или постоянный ток), а при измерении мультиметром щупами подключенными к контактам штекера БП на экране мультиметра все 14, а то и 16. Такой блок питания может использоваться при желании для питания цифровых устройств, но должен быть собран стабилизатор на микросхеме 7805, либо КРЕН5. Ниже на фото микросхема L7805CV в корпусе ТО-220.

Такой стабилизатор имеет легкую схему подключения, из обвеса микросхемы, то есть из тех деталей которые необходимы для её работы нам требуются всего 2 керамических конденсатора на 0.33 мкф и 0.1 мкф. Схема подключения многим известна и взята из Даташита на микросхему:

Схема подключения 7805

Соответственно на вход такого стабилизатора мы подаем напряжение, или соединяем его с плюсом блока питания. А минус соединяем с минусом микросхемы, и подаем напрямую на выход.

Схема снижения с 12 вольт до 5

И получаем на выходе, требуемые нам стабильные 5 Вольт, к которым при желании, если сделать соответствующий разъем, можно подключать кабель USB и заряжать телефон, mp3 плейер или любое другое устройство с возможностью заряда от USB порта.

Стабилизатор снижение с 12 до 5 вольт — схема

Автомобильное зарядное устройство с выходом USB всем давно известно. Внутри оно устроено по такому же принципу, то есть стабилизатор, 2 конденсатора и 2 разъема.

Автомобильное зарядное устройство в прикуриватель

Как пример для желающих собрать подобное зарядное своими руками или починить существующее приведу его схему, дополненную индикацией включения на светодиоде:

Схема автомобильной зарядки на 7805

Цоколевка микросхемы 7805 в корпусе ТО-220 изображена на следующих рисунках. При сборке, следует помнить о том, что цоколевка у микросхем в разных корпусах отличается:

При покупке микросхемы в радиомагазине, следует спрашивать стабилизатор, как L7805CV в корпусе ТО-220. Эта микросхема может работать без радиатора при токе до 1 ампера. Если требуется работа при больших токах, микросхему нужно установить на радиатор.

Радиатор для стабилизаторов

Разумеется, эта микросхема существует и в других корпусах, например ТО-92, знакомый всем по маломощным транзисторам. Этот стабилизатор работает при токах до 100 миллиампер. Минимальное напряжение на входе, при котором стабилизатор начинает работать, составляет 6.7 вольт, стандартное от 7 вольт. Фото микросхемы в корпусе ТО-92 приведено ниже:

Цоколевка микросхемы, в корпусе ТО-92, как уже было написано выше, отличается от цоколевки микросхемы в корпусе ТО-220. Её мы можем видеть на следующем рисунке, как из него становится ясно, что ножки расположены зеркально, по отношению к ТО-220:

Маломощный стабилизатор 78l05 цоколевка

Разумеется, стабилизаторы выпускают на разное напряжение, например 12 вольт, 3.3 вольта и другие. Главное не забывать, что входное напряжение, должно быть минимум на 1.7 — 3 вольта больше выходного.

Микросхема 7833 — схема

На следующем рисунке приведена цоколевка стабилизатора 7833 в корпусе ТО-92. Такие стабилизаторы применяются для запитывания в устройствах на микроконтроллерах дисплеев, карт памяти и другой периферии, требующей более низковольтного питания, чем 5 вольт, основное питание микроконтроллера.

Стабилизатор для питания МК

Я пользуюсь для запитывания собираемых и отлаживаемых на макетной плате устройств на микроконтроллерах, стабилизатором в корпусе, как на фото выше. Питание подается от нестабилизированного адаптера через гнездо на плате устройства. Его принципиальная схема приведена на рисунке далее:

Схема стабилизатор на 7805 для 5В

При подключении микросхемы нужно строго соответствовать цоколевке. Если ножки спутать, даже одного включения достаточно, чтобы вывести стабилизатор из строя, так что при включении нужно быть внимательным. Автор материала — AKV.

В настоящее время тяжело найти какое-либо электронное устройство не использующее стабилизированный источник питания. В основном в качестве источника питания, для подавляющего большинства различных радиоэлектронных устройств, рассчитанных на работу от 5 вольт, наилучшим вариантом будет применение трехвыводного интегрального линейного стабилизатора 78L05.

Описание стабилизатора 78L05

Данный стабилизатор не дорогой и прост в применении, что позволяет облегчить проектирование радиоэлектронных схем со значительным числом печатных плат, к которым подается нестабилизированное постоянное напряжение, и на каждой плате отдельно монтируется свой стабилизатор.

Микросхема — стабилизатор 78L05 (7805) имеет тепловую защиту, а также встроенную систему предохраняющую стабилизатор от перегрузки по току. Тем не менее, для более надежной работы желательно применять диод, позволяющий защитить стабилизатор от короткого замыкания во входной цепи.

Технические параметры и цоколевка стабилизатора 78L05:

  • Входное напряжение: от 7 до 20 вольт.
  • Выходное напряжение: от 4,5 до 5,5 вольт.
  • Выходной ток (максимальный): 100 мА.
  • Ток потребления (стабилизатором): 5,5 мА.
  • Допустимая разница напряжений вход-выход: 1,7 вольт.
  • Рабочая температура: от -40 до +125 °C.

Аналоги стабилизатора 78L05 (7805)

Существуют два типа данной микросхемы: мощный 7805 (ток нагрузки до 1А) и маломощный 78L05 (ток нагрузки до 0,1А). Зарубежным аналогом 7805 является ka7805. Отечественными аналогами являются для 78L05 — КР1157ЕН5, а для 7805 — 142ЕН5

Схема включения 78L05

Типовая схема включения стабилизатора 78L05 (по datasheet) легка и не требует большого количества дополнительных радиоэлементов.

Конденсатор С1 на входе необходим для ликвидации ВЧ помех при подаче входного напряжения. Конденсатор С2 на выходе стабилизатора, как и в любом другом источнике питания, обеспечивает стабильность блока питания при резком изменении тока нагрузки, а так же уменьшает степень пульсаций.

При разработке блока питания необходимо иметь в виду, что для устойчивой работы стабилизатора 78L05 напряжение на входе должно быть не менее 7 и не более 20 вольт.

Ниже приводятся несколько примеров использования интегрального стабилизатора 78L05.

Лабораторный блок питания на 78L05

Данная схема лабораторного блока питания отличается своей оригинальностью, из-за нестандартного применения микросхемы TDA2030, источником опорного напряжения которого служит стабилизатор 78L05. Поскольку максимально допустимое входное напряжение для 78L05 составляет 20 вольт, то для предотвращения выхода 78L05 из строя в схему добавлен параметрический стабилизатор на стабилитроне VD1 и резисторе R1.

Микросхема TDA2030 подключена по типу неинвертирующего усилителя. При таком подключении коэффициент усиления равен 1+R4/R3 (в данном случае 6). Таким образом, напряжение на выходе блока питания, при изменении сопротивления резистора R2, будет меняться от 0 и до 30 вольт (5 вольт х 6). Если нужно изменить максимальное выходное напряжение, то это можно сделать путем подбора подходящего сопротивления резистора R3 или R4.

Бестрансформаторный блок питания на 5 вольт

данная схема бестрансформаторного источника питания характеризуется повышенной стабильностью, отсутствием нагрева элементов и состоит из доступных радиодеталей.

Структура блока питания включает в себя: индикатор включения на светодиоде HL1, вместо обычного трансформатора — гасящая цепь на элементах C1 и R2, диодный выпрямительный мост VD1, конденсаторы для уменьшения пульсаций, стабилитрон VD2 на 9 вольт и интегральный стабилизатор напряжения 78L05 (DA1). Необходимость в стабилитроне вызвана тем, что напряжение с выхода диодного моста равно приблизительно 100 вольт и это может вывести стабилизатор 78L05 из строя. Можно использовать любой стабилитрон с напряжением стабилизации от 8…15 вольт.

Внимание! Так как схема не имеет гальванической развязки с электросетью, следует соблюдать осторожность при наладке и использовании блока питания.

Простой регулируемый источник питания на 78L05

Диапазон регулируемого напряжения в данной схеме составляет от 5 до 20 вольт. Изменение выходного напряжения производится при помощи переменного резистора R2. Максимальный ток нагрузки составляет 1,5 ампер. Стабилизатор 78L05 лучше всего заменить на 7805 или его отечественный аналог КР142ЕН5А. Транзистор VT1 можно заменить на КТ315. Мощный транзистор VT2 желательно разместить на радиаторе с площадью не менее 150 кв. см.

Схема универсального зарядного устройства

Эта схема зарядного устройства достаточно проста и универсальна. Зарядка позволяет заряжать всевозможные типы аккумуляторных батарей: литиевые, никелевые, а так же маленькие свинцовые аккумуляторы используемые в бесперебойниках.

Известно, что при зарядке аккумуляторов важен стабильный ток зарядки, который должен составлять примерно 1/10 часть от емкости аккумулятора. Постоянство зарядного тока обеспечивает стабилизатор 78L05 (7805). У зарядника 4-е диапазона тока зарядки: 50, 100, 150 и 200 мА, которые определяются сопротивлениями R4…R7 соответственно. Исходя из того, что на выходе стабилизатора 5 вольт, то для получения допустим 50 мА необходим резистор на 100 Ом (5В / 0,05 А = 100) и так для всех диапазонов.

Так же схема снабжена индикатором, построенном на двух транзисторах VT1, VT2 и светодиоде HL1. Светодиод гаснет при окончании зарядки аккумулятора.

Регулируемый источник тока

По причине отрицательно обратной связи, следующей через сопротивление нагрузки, на входе 2 (инвертирующий) микросхемы TDA2030 (DA2) находится напряжение Uвх. Под влиянием данного напряжения сквозь нагрузку течет ток: Ih = Uвх / R2. Исходя из данной формулы, ток, протекающий через нагрузку, не находится в зависимости от сопротивления этой нагрузки.

Таким образом, меняя напряжение поступающее с переменного резистора R1 на вход 1 DA2 от 0 и до 5 В, при постоянном значении резистора R2 (10 Ом), можно изменять ток протекающий через нагрузку в диапазоне от 0 до 0,5 А.

Подобная схема может быть с успехом применена в качестве зарядного устройства для зарядки всевозможных аккумуляторов. Зарядный ток постоянен во время всего процесса зарядки и не находится в зависимости от уровня разряженности аккумулятора или от непостоянства питающей сети. Предельный ток заряда, можно менять путем уменьшения или увеличения сопротивление резистора R2.

Скачать datasheet на 78L05 (161,0 Kb, скачано: 6 190)

В настоящее время тяжело найти какое-либо электронное устройство не использующее стабилизированный источник питания. В основном в качестве источника питания, для подавляющего большинства различных радиоэлектронных устройств, рассчитанных на работу от 5 вольт, наилучшим вариантом будет применение трехвыводного интегрального 78L05 .

L05 схемы самодельных устройств

Регуляторы напряжения имеют разные типы. Это интегральная схема, основной целью которой является регулирование нерегулируемого входного напряжения и обеспечение постоянного регулируемого выходного напряжения. Общим типом классификации является 3 терминальных стабилизатора напряжения и 5 или многопозиционный стабилизатор напряжения.

Эти регуляторы обеспечивают постоянное выходное напряжение. Фиксированный регулятор напряжения может быть положительным регулятором напряжения или отрицательным регулятором напряжения. Положительный стабилизатор напряжения обеспечивает постоянное положительное выходное напряжение.

Описание стабилизатора 78L05

Данный стабилизатор не дорогой () и прост в применении, что позволяет облегчить проектирование радиоэлектронных схем со значительным числом печатных плат, к которым подается нестабилизированное постоянное напряжение, и на каждой плате отдельно монтируется свой стабилизатор.

Микросхема — стабилизатор 78L05 (7805) имеет тепловую защиту, а также встроенную систему предохраняющую стабилизатор от перегрузки по току. Тем не менее, для более надежной работы желательно применять диод, позволяющий защитить стабилизатор от короткого замыкания во входной цепи.

Единственное различие заключается в полярности выходных напряжений. Регулируемый стабилизатор напряжения — это своего рода регулятор, регулируемое выходное напряжение которого может варьироваться в диапазоне. Есть два варианта одного и того же; известный как положительный регулируемый регулятор напряжения и отрицательный регулируемый регулятор.

Могут быть определенные условия, в которых может потребоваться переменное напряжение. Схема подключения показана ниже. Требуемое выходное напряжение может быть рассчитано с использованием уравнения. Таким образом, приведенное выше уравнение можно переписать как. Регулировка нагрузки составляет 1 процент, а линейное регулирование — 01% на вольт. Это означает, что выходное напряжение изменяется только на 01% для каждого напряжения входного напряжения. Отверстие пульсации составляет 80 дБ, что эквивалентно 10.

Технические параметры и цоколевка стабилизатора 78L05:

  • Входное напряжение: от 7 до 20 вольт.
  • Выходное напряжение: от 4,5 до 5,5 вольт.
  • Выходной ток (максимальный): 100 мА.
  • Ток потребления (стабилизатором): 5,5 мА.
  • Допустимая разница напряжений вход-выход: 1,7 вольт.
  • Рабочая температура: от -40 до +125 °C.

Больше схем на регулируемых регуляторах напряжения

Как показано на блоке-схеме выше, встроенные опорное напряжение. Существует много этапов усиления напряжения для используемого здесь операционного усилителя. Таким образом, ток, протекающий через делитель потенциала, может быть записан как. Таким образом, выходное напряжение можно записать в виде. Это повышение температуры может быть в основном обусловлено чрезмерным внешним напряжением, температурой окружающей среды или даже потерей тепла.

Штырьки 1, 2 и 3 — вход, выход и земля. В противном случае он прекратит регулирование. Кроме того, существует максимальное входное напряжение из-за чрезмерной рассеиваемой мощности. В переключающих регуляторах выходное напряжение регулируется путем управления временем переключения схемы обратной связи; то есть путем регулировки рабочего цикла. Регуляторы, рассмотренные выше, являются линейными регуляторами напряжения, которым необходим последовательный транзистор для регулирования в активной области.

Аналоги стабилизатора 78L05 (7805)

Существуют два типа данной микросхемы: мощный 7805 (ток нагрузки до 1А) и маломощный 78L05 (ток нагрузки до 0,1А). Зарубежным аналогом 7805 является ka7805. Отечественными аналогами являются для 78L05 — КР1157ЕН5, а для 7805 — 142ЕН5

Схема включения 78L05

Типовая схема включения стабилизатора 78L05 (по datasheet) легка и не требует большого количества дополнительных радиоэлементов.

Стабилизаторы для питания микросхем

Несмотря на то, что они выбраны для разных целей, у них есть недостаток в рассеянии мощных транзисторов серии. Пропускной резистор серии должен выдерживать большую нагрузку при увеличении тока нагрузки. Это приводит к тому, что транзисторы серии проходят громоздкими с более объемным радиатором. Это, в свою очередь, также увеличивает общую стоимость. Такие линейные регуляторы также нуждаются в понижающем трансформаторе, который снова увеличивает размер всей схемы.

Большие ряби, производимые схемой, должны быть устранены, и для этого требуются конденсаторы с большим размером фильтра. Все эти проблемы могут быть решены с помощью регулятора напряжения переключения. Вся операция полностью отличается по сравнению с линейным регулятором напряжения. Здесь транзистор транзистора серии не используется в качестве усилителя, а как переключатель. То есть вместо транзистора, работающего в активной области, происходит переход между областью насыщения или областью отсечения.

Конденсатор С1 на входе необходим для ликвидации ВЧ помех при подачи входного напряжения. Конденсатор С2 на выходе стабилизатора, как и в любом другом источнике питания, обеспечивает стабильность блока питания при резком изменении тока нагрузки, а так же уменьшает степень пульсаций.

Типовая схема включения стабилизатора напряжения в техвыводном корпусе с фиксированным выходным напряжением

Таким образом, рассеиваемая мощность уменьшается и, следовательно, может выдерживать большие нагрузки при низком напряжении с менее громоздкими теплоотводами. Таким образом, этот регулятор находит свое широкое применение в персональных компьютерах. Базовый коммутационный регулятор предназначен для работы в трех конфигурациях. Их принципиальные схемы и пояснения приведены ниже.

Продолжаем собирать блок питания своими руками

Регулятор напряжения переключения — Типы. Пошаговый регулятор переключения Как показано на рисунке выше, прямоугольные импульсы подаются на основание транзистора. В течение каждого цикла импульса транзистор изменяется между насыщением и отключением. Компоненты переменного тока входного напряжения для фильтра блокируются, и компонент постоянного тока пропускается через фильтр. По мере переключения транзистора среднее значение всегда будет меньше входного напряжения. Вот почему мы называем это «понижающим» переключающим регулятором.

При разработке блока питания необходимо иметь в виду, что для устойчивой работы стабилизатора 78L05 напряжение на входе должно быть не менее 7 и не более 20 вольт.

Ниже приводятся несколько примеров использования интегрального стабилизатора 78L05.

Лабораторный блок питания на 78L05

Данная схема отличается своей оригинальностью, из-за нестандартного применения микросхемы , источником опорного напряжения которого служит стабилизатор 78L05. Поскольку максимально допустимое входное напряжение для 78L05 составляет 20 вольт, то для предотвращения выхода 78L05 из строя в схему добавлен параметрический стабилизатор на стабилитроне VD1 и резисторе R1.

Когда транзистор насыщен, ток течет через индуктор. Когда транзистор переключится на отсечку, на катушке индуктора будет индуцировано большое напряжение из-за внезапного коллапса магнитного поля вокруг него. Таким образом, ток продолжает течь в одном направлении. Эта схема называется «ступенчатым» переключающим регулятором, потому что напряжение, индуцированное индуктором, будет больше входного напряжения. Регулятор переключения полярности. Как показано на рисунке выше, когда транзистор насыщен, ток течет через индуктор.

Виды стабилизаторов напряжения

Поскольку транзистор отключен, единственный путь проходит через конденсатор. Если проверяется направление зарядного тока через конденсатор, выходное напряжение оказывается отрицательным. Простой коммутационный регулятор разработан с использованием сочетания схем, которые мы уже знаем. Работа начинается с релаксационного генератора, который генерирует прямоугольную волну. Квадратная волна задается как входной сигнал интегратору и создает выходную треугольную волну. Это задается как вход для положительного вывода треугольника в импульсный преобразователь.

Микросхема TDA2030 подключена по типу неинвертирующего усилителя. При таком подключении коэффициент усиления равен 1+R4/R3 (в данном случае 6). Таким образом, напряжение на выходе блока питания, при изменении сопротивления резистора R2, будет меняться от 0 и до 30 вольт (5 вольт х 6). Если нужно изменить максимальное выходное напряжение, то это можно сделать путем подбора подходящего сопротивления резистора R3 или R4.

Затем выходной импульс будет управлять базовым транзистором. Рабочий цикл этих импульсов определит выходное напряжение. Когда выходное напряжение увеличивается, схема компаратора создает более высокое выходное напряжение, и поэтому инвертирующий вход треугольника в импульсный преобразователь будет иметь высокое значение. Это уменьшит импульсы на базовом входе транзистора. Поскольку рабочий цикл меньше, отфильтрованное выходное напряжение меньше, что, как правило, отменяет почти все первоначальное увеличение выходного напряжения.

Стабилизатор с плавным выходом на номинальное напряжение

Это означает, что любое попытка увеличения выходного напряжения создает отрицательное напряжение обратной связи, которое почти исключает первоначальное увеличение. Обратное происходит, если выходное напряжение падает. В системе достаточно усиления разомкнутого контура, чтобы обеспечить хорошо отрегулированное выходное напряжение.

Бестрансформаторный блок питания на 5 вольт

данная характеризуется повышенной стабильностью, отсутствием нагрева элементов и состоит из доступных радиодеталей.

Структура блока питания включает в себя: индикатор включения на светодиоде HL1, вместо обычного трансформатора — гасящая цепь на элементах C1 и R2, диодный выпрямительный мост VD1, конденсаторы для уменьшения пульсаций, стабилитрон VD2 на 9 вольт и интегральный стабилизатор напряжения 78L05 (DA1). Необходимость в стабилитроне вызвана тем, что напряжение с выхода диодного моста равно приблизительно 100 вольт и это может вывести стабилизатор 78L05 из строя. Можно использовать любой стабилитрон с напряжением стабилизации от 8…15 вольт.

Коммутационные регуляторы доступны в различных конфигурациях, таких как конфигурация обратного хода, подача вперед, двухтактная и неизолированная односторонняя или однополярная. Является регулятором напряжения 5 В, который ограничивает выход напряжения до 5 В и потребляет 5 В регулируемый источник питания. Он поставляется с возможностью добавления радиатора.

Если напряжение около 5 В, то оно не производит никакого тепла и, следовательно, не нуждается в радиаторе. Если вход напряжения больше, то избыточное электричество выделяется как тепло от. Это стандарт, от имени последние две цифры 05 обозначает количество напряжения, которое он регулирует.

Внимание! Так как схема не имеет гальванической развязки с электросетью, следует соблюдать осторожность при наладке и использовании блока питания.

Простой регулируемый источник питания на 78L05

Диапазон регулируемого напряжения в данной схеме составляет от 5 до 20 вольт. Изменение выходного напряжения производится при помощи переменного резистора R2. Максимальный ток нагрузки составляет 1,5 ампер. Стабилизатор 78L05 лучше всего заменить на 7805 или его отечественный аналог КР142ЕН5А. Транзистор VT1 можно заменить на . Мощный транзистор VT2 желательно разместить на радиаторе с площадью не менее 150 кв. см.

Регулировка выходного напряжения

Сохраните это изображение для справки. Линейные регуляторы экономичны и недороги, что также является еще одним фактором его репутации и почти доступно в любом электронном магазине. Теперь онлайн-продавцы дней предлагают их по гораздо более низкой цене для навальных заказов.

Регулятор напряжения является одним из наиболее важных и часто используемых электрических компонентов. Регуляторы напряжения отвечают за поддержание постоянного напряжения в электронной системе. Колебания напряжения могут привести к нежелательному воздействию на электронную систему, поэтому для поддержания постоянного постоянного напряжения необходимо в соответствии с требованием напряжения в системе.

Схема универсального зарядного устройства

Эта схема зарядного устройства достаточно проста и универсальна. Зарядка позволяет заряжать всевозможные типы аккумуляторных батарей: литиевые, никелевые, а так же маленькие свинцовые аккумуляторы используемые в бесперебойниках.

Предположим, что если простой светодиод может принимать максимум от 3 В до макс, что произойдет, если вход напряжения превысит 3 В?, Конечно, диод будет гореть. Это также характерно для всех электронных компонентов, таких как светодиоды, конденсаторы, диоды и т.д. малейшее увеличение напряжения может привести к отказу всей системы, повредив другие компоненты. Во избежание повреждения в таких ситуациях регулятор напряжения используется для регулируемого источника питания.

Ну так и зачем всё это нужно то?

В зависимости от используемого регулятора напряжения мы можем получить регулируемое положительное или отрицательное напряжение в зависимости от того, какое напряжение мы хотим. Прежде чем мы сможем подключить схему, позвольте нам сначала разобрать схему выводов регулятора напряжения, что жизненно важно для подключения схемы.

Известно, что при зарядке аккумуляторов важен стабильный ток зарядки, который должен составлять примерно 1/10 часть от емкости аккумулятора. Постоянство зарядного тока обеспечивает стабилизатор 78L05 (7805). У зарядника 4-е диапазона тока зарядки: 50, 100, 150 и 200 мА, которые определяются сопротивлениями R4. R7 соответственно. Исходя из того, что на выходе стабилизатора 5 вольт, то для получения допустим 50 мА необходим резистор на 100 Ом (5В / 0,05 А = 100) и так для всех диапазонов.

Параллельное включение стабилизаторов

Регулятор напряжения представляет собой трехконтактное устройство. Выходное напряжение любого источника напряжения, который вы хотите отрегулировать вниз, подается на этот вывод. Так, например, если у вас есть 10 вольт от трансформатора, который вы хотите отрегулировать до 5 вольт, выход трансформатора подается на вход регулятора, так что регулятор может регулировать его до желаемого напряжения. Помните, что входное напряжение должно быть больше напряжения, которое регулятор регулирует. Для того, чтобы регулятор выдавал 5 вольт, ввод напряжения должен быть как минимум на 2 вольта выше, поэтому он должен быть не менее 7 вольт. 7 вольт будет работать идеально.

Так же схема снабжена индикатором, построенном на двух транзисторах VT1, VT2 и светодиоде HL1. Светодиод гаснет при окончании зарядки аккумулятора.

Регулируемый источник тока

По причине отрицательно обратной связи, следующей через сопротивление нагрузки, на входе 2 (инвертирующий) микросхемы TDA2030 (DA2) находится напряжение Uвх. Под влиянием данного напряжения сквозь нагрузку течет ток: Ih = Uвх / R2. Исходя из данной формулы, ток, протекающий через нагрузку, не находится в зависимости от сопротивления этой нагрузки.

Однако для экспериментальных целей и простоты получения деталей мы будем использовать 9-вольтовую батарею в качестве нашего входного напряжения. Он подключается к земле в нашей цепи. Без заземления схема не могла быть полной, потому что напряжение не имело бы электрического потенциала, и схема не имела бы обратного пути.

Это контакт, который выдает регулируемое напряжение, которое в этом случае составляет 5 вольт. В конце этого эксперимента, когда наша схема подключена, мы будем считывать напряжение с помощью мультиметра, и он должен выдавать близко к 5 вольтам. Хорошо, теперь давайте построим схему.

Таким образом, меняя напряжение поступающее с переменного резистора R1 на вход 1 DA2 от 0 и до 5 В, при постоянном значении резистора R2 (10 Ом), можно изменять ток протекающий через нагрузку в диапазоне от 0 до 0,5 А.

Подобная схема может быть с успехом применена в качестве зарядного устройства для зарядки всевозможных аккумуляторов. Зарядный ток постоянен во время всего процесса зарядки и не находится в зависимости от уровня разряженности аккумулятора или от непостоянства питающей сети. Предельный ток заряда, можно менять путем уменьшения или увеличения сопротивление резистора R2.

(161,0 Kb, скачано: 3 935)

Отрегулированное напряжение питания очень важно для многих электронных устройств, поскольку полупроводниковые компоненты, применяемые в них, могут быть чувствительны для скачков и шумов нерегулируемого напряжения. Электронные приборы, питаемые от сети сначала преобразуют переменное напряжение в постоянное благодаря диодному мосту или другому подобному элементу. Но это напряжение не стоит использовать в чувствительных схемах.

В данном случае нужен регулятор (или стабилизатор) напряжения. И одним из самых популярных и распространенных регуляторов на сегодняшний день является регулятор серии 7805.

Микросхема 7805 расположена в трехвыводном корпусе TO-220 с выводами вход, выход, земля (GND). Также контакт GND представлен на металлическом основании микросхемы для крепления радиатора. Данный стабилизатор поддерживает входное напряжение до 40 В, а на выходе обеспечивает 5 В. Максимальный ток нагрузки 1.5 А. Внешний вид регулятора напряжения 7805 с расположением выводов представлен на изображении ниже.

Благодаря стабилизатору напряжения серии 7805 выход фиксируется на определенном уровне без ощутимых скачков и шумов. Чтобы эффективно минимизировать шумы на выходе и максимально сделать выходное напряжение стабильным, регулятор 7805 нужно правильно «обвязать», то есть подключить к его входу и выходу блокиовочные, сглаживающие конденсаторы. Схема подключения конденсаторов к микросхеме 7805 (U1) показана ниже.

Здесь конденсатор C1 представляет собой байпасный или блокировочный конденсатор и используется для гашения на землю очень быстрых по времени входных скачков. C2 является фильтрующим конденсатором, позволяющим стабилизировать медленные изменения напряжения на входе. Чем больше его значение, тем больше уровень стабилизации, но не стоит брать это значение слишком большим, если не хотите, чтобы он разряжался дольше после включения. Конденсатор C3 также стабилизирует медленные изменения напряжения, но уже на выходе. Конденсатор C4, как и C1, гасит очень быстрые скачки, но уже после регулятора и непосредственно перед нагрузкой.

Типичная схема включения регулятора напряжения 7805 представлена ниже. Здесь переменное напряжение выпрямляется диодным мостом и подается на регулятор с требуемой обвязкой из конденсаторов для более качественной стабилизации выходного напряжения. В схему также добавлен диод D5, позволяющий избежать короткого замыкания и тем самым обезопасить регулятор. Если бы его не было, то выходной конденсатор имел бы возможность быстро разрядиться во время периода низкого импеданса внутри регулятора.

Таким образом, регулятор напряжения является очень полезным элементом в схеме, способным обеспечить правильное питание вашего устройства.

LT1003 Техническое описание — Регулятор напряжения 5 В, 5 А

LT1188C: Переключатели высокого уровня LT1188, 1,5 А Переключатель высокого уровня

LTC3634EFE # TRPBF: Двойной монолитный понижающий стабилизатор на 15 В на 3 А для питания DDR LTC3634 — это высокоэффективный двухканальный монолитный синхронный понижающий стабилизатор, который обеспечивает питание и шину оконечной нагрузки для контроллеров DDR1, DDR2 и DDR3 SDRAM. Диапазон рабочего входного напряжения от 3,6 В до 15 В, макс.

.

LTC4251BCS6-1 # PBF: Контроллеры отрицательного напряжения с горячей заменой в SOT-23 Контроллеры с горячей заменой отрицательного напряжения LTC®4251B / LTC4251B-1 / LTC4251B-2 позволяют безопасно вставлять и извлекать плату из объединительной платы под напряжением.Выходной ток контролируется тремя ступенями ограничения тока: автоматический выключатель с таймером, активный ток

LT1946EMS8 # TR: Pmic — Регулятор напряжения — Интегральная схема (ics) импульсного стабилизатора постоянного тока Повышающий (Boost) Нет -; IC BOOST 1.5A 8MSOP Технические характеристики: Тип: повышающий (Boost); Тип выхода: -; Тип ШИМ: текущий режим; Синхронный выпрямитель: Нет; Количество выходов: 1; Напряжение — Выход: -; Ток — Выход: 1,5 А; Частота — переключение: 2,7 МГц; Напряжение — Вход: 2,45 В ~ 16 В; Статус без свинца: содержит свинец; Статус RoHS: RoHS Non

LTC1151CN8 # PBF: линейный — усилитель — приборы, операционные усилители, интегральная схема буферного усилителя (IC) прерыватель (нулевой дрейф) трубка 900A 4.75 В ~ 36 В, 2,38 В ~ 18 В; IC OPAMP ZERO-DRIFT DUAL 8-DIP Технические характеристики: Упаковка: Трубка; Тип усилителя: прерыватель (нулевой дрейф); Количество цепей: 2; Упаковка / корпус: 8-DIP (0,300 дюйма, 7,62 мм); скорость нарастания: 2,5 В / с; произведение на полосу усиления: 2 МГц; ток — питание: 900 А; ток — выход / канал: -; ​​напряжение — питание, одиночный / двойной (): 4,75 В ~ 36 В,

LT6656ACS6-5 # TRMPBF: Pmic — Серия интегральных схем опорного напряжения (ics), прецизионная лента (CT) — 5 В; IC VREF SERIES PREC 5V TSOT-23-6 Технические характеристики: Тип ссылки: Серия, Прецизионная; Напряжение — Выход: 5 В; Допуск: 0.05%; Температурный коэффициент: 10 ppm / C; Напряжение — Вход: 5,5 В ~ 18 В; Количество каналов: 1; Ток — Катод: -; Ток — в состоянии покоя: 1,5 А; Ток — Выход: 5 мА; Рабочая температура: 0C ~ 70C; П

LT1816IS8PBF: DUAL OP-AMP, 3000 мкВ OFFSET-MAX, ШИРИНА ПОЛОСЫ 220 МГц, PDSO8 Технические характеристики: Напряжение питания (VS): 5 В; IBIAS: 12 мкА; CMRR: 72 дБ; Скорость нарастания: 1500 В / мкс; Рабочая температура: от -40 до 85 C (от -40 до 185 F); Тип упаковки: СОП, 0,150 ДЮЙМА, БЕЗ СВИНЦА, ПЛАСТИК, СОП-8; Количество выводов: 8; Количество устройств: 2; Стандарты: RoHS

LT3489EMS8EPBF: РЕГУЛЯТОР ПЕРЕКЛЮЧЕНИЯ 5 А, ПЕРЕКЛЮЧЕНИЕ ЧАСТОТЫ 2200 кГц, PDSO8 Технические характеристики: Конфигурация / Функция: Boost; Тип упаковки: Другой, БЕЗ СВИНЦА, ПЛАСТИК, MSOP-8; Стадия жизненного цикла: АКТИВНЫЙ; IOUT: 5 ампер; VIN: 3 вольта; fsw: 2200 кГц; Рабочая температура: от 0 до 70 C (от 32 до 158 F)

LTC2635CMSE-LMX8 # PBF: ПОСЛЕДОВАТЕЛЬНАЯ ВХОДНАЯ ЗАГРУЗКА, 4.3 us ВРЕМЯ НАСТРОЙКИ, 10-БИТНЫЙ ЦАП, PDSO10 Технические характеристики: Тип корпуса: БЕСПРОВОДНЫЙ, ПЛАСТИКОВЫЙ, MSOP-10; Уровень отбора: коммерческий; Контакты: 10; Рабочая температура: от 0,0 до 70 C (от 32 до 158 F)

LTC3410BESC6-1.875 # TRM: ПЕРЕКЛЮЧАТЕЛЬНЫЙ РЕГУЛЯТОР 0,63 А, ПЕРЕКЛЮЧЕНИЕ ЧАСТОТЫ 2700 кГц, PDSO6 Технические характеристики: Конфигурация / Функция: Buck; Тип упаковки: SC-70, Другой, БЕСПРОВОДНЫЙ, ПЛАСТИК, MO-203AB, SC-70, 6 PIN; Стадия жизненного цикла: АКТИВНЫЙ; IOUT: 0,6300 ампер; VIN: 3,6 вольт; fsw: 2700 кГц; Рабочая температура: от 0 до 85 C (от 32 до 185 F)

LTP5901IPC-WHMA1B2PBF: МОДУЛЬ RF TXRX 802.15.4 ЧИП АНТ

5V 5A Цепи питания

Это цепи питания 5V 5A.

Для вашей цифровой схемы, микроконтроллера, платы Arduino UNO, Raspberry pi и т. Д.

Имеют низкий уровень шума. Из-за линейной схемы.

Детали, используемые в этих схемах, легко доступны на большинстве местных рынков.

Хотя, это древние схемы. Но и производительность неплохая.

Если у вас есть эти устройства. Создать его лучше, чем покупать новый.

Линейный источник питания 5V 5A с использованием 7812, LM723

Это хорошая схема источника питания, чем IC 7805 + MJ2955 (регулятор 5V 5A).

Используйте IC 7812 и IC регулятора LM723, транзистор TIP142 для повышения тока до 8A макс.

P1 для выхода управляющего напряжения 2,5-7 В, трансформатор 10 А мин.

Подробности прочее см. В схеме.

Когда вам нужен блок питания, часто не хватает 3-х ножек регулятора ICs. Но некоторые работы, в которых применяется высокий ток более 1 ампер, очень трудны.Даже если это 5 ампер и 10 ампер, но цена довольно высокая.

Как это работает

См. Схему и печатную плату ниже!

Этот проект разработан с концепцией модульной регулярной схемы, использующей выход.

Которая состоит из двух или более транзисторов с током, показанным на схеме.

А секция управления нечувствительна к шуму, что пришлось бы использовать IC-723.

Хотя, возможно, современность затмила 3-х контактная ИС регулятора.

Однако, с хорошими характеристиками, это заставляет нас использовать его для выходного напряжения питания от 2 до 7 вольт.

Напряжение для обеспечения IC1-LM723 получается от повышения напряжения, а затем фильтруется для сглаживания.

Затем через регулятор напряжения через 3-пин. Этот метод хорош для силовых транзисторов.

Поскольку мы преобразуем выходное напряжение и предыдущее в напряжение транзистора, разница между ними минимальна.

Без ущерба для напряжения питания ИС.

Вот пошаговый процесс.

  • Во время работы двух транзисторов T2 и T2 могут быть горячими, мы должны держать соответствующий радиатор.
  • Все резисторы R4 — R6 должны использовать много резисторов для параллельного включения желаемого значения для уменьшения среднего рассеивания мощности.
  • Резисторы: R4 и R5 используют 0,33 Ом 5 ​​Вт — 2 шт.
  • А резистор R6 мы используем 0,22 Ом 5 ​​Вт 2 шт при выходном токе 6 Ампер или 0,33 Ом 5 ​​Вт 2 шт при токе 8 Ампер.

Как собрать

Поместив, необходимо свободное расстояние каждого резистора и печатной платы до охлаждения.

Схема источника питания 5 В, 5 А имеет выходное напряжение, которое можно регулировать до 14 В.

Которая должна быть заменена следующими частями:

  • Трансформатор, резистор R1, R2 и конденсатор C5, C6.
  • Но не используйте повышающее напряжение (C1, C2, D1, D2).
  • Анод D3 подключается к цепям выпрямителя и фильтра.
  • Примечание к TIP142, хотя он выглядит как обычный транзистор. Но внутри есть структура Darlington Compound. Так что нельзя заменить на обычные силовые транзисторы.

Электронные компоненты
Резисторы 1/4 Вт +/- 5%
R1, R2: 3,3 кОм
R3: 100 Ом 1 Вт
R4, R5: 0,15 Ом 5 ​​Вт
R6: 0,1 Ом 10 Вт
P1: 5 кОм POT
Конденсаторы
C1, C2: 470 мкФ 50 В
C3: 220 мкФ 50 В
C4: 1 мкФ 16 В
C5, C6: 10 000 мкФ 25 В
C7: 10 мкФ 16 В
C8: 470 пФ 50 В Керамические
Полупроводниковые приборы.
BD1 = Диодный мост 10A 50 В
D1-D3 = 1N4001 Диоды
T1 = BD139, промежуточный силовой транзистор
T2, T3 = TIP142, (соединение Дарлингтона)
IC1 = IC-7812- IC-стабилизатор постоянного напряжения IC DC12V
IC2 Регулируемый = LM регулятор напряжения
Разное
Tr = Тороидальный трансформатор 10В 10А
S1 = включение / выключение 2 компл.

Тестирование и применение.

В ходе тестирования мы используем резистор 0,68 Ом на выходе, затем устанавливаем напряжение на 5,5 В (есть ток 8 А). Результаты показали, что падение напряжения на 5,32 Вольт. Покажите, что падение на 3,3 процента до 7,8 ампер, и измерьте пульсации напряжения менее 25 мВ (среднеквадратичное значение).

7805 + Mj2955 блок питания 5В 5А для цифровой схемы

Это блок питания стабилизатора постоянного тока 5В на ток 5А, я его использовал для своих цифровых продуктов. Основная электроника — это стабилизатор IC-7805 и транзистор MJ2955.

Вы должны использовать трансформатор 9VAC 5A.


Принципиальная схема блока питания 5V 5A от 7805 + Mj2955

PCB Power supply 5V 5A by 7805 and Mj2955

Мы рекомендуем 5V 5A импульсный регулятор также простая схема

1

1 ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО EMAIL

Я всегда стараюсь сделать Electronics Learning Easy .

Понижающий регулятор напряжения Pololu 5V, 5A D24V50F5

Обзор

Этот понижающий (понижающий) стабилизатор выдает фиксированное выходное напряжение 5 В при входном напряжении до 38 В.Это импульсный стабилизатор (также называемый импульсным источником питания (SMPS) или преобразователем постоянного тока), который имеет типичный КПД от 85% до 95%, что намного эффективнее, чем линейные регуляторы напряжения, особенно когда разница между входным и выходным напряжением большая. Доступный выходной ток является функцией входного напряжения и КПД (см. Ниже раздел «Типичный КПД и выходной ток »), но выходной ток обычно может достигать 5 А.

При малых нагрузках частота коммутации автоматически изменяется для поддержания высокого КПД. Регулятор имеет типичное потребление тока покоя менее 1 мА, а вывод ENABLE можно использовать для перевода платы в состояние низкого энергопотребления, которое снижает ток покоя приблизительно до 10-20 мкА на вольт на VIN.

Этот регулятор имеет встроенную защиту от обратного напряжения, защиту от короткого замыкания, функцию теплового отключения, которая помогает предотвратить повреждение от перегрева, функцию плавного пуска, которая снижает пусковой ток, и блокировку пониженного напряжения.

Для приложений с низким энергопотреблением, пожалуйста, обратите внимание на наши понижающие регуляторы напряжения D24V25Fx; это немного меньшие, совместимые по выводам версии этого регулятора с типичным максимальным выходным током 2,5 А. Для более мощных альтернатив, пожалуйста, рассмотрите наше семейство понижающих регуляторов напряжения D36V50Fx, которые могут работать от напряжений до 50 В и обеспечивают более высокие выходные токи. Оба этих семейства регуляторов доступны в нескольких версиях с различным напряжением.

Параллельное сравнение понижающих регуляторов напряжения 2,5 A D24V25Fx (слева) и 5 ​​A D24V50F5 (справа).

Для регулятора 5 В с еще большим выходным током рассмотрите наш понижающий стабилизатор напряжения D24V90F5, который имеет типичный максимальный выходной ток 9 А. Этот регулятор повышенной мощности также имеет несколько дополнительных функций, таких как Сигнал «power good» и возможность понизить его выходное напряжение, а также включает дополнительные клеммные колодки для удобных съемных соединений.

Характеристики

  • Входное напряжение: от 6 В до 38 В (см. Ниже более подробную информацию о падении напряжения регулятора, которое влияет на нижний предел рабочего диапазона)
  • Фиксированный выход 5 В (с точностью 4%)
  • Типичный максимальный продолжительный выходной ток: 5 А
  • Встроенная защита от обратного напряжения, защита от перегрузки по току и короткого замыкания, отключение при перегреве, плавный пуск и блокировка при пониженном напряжении
  • Типичный КПД от 85% до 95%, в зависимости от входного напряжения и нагрузки; частота коммутации автоматически изменяется при малых нагрузках для поддержания высокого КПД
  • Типичный ток покоя 700 мкА без нагрузки; может быть уменьшен до 10 мкА до 20 мкА на вольт на VIN путем отключения платы
  • Компактный размер: 0.7 ″ × 0,8 ″ × 0,35 ″ (17,8 мм × 20,3 мм × 8,8 мм)
  • Два монтажных отверстия 0,086 ″ для винтов №2 или M2

Использование регулятора

Подключения

Этот понижающий стабилизатор имеет пять точек подключения для четырех различных подключений: включение (EN), входное напряжение (VIN), 2x заземление (GND) и выходное напряжение (VOUT).

Входное напряжение, VIN , питает регулятор и может подаваться напряжением до 38 В.Эффективный нижний предел VIN равен VOUT плюс падение напряжения регулятора, которое изменяется примерно линейно с нагрузкой от примерно 700 мВ до примерно 1,5 В (см. Ниже график зависимости падающих напряжений от нагрузки).

Регулятор включен по умолчанию: подтягивающий резистор 100 кОм на плате подключает вывод ENABLE к VIN с обратной защитой. На вывод ENABLE можно подавать низкий уровень (ниже 0,6 В), чтобы перевести плату в состояние низкого энергопотребления. Потребляемый ток покоя в этом спящем режиме определяется током в подтягивающем резисторе от ENABLE до VIN и схемой защиты от обратного напряжения, которая потребляет от 10 до 20 мкA на вольт на VIN, когда ENABLE удерживается на низком уровне. .Если вам не нужна эта функция, оставьте контакт ENABLE отключенным.

Понижающий стабилизатор напряжения Pololu 5A D24V50F5 с комплектным оборудованием.

Понижающий регулятор напряжения Pololu 5A D24V50F5, вид снизу.

Пять точек подключения помечены в верхней части печатной платы и расположены как 0.Расстояние 1 дюйм для совместимости с беспаечными макетными платами, разъемами и другими прототипами, использующими сетку 0,1 дюйма. В эти отверстия можно припаять либо прилагаемую прямую штыревую полоску 5 × 1, либо прямоугольную штыревую полоску 5 х 1. Для максимально компактной установки можно припаять провода прямо к плате.

Понижающий регулятор напряжения Pololu 5A D24V50F5, вид сбоку.

На плате два 0.Монтажные отверстия 086 ″ предназначены для винтов №2 или M2. Монтажные отверстия находятся в противоположных углах платы и разделены на 0,53 дюйма по горизонтали и 0,63 дюйма по вертикали.

Типичный КПД и выходной ток

Эффективность регулятора напряжения, определяемая как (выходная мощность) / (входная мощность), является важным показателем его производительности, особенно когда речь идет о сроке службы батареи или нагреве. Как показано на графике ниже, эти импульсные стабилизаторы имеют КПД от 85% до 95% для большинства комбинаций входного напряжения и нагрузки.

Максимально достижимый выходной ток платы зависит от многих факторов, включая температуру окружающей среды, воздушный поток, теплоотвод, а также входное и выходное напряжение.

При нормальной работе этот продукт может стать достаточно горячим, чтобы вас обжечь. Будьте осторожны при обращении с этим продуктом или другими подключенными к нему компонентами.

Предел перегрузки по току регулятора работает на комбинации тока и температуры: пороговое значение тока уменьшается при повышении температуры регулятора.Однако могут быть некоторые рабочие точки при низких входных напряжениях и высоких выходных токах (значительно более 5 А), где ток чуть ниже предела, и регулятор может не отключиться до того, как произойдет повреждение. Если вы используете этот регулятор в приложении, где входное напряжение близко к нижнему пределу, а нагрузка может превышать 5 А в течение продолжительных периодов времени (более пяти секунд), рассмотрите возможность использования дополнительных защитных компонентов, таких как предохранители или автоматические выключатели.

Типичное падение напряжения

Падение напряжения понижающего регулятора — это минимальная величина, на которую входное напряжение должно превышать целевое выходное напряжение регулятора, чтобы гарантировать достижение целевого выходного сигнала.Например, если стабилизатор 5 В имеет падение напряжения 1 В, входное напряжение должно быть не менее 6 В, чтобы на выходе были полные 5 В. На следующем графике показано падение напряжения стабилизатора D24V50F5 в зависимости от выхода. текущий:

Частота переключения и поведение при малых нагрузках

Регулятор обычно работает с частотой переключения около 600 кГц, но частота падает при небольшой нагрузке для повышения эффективности.Это может затруднить фильтрацию шума на выходе, вызванного переключением.

Люди часто покупают этот товар вместе с:

Источник питания 5 В постоянного тока

Design (простое пошаговое руководство)

Ищете помощь в разработке источника питания 5 В самостоятельно? Что ж, добро пожаловать. В этом посте мы не только проектируем блок питания, но и узнаем о расчетных расчетах, которые вы можете сделать сами.

Схема источника питания — это очень простая схема в обучении электронике.Почти каждый в электронике пытается это сделать. И я не могу сказать вам, насколько это весело, когда вы закончите свой первый дизайн блока питания, протестируете его, и он будет работать нормально.

Хорошо!

Блок питания, который мы здесь разработаем, очень простой. Это линейный дизайн, основанный на технологии, он будет проходить вас на каждом этапе проектирования, пытаться представить все простым языком, выполнять некоторые математические вычисления, например, если в схеме используется конденсатор, вы должны знать, почему он там, и как рассчитывается его стоимость.

Надеюсь, вам понравится этот пост и вы чему-нибудь научитесь. На всякий случай, если вам нравится заниматься электроникой своими руками, то этот набор для самостоятельного изготовления регулируемого блока питания (нажмите здесь) подойдет именно вам. Развлекайтесь 😀

Конструкция блока питания 5В постоянного тока

Проектирование любой схемы начинается с хорошо составленной общей блок-схемы. Это помогает нам спроектировать отдельные части схемы, а затем, в конце концов, собрать их вместе, чтобы получить полную схему, готовую к использованию.

Общая блок-схема этого проекта представлена ​​ниже. Все очень просто. Он состоит из следующих четырех основных подблоков.

  • Трансформатор
  • Схема выпрямителя
  • Фильтр
  • Регулятор

Сначала я объясню каждый блок в целом, а затем перейдем к проектированию. Думаю, нужно понимать, какой блок что делает в первую очередь.

Итак, давайте попробуем разобраться в каждом разделе по отдельности.

Трансформатор входной

Трансформатор — это устройство, которое может повышать или понижать уровни напряжения в соответствии с законом передачи энергии.

Вопрос в том, зачем нам это нужно в нашей конструкции снабжения?

Что ж, в зависимости от вашей страны, переменный ток, поступающий в ваш дом, имеет уровень напряжения 220/120 В. Нам нужен входной трансформатор для понижения входящего переменного тока до требуемого нижнего уровня, то есть близкого к 5 В (переменный ток). Этот более низкий уровень в дальнейшем используется другими блоками для получения необходимых 5 В постоянного тока.

Трансформатор — это устройство, которое используется для повышения или понижения уровня переменного напряжения, сохраняя одинаковую входную и выходную мощность.

Будьте осторожны, играя с этим устройством.

Поскольку вы используете сетевое напряжение, которое может быть слишком опасным. Никогда не прикасайтесь к клеммам голыми руками или плохими инструментами. Имейте хороший и достойный бесконтактный тестер напряжения и используйте его, чтобы всегда быть уверенным в том, какая линия находится под напряжением, идущим к трансформатору.

Выпрямительная цепь

Если вы думаете, что трансформатор просто снизил напряжение до 5 В постоянного тока. Извините, вы ошибаетесь, как когда-то был я. Пониженное напряжение по-прежнему остается переменным. Чтобы преобразовать его в постоянный ток, нужна хорошая выпрямительная схема.

Схема выпрямителя — это комбинация диодов, расположенных таким образом, чтобы преобразовывать переменное напряжение в постоянное напряжение.

Без выпрямительной схемы невозможно получить необходимое выходное напряжение 5 В постоянного тока.Эта схема поставляется в красивых интегрированных корпусах, или вы также можете сделать ее с использованием четырех диодов. Вы увидите, как мы его проектируем, в следующих разделах.

В основном, существует два типа выпрямительных схем; полуволна и полноволновая. Однако нас интересует полноценный выпрямитель, так как он более энергоэффективен, чем первый.

Фильтр

В практической электронике нет ничего идеального. Схема выпрямителя преобразует входящий переменный ток в постоянный, но, к сожалению, не превращает его в чистый постоянный ток.Выход выпрямителя пульсирует и называется пульсирующим постоянным током. Этот пульсирующий постоянный ток не считается подходящим для питания чувствительных устройств.
Итак, выпрямленный постоянный ток не очень чистый и имеет рябь. Задача фильтра — отфильтровывать эти пульсации и обеспечивать совместимость напряжения для регулирования.

Конденсаторный фильтр используется, когда нам нужно преобразовать пульсирующий постоянный ток в чистый или удалить искажения из сигнала

Практическое правило: напряжение постоянного тока должно иметь пульсации менее 10 процентов, чтобы можно было точно регулировать.

Лучшим фильтром в нашем случае является конденсатор. Вы, наверное, слышали, конденсатор — это устройство, накапливающее заряд. Но на самом деле его лучше всего использовать как фильтр. Это самый недорогой фильтр для нашей базовой конструкции блока питания 5 В.

Регулятор

Стабилизатор — это линейная интегральная схема, в которой используется стабилизированное постоянное выходное напряжение. Регулировка напряжения очень важна, потому что нам не нужно изменять выходное напряжение при изменении нагрузки.

Всегда требуется выходное напряжение, независимое от нагрузки.ИС регулятора не только делает выходное напряжение независимым от переменных нагрузок, но и от изменений напряжения в сети.

Регулятор — это интегральная схема, используемая для обеспечения постоянного выходного напряжения независимо от изменений входного напряжения.

Надеюсь, вы разработали несколько основных концепций проектирования источников питания. Давайте пойдем дальше с реальной принципиальной схемой для нашей конкретной конструкции блока питания 5 В постоянного тока.

Принципиальная схема блока питания 5В постоянного тока

Ниже представлена ​​принципиальная схема указанного проекта.Вы получаете основной запас; напряжение и частота могут зависеть от вашей страны, предохранителя; для защиты схемы, трансформатора, выпрямителя, конденсаторного фильтра, светодиодного индикатора и регулятора IC.

Блок-схема реализована в программном обеспечении NI Multisim, хорошем программном обеспечении для моделирования для студентов и начинающих электронщиков. Я рекомендую потратить немного времени на то, чтобы поиграть с ним.

Теперь перейдем к собственному дизайну.

Пошаговый метод проектирования источника питания постоянного тока 5 В

Вот в чем дело, мы сначала спроектируем каждую секцию, а затем соберем каждую из них, чтобы наш источник питания постоянного тока был готов для питания наших проектов.

Итак, приступим к делу шаг за шагом.

Вы думаете, я бы начал объяснение конструкции с трансформатора, но это не так. Трансформатор выбирается не сразу.

Шаг 1: Выбор регулятора IC

Выбор микросхемы регулятора зависит от вашего выходного напряжения. В нашем случае мы проектируем для выходного напряжения 5В, мы выберем ИС линейного регулятора LM7805.

Следующим шагом в процессе проектирования является определение номинальных значений напряжения, тока и мощности выбранной ИС регулятора.Это делается с помощью таблицы данных регулятора IC.

Ниже приведены номинальные характеристики и схема контактов LM7805 из таблицы данных.

В техническом описании 7805 также предписывается использование конденсатора 0,1 мкФ на выходной стороне, чтобы избежать переходных изменений напряжения из-за изменений нагрузки. И 0,1 мкФ на входе регулятора, чтобы избежать пульсаций, если фильтрация находится далеко от регулятора.

Для дополнительной информации, для вывода положительного напряжения мы используем LM78XX.XX указывает значение выходного напряжения, а 78 указывает положительное выходное напряжение. Для выхода с отрицательным напряжением используйте LM79XX, 79 указывает отрицательное напряжение, а XX указывает значение выхода.

Шаг 2: Выбор трансформатора

Правильный выбор трансформатора означает экономию денег. Мы узнали, что минимальный вход для выбранной нами микросхемы регулятора составляет 7 В (см. Значения в таблице выше). Итак, нам нужен трансформатор для понижения основного переменного тока, по крайней мере, до этого значения.

Но между регулятором и вторичной обмоткой трансформатора тоже есть выпрямитель на диодном мосту.Выпрямитель имеет собственное падение напряжения, то есть 1,4 В. Нам также необходимо компенсировать это значение.

Итак, математически:

Это означает, что мы должны выбрать трансформатор со значением вторичного напряжения, равным 9 В или как минимум на 10% больше, чем 9 В.

Исходя из этого, для конструкции блока питания 5 В постоянного тока мы можем выбрать трансформатор с номинальным током 1 А и вторичным напряжением 9 В. Почему ток 1А? Поскольку IC регулятора имеет номинальный ток 1 А, это означает, что мы не можем пропускать ток, превышающий это значение.Выбор трансформатора с номинальным током выше этого потребует дополнительных денег. И нам это не нужно.

Шаг 3: Выбор диодов для моста

Как вы видите на принципиальной схеме, схема выпрямителя состоит из нескольких диодов. Чтобы сделать выпрямитель, нам нужно подобрать для него подходящие диоды. При выборе диода для мостовой схемы. Имейте в виду выходной ток нагрузки и максимальное пиковое вторичное напряжение трансформатора i-e 9В в нашем случае.

Вместо отдельных диодов вы также можете использовать один отдельный мост, который поставляется в корпусе IC. Но я не хочу, чтобы вы использовали его здесь, просто для изучения и игры с отдельными диодами.

Выбранный диод должен иметь номинальный ток больше, чем ток нагрузки (т.е. в данном случае 500 мА). И пиковое обратное напряжение (PIV) больше пикового вторичного напряжения трансформатора

Мы выбрали диод IN4001, потому что он имеет номинальный ток на 1 А больше, чем мы желаем, и пиковое обратное напряжение 50 В.Пиковое обратное напряжение — это напряжение, которое диод может выдерживать при обратном смещении.

Шаг 4: Выбор сглаживающего конденсатора и расчеты

При выборе подходящего конденсаторного фильтра необходимо учитывать его напряжение, номинальную мощность и значение емкости. Номинальное напряжение рассчитывается от вторичного напряжения трансформатора.

Практическое правило: номинальное напряжение конденсатора должно быть как минимум на 20% больше, чем вторичное напряжение. Итак, если вторичное напряжение составляет 13 В (пиковое значение для 9 В), то номинальное напряжение конденсатора должно быть не менее 50 В.

Во-вторых, нам нужно рассчитать правильное значение емкости. Это зависит от выходного напряжения и выходного тока. Чтобы найти правильное значение емкости, используйте формулу ниже:

Где,

Io = ток нагрузки, т.е. 500 мА в нашей конструкции, Vo = выходное напряжение, т.е. в нашем случае 5 В, f = частота, т.е.50 Гц

В нашем случае:

Частота 50 Гц, потому что в нашей стране переменный ток 220 @ 50 Гц.У вас может быть сеть переменного тока 120 В при 60 Гц. Если да, то укажите значения соответственно.

Используя формулу конденсатора, практическое стандартное значение, близкое к этому значению, i-e 3.1847E-4, составляет 470 мкФ.

Другая важная формула приведена ниже. Это также можно использовать для расчета емкости конденсатора.

В данном случае R — это сопротивление нагрузки

. Rf — коэффициент пульсации, который должен быть менее 10% для хорошей конструкции. И на этом мы почти закончили с дизайном блока питания на 5 В.

Шаг 5. Обеспечение безопасности источника питания

Каждая конструкция должна иметь защитные приспособления для защиты от возгорания. Точно так же наш простой источник питания должен иметь один, то есть входной предохранитель. Входной предохранитель защитит наш источник питания в случае перегрузки.

Например, наша желаемая нагрузка может выдержать 500 мА. Если в случае, если наша нагрузка начнет плохо себя вести, есть вероятность заусенцев компонентов. Предохранитель защитит нашу поставку.

Практическое правило при выборе номинала предохранителя: он должен быть как минимум на 20% больше, чем ток нагрузки.

Разработанный нами простой блок питания способен выдавать ток 1 А, что в некоторых случаях может быть использовано. Если вы решили использовать его для таких случаев, то не забудьте прикрепить к микросхеме регулятора радиатор.

Больше удовольствия с электроникой

Электроника — это очень весело. Как только вы окунетесь в мир электроники, у вас всегда есть чем заняться.

Если вам нравится делать электронику своими руками, вам понравился этот пост, вы узнали все концепции дизайна, а теперь хотите создать свой собственный проект источника питания DIY.Вы хотите спаять и поиграть со всеми вышеупомянутыми компонентами, затем проверьте это, комплект источника питания Elenco (Amazon Link), вам будет интересен.

Кроме того, есть забавная книга под названием Make Electronics: Learning through discovery (Amazon link), , которая научит вас многим классным электронным устройствам на практике. Если вы найдете эту книгу интересной, попробуйте, и вы многому научитесь.

Заключение

Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам разработать собственный лабораторный источник питания.

Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания.

Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в ​​безопасной среде. Это похоже на обучение на практике

Не указывайте только источник питания 500 мА. Это может быть ваш источник питания 5 В постоянного тока с допустимым током до 500 мА. И это было то, что я знаю, как проектировать источник питания постоянного тока на 5 Вольт.

Надеюсь, это была вам какая-то помощь.

Спасибо и удачной жизни.


Прочие полезные сообщения

Учебное пособие по проектированию регуляторов

5V — как это работает, как проектировать печатную плату Altium

Регулятор напряжения. Узнайте, как сделать стабилизатор 5 В с использованием конденсаторов, стабилизатора LM7805 и диода Шоттки, узнайте, как работает схема, а также как построить свою собственную печатную плату, как заказать печатную плату и как спаять электронные компоненты платы вместе.

Прокрутите вниз, чтобы просмотреть обучающее видео на YouTube.

Вот что происходит, когда мы подаем большое напряжение на наши электронные компоненты.

Компоненты перегорят и даже взорвутся. Чтобы это остановить, нам понадобится один из них.

Регулятор напряжения. И мы собираемся показать вам, как это работает, как создать такую ​​плату и даже превратить ее в полностью работающую печатную плату профессионального вида, которую можно использовать в качестве источника питания и даже для зарядки телефона.Вы даже можете скачать копию нашей печатной платы ЗДЕСЬ .

Проектирование схемы

Назначение регулятора напряжения — поддерживать постоянное выходное напряжение даже при изменении входного напряжения. Почему это важно? Потому что электронные компоненты рассчитаны только на определенное напряжение.

Возьмем, к примеру, этот светодиод, если мы подключим его к батарее на 9 вольт, он мгновенно выйдет из строя навсегда. Это из-за тонкого провода внутри светодиода.Под микроскопом мы видим, что напряжение протолкнуло слишком много электронов через провод, что привело к его перегоранию. Для защиты светодиода нам понадобится резистор. Это уменьшит ток.

Это всего лишь резистор на 10 Ом, который подключен к нашему источнику переменного тока постоянного тока. Когда мы подаем небольшое напряжение, мы видим, что светодиод в порядке, но когда мы увеличиваем его, резистор загорается, и светодиод будет разрушен. Таким образом, использование резистора работает хорошо, но напряжение должно оставаться довольно постоянным.Поэтому нам нужен способ обеспечить постоянное выходное напряжение даже при изменении входного напряжения. Допустим, мы хотим поддерживать постоянное напряжение 5 В постоянного тока и ток, достаточный для зарядки простого дешевого телефона. Мы хотим иметь возможность подключать его к нескольким источникам напряжения, таким как батареи на 9 вольт или, возможно, на 12 вольт. Для этого нам нужно использовать компонент интегральной схемы. Есть много вариантов на выбор, которые могут работать при разных напряжениях, но в результате небольшого исследования мы нашли это. Модель LM7805.

Он может поддерживать постоянный выходной ток 5 вольт и ток до 1,5 ампер. Этот компонент может быть подключен к любому источнику постоянного напряжения от 7 до 35 вольт. Так что он идеально подходит для наших нужд. Имеет три контакта. Первый контакт — это вход для нерегулируемого напряжения. Контакт 2 — это контакт заземления, а контакт 3 — это регулируемый выход 5 В. Производитель рекомендует наличие конденсатора на входе и выходе. Он отмечает, что входной конденсатор необходим, если регулятор находится далеко от фильтра источника питания.Мы собираемся использовать несколько длинных проводов для подключения батареи, поэтому мы будем использовать рекомендуемый конденсатор 0,22 мкФ. Это электролитический конденсатор. Мы можем использовать версию с чуть большей емкостью, но мы не хотим использовать меньшую. Конденсатор поможет сгладить перебои в питании, а также низкочастотные искажения. В этом простом примере вы можете увидеть, как светодиод мгновенно выключается при отключении питания. Но если мы разместим конденсатор параллельно светодиоду, светодиод останется включенным, потому что теперь конденсатор разряжается и питает светодиод.

Значит, прерывания работы светодиода практически не влияют. Мы собираемся добавить еще один конденсатор параллельно на входной стороне. Это байпасный конденсатор. Он расположен очень близко к входному контакту регулятора. Это будет небольшой керамический конденсатор емкостью 0,1 мкФ. Этот конденсатор предназначен для фильтрации шума и высокочастотных искажений от источника питания. Поскольку мы не всегда можем получить идеально ровный источник постоянного тока. Мы также добавим еще один байпасный конденсатор 0,1 мкФ на выходной стороне, а также электролитический конденсатор на 10 мкФ.Это просто типичное значение, используемое для этой цели. При желании мы могли бы использовать конденсатор с чуть большей емкостью, но это будет работать нормально. Это поможет обеспечить чистый выход в нашей подключенной цепи. Мы также добавим защитный диод на входной стороне. Это поможет защитить схему, если мы подключим блок питания неправильно. Чтобы показать, как это работает, если мы подключим эту лампу накаливания к источнику питания, она загорится. Мы можем поменять местами провода, и он тоже загорится.Если мы поместим диод на красный провод и подключим его к плюсу, он снова загорится. Но теперь, когда мы меняем местами провода, диод блокирует ток, а лампа остается выключенной. Таким образом, мы можем использовать это для защиты цепи. Мы можем использовать выпрямительный диод или диод Шоттки. Здесь вы можете увидеть, как мы разместили два светодиода, каждый из которых подключен к разному типу диода. Когда мы медленно увеличиваем напряжение, мы видим, что светодиод, подключенный к выпрямительному диоду, не такой яркий. Это потому, что у этого типа диодов большое падение напряжения.Если мы измеряем через диод Шоттки, у нас будет падение напряжения около 0,3 вольт, а у выпрямителя — около 0,66 вольт. Поэтому для этого случая лучше использовать диод Шоттки. Теперь мы можем разложить все эти компоненты на макете, чтобы протестировать его, как мы это делали здесь. И как только мы будем счастливы, что это работает, теперь мы можем превратить это в печатную плату.

Проектирование печатной платы

Мы собираемся использовать Altium Designer для этого руководства, поскольку они любезно спонсировали эту статью.Все наши зрители могут получить бесплатную пробную версию этого программного обеспечения, перейдя по ссылке ЗДЕСЬ . Итак, откройте Altium Designer и нажмите «Файл», «Новый проект» и дайте проекту имя. Щелкните проект правой кнопкой мыши и добавьте схему, затем щелкните еще раз правой кнопкой мыши и добавьте плату. Теперь щелкните схему правой кнопкой мыши и сохраните ее. Дайте ему то же имя, что и проект. Затем также щелкните правой кнопкой мыши на плате и сохраните ее с тем же именем. Теперь нам нужно добавить компоненты. Мы можем использовать инструмент компонентов справа, но мы собираемся использовать надстройку, которая сделает это немного проще.Итак, мы находим нужные нам детали, мы используем Mouser, но вы можете использовать все, что захотите. Мы обнаружили конденсатор на 22 мкФ, поэтому берем этот номер детали, вставляем его в загрузчик библиотеки и нажимаем поиск. Затем он находит компонент, и мы нажимаем «добавить в дизайн». Он разместит компонент в нижнем углу, поэтому нам просто нужно переместить его на место. Затем мы переименовываем компонент, чтобы нам было проще. Теперь мы делаем то же самое для другого входного конденсатора, копируем номер детали и ищем его, затем добавляем, перемещаем и переименовываем.Затем мы находим регулятор и добавляем его в нашу конструкцию, а затем мы находим защитный диод и добавляем его в нашу конструкцию. Кстати, мы используем этот, но мы рекомендуем вам выбрать тот с более высоким пределом тока.

Затем мы находим выходной конденсатор, добавляем его и переименовываем. Теперь нам нужно найти клеммы подключения, и мы это тоже добавляем. Теперь нам нужен еще один конденсатор на розетке, поэтому мы выбираем существующий, копируем и вставляем его, а затем перемещаем на место.То же самое проделываем и с типом разъема на входной стороне. Теперь мы просто вращаем компоненты, поэтому выберите входной соединитель и нажмите клавишу пробела, чтобы повернуть его. Затем мы вращаем диод, затем мы можем вращать конденсаторы, но убедитесь, что символ «плюс» всегда идет к положительному источнику питания. Другие керамические конденсаторы не имеют полярности, поэтому они могут быть установлены в любую сторону, но мы сохраним ее в этом порядке. Затем мы вращаем регулятор и также перемещаем текст, затем вращаем следующий конденсатор и другой конденсатор.А теперь мы просто перемещаем компоненты на свои места. Теперь щелкните инструмент для проводов и начните соединять компоненты вместе, подводя заземляющий провод к регулятору. Затем мы добавляем к этому проводу символ заземления. Теперь используйте инструмент для проводов, чтобы также подключить выходную сторону. Теперь добавьте аннотацию для входного источника питания, которая является VCC, затем добавьте аннотацию для 5 вольт на выходной стороне и переименуйте ее. Затем мы можем добавить текст для «входного напряжения», а также «выходного напряжения». Теперь нам нужно пронумеровать компоненты, поэтому нажмите «Инструменты», «Аннотации», «Аннотировать схему».Затем выберите «Вниз», затем «Через», а затем обновите список изменений, нажмите «ОК», примите изменения, затем подтвердите изменения. Затем внесите изменения и закройте. Теперь мы видим, что все компоненты пронумерованы. Затем нам нужно проверить дизайн. Итак, нажмите «Проект», а затем «Подтвердить проект». Если мы нажмем «Просмотр», «Панели», а затем «Сообщения», это сообщит нам, что компиляция прошла успешно без ошибок. Итак, теперь щелкните PCB и щелкните Design, а затем импортируйте изменения. Затем подтвердите изменения и нажмите «Выполнить изменения».Компоненты размещаются в нижнем углу, просто щелкните поле и удалите его. Глядя на нашу схему, у нас есть коннектор J1 на входе, поэтому мы его переместим. Затем у нас есть диод, конденсатор 1 и конденсатор 2, поэтому мы их тоже переместим. Затем у нас есть регулятор, затем у нас есть конденсаторы 3 и 4, а затем у нас есть выходной разъем. Теперь мы вращаем компоненты, чтобы проложить путь, по которому течет наше электричество. Мы можем переключиться в режим 3D, чтобы проверить, как это выглядит. Затем мы можем выровнять компоненты, чтобы улучшить внешний вид.Теперь щелкните здесь и в новом окне выберите механический слой. Щелкните правой кнопкой мыши и создайте новый слой, назовите его Cut Out. Измените настройки, а затем закройте. Теперь выберите свой слой внизу, затем нажмите Edit, Origin и Set. Затем щелкните верхний угол печатной платы. Теперь нажмите «Поместить» и «Выбрать линию». Проведите линию вокруг компонентов. Затем, удерживая Shift, щелкните по 4 линиям. Затем нажмите «Дизайн», «Форма платы» и «Определить форму». Затем мы можем увидеть это в 3D. Теперь мне нужно просто изменить размер текста, чтобы он не печатался слишком большим.Теперь нажмите на верхний слой и вставьте текст, и мы назовем его 5 вольт, и мы можем просто повернуть его. То же самое проделаем и с основным текстом. Глядя на входную сторону платы, мы только что осознали, что входной разъем расположен не так, мы видим, что в трехмерном представлении мы просто пропустили это ранее, поэтому мы просто исправим это сейчас. Затем мы добавляем на плату землю и текст VCC. Теперь нажмите Route, Auto Route и выберите All. Затем он добавляет наш маршрут на доску. Мы также можем переместить маршрут, если захотим.Теперь мы переходим в Инструменты и Проверка правил. Нажмите «Выполнить», он загрузит отчет и сообщит нам, что у нас есть две проблемы с зазором мачты шелка и припоя. Мы выбираем Design, Rules, Silk to Mask, затем меняем значение, нажимаем Apply, Ok, затем снова запускаем проверку правил. Теперь мы видим, что ошибок нет. Теперь мы можем видеть маршрут и в 3D-дизайне. Так что давайте сохраним это. Щелкните схему, затем щелкните Файл, Smart PDF, затем выберите схему. Мы отключаем спецификацию материалов, но вы можете оставить ее, если хотите.Нажмите Готово, и он сгенерирует PDF-файл с нашим дизайном, закройте его, а затем нажмите на выход Fabrication, выберите файлы Gerber, а затем выберите проект. Теперь щелкните по нему и измените его на Миллиметры, затем на слоях вы можете оставить все как есть, но мы собираемся выбрать все слои и нажать ОК. Нажмите на структуру папок, затем свяжите файл, нажмите «Создать» и все. Были сделаны! Мы готовы напечатать нашу печатную плату.

Изготовление печатной платы.

Теперь нам нужно заказать нашу печатную плату.Мы используем JLCPCB, который также любезно спонсировал эту статью. Они предлагают исключительную стоимость с 5 печатными платами всего за 2 доллара, проверьте ЗДЕСЬ . Мы просто меняем пункт назначения и валюту доставки в Великобританию, поскольку именно там мы находимся, но вы можете выбрать свою страну и валюту. Теперь мы просто загружаем наши файлы Gerber, и он производит предварительный просмотр. У нас есть несколько вариантов настройки продукта, мы выберем количество, а затем оставим остальные по умолчанию.Затем мы сохраним это в тележке и сразу перейдем к оформлению заказа. Мы можем выбрать вариант пересылки, чтобы снизить стоимость, но мы хотим сделать это очень быстро, поэтому собираемся заказывать через DHL Express. Затем мы просто отправляем заказ, оплачиваем и все. Просто, готово. Несколько дней спустя наша печатная плата прибыла по почте от JLCPCB, готовая для сборки. Надо сказать, это выглядит потрясающе, мы очень довольны этим сервисом. Не забывайте, что вы также можете бесплатно скачать копию нашей печатной платы ЗДЕСЬ .

Собираем печатную плату

Сборка печатной платы довольно проста. Мы просто выкладываем наши компоненты, и нам нравится размещать их по порядку на этом паяльном коврике. Мы также используем этот держатель, чтобы с ним было немного легче работать. Затем вставляем компоненты и начинаем их паять по одному. Просто слегка согните ноги, чтобы удерживать их на месте. Когда вы паяете компоненты на место, просто осмотрите паяные соединения, чтобы убедиться, что все в порядке, а затем вы можете обрезать выводы. А через несколько минут мы получим готовую печатную плату, готовую к тестированию.

Тестирование печатной платы

Для проверки печатной платы мы подключили к источнику питания 9-вольтную батарею. А мультиметр на розетке показывает 5 вольт. Если перевернуть батарею, мы увидим на мультиметре 0 вольт. Итак, диод защищает нашу схему. Мы довольны этим, поэтому возлагаем на него небольшую нагрузку, и он отлично работает. Теперь для настоящего теста мы подключаем USB-порт к розетке и подключаем дешевый телефон. Мы видим, что 9-вольтовая батарея заряжает устройство. Используя USB-тестер, мы видим, что он поставляет 4.6 вольт и потребляемый ток 0,26 ампер. Так что он работает отлично.


Регулятор

— 7805, 5 В, 1 А, линейный регулятор напряжения

Абсолютное макс. Входное напряжение 35 В постоянного тока
Абсолютное макс. Рабочая температура перехода +150 ° C
Абсолютное макс. Рассеиваемая мощность Внутреннее ограничение
Абсолютное макс.Диапазон температур хранилища от -65 до +150 ° C
Абсолютное макс. Температурное сопротивление, переход от границы к окружающей среде 65 ° C / Вт
Абсолютное макс. Тепловое сопротивление переход-к-корпусу 5,0 ° C / Вт
Макс. Стабилизация линии 7,5 В постоянного тока ≤ Vin ≤ 20 В постоянного тока, 1,0 A 20 мВ
Макс. Регулировка линии 8,0 В постоянного тока ≤ Vin ≤ 12 В постоянного тока 10 мВ
Макс.Регулировка нагрузки 5,0 мА ≤ IO ≤ 1,0 A 25 мВ
Макс. Регулировка нагрузки 5,0 мА ≤ IO ≤ 1,5 A (TA = 25 ° C) 25 мВ
Макс. Выходное напряжение (5,0 мА ≤ IO ≤ 1,0 A, PD ≤ 15 Вт) 7,0 В постоянного тока ≤ Vin ≤ 20 В постоянного тока 5,25 В постоянного тока
Макс. Выходное напряжение (TJ = 25 ° C) 5,2 В постоянного тока
Макс. Ток покоя 6,5 мА
Макс.Изменение тока покоя 5,0 мА ≤ IO ≤ 1,0 A (TA = 25 ° C) 0,8 мА
Макс. Изменение тока покоя 7,0 В постоянного тока ≤ Vin ≤ 25 В постоянного тока 1,0 мА
Мин. Выходное напряжение (5,0 мА ≤ IO ≤ 1,0 A, PD ≤ 15 Вт) 7,0 В постоянного тока ≤ Vin ≤ 20 В постоянного тока 4,75 В постоянного тока
Мин. Выходное напряжение (TJ = 25 ° C) 4,8 В постоянного тока
Мин. Подавление пульсаций 8,0 В постоянного тока ≤ Vin ≤ 18 В постоянного тока, f = 120 Гц 62 дБ
Упаковка TO-220
Тип.Средний температурный коэффициент выходного напряжения -0,3 мВ / ° C
Тип. Падение напряжения (IO = 1,0 A, TJ = 25 ° C) 2,0 В постоянного тока
Тип. Стабилизация линии 7,5 В постоянного тока ≤ Vin ≤ 20 В постоянного тока, 1,0 А 0,5 мВ
Тип. Стабилизация линии 8,0 В постоянного тока ≤ Vin ≤ 12 В постоянного тока 0,8 мВ
Тип. Регулировка нагрузки 5,0 мА ≤ IO ≤ 1,0 A 1,3 мВ
Тип.Регулировка нагрузки 5,0 мА ≤ IO ≤ 1,5 A (TA = 25 ° C) 1,3 мВ
Тип. Выходное шумовое напряжение (TA = 25 ° C) 10 Гц ≤ f ≤ 100 кГц 10 мкВ / В O
Тип. Выходное сопротивление f = 1,0 кГц 0,9 мОм
Тип. Выходное напряжение (5,0 мА ≤ IO ≤ 1,0 A, PD ≤ 15 Вт) 7,0 В постоянного тока ≤ Vin ≤ 20 В постоянного тока 5,0 В постоянного тока
Тип. Выходное напряжение (TJ = 25 ° C) 5.0 В постоянного тока
Тип. Пиковый выходной ток (TJ = 25 ° C) 2,2 A
Тип. Ток покоя 3,2 мА
Тип. Изменение тока покоя 5,0 мА ≤ IO ≤ 1,0 A (TA = 25 ° C) 0,08 мА
Тип. Изменение тока покоя 7,0 В постоянного тока ≤ Vin ≤ 25 В постоянного тока 0,3 мА
Тип. Подавление пульсаций 8,0 В постоянного тока ≤ Vin ≤ 18 В постоянного тока, f = 120 Гц 83 дБ
Тип.Предел тока короткого замыкания (TA = 25 ° C) Vin = 35 В постоянного тока 0,6 A

Преобразователь из 9 В в 5 В — 4 простые схемы

Перед тем, как перейти к схеме преобразователя 9 В в 5 В с использованием другой схемы, давайте поговорим немного об этом.

Широкому спектру ИС и устройств требуется источник постоянного тока 5 В для правильной работы. При работе с аккумуляторным питанием 9 В становится довольно сложно получить для схем источник питания постоянного тока 5 В. Вот простые схемы, которые обеспечивают + 5В от 9В радиобатареи.Я перечислил все возможные схемы, но их применение отличается от схемы к схеме.

проверьте здесь: Схема преобразователя 12В в 6В

Эти схемы представляют собой базовые регуляторы напряжения, первая — простой делитель напряжения с резисторами.
Все схемы имеют разную производительность. Схема делителя напряжения не рекомендуется для использования в сильноточных приложениях, поскольку она имеет низкий выходной ток и меньшую эффективность.

Преобразователь 9В в 5В с использованием делителя напряжения:

Схема, показанная здесь, представляет собой схему для приложений с низким током (1-30 мА) , предположим, что мы должны взять опорное напряжение для сравнения или схему с очень низким током светодиодный индикатор.

Вы можете подключить два светодиода последовательно к выходу резистора R2, если вы используете 9-вольтовую батарею в качестве входа.

Необходимые компоненты:

Одна батарея 9 В, резистор 1,5 кОм, резистор 1,2 кОм, несколько разноцветных соединительных проводов.

Это простая конфигурация делителя напряжения. Вы можете рассчитать выходное напряжение в соответствии с вашими потребностями, используя следующую формулу:

Где, Vo — это напряжение на резисторе R2.Vin — входное напряжение. Выберите любое сопротивление резистора R1 или R2 (более 1 кОм) и рассчитайте другое. Затем выберите ближайшее стандартное значение резистора.

Преобразователь 9В в 5В с использованием стабилитрона:

Схема, показанная ниже, предназначена для приложений среднего тока, она полезна для цепи среднего тока (1-100 мА) , например. Светодиодные индикаторы, схемы управления, транзисторные переключатели, схемы LDR.

Используйте эту схему преобразователя 9В в 5В (понижающую) с любой другой схемой, параллельной выходу стабилитрона (с батареей 9В в качестве входа).Вы получите ок. 5В на выходе.

Важно:
Нагрузка должна быть постоянно подключена к выходному концу во время тестирования или при использовании ее в цепи, чтобы предотвратить повреждение стабилитрона.

Необходимые компоненты:
Одна батарея 9 В, резистор 100 Ом (≥22 Ом), стабилитрон 5,1 В (≥1 Вт), некоторые провода или разъемы.

Рабочий:
Это наиболее распространенная схема стабилитрона в конфигурации регулятора напряжения.Вы заставляете выходное напряжение работать в соответствии с вашими требованиями, изменяя номиналы стабилитрона и Rs (последовательный резистор).

Конструкция стабилизированного источника питания «Vo» должна производиться от источника питания постоянного тока «Vs». Максимальная номинальная мощность стабилитрона P Z указывается в «Вт». Используя схему стабилитрона и рассчитайте по следующим формулам:

Максимальный ток, протекающий через стабилитрон.
Id = (Вт / напряжение)

Минимальное значение резистора серии R S .
Rs = (Vs — Vz) / Iz

Ток нагрузки I L , если резистор нагрузки 1 кОм подключен к стабилитрону.
I L = V Z / R L

Ток стабилитрона I Z при полной нагрузке.
Iz = Is — I L

Где,
I L = ток через нагрузку
Is = ток через резистор серии Rs
Iz = ток через стабилитрон (предположим, 10-20 мА, если не указан)
Vo = V R = Vz = напряжение стабилитрона = выходное напряжение
R L = Нагрузочный резистор

LM7805 Преобразователь 9В в 5В:

Стабилизатор напряжения 9В в 5В может быть реализован с понижающим преобразователем напряжения LM7805 .Он используется для приложений среднего и высокого тока (от 10 мА до 1 А и более).
Уникальность этой схемы заключается в ее способности обеспечивать такой же выходной ток, как и на входе.

Важно:
Необходимо подключить входной конденсатор и выходной конденсатор к IC 7805 для работы, как указано в таблице данных. Радиатор необходим, потому что падение напряжения в 4 вольта должно рассеиваться в виде тепла через радиатор.

Отсутствие радиатора приведет к разрушению ИС, и вы получите поврежденную ИС. Входное напряжение должно быть как минимум на 2,5 В выше номинального выходного напряжения.

Необходимые компоненты:
Одна батарея 9 В / адаптер питания 9 В, конденсатор 10 мкФ, конденсатор 0,1 мкФ, микросхема LM7805, радиатор, некоторые провода или разъемы и паяльник.

Рабочий:

Для получения стабильного и надежного выходного напряжения используются микросхемы регуляторов напряжения.Интегральные схемы, которые предлагают линейное преобразование и регулирование напряжения, часто называют трансформаторными ИС. Здесь мы обсудили преобразователь постоянного тока 9В в 5В с использованием IC 7805.

Трансформатор IC 7805 является частью серии трансформаторных ИС LM78xx. Это ИС линейного трансформатора. Цифры «xx » представляют значение регулируемого выходного напряжения. Микросхема 7805 выдает 5 В постоянного тока в виде цифры xx , показывающей (05). Входное напряжение может достигать 35 В, а выходное напряжение будет постоянным 5 В для любого значения входа.

Контакт 1 — это клемма питания входа . Контакт 2 — это клемма заземления . Контакт 3 — это выход для выхода источника питания .

Посмотрите это видео для справки: (входной конденсатор не используется, но рекомендуется, также значения конденсатора могут отличаться в зависимости от наличия и в зависимости от области применения)

LM317 9v Преобразователь в 5 В:

Преобразователь 9 В в 5 В постоянного тока также может быть реализован с регулятором напряжения LM317.Это полезно в приложениях со средним и высоким током (1 А и более).
Эта схема также может обеспечивать такой же выходной ток, как на входном конце.

Как правило, LM317 используется в качестве источника переменного тока, который может обеспечивать переменное выходное напряжение (от 1,25 В до 37 В) в зависимости от регулировки напряжения на контакте № 1 (Adjust), которое является опорным напряжением, снимаемым с потенциометра. Вот схема делителя напряжения, с помощью которой LM317 выдает фиксированное выходное напряжение 5 В.

Важно:
Рекомендуется подключить входной конденсатор (также выходной конденсатор).Радиатор должен быть там, чтобы отводить дополнительную разность потенциалов в виде тепла через радиатор.

Наличие радиатора является обязательным, иначе он разрушит ИС, и ИС выйдет из строя. Входное напряжение должно быть как минимум на 1,5 В выше номинального выходного напряжения.

Необходимые компоненты:
Одна батарея 9 В / источник питания 9 В, резистор 10 кОм, резистор 2,7 кОм, конденсатор 10 мкФ, конденсатор 0,1 мкФ, IC LM317, радиатор, некоторые провода и паяльник.

Рабочий:
LM317 — это регулируемый регулятор напряжения IC, способный подавать ток более 1,0 А с широким диапазоном выходного напряжения от 1,25 В до 37 В. Его регулировка намного лучше, чем у микросхем фиксированного стабилизатора напряжения, таких как LM7805, LM7806, LM7808, LM7810 и т. Д.

Это формула для выходного напряжения преобразователя 9В в 5В с использованием LM317. Это дает приблизительный требуемый выход, когда R1 и R2 выбраны так, чтобы удовлетворять формуле.

Введите любое стандартное значение любого резистора (выше 100 Ом, но рекомендуется более высокое значение), также введите значение требуемого выходного напряжения в приведенную выше формулу и затем найдите значение другого резистора.

* Перед применением этой схемы преобразователя 9В в 5В в проектах проверьте выходные напряжения, чтобы убедиться в правильной работе схем. Значение тока, указанное в статье, носит справочный характер, так как значение тока зависит от сопротивления нагрузки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *