Posted on

Содержание

Особенности выбора релейного стабилизатора напряжения

Релейный стабилизатор напряжения картинка

24.04.2019

В настоящее время на рынке электропитания представлено несколько типов стабилизаторов напряжения, каждый из которых имеет свои особенности работы и принцип защиты нагрузки от проблем в электросети. Релейный стабилизатор является одним из них. Несмотря на немалое количество недостатков, обусловленных конструкцией и принципом действия, данное устройство до сих пор довольно часто выбирают для электрозащиты бытовой техники. В основном покупателей привлекает невысокая стоимость прибора.

Однако, даже если приоритетным критерием при выборе приборе является цена, очень важно понимать технические возможности и особенности релейного стабилизатора до совершения покупки и подключения защищаемой нагрузки. Именно этому и посвящена данная статья. Мы рассмотрим подробнее устройство релейного стабилизатора напряжения, особенности его конструкции и принципа действия, их влияние на технические характеристики прибора и спектр допустимых к подключению к нему нагрузок.

Устройство релейного стабилизатора

Релейный стабилизатор напряжения состоит из следующих основных узлов:

  • силовой автотрансформатор – основа стабилизатора, выполняет коррекцию напряжения;
  • электронная схема управления – осуществляет измерение параметров питающей сети и самого устройства, управляет работой силовых реле;
  • блок силовых реле – выполняет переключение трансформаторных витков таким образом, чтобы обеспечить номинальные выходные параметры напряжения;
  • средства мониторинга – светодиодные индикаторы, ЖК-дисплей, популярные интерфейсы для организации удаленного управления и мониторинга.

Автотрансформатор – это разновидность трансформатора напряжения с электрически связанными первичной и вторичной обмотками. Вторичная обмотка имеет несколько отводов от катушки – выводов, напряжение на которых будет разным при одинаковом значении первичного напряжения. Разность напряжений на выводах секций катушек обусловлена соответствующим коэффициентом трансформации устройства, напрямую зависящим от количества задействованных в преобразовании витков обмотки.

Принцип действия релейного стабилизатора

Работа релейного стабилизатора в общих чертах может быть описана следующим образом:

  1. Напряжение на входе проходит через фильтр подавления помех и измеряется электронной схемой. Затем показатели сетевого напряжения сравниваются с номинальным значением, которое должно быть на выходе.

  2. При недопустимом отклонении значения напряжения в сети от номинального, электронная схема формирует сигнал на включение определенных силовых реле, коммутацией которых будет обеспечен необходимый коэффициент трансформации. За счет этого на выходе сформируется значение напряжения, максимально приближенное к номинальному.

  3. Электронная схема может остановить работу стабилизатора при возникновении коротких замыканий, токовых перегрузок, длительных импульсов или несоответствии фактического напряжения в сети значениям рабочего диапазона входного напряжения стабилизатора.

Схема релейного стабилизатора напряжения картинка

Особенности релейного стабилизатора напряжения

Благодаря простоте конструкции релейный стабилизатор компактен, его эксплуатация осуществляется без специального обслуживания. Такой прибор не издает сильного шума при работе, за исключением щелчков в момент срабатывания. Как правило, стабилизаторы этого типа неприхотливы и сохраняют работоспособность в широком температурном диапазоне. Риск перегрева во время работы сводится к минимуму.

Однако с конструктивными особенностями релейного стабилизатора связан и ряд недостатков. Так как регулировка напряжения происходит за счет механического перемещения реле, прибор срабатывает не мгновенно. Время реакции на резкий скачок напряжения может составлять около 10-20 мс. Казалось бы, немного, но для сложной современной техники, например, компьютерного или отопительного оборудования, этого может оказаться достаточно для возникновения сбоев.

Если через стабилизатор подключены осветительные приборы, момент срабатывания можно заметить невооруженным глазом: свет может мигать в момент переключения реле. Кроме того, при длительной эксплуатации стабилизатора реле могут оказаться его слабым местом: при частых срабатываниях они быстро изнашиваются, в особенности у стабилизаторов дешевых моделей.

Если через стабилизатор подключены осветительные приборы, момент срабатывания можно заметить невооруженным глазом: свет может мигать в момент переключения реле. Кроме того, при длительной эксплуатации стабилизатора реле могут оказаться его слабым местом: при частых срабатываниях они быстро изнашиваются, в особенности у стабилизаторов дешевых моделей.

Преимущества и недостатки релейных стабилизаторов

Преимущества

Недостатки

  • Простота конструкции.

  • Компактность.

  • Отсутствие требований в специальном обслуживании при эксплуатации.

  • Высокая стойкость к перегрузкам.

  • Не требует специального охлаждения.

  • Широкий диапазон рабочей температуры внешней среды (-20 — +40).

  • Возможность работы с нулевой нагрузкой.

  • Небольшая стоимость.

  • Ступенчатая неплавная коррекция напряжения.

  • Медленная реакция на резкие перепады напряжения (10-20 мс).

  • Низкая точность стабилизации – 5-10% (зависит от количества используемых силовых реле).

  • Шум при работе (характерные щелчки от срабатываний реле являются серьезным ограничением в размещении устройств в жилых помещениях).

  • Наличие механических деталей в силовых реле (негативно влияют на срок службы).

Сферы применения релейных стабилизаторов напряжения

Область применения релейных стабилизаторов определяется их техническими особенностями. Часто их выбирают в качестве недорогого способа защиты от перепадов напряжения бытовых приборов в квартире или загородном доме. Они привлекают внимание многих потребителей благодаря компактности и невысокой цене.

Однако возможности использования релейных стабилизаторов довольно сильно ограничены их недостатками: современные электронные устройства (компьютеры, аудиотехника, котлы с электронным управлением, системы безопасности) предъявляют более высокие требования к качеству входного напряжения, чем могут обеспечить стабилизаторы этого типа. В частности, их нельзя использовать для устройств, которые могут выйти из строя, если стабилизатор сработает с задержкой. Примерами такой нагрузки являются отопительные системы. Кроме того, щелчки, которые издает релейный стабилизатор при срабатывании, тоже могут оказаться нежелательными, особенно для дорогой аудиотехники.

Gde primenyaetsya relejnyj stabilizator.png

Критерии выбора релейного стабилизатора

Если вы решились на покупку релейного стабилизатора, то, чтобы правильно подобрать модель, необходимо руководствоваться следующими критериями:

  • выходной мощностью устройства;
  • скоростью и точностью коррекции выходного напряжения;
  • диапазоном рабочего напряжения;
  • перегрузочной способностью;
  • шумностью работы;
  • допустимой температурой эксплуатации;
  • способом установки.

Разберем подробнее некоторые из этих критериев.

Выходная мощность

Мощность устройства рекомендуется выбирать с учетом резерва в 20-30% от суммарной потребляемой мощности нагрузки. При наличии нагрузки с высокими пусковыми токами (например, электроприборов с электродвигателями) резерв по мощности целесообразно увеличить.

Диапазон рабочего напряжения

Современные релейные стабилизаторы достаточно хорошо работают в сетях с большой просадкой напряжения. Однако при частых значительных колебаниях от устройств этого типа лучше отказаться. Частота срабатываний силовых реле снижает их рабочий ресурс и, конечно, не увеличивает срок службы самих стабилизаторов.

Допустимая температура эксплуатации

Устройства этого типа, как правило, обладают широким диапазоном температуры эксплуатации, однако, при установке стабилизатора в неотапливаемом помещении следует убедиться, что показатели допустимых температур выбранной модели соответствуют фактическим условиям эксплуатации.

Скорость и точность коррекции выходного напряжения

Учитывая ступенчатость коррекции напряжения, рекомендуется выбирать устройства с большим количеством силовых реле. Большее число ступеней регулирования обеспечивает лучшую точность его работы.

Сравнение релейных и электронных стабилизаторов

Электронным и релейным устройствам характерна ступенчатость регулирования напряжения на выходе. Дискретность коррекции напряжения в стабилизаторах зависит от количества ступеней регулирования – это полупроводниковые ключи в электронных или электромеханические реле в релейных приборах.

Электронные устройства лучше использовать, когда требуется высокое быстродействие. Релейные аналоги значительно проигрывают по этому показателю — скорость коммутирования электромеханических реле гораздо ниже, чем электронных силовых ключей. К тому же, последние работают совершенно бесшумно в отличие от обычных реле, что делает их куда более пригодными для установки в жилых помещениях.

Большая надежность работы и длительность срока службы электронных стабилизаторов обусловлена полным отсутствием подвижных механических деталей в конструкции. Механика реле подвержена быстрому износу, что особенно проявляется при эксплуатации в сетях с крайне нестабильным сетевым напряжением.

Электронные устройства менее стойки к перегрузкам, которые могут быть причиной перегрева и выхода дорогостоящих силовых ключей из строя. Кроме того, электронные стабилизаторы могут сами вносить искажения в форму выходного сигнала.

Стоимость электронных стабилизаторов значительно выше, чем у релейных: последние в настоящее время стоят значительно дешевле, что делает их гораздо более предпочтительными для организации бюджетной защиты нагрузки, нетребовательной к качеству электропитания.

Характеристика

Релейный стабилизатор

Электронный стабилизатор

Средство переключения обмоток трансформатора

 Электромеханические реле

Полупроводниковые ключи

Тип регулировки напряжения

Дискретный

Дискретный

Быстродействие

Показатели хуже, реакция медленнее (10-20 мс), так как скорость коммутирования электромеханических реле ниже, чем электронных ключей.

Показатели лучше (5-10 мс), более быстрая реакция на изменения параметров напряжения.

Точность стабилизации

Низкая (5-10%)

Высокая (может достигать 3%)

Уровень шума

Издают щелчки от срабатываний реле.

Работают бесшумно

Надежность и длительность срока службы 

Показатели хуже из-за быстрого износа коммутационных реле.

Показатели лучше из-за полного отсутствия подвижных механических деталей в конструкции. 

Стойкость к перегрузкам

Показатели лучше, высокая стойкость к перегрузкам.

Показатели хуже, слабая перегрузочная способность из-за высокого риска выхода из строя дорогостоящих силовых ключей при перегреве.

Добавление искажений в выходной сигнал

Не вносят

Могут вносить

Цена

Невысокая стоимость

Высокая стоимость

Инверторный стабилизатор как альтернатива релейным

Если вы хотите надежно защитить электронные устройства, которыми пользуетесь в квартире или загородном доме, стоит рассмотреть возможность покупки более современных моделей стабилизаторов – инверторных.

Принцип действия этих приборов основан на современных технологиях, которые позволили устранить все недостатки, свойственные предыдущим поколениям стабилизаторов напряжения: устройства мгновенно реагируют на колебания входного напряжения и максимально точно выполняют его регулировку.

Инверторные стабилизаторы компактны и не издают шума при работе. Их преимущества заметны и при длительном использовании:

  • не имеют движущихся элементов, которые могли бы выйти из строя из-за механических повреждений;
  • оснащены автоматической защитой с восстановлением от перегрева, перегрузок, аварии в сети и короткого замыкания.

Все эти особенности делают инверторные стабилизаторы оптимальным решением для обеспечения качественного электроснабжения в квартире или загородном доме.

Более высокая цена, чем у релейных стабилизаторов, оправдана, ведь вы получаете более надежное и высокотехнологичное устройство, которое прослужит долго.

Читайте также:

Модельный ряд инверторных стабилизаторов «Штиль»

Преимущества релейных стабилизаторов напряжения «Бастион»

Стабилизатор релейного типа. Принцип работы

Принцип работы стабилизаторов напряжения релейного типа основан на методе ступенчатого регулирования выходного напряжения путем подключения необходимого числа обмоток трансформатора с помощью нескольких реле, управляемых электронным процессором или аналоговой схемой управления.

Использование такого принципа работы позволяет полностью исключить подвижные части в конструкции стабилизатора, что делает его работу более надёжной и быстрой.

Последовательность операций релейного стабилизатора следующая: на первом этапе стабилизатор релейного типа определяет уровень напряжения входного сигнала с помощью электронной схемы управления, на втором этапе электронная схема даёт команду на включения необходимых силовых реле для стабилизации напряжения на необходимом уровне.

Так как каждое реле подключает фиксированное количество обмоток трансформатора, то регулирование напряжения на выходе происходит ступенчато. Точность регулирования напряжения определяется числом силовых реле, установленных в стабилизаторе. Чем больше реле, тем выше будет точность регулирования выходного напряжения. Однако увеличение числа реле приводит к более частому срабатыванию реле, что сопровождается более частыми мини скачками напряжения.

Обычно релейные стабилизаторы имеют четыре реле. Что позволяет достичь точности регулирования в 8 процентов. Увеличение числа реле до шести даёт возможность улучшить точность до 5-6%.

Стабилизаторы релейного типа работают в широком диапазоне входного напряжения, имеют достаточную точность стабилизации выходного напряжения, не вносят искажений во внешнюю сеть, эффективно работают при значительных изменениях нагрузки, обеспечивают надежную защиту от перегрузки и короткого замыкания. Стабилизаторы релейного типа не вносят искажений в правильную форму выходного сигнала, не меняют частоту тока.

Стабилизаторы напряжения релейного типа эффективно защищают бытовые и промышленные приборы и оборудование, эффективны для защиты питания компьютерной техники и оборудования связи. Релейные стабилизаторы напряжения надежно работают с котлами отопления, циркуляционными насосами, холодильниками и кондиционерами. Не рекомендуется использовать стабилизаторы напряжения релейного типа для питания осветительных приборов, так как ступенчатый тип стабилизации приводит к заметному мерцанию ламп освещения.

Достоинства релейных стабилизаторов напряжения

Стабилизаторы напряжения релейного типа:

  • имеют сравнительно низкую стоимость и большой срок эксплуатации;

  • эффективно работают в широком диапазоне входного напряжения;

  • обеспечивают достаточную точность стабилизации напряжения для работы приборов и оборудования;

  • имеют высокую скорость срабатывания, примерная скорость стабилизации 100 — 200 Вольт в секунду;

  • обладают большой перегрузочной способностью, возможностью работы с оборудованием, имеющим высокие пусковые токи;

  • не вносят изменений в форму графика напряжения;

  • работоспособны в широком диапазоне температур;

  • имеют небольшие габариты и небольшой вес;

  • могут работать с нулевой нагрузкой.

Недостатки релейных стабилизаторов напряжения

Срок службы релейного стабилизатора существенно зависит от качества используемых реле. Точность стабилизации напряжения релейного стабилизатора не достаточна для использования их в системах освещения. Стабилизаторы напряжения релейного типа издают характерные щелчки при срабатывании реле.

Преимущества релейных стабилизаторов напряжения «Бастион»

Компания «Бастион» производит широкую линейку стабилизаторов напряжения релейного типа под торговыми марками TEPLOCOM и SKAT. Высокое качество стабилизаторов напряжения серии TEPLOCOM и SKAT обеспечивается эффективной системой контроля качества производителя. Стабилизаторы соответствуют всем требованиям ГОСТ РФ, требованиям ТС, европейским требованиям безопасности продукции.

Релейные стабилизаторы напряжения TEPLOCOM и SKAT:

  • эффективно работают в широком диапазоне входного напряжения от 140 до 290 Вольт;

  • имеют микропроцессорное управление, что позволяет эффективно и безопасно выполнять коммутацию обмоток трансформатора. Микропроцессорное управление помогает осуществлять коммутацию обмоток трансформатора в момент перехода графика напряжения через ноль, что позволяет существенно снизить износ силовых реле и исключить искрение на контактах реле;

  • имеют высокую скорость срабатывания за счет использования микропроцессорной платы управления;

  • обладают большой перегрузочной способностью, возможностью работы с оборудованием, имеющим высокие пусковые токи;

  • не вносят изменений в форму графика напряжения;

  • работоспособны в широком диапазоне температур. Выпускаются специальные уличные стабилизаторы напряжения, имеющие герметичное исполнение;

  • имеют маленькие габариты, низкий вес и современный дизайн;

  • могут работать с нулевой нагрузкой;

  • имеют несколько степеней защиты от аварии в сети или аварии по линии нагрузки. Приборы имеют эффективную защиту от высокочастотных электрических помех;

  • Стабилизаторы напряжения TEPLOCOM и SKAT имеют длительный заводской срок гарантии — 5 лет!



Читайте также:

Принцип работы стабилизатора напряжения | Электрика в доме

Принцип работы релейного стабилизатора напряжения

Работа всех типов стабилизаторов переменного напряжения заключается в поддержании выходного напряжения на уровне 220 В при сильном изменении входного напряжения. Работа релейного стабилизатора основана на переключении обмоток трансформатора мощными реле. При таком переключении обмоток выходное напряжение меняется ступенями.

При переключении с одной обмотки на другую, выходное напряжение трансформатора изменится приблизительно на 20 В, или больше. Команду на переключение обмоток трансформатора поступает с контроллера на реле. Число переключаемых обмоток может меняться от 5 до 10, которое определяет точность стабилизации выходного напряжения. В большинстве релейные стабилизаторы работают при входном напряжении 150 — 250 В.

К положительным качествам релейных стабилизаторов можно отнести небольшое время срабатывания реле и невысокую стоимость. Недостатком таких стабилизаторов является скачок напряжения при переключении обмоток на 20 Вольт. На бытовых электроприборах это не отражается, однако лампы освещения могут моргать. Еще релейный стабилизатор издает щелчки при переключении реле, которые ночью хорошо слышны.

Скачки напряжения при переключении обмоток трансформатора

В момент переключения контакты реле на время зависают в воздухе. В это время, хотя и короткое, нагрузка отключена, что вызывает ЭДС самоиндукции автотрансформатора. Эта ЭДС выражается в коротком импульсе напряжения, которое может достичь 1000 В. Такие импульсные помехи могут вызвать повреждение техники, особенно при многократном переключении обмоток стабилизатора.

Схема работы релейного стабилизатора

В этой ситуации нужно после релейного стабилизатора ставить ограничители напряжения на варисторах. Обмотка большинства автотрансформаторов намотана алюминиевым проводом, который имеет меньшую нагрузочную способность, чем медный. Контакты реле, особенно при большой нагрузке, искрят и подгорают, что вызывает необходимость их чистки. Релейные стабилизаторы имеют право на существование как недорогой вариант при больших перепадах сетевого напряжения.

Принцип работы симисторных стабилизаторов

Работа симисторных стабилизаторов похожа на работу релейных устройств. Отличие составляет узел переключения обмоток трансформатора.  Вместо реле у  симисторных устройств переключение обмоток происходит мощными симисторами или тиристорами. Контроллер управляют работой симисторов.

Симисторное управление обмотками не имеет контактов, поэтому отсутствуют щелчки. Автотрансформатор намотан медным проводом. Эти стабилизаторы могут работать с пониженным напряжением от 90 В и высоким напряжением до 300 В. Точность регулировки напряжения может достичь 2%, что не вызывает моргание ламп.

Однако ЭДС самоиндукции во время переключения симисторами также имеет место, как и у релейных устройств. Так как симисторные ключи очень чувствительны к перегрузкам, им необходимо иметь запас по мощности. Такие устройства стабилизаторов напряжения имеют тяжелый температурный режим.

Схема работы симисторного стабилизатора

Поэтому симисторы ставятся на радиаторы с принудительным охлаждением вентиляторами. Работа этого вида устройства осуществляется по заводской программе, которая имеет неприятность ошибаться при эксплуатации.

В этом случае поможет только заводской ремонт. Стоимость таких стабилизаторов, на мой взгляд, завышена. Существуют симисторные стабилизаторы марки Volter с высокой степенью точности. Принцип работы этих стабилизаторов напряжения осуществляется по двухступенчатой системе. Первая ступень регулирует выходное напряжение грубо, а вторая степень имеет точную регулировку выходного напряжения.

Схема работы двухступеньчатого стабилизатора Volter

Один контроллер управляет двумя ступенями. По сути это два стабилизатора в одном корпусе. Обмотки обеих ступеней намотаны на одном трансформаторе.  При 12 ключах двух ступеней стабилизатор имеет 36 уровней регулировки выходного напряжения, чем и достигается высокая точность выходного напряжения.

Принцип работы сервопривода стабилизатора

Эти устройства относятся к самым простым стабилизаторам переменного напряжения. В устройстве стабилизатора напряжения главным элементом является тороидальный трансформатор с сервоприводом, который управляется не сложной электронной схемой сравнения выходного и входного напряжений.

При разнице этих напряжений, сигнал с положительной или отрицательной полярностью подается на сервопривод постоянного тока, который включаясь, поворачивает токосъемник с графитовой щеткой до тех пор, пока на выходе напряжение не станет равным 220 В. Токосъемник двигается по контактной площадке трансформатора захватывает одновременно несколько витков обмотки, поэтому напряжение регулируется без скачков.

Вид открытого стабилизатора с сервоприводом

Время отклика на изменение напряжения сервопривода выше, чем у релейного устройства. Положительным качеством сервопривода является хорошая точность установки 2 – 3%. На этом, наверное, заканчиваются все положительные качества сервопривода. У стабилизатора с сервоприводом есть один очень большой недостаток, о котором нигде не говориться. Это его пожароопасность.

Схема работы стабилизатора с сервоприводом

По его вине также выходят из строя все электробытовые приборы и техника. Причина проста. При падении сетевого напряжения ниже низкого порога или подъема напряжения выше высокого порога стабилизатора, сервопривод выводит токосъемную щетку в крайние положения и клинит. Это происходит из-за низкого качества китайских сервоприводов или схема управления сервоприводом не вытягивает токосъемник с крайних точек контактной площадки.

А теперь представьте, упало сетевое напряжение, токосъемник естественно пополз в верхнюю крайнюю точку, поднимая напряжение и заклинил. Вернуться не может. Когда напряжение восстановилось на входе стабилизатора, то выходное напряжение будет равным 300 В или больше. Бытовые приборы такое напряжение не выдерживают. Подобное не раз встречалось на моей практике. Поэтому при выборе стабилизатора переменного напряжения нужно учитывать его надежность и безопасность.

Тоже интересные статьи

что нужно знать перед покупкой устройства, главные особенности и преимущества

Автор: Александр Старченко

Электронный стабилизатор напряжения по популярности и уровню продаж занимает следующее место после релейного стабилизатора. Широкий ассортиментный ряд электронных стабилизаторов позволяет выбрать необходимое по мощности устройство. Стабилизатор надёжен, обладает хорошими характеристиками и может использоваться в большом диапазоне температур.

Конструкция электронного стабилизатора

Электронный стабилизатор предназначен для нормализации напряжения при отклонении его от номинала, и защиты потребителей от негативных факторов. К таким факторам относятся очень низкое или высокое напряжение, а так же короткие импульсы высокого напряжения, которые иногда возникают в бытовой сети.

В отличие от стабилизаторов других типов, где могут применяться механические и электромеханические компоненты схемы, в электронном стабилизаторе кроме электроники ничего нет.

Электронный стабилизатор состоит из следующих узлов:

  • Входной фильтр;
  • Трансформатор;
  • Плата измерения напряжения;
  • Плата управления;
  • Силовые ключи;
  • Схема защиты;
  • Блок индикации;
  • Байпас.

Роль фильтра заключается в подавлении сетевых помех. Это могут быть высокочастотные наводки или короткие импульсы. Трансформатор имеет обмотку, состоящую из отдельных секций, переключением которых и осуществляется изменение напряжения на выходе.

Плата измерения напряжения осуществляет контроль не только за напряжением сети, но и за нормализованным напряжением на выходе устройства. Плата управления собрана на транзисторах. На ней формируется сигнал, подаваемый на управляющие электроды силовых ключей.

Силовые ключи переключают обмотки трансформатора для выравнивания напряжения. Схема защиты предохраняет нагрузку от возможных повреждений из-за слишком больших перепадов напряжения, а так же предохраняет стабилизатор от перегрузки. Электронный стабилизатор напряжения 220В оборудуется устройством индикации на светодиодных матрицах.

Важным элементом электронного стабилизатора напряжения является «Байпас» или «Транзит». Это устройство позволяет питать нагрузку непосредственно от сети в том случае, если напряжение на входе находится в допустимых пределах. В случае выхода напряжения из допуска, потребитель практически мгновенно подключается к стабилизатору.

«Байпас» входит в плату измерения напряжения и реализуется с помощью обычного реле. Так же режим «Транзит» может включаться вручную переключателем на корпусе стабилизатора.

Принцип работы электронного стабилизатора

Электронный стабилизатор работает по следующему принципу. Плата контроля напряжения сканирует напряжение сети. Как только его величина выйдет из допустимых стандартом 10%, подаётся сигнал на плату управления. Она состоит из транзисторных Усилителей Постоянного Тока. УПТ формируют потенциал, открывающий полупроводниковые вентили. Напряжение на выходе стабилизатора приближается к номиналу. Управление всеми электронными компонентами осуществляется с помощью микропроцессора.

Большим плюсом электронных стабилизаторов можно считать исключительно малое собственное энергопотребление, поскольку в них отсутствуют индуктивные элементы типа обмоток реле или серводвигателя.

Поскольку число секций ограничено, то изменение напряжения осуществляется ступенями, то есть дискретно. Чем большее количество электронных ключей входит в схему устройства, тем выше точность установки напряжения. В качестве силовых ключей применяются мощные полупроводниковые приборы – тиристоры и симисторы.

Тиристор проводит ток только в одном направлении, а симистор (симметричный тиристор), в обе, поэтому для коммутации цепи с переменным напряжением, требуется два тиристора во встречно-параллельном включении или один симистор.

Принцип действия стабилизаторов, собранных на разных полупроводниковых приборах, абсолютно одинаковый, но однофазный автоматический стабилизатор напряжения электронного типа, выполненный на симисторах, имеет существенный недостаток. Это слабая устойчивость при работе с индуктивной (реактивной) нагрузкой. Симисторы просто выходят из строя. Это сильно ограничивает сферу применения стабилизаторов такого типа. Вообще, электронные стабилизаторы, благодаря хорошим характеристикам и высокой надёжности, находят самое широкое применение в любых сферах.

Преимущества и недостатки

По сравнению с аналогичным по принципу работы релейным стабилизатором, электронное устройство обладает гораздо большими преимуществами:

  • Высокая скорость коммутации;
  • Большее количество ступеней регулирования;
  • Более высокая точность;
  • Отсутствие шума;
  • Большой разброс напряжения на входе;
  • Возможность работы при низких температурах;
  • Надёжность.

В отличие от электромеханических реле, время срабатывания которых может достигать 40-60 мс, тиристорные ключи выполняют коммутацию за гораздо более короткий срок, не превышающий 10-12 мс, а у некоторых моделей он может составлять 2-4 мс. Увеличение количества реле ведёт к увеличению энергопотребления самого стабилизатора и снижению времени нормализации напряжения. Электронные стабилизаторы позволяют без особого ущерба увеличить число дискретных ступеней, что положительно сказывается на точности установки.

Тиристорный стабилизатор бесшумен в работе, и может использоваться при низких температурах, что выгодно  отличает его от стабилизаторов других моделей. Схемные решения допускают работу устройства при большом диапазоне напряжения сети. Надёжность электронного стабилизатора определяется в основном надёжностью тиристоров, а они допускают до 109 переключений. Недостатком можно считать только высокую цену электронного стабилизатора.

Критерии выбора

Выбрать электронный стабилизатор напряжения 220В для дома необходимо по  следующим параметрам:

  • Мощность;
  • Диапазон входных напряжений;
  • Скорость выравнивания;
  • Точность регулирования;
  • Число дискретных ступеней;
  • Дополнительные параметры.

Мощность стабилизатора является главным фактором, определяющим выбор устройства. Если потребителями будет только активная нагрузка, то требуемая мощность вычисляется легко. Нужно суммировать мощность всех потребителей и прибавить 20-30%.

Если к стабилизатору будут подключены стиральная машина или холодильник (реактивная нагрузка с электромотором), то расчёт мощности выполняется по несложной формуле — просто делим мощность прибора на cos ϕ, который должен быть указан в паспорте, либо на коэффициент 0,7. Подробные расчеты мы приводили в статье по выбору стабилизатора для домашних нужд.

Если сеть в конкретном населённом пункте очень нестабильна, то следует выбирать стабилизатор, имеющий как можно больший диапазон напряжения на входе. Для электронных тиристорных стабилизаторов скорость выравнивания напряжения практически одинакова у всех моделей и если имеются небольшие отличия, то они не критичны. От количества ступеней зависит точность напряжения на выходе, но, естественно, от количества тиристоров зависит и стоимость изделия.

При выборе устройства нужно обязательно ознакомиться с уровнями срабатывания защиты. Электронный однофазный стабилизатор напряжения может иметь как настенное, так и напольное исполнение. Нижним пределом рабочей температуры обычно является -40°C, что вполне достаточно для работы в любых условиях.

Бытовой стабилизатор средней мощности

Стабилизаторы «Энергия» пользуются неизменно высоким спросом из-за отличных параметров и надёжности. Однофазный тиристорный стабилизатор «Энергия Classic 5000», представляет собой модель, предназначенную для непрерывной длительной эксплуатации.

Прибор работает при токе нагрузки до 27А. Уровни напряжения сети, при которых срабатывает защита, составляют 60 и 265В, а нормальный рабочий интервал от 125 до 254В. В приборе имеется функция «Байпас», фильтр подавления всех видов помех, и аварийное отключение при нагреве трансформатора до температуры 120 градусов. Стабилизатор имеет 36 месяцев гарантии.

В заключение можно отметить, что электронные стабилизаторы надёжны и неприхотливы, и при соблюдении указанных в документации правил эксплуатации, они проработают очень длительное время.

С этим читают:

Понравилась статья? Поделись с друзьями в соц сетях!

Стабилизаторы напряжения – электромеханические и релейные, виды, принцип действия различных типов устройств

Параметры электрической энергии, подающейся на объекты потребителей, к сожалению, весьма часто отклоняются от допустимых величин.

Происходит это по причинам, среди которых:

1. Питание потребителей, удалённых от точек генерации длинными линиями электропередачи, обладающими значительной ёмкостью и активным сопротивлением проводов.

Электромеханические стабилизаторы напряжения

В режиме малых нагрузок, показание вольтметра на конце такой линии может существенно превышать номинальное значение за счёт влияния ёмкости, в часы максимумов потребления, напротив, происходит его падение на активном сопротивлении.

2. Отсутствие эффективного регулирования параметров электроснабжения на питающих трансформаторных подстанциях.

3. Плохое техническое состояние линий 0,4 кВ, приводящее к частым обрывам и перехлёстам проводов.

Резкие скачки параметров электроэнергии и значительные их отклонения от номинальной величины приводят к порче дорогой бытовой техники и электроприборов. Наиболее эффективный метод борьбы с этим явлением – установка стабилизатора, который может защищать либо отдельные, наиболее чувствительные электроприборы, либо весь объект (квартиру, дом, офис и т.п.).

Существует несколько типов стабилизаторов, по принципу действия их они бывают:

  • электромеханические;
  • релейные;
  • тиристорные;
  • инверторные.

Попробуем выяснить, какой стабилизатор лучше — релейный или электромеханический. Принцип действия электромеханического однофазного стабилизатора напряжения состоит в плавном изменении коэффициента трансформации автотрансформатора, являющегося основным элементом конструкции.

Автотрансформатором называется вид трансформатора, в котором часть витков общая для первичной и вторичной обмотки, то есть, они гальванически связаны между собой. Автотрансформаторы широко применяются в устройствах регулирования (например, ЛАТР).

Магнитный сердечник автотрансформатора обычно изготавливается в форме кольца (тора), состоящего из ленточной электротехнической стали. Такая форма сердечника, называемая тороидальной, обеспечивает минимальные магнитные потери и бесшумность при работе. Обмотка автотрансформатора намотана по всей окружности тора в несколько слоёв.

Часть её наружного слоя, которую называют вольтодобавочной обмоткой, зачищена от изоляции с наружной стороны. Эта область обмотки контактирует с подвижным токосъёмным контактом щёточного или роликового типа, перемещение которого приводит к изменению количества витков первичной обмотки, следовательно, к изменению коэффициента трансформации и величины вторичного напряжения.

Токосъёмный контакт приводится в движение специальным сервоприводом, состоящим из электродвигателя с редуктором. Для автоматического управления серводвигателем, в моделях электромеханических стабилизаторов применяются микропроцессорные контроллеры.

Контроллер в непрерывном режиме отслеживает уровень напряжения на нагрузке, и при его отклонении формирует соответствующий сигнал управления серводвигателем. Вращение сервопривода приводит в движение токосъёмный контакт, который изменяет коэффициент трансформации, возвращая параметры на выходе устройства к номинальному значению.

Таким образом осуществляется стабилизация напряжения, поступающего к потребителю.

РЕЛЕЙНЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

Релейный стабилизатор напряжения также изменяет коэффициент трансформации автотрансформатора. Разница в том, что вольтодобавочная обмотка релейного стабилизатора разделена на несколько секций с отдельными выводами (отпайками). Подключение каждого вывода обмотки к питающей сети производится контактами электромагнитного реле.

Регулирование напряжения в данной схеме осуществляется ступенчато (или дискретно). Каждую отпайку включает отдельное реле, то есть, сколько ступеней регулирования имеет стабилизатор, столько в нём установлено реле. Одновременно может быть включено только одно из них.

Команду на включение нужного реле подаёт контроллер, отслеживающий изменение уровня напряжения.

Строго говоря, электромеханические стабилизаторы тоже изменяют коэффициент трансформации дискретно, просто шаг изменения в них составляет всего один виток обмотки, что на практике выглядит как плавное регулирование. Ступенчатый релейный стабилизатор напряжения регулирует его заметными скачками.

Вместо электромагнитных реле могут применяться электронные приборы – тиристоры или симисторы (симметричные тиристоры). В случае тиристоров, их устанавливают в паре, включая встречно – параллельно, так как проводимость у этих приборов односторонняя. Симистор справляется с этой задачей самостоятельно, за счет двунаправленной проводимости.

Сравнение характеристик электромеханических и релейных стабилизаторов.

К важнейшим техническим характеристикам стабилизаторов относятся:

  • точность стабилизации;
  • диапазон изменения уровня напряжения на входе;
  • скорость реагирования на изменение параметров электропитания.

Электромеханическая система по точности стабилизации превосходит релейный или тиристорный стабилизатор. Это связано с тем, что электромеханические стабилизаторы изменяют количество витков первичной обмотки с шагом в один виток, количество же витков в секции вольтодобавочной обмотки релейного стабилизатора между соседними отпайками значительно больше.

По этой причине, погрешность стабилизации электромеханических устройств не превышает 3 – 5%, у релейных же этот показатель составляет 8% и более.

Диапазон входного напряжения в технических характеристиках стабилизаторов обычно разделён на два интервала. В рамках более узкого интервала, стабилизатор обеспечивает уровень выходного напряжения в пределах заявленной точности стабилизации, например 220В ± 3%, 220В ± 5% и т.п.

Кроме этого указывается более широкий интервал, при котором устройство ещё функционирует, но уже с большей погрешностью, обычно достигающей 10 – 15%. Отклонение параметров электропитания за рамки допустимого интервала вызывает отключение нагрузки защитами, которыми оснащаются все современные устройства стабилизации.

Входной диапазон зависит от количества витков вольтодобавочной обмотки. В электромеханических типах этот параметр ограничивается числом витков наружного слоя, по которому перемещается токосъёмный контакт.

Что касается релейных устройств, то с одной стороны, такое ограничение отсутствует, но с другой, расширение диапазона неизбежно приводит к увеличению числа витков между отпайками, что снижает точность стабилизации.

Проблему можно решить увеличением числа отпаек, однако нужно помнить, что к каждому отводу обмотки подключается отдельное реле или электронный ключ (в случае с тиристорным стабилизатором), чрезмерное число которых делают конструкцию более громоздкой и дорогой.

Реально число ступеней регулирования в типовых релейных схемах не превышает семи.

Теперь о скорости реагирования. Этот параметр важен в случае резких скачков параметров электропитания. Здесь выигрывают устройства релейного типа. Скорость реагирования определяется временем, протекающим от момента возмущения сетевого параметра до установления требуемого коэффициента трансформации, нормализующего выходные характеристики.

В релейных приборах, это время обычно не превышает 10 – 20 мс, в зависимости от типа применяемых реле. В электромеханических устройствах этот параметр обычно не нормируется. Вместо него в технических характеристиках приводится скорость изменения выходного напряжения при движении сервопривода (время регулирования), которая измеряется в вольтах в секунду (В/с).

Обычно этот параметр составляет порядка 30 В/с. Таким образом, если предположить, что произошёл скачок показаний входного вольтметра на величину 30 вольт, то релейное устройство нормализует выходной параметр в течение 20 мс, а электромеханическое в течение 1 секунды.

Резюмируя сказанное, можно так охарактеризовать особенности электромеханических и релейных стабилизаторов:

  • электромеханические обеспечивают более точную стабилизацию, но хуже справляются с резкими скачками электросетевых параметров, их лучше использовать там, где отклонения показаний вольтметра от номинала на входе питания носят длительный характер;
  • релейные – хороши когда имеют место частые и резкие скачки параметров электроэнергии.

Что касается шумности работы, оба рассмотренных типа устройств имеют движущиеся механические части. Шум могут издавать как работающий сервопривод, так и переключающиеся электромагнитные реле. Бесшумность в большой степени определяется качеством применяемых комплектующих и культурой их сборки.

  *  *  *


© 2014-2020 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Электромеханический стабилизатор напряжения. Особенности конструкции

В линейке стабилизирующих устройств этой модели определено свое особое место. Это простой автотрансформатор, с той разницей, что регулирование напряжения питания выполняется не вращением ручки, а при помощи электрического двигателя. Электромеханический стабилизатор напряжения способен выдать на выходе устройства высокую точность параметра напряжения, однако его использование ограничено малым быстродействием.

Конструктивные особенности электромеханической модели

Такой стабилизатор еще называют сервоприводным. Он считается наиболее простой моделью по своему устройству. В основе конструкции простой лабораторный автотрансформатор, в котором при повороте регулировочной ручки можно менять значение напряжения вплоть до 240 В.

В новых моделях таких устройств принцип работы остался прежним, только рукоятка трансформатора вращается не рукой, а при помощи серводвигателя. Внешний вид трансформатора обладает тороидальной формой устройства. Обмотка трансформатора намотана медным проводником, а поверхность обмотки в верхней ее части очищена от изоляции для лучшего контакта с ползунком.

По обмотке передвигается контакт ползунка в виде щетки или ролика. Он зафиксирован на оси двигателя, который оснащен сервоприводом. Ротор двигателя не вращается, по мере поступления сигналов в виде импульсов, приходящих из управляющего блока, способен вращаться на некоторый угол. Щетка может быть сделана из графита, либо в виде ролика.

Электромеханический стабилизатор напряжения включает в себя следующие элементы:

  • Блок индикации.
  • Узел контактов.
  • Электрический двигатель.
  • Блок управления и контроля.
  • Силовой трансформатор.
  • Сетевой фильтр на входе.

Фильтр способен подавить электрические помехи в виде импульсов и высокочастотных гармоник. Пассивная модель фильтра выполнена по емкостно-индуктивной схеме. После фильтра питание поступает на контрольную схему, фиксирующую отклонения питания от номинальных величин и создает управляющие сигналы электрическим двигателем.

Контактный узел жестко зафиксирован на роторе вместе с графитным контактом, передвигается по обмотке автотрансформатора. На серводвигатель поступают управляющие сигналы для изменения напряжения на выходе стабилизатора, в зависимости от качества напряжения, поступающего на прибор. Для обеспечения лучшей надежности узел контактов может оснащаться двумя щетками, либо роликовым механизмом.

Индикаторный блок, находящийся на передней части панели стабилизатора, состоит из индикаторов в виде светодиодов, который показывают режимы работы. Некоторые модели оснащены цифровым дисплеем, который способен выдавать информацию о напряжении на выходе и входе стабилизатора, а также частоту и ток сети питания.

Перед аналогичными устройствами ставятся разные задачи. Одни подключаются к системе отопления, а другие работают с оргтехникой и т. д. Выбор часто зависит от бюджета и потребностей. Стоимость электромеханического стабилизатора напряжения невысокая.

Преимущества

  • Малая цена.
  • Повышенная точность выравнивания.
  • Плавность регулирования.

Малая цена

Она возможна только для старых конструкций. Современные новые стабилизаторы оснащены серводвигателями и высокотехнологичными устройствами, которые повышают его цену. Однако он все равно дешевле электронной модели.

В отличие от релейной модели в электромеханическом стабилизаторе напряжения применяются подвижные элементы, которые с течением времени становятся непригодными, и их надо заменять. Это, например, угольные щетки. Если для этого вызывать специалиста, то придется потратить на это деньги.

Точность

Показатель в 3% является хорошими данными при выборе устройства, если необходимо защищать точное лабораторное оборудование. В этом случае электромеханическим стабилизаторам напряжения нет качественной альтернативы.

Плавность регулирования

Этот параметр необходим, если подключаются точные датчики, либо измерительные приборы. Устройства бытового назначения не нуждаются в особой точности.

Недостатки

  • Подвижные элементы.
  • Шумность.
  • Малый КПД.
  • Низкое быстродействие.

Подвижные элементы

Из-за их наличия придется раз в год проводить техническое обслуживание, так как в механизм попадает пыль, контакты начинают искрить, возникают помехи в цепи.

Шумность

Повышенный шум обусловлен конструкцией стабилизаторов, и доставляет дискомфорт человеку в ночное время. Но современные приборы не имеют такого недостатка, так как применяются современные материалы, которые изолируют корпус с помощью звукоизоляции.

Малый КПД

Незначительный параметр КПД является результатом механической конструкции. В этом плане выигрывает релейная модель прибора.

Низкое быстродействие

У такой модели стабилизатора наиболее низкая скорость работы. Это его основной недостаток. Его быстродействие равно приблизительно 10 В в секунду. Точность, плавность и малая цена не совсем уж привлекательны, так как стабилизатор придется раз в год отдавать на техобслуживание, и за это платить.

Стабилизаторы напряжения. Виды и устройство. Особенности

Многие люди знают, что такое перебои и скачки напряжения в электрической сети. Одно дело, когда от этого просто мигают лампочки, и могут сгореть. А другое дело, когда от перепадов напряжения сгорит стиральная машина или холодильник. Это существенно ударит по семейному бюджету. Импортная бытовая техника не рассчитана на такие скачки напряжения, которые часто происходят в отечественных сетях. Чтобы защитить себя от риска возникновения неисправностей в домашних бытовых устройствах, необходимо обзавестись стабилизатором напряжения, который выбирается по суммарной мощности устройств, которые будут работать в вашей домашней сети.

Разновидности

Стабилизаторы напряжения – это приборы, которые выравнивают величину напряжения питания до тех параметров, которые соответствуют стандартным значениям, а также очищают напряжение от высокочастотных помех. Вид стабилизатора определяет тип основного встроенного механизма, который выполняет функции стабилизатора.

Стабилизаторы напряжения делятся на два основных вида:
  1. Накапливающие.
  2. Корректирующие.

Первый вид стабилизаторов в настоящее время не используется, так как они имеют большие размеры. Ранее они использовались в сфере производства, а не в бытовых условиях. Стабилизаторы напряжения накапливающего действия функционируют с помощью накопления электрической энергии в емкости, и далее получают от этой емкости необходимый электрический ток с нужными параметрами. По аналогичному принципу работают источники бесперебойного питания.

Корректирующие стабилизаторы напряжения чаще всего включают в себя блок управления. Он реагирует на перепады напряжения в одну или другую сторону, и при этом подключает соответствующую обмотку трансформатора. Корректирующие стабилизаторы нашли широкое применение в бытовых условиях.

Они в свою очередь разделяются на несколько видов:
  • Релейные.
  • Электронные (тиристорные).
  • Феррорезонансные.
  • Электромеханические.
  • Инверторные.
  • Линейные.
Конструктивные особенности и работа

Корректирующий тип стабилизаторов стал наиболее популярным в быту.

Релейные стабилизаторы напряжения

Стали наиболее популярными, ввиду их невысокой стоимости и качества работы. Основным достоинством релейных стабилизаторов является их быстродействие. Они очень быстро срабатывают при изменениях напряжения, и возвращают его величину в стандартные пределы, осуществляя этим защиту бытовых устройств.

Из недостатков можно отметить, что при срабатывании реле возникает резкий скачок напряжения величиной 5-15 вольт, в зависимости от фирмы изготовителя. Для бытовой техники такой скачок не окажет негативного влияния, однако освещение при этом будет мигать заметно. Поэтому при работе релейного стабилизатора иногда наблюдается моргание ламп накаливания, в то время, как энергосберегающие и люминесцентные лампы на это не реагируют.

Как и в других видах стабилизатора, основным элементом релейной модели является силовой трансформатор и блок управления на полупроводниковых элементах. Электронный блок стабилизатора выполнен в виде мощного микроконтроллера, который анализирует напряжение на входе и выходе. В результате он вырабатывает сигналы управления для силовых реле или ключей. Микроконтроллер при создании напряжения управления учитывает время срабатывания силовых реле и ключей. Это дает возможность выполнять коммутацию цепей без их разрыва. В итоге форма графика выходного напряжения становится идентичной входной форме напряжения.

Электронные стабилизаторы напряжения

Тиристорные стабилизаторы работают по принципу, который основан на автоматической коммутации разных обмоток трансформатора силовыми ключами в виде тиристоров. Такой принцип похож на действие релейных приборов. Отличие релейных стабилизаторов состоит в том, что у них нет механических контактов, имеется большее количество ступеней выравнивания напряжения и высокая точность работы 2-5%.

Электронные приборы не создают шума в доме, так как отсутствуют механические реле. Их заменяют электронные ключи. Тиристорные стабилизаторы работают с большим КПД.

При практическом применении электронные модели показали себя чувствительными устройствами, на которые отрицательно влияет перегрев. Отечественные производители выпускают чаще всего именно такой вид стабилизаторов.

Самым серьезным недостатком тиристорных моделей является их высокая стоимость. Гарантийный срок работы практически всех видов стабилизаторов находится в пределах 1-3 лет, в зависимости от фирмы изготовителя.

Феррорезонансные 

Их действие основывается на изменении величины индуктивности катушек, имеющих металлический сердечник, при изменении тока. Последовательно с первичной обмоткой трансформатора подключают емкость С1. Она совместно с первичной обмоткой образует резонансный контур, который настроен на частоту сети, равную 50 герц.

Величина конденсатора зависит от мощности трансформатора. При мощности трансформатора до 60 ватт, конденсатор применяют величиной до 12 мкФ. Чтобы создать значительную мощность стабилизатора, используют дроссель насыщения.

При небольшом сетевом напряжении по дросселю проходит малый ток, и индуктивность дросселя большая. Основная часть тока протекает по параллельно подключенному конденсатору. При этом суммарное сопротивление этой цепи имеет емкостный тип.

Конденсатор компенсирует некоторую часть индуктивного сопротивления катушки трансформатора. При этом ток катушки повышается. Выходное напряжение трансформатора также увеличивается. Это характерно для эффекта резонанса напряжений.

При увеличении напряжения, ток дросселя также повышается, а его индуктивность падает. Величина емкости рассчитывается так, чтобы в контуре дроссель – конденсатор наступил резонанс, при котором сопротивление этого контура было бы наибольшим, а ток, приходящий из сети питания на трансформатор – наименьшим.

При увеличении напряжения сети увеличивается сопротивление контура до момента резонанса. Это дает возможность стабилизироваться напряжению на трансформаторе при больших перепадах напряжения.

Достоинством феррорезонансных приборов является надежность и простота. Недостатком является значительная зависимость напряжения на выходе прибора от частоты тока и искажение формы напряжения. Также, стабилизаторы с насыщенными сердечниками катушек обладают большим магнитным рассеянием. Это отрицательно влияет на функционирование окружающих устройств и на человека.

Электромеханические стабилизаторы напряжения

Принцип действия такого прибора довольно простой. Щетки из графита при перепадах напряжения передвигаются по катушке трансформатора, тем самым регулируется и подстраивается выходное напряжение.

В первых образцах электромеханических стабилизаторов для передвижения щеток использовался ручной способ (переключателем). Пользователь должен был постоянно контролировать показания индикатора напряжения.

В новых моделях приборов эта функция выполняется автоматически небольшим моторчиком, который при перепадах напряжения передвигает щетку по обмотке трансформатора.

Преимуществами таких стабилизаторов является простота и надежность устройства, повышенный КПД. Из недостатков можно отметить малое быстродействие при перепадах напряжения, а также быстрый износ механических деталей. Поэтому электромеханический вид стабилизатора требует постоянного обслуживания в виде контроля и замены щеток.

Инверторные стабилизаторы напряжения

Преобразуют постоянный ток в переменный, а также выполняют обратное действие, то есть, преобразуют переменный ток в постоянный с помощью микроконтроллера и кварцевого генератора.

Из достоинств инверторных стабилизаторов можно выделить малый шум при работе прибора, компактные размеры и широкий интервал входных рабочих напряжений, который колеблется в пределах 115-290 вольт.

Недостатком инверторных образцов является высокая стоимость, в отличие от многих других видов стабилизаторов.

Линейные

Выполнены в виде делителя напряжения. Нестабильное напряжение подается на вход такого устройства, а выровненное напряжение выходит с нижнего плеча делителя. Выравнивание выполняется изменением сопротивления плеча делителя напряжения. При этом величина сопротивления поддерживается такой величины, при которой выходное напряжение прибора было в определенных пределах.

При значительном отношении величин выходного и входного напряжений линейный стабилизатор обладает пониженным КПД, так как значительная часть мощности рассеивается в тепло на элементе настройки. Поэтому регулятор напряжения обычно монтируют на теплоотводящем радиаторе для возможности рассеивания тепла.

Достоинством линейного прибора является отсутствие помех, простота конструкции и малое число деталей. Недостатком является малый КПД, большое выделение тепла.

На что необходимо обратить внимание при выборе стабилизатора
  • Способ монтажа. Он бывает настенным, с горизонтальной или вертикальной установкой (для стационарных приборов). Может устанавливаться рядом с устройством, для которого он приобретается.
  • Точность работы, входное и выходное напряжение. Эта характеристика зависит в основном от параметров входного напряжения. Лучше выбрать наименьший показатель точности прибора от 1 до 3%, при напряжении 220 вольт.
  • Мощность стабилизатора выбирается не только мощностью подключаемого электрического устройства. К этой величине добавляется определенный резерв мощности. Для всей квартиры этот запас должен быть в пределах 30%.
  • Число фаз сети питания (однофазная или трехфазная сеть).
  • Быстродействие (время реакции на перепады напряжения), в миллисекундах.

  • Защита стабилизатора. Дорогие образцы приборов чаще всего оснащены защитными системами, которые предохраняют стабилизатор от коротких замыканий, резких изменений напряжения и других отрицательных явлений.
  • Габаритные размеры прибора и его шумность при функционировании.
  • Стоимость. Профессионалы не рекомендуют покупать дешевые китайские подделки, так как не стоит экономить на качестве стабилизатора. Качественный прибор не должен стоить дешево. Лучше приобрести отечественную модель, или прибор европейского производства.
  • Гарантийный срок играет большую роль при выборе любого устройства. Если прибор китайский, то вряд ли на него будет какая-то гарантия. Стабилизаторы, приобретенные в специализированных торговых точках можно за время гарантийного периода бесплатно обменять при возникновении неисправности или обнаружения брака.

Наибольшую трудность обычно вызывает при выборе прибора его мощность. Кроме активной составляющей мощности, которую расходуют бытовые устройства, некоторые из них обладают реактивной составляющей мощности. Она появляется при наличии индуктивности (если в устройстве имеется мощный электрический мотор). При его запуске ток повышается в несколько раз. Если выбрать стабилизатор без учета этой реактивной составляющей мощности, то он может не справиться с высокой нагрузкой при запуске устройства, имеющего электродвигатель.

Другим фактором, который значительно влияет на выбор стабилизатора, является коэффициент трансформации, который равен нулю, если стабилизатор функционирует в идеальных условиях. То есть, на вход поступает ровно 220 вольт, и выходит точно такая же величина к потребителю. А если стабилизатору приходится выравнивать напряжение, то мощность снижается.

Похожие темы:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *