Реле времени — назначение, схема и принцип работы, классификация
Жизнь современного человека насыщена электрическими приборами. Они дают нам необходимые свет и тепло, доносят информацию, существенно облегают выполнение множества повседневных бытовых задач, помогают в строительстве, ремонте, при работе на садовом участке. Без них не обходится ни выполнение домашних лечебно-оздоровительных процедур, ни организация семейного досуга. Естественно, вся эта техника требует соответствующего бережного отношения и умения обращаться с ней. Но и в этом вопросе научно-технический прогресс приходит на помощь человеку.
Для рациональной, экономичной эксплуатации электрических приборов широко используются автоматизированные системы управления. Они способны выполнять массу полезных функций, и в том числе — позволяют включать или выключать устройства именно тогда, когда это требуется, по заданным хозяевами алгоритмам.
Реле времениСовременные системы управления порой поражают широтой своей функциональности. Но иногда бывает достаточно и более простых в устройстве и эксплуатации приборов автоматизации. Так, одним из примеров несложных устройств автоматического управления, кстати, внедренных в быт человека уже довольно давно, является реле времени. Что это такое, для чего оно может использоваться, какие существуют разновидности и по какому принципу они работают – обо всем этом в настоящей публикации.
Что такое реле времени?
Надо полагать, что читатель этой статьи — не специалист в вопросах электротехники, а лишь пытливый пользователь, старающийся расширить свой кругозор и применить полученную информацию в повседневной жизни. Поэтому для начала будет полезно вспомнить, что же скрывается под общим термином «реле»?
Не будем приводить длинную «научную» формулировку этого понятия – она может быть не вполне понятна начинающему. А если говорить простыми словами, то реле – это электромеханическое или электронное устройство, которое производит коммутацию (соединение или разрыв) электрической цепи при получении внешнего управляющего сигнала. Если точнее, то срабатывание происходит, когда внешнее воздействие достигает какой-то заданной величины.
Первые реле были изобретены, изготовлены и применены еще в середине XIX века – они стали незаменимым компонентом аппаратов бурно развивающейся в те времена телеграфной связи. С тех пор, безусловно, эти устройства прошли длинный путь доработок и усовершенствований, повысилась их надежность, появились новые типы, способные работать в самых разных условиях эксплуатации. Но принцип остался неизменным – внешнее управляющее воздействие руководит замыканием, размыканием или переключением электрических цепей.
По большей части реле управляются электрическими сигналами – когда показатели силы тока или напряжения достигают определенной величины. Но, кстати, управляющее воздействие вовсе не обязательно является электрическим. Существуют реле, срабатывание которых вызывается изменением давления в трубопроводе, температуры окружающей среды, освещенности объекта и другие. Все это открывает очень широкие возможности автоматизации и обеспечения безопасности эксплуатации разнообразной электрической техники.
Реле давления – в бытовых условиях обычно ставится в цепи питания насосного оборудования, что позволяет автоматизировать работу систем автономного водоснабжения или отопления. Можно добавить, что в наше время наряду с электромеханическими реле все шире используются «твердотельные» — электронные ключи, в которых переключение контактов происходит за свет использования каскадов полупроводниковых элементов или интегральных микросхем.Теперь – к вопросу о том, что же такое реле времени.
А подсказка кроется в самом названии. Это в принципе такое же реле, но срабатывание которого происходит с определенной задержкой после подачи (или снятия) управляющего сигнала. Или же коммутация цепей производится с определенным алгоритмом по времени.
Такие устройства нашли очень широкое применение в автоматизации промышленного оборудования. Но их широко используют и в бытовых условиях. Например, на них можно переложить часть забот по управлению осветительными приборами, климатическим оборудованием или системами вентиляции, с получением весьма впечатляющего эффекта экономии электроэнергии. Появляется возможность производить в заданное время необходимые действия с бытовыми электрическими приборами даже в отсутствие хозяев или без их вмешательства. Одним словом, реле времени способны значительно упростить жизнь владельцам дома.
Это была, так сказать, общая информация. А теперь перейдем к более пристальному рассмотрению разнообразия этих устройств и алгоритмов их работы.
Алгоритмы работы реле времени, функциональные диаграммы, условные обозначения
По каким алгоритмам могут работать реле времени
Выше уже упоминалось, что любые реле могут работать на замыкание, размыкание и переключение контактов при необходимом управляющем воздействии. А в реле времени предусматривается или пауза после такого воздействия, или даже соблюдение определенной цикличности срабатывания.
Различают немало алгоритмов работы реле времени. Ниже на схемах будут рассмотрены наиболее часто применяемые.
На схемах верхним графиком (голубого цвета) показывается напряжение питания, подаваемое на реле. Нижний график – выходное напряжение, идущее от реле на исполнительное устройство (на нагрузку). Красными стрелками показываются диапазоны установленной задержки срабатывания.
Еще одно замечание. Управляющие сигналы для реле могут подаваться по разному.
— Это может быть общее напряжение питание, подаваемое на прибор. Такие реле так и называется – с управлением по питанию.
— Для управления используется отдельная цепь подачи внешнего сигнала.
На приведенных ниже схемах, просто для более понятного восприятия, будут в основном показаны (за одним исключением) алгоритмы для реле с управлением по питанию. Но и для второго варианта они, в принципе, такие же.
Алгоритм 1
Схема алгоритма №1Реле времени с задержкой включения. После включения питания выходной сигнал будет передан на нагрузку по истечении установленной паузы Т.
Алгоритм 2
Схема алгоритма №2Выходной сигнал в данном варианте передается на нагрузку сразу после включения питания. Но через установленный интервал Т – прерывается.
Алгоритм 3
Схема алгоритма №3Включение нагрузки происходит одновременно с подачей общего питания. Но выключение производится после выдержки паузы Т с момента снятия напряжения питания реле.
Алгоритм 4
Схема алгоритма №4Цикличная работа реле времени, с паузой на старте. После подачи напряжения питания выходной сигнал на нагрузку появляется через интервал Т1. Этот сигнал выдерживается в течение определенного установленного интервала Т2. Затем происходит размыкание, с повторной паузой Т1, после чего вновь включение нагрузки на время Т2 — и так далее до полного снятия напряжения питания.
Алгоритм 5
Схема алгоритма №5Один из вариантов с постоянно подключенным питанием и управлением с помощью внешнего сигнала. При подаче управляющего импульса (или, наоборот, при его снятии – показано высветленным цветом и пунктиром) срабатывает реле и коммутирует питание на нагрузку. Питание подается в течение установленного периода Т1, после чего автоматически отключается, до поступления очередного управляющего импульса.
Эти алгоритмы можно назвать базовыми. А уже из них, как из «кирпичиков», могут выстраиваться куда более сложные схемы, реализованные в реле различных конструкций и моделей.
Одна из самых важных характеристик реле времени – функциональная диаграмма
Кстати, показанные выше графические схемы имеют название функциональных диаграмм реле, и обычно указываются на корпусе прибора или в его технической документации. То есть при выборе требуемого изделия для определенных нужд, умея читать такие диаграммы, можно отыскать подходящую модель.
Ниже на двух иллюстрациях будет продемонстрировано многообразие функциональных диаграмм реле времени, предлагаемых в продаже. Это показывается лишь в качестве примера, так как на самом деле выбор может быть намного шире. Обратите внимание и на то, что некоторые реле могут иметь несколько выходов на нагрузку, а также несколько каналов получения внешнего управляющего сигнала.
Примеры функциональных диаграмм реле времени с управлением по питанию.
Функциональные диаграммы реле времени – таблица АПримеры функциональных диаграмм реле времени с управлением внешним сигналом.
Функциональные диаграммы реле времени – таблица БЗначения временных интервалов Т, Т1, Т2 и т.д. чаще всего имеет возможность устанавливать пользователь. Правда, существуют модели реле времени, в которых время срабатывания уже предустановлено и изменению не подлежит. Но это приборы специального предназначения, обычно устанавливаемые в схемах защит электрических приборов и установок. Естественно, величина задержки в таком случае указывается в техническом описании изделия.
Обозначения контактов реле времени на схемах
При выборе реле времени необходимо уметь разбираться не только в функциональной диаграмме, но и в схеме расположения контактов. Обычно встречаются вот такие принятые обозначения:
А. Контакты, работающие на размыкание цепи.
Условные обозначения контактор реле времени, работающих на размыкание1 — дуга обращена вниз: задержка срабатывания после подачи управляющего напряжения;
2 — дуга обращена вниз: задержка срабатывания после снятия управляющего напряжения;
3 — две противоположно направленные дуги: задержки и при подаче управляющего напряжения, и при его снятии.
Б. Контакты, работающие на замыкание цепи.
Условные обозначения контактор реле времени, работающих на замыканиеУсловия срабатывания, понятно, можно не расписывать – они такие же, как в предыдущем примере.
Разновидности реле времени
Типы реле времени по общему конструктивному исполнению
Итак, выяснили, что переключение контактов в реле времени производится с определенной задержкой после подачи или снятия питающего или управляющего напряжения. Но прежде чем перейти к рассмотрению самих устройств, обеспечивающих работу по заданному алгоритму, заметим, что реле времени по своей компоновке или общему исполнению можно разделить на несколько типов.
- Моноблочные реле времени. Это – совершенно независимые приборы с собственным корпусом, встроенным питанием или устройством для подключения питания, с выходом, к которому можно подключать стороннюю бытовую или иную технику. Такое реле можно устанавливать в практически в любом месте по необходимости, и подключать к нему тот прибор (систему) который требует подобного управления по времени. Классическим примером может служить реле времени, с которым хорошо знакомы те, кто занимался печатью фотографий.
К приборам более широкого использования можно отнести современные реле времени (таймеры) которые останавливаются в розетку и имеют гнездо для подключения сетевой вилки нагрузки. Самый простейший пример использования – можно с вечера запрограммировать, чтобы к утреннему подъему хозяев в электрическом чайнике была вскипячена вода.
Реле времени (или таймеры), подключаемые в розетку и сами становящиеся «управляемой розеткой» для подключенного к ним электрического прибора. Как видно, могут быть электромеханическими и электронными.- Встраиваемые реле времени. Они не имеют собственного корпуса, являются одним из узлов электрического прибора (или предназначены для такой установки), и автономно, как правило, не применяются. Классический пример такого реле времени – это механический или электронный таймер, руководящий режимами работы стиральной машины, микроволновки, электрической духовки и т.п.
Такие реле могут быть электромеханическими, имеющими блочное исполнение. Другой вариант – это реле электронного типа, собранное на печатной плате, которая коммутируется с общей схемой того или иного электрического прибора.
Электронное реле времени, выполненное в виде монтажной сборки на печатной плате- Модульные реле времени. Как понятно уже из названия, такие приборы имеют стандартизированные размеры и предназначаются для установки на DIN-рейку распределительного щита. Там же, в щите, производится и из стационарное подключение к источнику питания и нагрузке, работой которой они будут управлять. Например, таким образом можно подключить системы освещения, которые будут работать по определенному алгоритму времени, мощные приборы отопления, скажем, с тем расчетом, чтобы их основное функционирование приходилось на часы действия льготного тарифа, вентиляционные установки для обеспечения заданной периодичности проветривания и т.п. Возможно их использование и с другими крупными бытовыми приборами, если те в своей конструкции не имеют собственного встроенного таймера.
Несмотря на единообразие размеров, модульные реле времени могут значительно различаться набором возможностей, количеством каналов и программируемых интервалов. В зависимости от степени сложности и, отчасти, от допустимой мощности подключаемого к ним оборудования, такие реле могут занимать одно, два, три и даже больше модуль-мест на DIN-рейке распределительного щита.
Такое электронное реле времени с возможностью настройки суточного цикла работы займет на DIN-рейке три модуль-местаУдобно – места такие приборы занимают совсем немного, находятся не на виду, детям недоступны. Многие позволяют задавать суточный, недельный месячный или даже годовой алгоритм работы, то есть не требуют частого вмешательства в управление. Но если и возникнет нужда внести корректировки, то удобное расположение реле времени на рейке, с расположением всех органов управления на фасадной панели, позволит это сделать безо всякого труда.
Типы реле времени по принципу работы
Теперь стоит разобраться, что за механизмы обеспечивают задание необходимого временного интервала. По этому критерию реле времени можно подразделить на несколько типов – это электромагнитные приборы, устройства с пневматическим или гидравлическим замедлителем, моторные, реле с механическим часовым механизмом и электронные.
Цены на реле времени CRM
реле времени CRM
Рассмотрим их вкратце в перечисленном порядке
Электромагнитные реле времени
Они обычно применяются в каскадах пуска и остановки мощного оборудования – позволяют несколько разнести по времени запуск отдельных узлов (механизмов) во избежание резких скачков нагрузки на линию питания.
Принцип работы узла замедления срабатывания заключается в следующем. Конструктивно реле представляет собой электромагнитную катушку. Перемещение притягиваемого к сердечнику катушки якоря передается на механизм замыкания-размыкания контактов. Но на общий сердечник с катушкой надета гильза (чаще всего – медная), которая становится дополнительным короткозамкнутым контуром.
Принцип устройства электромагнитного реле времениПри подаче напряжения питания на катушку в этой дополнительной «обмотке» наводится ЭДС, создающая ток с таким направлением, что он получается в «противоходе» току в основной катушке. То есть своеобразно «гасит» скорость нарастания напряженности электромагнитного поля, необходимого для притягивания якоря реле. И в итоге срабатывание контактной группы происходит не мгновенно при включении питания, а с задержкой, длительность которой можно регулировать уровнем пожатия пружины якоря. Диапазон задержки обычно лежит в пределах о 0,07 до 0,15 секунд.
«Классический» пример электромагнитного реле времени – используемая в цепях питания мощного оборудования модель РЭВ 812При выключении питания происходит обратная картина – за свет наличия дополнительной обмотки-гильзы наблюдается своеобразный эффект «инерции», и размыкание контактов тоже происходит с задержкой. Она может составлять от 0,5 до 1,5÷2 секунд.
Пневматические или гидравлические реле времени.
Вряд ли с ними придется иметь дело в бытовых условиях – они тоже ставились только на мощное обрабатывающее оборудование. Но с механизмом замедления познакомиться все же будет интересно, потому как он имеет довольно оригинальную конструкцию.
Реле времени РВП 72-3221 с пневматическим замедлителем срабатыванияКонструктивно такие реле обязательно включают камеру с диафрагмой, в которую упирается подвижный узел (колодка), вызывающая переключение контактов. При снятии напряжения с обмотки катушки колодка освобождается и под действием пружины начинает перемещаться. Но движение колодки тормозится диафрагмой — до выхода воздуха из пневмокамеры. А скорость выпуска воздуха зависит от сечения отверстия, которое, в свою очередь, регулируется специальной иглой.
Регулировки интервала замедления срабатывания могут проводиться в достаточно широком диапазоне и с высокой степенью точности.
Помимо пневматических, существуют и гидравлические замедлители, в которых через регулируемое отверстие между камерами перепускается жидкость (например, трансформаторное масло). Но принцип срабатывания при этом не меняется.
Моторные реле времени
Такие устройства тоже, похоже, уже становятся пережитками прошлого, хотя могут еще встречаться на старых образцах примышленного оборудования.
Принцип работы моторного реле времениХарактерная особенность таких приборов – это наличие, кроме присущей большинству реле катушки, еще и собственного электропривода. При включении питания оно подается и на катушку, и на электродвигатель, с которого вращение передаётся по системе зубчатых передач рабочим колесам. На этих колесах (имеющих градуировку по времени) есть специальные выступы, которые в определённый момент вызовут замыкание или размыкание контактов цепи питания катушки. Ну а включение или выключение питания на обмотке катушки, в свою очередь, обеспечивает необходимую коммутацию подключенных к реле времени силовых линий.
Цены на реле времени Feron
реле времени Feron
Время срабатывания устанавливается начальным положением рабочего колеса. Кстати, в одном реле таких колес может быть и несколько, что позволяет организовывать довольно сложные алгоритмы управления подключенной нагрузкой.
Моторное реле времени ВС-33Реле времени с анкерным (часовым) механизмом
Самый простой и очень наглядный пример аналога подобных реле времени – это обычные настольные часы с будильником, работающие от батарейки. Время срабатывания устанавливается отдельной специальной стрелкой. И когда часовая стрелка сравняется с ней – произойдет замыкание контакта, и питание будет подано на генератор звукового сигнала.
Безусловно, сами реле времени устроены несколько сложнее, да и нагрузка к ним подключается куда более мощная, чем миниатюрный биппер. Но принцип действия – очень схожий. Механизм отсчета времени – практически полная аналогия с обычными часами. В некоторых реле старых образцов – даже пружина заводится вручную, по мере необходимости. В других – завод осуществляется автоматически при включении питания за сет перемещения электромагнитного якоря.
Реле времени с часовым механизмом РВ 235 УХЛ4. С производства давно сняты, но у некоторых хозяев продолжают верно служитьРеле с часовым механизмом в продаже представлены в широком разнообразии. Большой популярностью у пользователей пользуются модели с циферблатом, разделенным на 24 часа, а каждый час делится еще обычно на четыре отрезка по 15 минут. Каждому такому минимальному интервалу соответствует подвижный сектор (штырек, рычажок, в зависимости от модели).
При подключении реле к сети циферблат начинает вращаться с угловой скоростью один оборот в сутки. На циферблате выставляется текущее астрономическое время. Ну а затем несложно запрограммировать алгоритм срабатывания реле – нажатием (откидыванием или иным перемещением) подвижных секторов, соответствующих тем периодам времени, когда питание на нагрузку должно быть включено.
Программирование алгоритма срабатывания такого реле времени – несложное и интуитивно понятноеПодобные реле времени выпускаются в модульном или моноблочном исполнении, то есть или устанавливаются в распределительном шкафу, или напрямую подключатся в розетку. Невысокая стоимость и простота в эксплуатации снискали им широкую популярность. Точность выставления диапазона и срабатывания реле, безусловно, нельзя назвать высокой (минимальная градация в 15 минут), но для большинства бытовых приборов этого бывает вполне достаточно.
Ну а если требуются более точные настройки, вплоть до секундной градации, то лучше всего сразу приобрести электронное реле времени.
Узнайте, как подключить розетку, а также ознакомьтесь с пошаговыми примерами правильного подключения провода к розетке.
Электронные реле времени
Электронные реле времени в настоящее время все активнее вытесняют своих электромеханических «собратьев». Это понятно – привлекает высокая точность срабатывания, возможности программирования на длительный период: на неделю месяц и даже более, с учетом чередования выходных и праздничных дней, смены сезона, других факторов, влияющих на предполагаемый режим работы подключенных к реле электроприборов.
Электронное реле времени с богатым набором возможностей программирования алгоритма управления подключенными электрическими приборами или системамиВ этой категории тоже есть свое подразделение по технологии отсчета времени срабатывания. Углубляться в тему не будем – этот вопрос, скорее, интересен специалистам-электронщикам.
Можно лишь вкратце пояснить, что самые простые электронные реле отсчитывают время с помощью RC-цепочек (резистор + конденсатор). Время зарядки конденсатора зависит от номинала самого конденсатора и включенного с ним в цепь резистора. То есть это легко просчитывается, и плавным изменением номиналов элементов схемы или сменой цепочек (в некоторых реле их несколько) можно установить нужный интервал задержки срабатывания.
Более сложные реле времени оснащены специальными микросхемами или каскадом полупроводниковых приборов, обеспечивающих необходимую задержку по времени. Ну а самые современные на сегодняшний день имеют микропроцессорные блоки и кварцевые генераторы опорной частоты. Так что отсчёт времени в них происходит с максимальной точностью, а энергонезависимая память позволяет проводить программирование алгоритма работы.
Электронное реле времени модульного исполнения с аналоговой настройкой параметров работы. Сравнительно недорого и очень часто – вполне достаточно.Ассортимент электронных реле времени – очень широк. Вполне можно приобрести относительно недорогую модель с аналоговой настройкой параметров и обеспечивающее простейшие операции включения-выключения силовой линии с требуемой задержкой или по определённому алгоритму. Часто для реализации задуманной автоматизации того или иного процесса и такого прибора бывает вполне достаточно. Более совершенные реле времени оснащаются цифровыми жидкокристаллическими дисплеями и кнопочной (сенсорной) системой управления с точностью выставления параметров буквально до долей секунды. Удобно, но и стоимость, безусловно, растет пропорционально.
Можно еще добавить, что электронные реле времени могут выпускаться в любом из исполнений – как отдельные приборы-моноблоки (например – опять же, вариант «розетка с таймером»), в виде плат или блоков для установки в оборудование, или в модульной компоновке для размещения на DIN-рейке.
Видео: Пример использования электронного реле времени KEMOT URZ2001-1
* * * * * * *
К слову, немало «ломается копий» по поводу, как же правильнее называть подобные устройства – реле времени или таймерами. Приводятся доводы, что работа реле увязывается с астрономическим временем, а таймер лишь производит обратный отсчет заданного интервала. Или наоборот, что реле должно лишь обеспечивать задержку включения и выключения, а все что касается возможностей программирования (задания алгоритма работы) – это таймеры. Таким образом, утверждения прямо противоречат друг другу.
По мнению автора этой статьи, «граница» между этими типами приборов, если она и есть – весьма условная. И морочить себе голову тонкостями терминологии – вряд ли в данном случае имеет смысл. Главное – разобраться и суметь сформулировать: для чего вам требуется устройство управления и какими функциями оно должно обладать. И можете не сомневаться, что грамотный продавец-консультант прекрасно вас поймет и предложит оптимальную модель. А в паспорте у нее, кстати может быть указано и таймер, и реле времени. А нередко – и оба термина сразу, через тире или в скобках.
stroyday.ru
8.2. Реле выдержки времени и программные устройства
Реле выдержки времени предназначены для создания определенной временной задержки при передаче сигнала от одного элемента автоматики к другому.
Программное устройство представляет собой разновидность реле выдержки времени и имеет обычно несколько независимых выдержек времени сравнительно большой величины.
Реле выдержки времени изготовляются с электрическими, пневматическими и гидравлическими воспринимающими органами и с электрическими, механическими, пневматическими, гидравлическими’ и другими устройствами замедления. Наибольшее распространение получили реле с электрическими воспринимающими органами, реагирующие на сигналы постоянного или переменного тока.
Для создания сравнительно небольшой выдержки времени (до 5 сек) часто применяются простейшие схемные методы, замедляющие нарастание или спадание токов в обмотке электромагнитного реле постоянного тока при помощи резисторов, конденсаторов, полупроводниковых диодов, дросселей и короткозамкнутых витков или колец.
На рисунке 8.5 показаны схемные способы замедления электромагнитного реле Р при срабатывании и отпускании. При большом числе витков обмотки реле весьма эффективным методом является шунтирование обмотки активным сопротивлением или диодом (рис.8.5 а и б). Сущность такого метода состоит в том, что э.д.с. самоиндукции, возникающая в обмотке реле после его отключения ключом К, поддерживает протекание тока, в прежнем направлении. Этот ток, замыкаясь через шунтирующее сопротивление R, медленно убывает, а якорь реле некоторое время остается в притянутом состоянии.
Выдержка времени на отпускание реле может быть определена по формуле:
,
где RpиL— соответственно активное сопротивление и индуктивность обмотки реле в положении покоя, то есть при максимальном рабочем зазоре;Iтр— ток трогания якоря реле при срабатывании.
Следует заметить, что шунтирующее сопротивление вызывает дополнительный расход мощности. Этот недостаток устранен в схеме с шунтирующим диодом Д, включенным навстречу питающему напряжению. Кроме того, схема с диодом позволяет получить большую выдержку времени, поскольку диод включен в проводящем направлении и в уравнении, сопротивление R= 0.
На рисунке 8.5 в представлена схема, в которой после замыкания ключа К протекает большой ток заряда емкости С, а напряжение Uвхпочти полностью гасится на резистореR. По мере заряда емкости ток в обмотке реле возрастает до определенного значения, при котором реле срабатывает. Продолжительность времени задержки срабатывания зависит от постоянной времени цепи и может изменяться в широких пределах подбором соответствующей емкости конденсатора С и сопротивленияR.
8.3. Электрические исполнительные механизмы.
Исполнительные механизмы автоматических устройств предназначены для силового воздействия на регулирующие органы объектов управления. Они классифицируются по виду используемой энергии: электрические, гидравлические и пневматические. В мелиорации обычно применяют электрические и гидравлические механизмы. По характеру воздействия на регулирующий орган различают двухпозиционный, многопозиционные и пропорциональные исполнительные механизмы.
Двухпозиционные выполняют простейшие операции (например, открыть — закрыть), многопозиционные — ступенчатое, пропорциональное и плавное регулирование
Электрические исполнительные механизмы выполняются с электромагнитным (соленоидным) и электродвигательным приводом.
Исполнительные механизмы с электромагнитным приводом обеспечивают поступательное перемещение регулирующих органов. Они применяются главным образом в электромагнитных клапанах и вентилях для двухпозиционного регулирования. Чтобы открыть клапан и вентиль, питание подают на катушку электромагниту которая втягивает сердечник, связанный с запорным органом вентиля. Закрытие вентиля происходит под действием пружины при отключении катушки электромагнита.
Для снижения потребления электроэнергии эти механизмы оснащаются механическими защелками, удерживающими сердечник при открытом вентиле и отключении питания катушки. Закрытие происходит за счет подачи импульса тока в маломощную катушку электромагнита освобождения защелки.
В электродвигательных исполнительных механизмах для привода используются одно- и двухфазные двигатели переменного тока, асинхронные трехфазные, синхронные, двигатели постоянного тока и сельсины.
На рисунке приведена схема двухпозиционного исполнительного механизма с электродвигательным приводом типа ДР-1М, который состоит из конденсаторного двигателя I и контактного управляющего устройства II. Двигатель имеет две статорные обмотки 3 и 4. В одну из них включен конденсатор для смещения фазы протекаемого тока и получения вращающегося магнитного поля. С валом ротора 2 кинематически связан ползунок 5 контактного управляющего устройства. В исходном положении ползунок находится на одном из контактов 8 или 9, выступающих над контактной пластиной 6. Когда ползунок размещен на контакте 8 и замыкается вверх контакт датчика 1, управляющего исполнительным механизмом, получают питание обмотки двигателя и он начинает вращаться. Ползунок сходит с контакта 8 на пластину 6, но цепь питания двигателя остается замкнутой за счет перемыкания ползунком пластин 6 и 7. Сделав полоборота, ползунок окажется на контакте 9 и двигатель остановится. При переключении контакта датчика 1 вниз, двигатель вновь получает питание и вращаясь, переместит ползунок на полоборота до размещения на контакте 8. Двигатель всегда вращается в одном направлении, а направление движения регулирующего органа изменяется за счет внешних кинематических связей между исполнительным механизмом и регулирующим органом.
Механизм ДР-М отличается от механизма ДР-1М возможностью сочленения с регулирующим органом не только с помощью диска, совершающего вращательное движение, но и штоком, перемещающимся поступательно.
В системах пропорционального регулирования применяют исполнительные механизмы ПР-1М, ПР-М и МЭО. Для привода используются конденсаторные двигатели, но в отличие от механизмов ДР предусмотрена возможность реверсирования. Реверсирование происходит за счет переключения конденсатора С из одной цепи обмотки двигателя в другую конечными выключателями К1 и К2
Для дистанционного контроля положения и устройства обратной связи механизмы оснащаются блоками с индуктивными, резистивными датчиками и микропереключателями положения.
Исполнительные механизмы ПР, ДР и МЭО широко используются для привода поворотных дисковых затворов. В качестве привода задвижек и затворов перегораживающих сооружений применяются многооборотные электрические исполнительные механизмы.
2. Технические характеристики двигателей исполнительных механизмов М, А, Б, В, Г, Д
Показатели | Тип механизма | |||||
М | А | Б | В | Г | Д | |
Мощность двигателя, кВт Частота вращения двигателя, об/мин | 0,03 1300 | 0,12 0,18 1400 | 0,6 1,3 1300 | 3,0 4,0 1350 | 4,0 7,5 1350 | 7,5 — 1300 |
В мелиоративной практике наиболее распространены унифицированные исполнительные механизмы типов М, А, Б, В, Г, Д, Они принципиально однотипны и отличаются по габаритам, мощности двигателя и несущественными конструктивными изменениями. Как приводные двигатели в механизмах используют асинхронные трехфазные двигатели с повышенным скольжением и фланцевым креплением. Двигатель связан с запорным органом задвижки червячным редуктором (в механизмах М и А цилиндрическим). Механизм имеет стрелку местного указателя положения, кинематически связанную с приводным валом, и потенциометр дистанционного указателя. Защищается механизм от перегрузок муфтой ограничения крутящего момента или реле максимального тока.
Предусматриваются штурвал ручного привода и механическая блокировка, которая при включении ручного привода отсоединяет вал двигателя от вала червячного редуктора, и напротив, при сочленении двигателя с редуктором расщепляется его кинематическая связь со штурвалом ручного привода.
Электрические исполнительные механизмы также применяют для привода плоских щитовых затворов перегораживающих сооружены. Промышленностью серийно выпускаются винтовые подъемники типа В-73 с асинхронным трехфазным приводом. Двигатели соединяются через редуктор с грузовыми гайками привода грузовых подъемных винтов с трапецеидальной резьбой. Для местного отсчета и дистанционных измерений установлены датчики положения затвора. В подъемниках предусмотрена рукоятка ручного подъема.
Техническая характеристика приводных двигателей винтовых подъемников приведена в таблице 3.
3. Техническая характеристика приводных двигателей винтовых подъемников В-73
Показатели | Тип | |||||||
1ЭВ | 2,5ЭВ | 5ЭВД | 5ЭВ | 10ЭВД | 10ЭВ | 20ЭВД | 20ЭВ | |
Мощность двигателя, кВт | 0,4 | 0,6 | 1,0 | 1,0 | 1,3 | 1,3 | 2,0 | 2,0 |
Частота вращения, об/мин | 880 | 880 | 870 | 870 | 870 | 870 | 900 | 900 |
Продолжительность подъема на 1 м двигателем, мин | 8 | 8 | 8 | 5 | 5 | 6 | 6 | 6 |
Продолжительность подъема на 1 м вручную, мин | 3 | 7 | 9 | 15 | 19 | 20 | 40 | 33 |
Рис. 8.7. Регулятор уровня с мембранным исполнительным механизмом:
1 — выпускная труба; 2 — рабочая камера; 3 — мембрана; 4 — рабочий клапан; 5 — дроссельная трубка; 6 — входная дроссельная трубка; 7 — гибкая трубка; 8 — поплавковая камера; 9 — поплавок.
studfile.net
назначение, принцип работы, схемы подключения
Для обеспечения выдержки защит или построения логических электронных схем в их состав включаются элементы, обеспечивающие задержку срабатывания. В качестве такого элемента большинство современных электрических цепей использует реле времени.
Назначение
Реле времени предназначено для формирования нормируемых временных задержек при работе каких-либо устройств. Такие логические элементы позволяют выстраивать определенную последовательность в переключениях и срабатывании приборов. Благодаря отложенной подаче напряжения производится автоматическое управление выдаваемыми с реле времени сигналами.
Реле времени устанавливают в цепях защит в качестве промежуточного элемента для обеспечения селективности, построения ступеней, сценарных переходов и т.д.
Устройство и принцип работы
Конструктивно реле времени состоит из нескольких элементов, число и функции которых могут существенно отличаться в зависимости от типа реле. Общими блоками являются измерительный, блок задержки и рабочий.
- Первый из них представлен электромагнитными катушками, полупроводниковыми элементами, микросхемами, реагирующими на поступающие сигналы электрического тока.
- Блок задержки выполняется часовым механизмом, мостом, электромагнитным или пневматическим демпфером.
- Рабочий элемент представляет собой контакты или выход из аналоговой или цифровой схемы, контролирующих подачу напряжения в те или иные цепи.
В зависимости от конструктивных особенностей конкретной модели будет отличаться и принцип ее работы.
Принцип действия реле времени заключается в создании временного интервала от начала подачи сигнала на реле времени до получения этого сигнала потребителем. Дальнейшие операции и подача питания на рабочий элемент будет коренным образом отличаться в соответствии с типом устройства, поэтому рассматривать принцип действия следует для каждого вида реле времени отдельно.
С электромагнитным замедлением
Конструктивно такое реле времени состоит из электромагнитной катушки, магнитопровода (ярма), подвижного якоря, короткозамкнутой гильзы и блока отключения, которые представлены на рисунке ниже:
Рис. 1: конструкция электромагнитного релеПринцип работы электромагнитного реле заключается в создании магнитного потока в магнитосердечнике, наводимого от катушки. Магнитный поток притягивает якорь с контактами. Но, в таком режиме работы устройство представляло бы собой обычное промежуточное реле, поэтому для задержки замыкания контактов используется гильза. Она и создает в короткозамкнутом контуре встречный по направленности электромагнитный поток, задерживающий нарастание основного и обуславливающий выдержку временного промежутка.
Как правило, в электромагнитных моделях задержка составляет от 0,07 до 0,15 секунд, работа устройства осуществляется от цепей постоянного тока.
С пневматическим замедлением
Данный тип применяется в станочном оборудовании различных сфер промышленности, в частных случаях встречаются и гидравлические модели. Такое реле времени состоит из рабочей катушки, посаженной на магнитопровод, контактов и пневматической мембраны или диафрагмы, выполняющей роль демпфера.
Рис. 2: конструкция пневматического релеПринцип работы пневматического реле времени заключается в том, что при подаче напряжения на обмотку в сердечнике возникает магнитный поток, приводящий его в движение. Но моментальная переброска контактов не происходит за счет наличия воздушного промежутка под мембраной. Время задержки включения будет определяться количеством воздуха в демпфере и скоростью его удаления. Для регулировки этого параметра в пневматических моделях предусматривают винт, увеличивающий или уменьшающий объем камеры или ширину выпускного клапана.
С анкерным или часовым механизмом
Конструктивным отличием реле времени с часовым механизмом является наличие пружинного устройства, которое заводится за счет электрического привода или вручную. Замедление срабатывания для него определяется положением замыкающего флажка на циферблате.
Рис. 3: конструкция реле с часовым механизмомПри появлении управляющего сигнала отпускается механизм, и пружина медленно перемещает рабочий элемент, вращающийся по шкале циферблата. При достижении установленной отметки происходит включение нагрузки путем замыкания пары контактов. Пределы выдержки времени можно выбрать специальными зажимами или установкой регулируемой ручки в определенное положение. Конкретный способ управления будет отличаться в зависимости от модели и производителя.
Моторных реле времени
Отличительной особенностью моторных реле является наличие собственного двигателя, который включается в работу вместе с катушкой. Принцип работы такого устройства приведен на рисунке ниже:
Рис. 4: конструкция моторного релеНапряжение подается на электрическую схему, состоящую из катушки 1 и синхронного двигателя 2. После возбуждения обмоток статора в двигателе его вал приводит в движение систему зубчатой передачи 3 и 4, состоящую, как правило, из нескольких шестеренок. Вращение шестерней моторного реле приводит к механическому нажатию на рычаг, прижимающий контакты. Регулировка диапазона выдержки производится за счет перемещения фиксатора 8.
Электронных реле времени
Современные электронные реле представляют собой автоматический выключатель, принцип подачи сигнала с выхода которого регулируется настройкой R – C цепочки, параметрами микросхем или полупроводниковых элементов. Наиболее простым вариантом является совместная работа конденсатора и резистора, приведенная на рисунке ниже:
Рис. 5: принцип логической цепочки электронного релеВ зависимости от соотношения омического сопротивления резистора и емкости конденсатора, время заряда последнего и будет определять подачу напряжения питания в электронном устройстве. В данном примере приведен простейший вариант времязадающей цепочки, современные модели могут содержать более сложные структуры, включающие несколько R – C ветвей или их комбинации с транзисторами, мостами и другими элементами. Электронные модели обладают рядом весомых преимуществ, в сравнении с другими типами реле:
- Сравнительно меньшие размеры;
- Высокая точность срабатывания;
- Широкий диапазон регулировки – от десятых долей секунд до часов или суток;
- Автоматическое управление – удобная система программирования и ее визуальное отображение на дисплее.
Эти преимущества обуславливают повсеместное вытеснение электронными реле других устаревших моделей.
Цикличных
Под цикличными реле времени подразумевают такие устройства, которые выдают управляющий сигнал через какой-либо заданный промежуток времени (для подогрева чайника, открытия окон сутра, включения сигнализации на ночь и т.д.). Такое автоматическое включение имеет определенный сценарий, повторяющийся через какой-либо промежуток времени, из-за чего эту группу устройств также называют сценарными выключателями. Ранее циклическое включение осуществлялось посредством механического пружинного устройства, сегодня эта функция перешла к микропроцессорным элементам. Электронные таймеры находят широкое применение в самых различных сферах, некоторые из которых приведены на рисунке:
Рис. 6: сфера применения цикличных релеКак выбрать?
При выборе конкретной модели реле времени необходимо руководствоваться такими принципами относительно их параметров:
- Род и величина рабочего напряжения – различные модели могут, как подключаться к бытовой сети в 220 В переменного тока, так и работать от пониженных управленческих цепей на 12, 42, 127 В и т.д.
- Допустимый ток нагрузки – определяет пропускную способность контактов реле времени без их перегрева.
- Диапазон времени срабатывания контактов и чувствительность регулировки этого параметра – определяет скорость включения реле времени, возможность его изменения в каких-либо пределах и возможный шаг регулировки.
- Конструктивные особенности и принцип работы – если по местным условиям не допускается классическое переключение контактов по соображениям взрывоопасности, необходимо устанавливать бесконтактные модели.
- Влагозащищенность и температурный диапазон – определяет допустимые параметры окружающей среды, в которых может эксплуатироваться данное реле времени.
- Тип устройства (цикличные или промежуточные) – первый из них задает некую периодичность выдаваемого сигнала, а второй выступает в качестве промежуточного звена, обеспечивающего задержку времени в уже существующей цепи.
Примеры схем подключения
В зависимости от конкретной модели реле времени или поставленных задач, которое оно должно решать, схема подключения может коренным образом отличаться.
Рис. 7: пример схемы подключенияПосмотрите на рисунок 7, в данном примере приведен один из простейших вариантов управления осветительными приборами при помощи реле времени. Подача управляющего сигнала осуществляется на выводы 1 и 2, а к нагрузке от вывода 3 и нулевого провода. Клемма 4 получает питание от сети 220В. Данная схема широко используется для бытовых нужд и практически не применяется для промышленных целей, так как обеспечивает работу только с одним потребителем (прибором освещения, линией, сигнализацией и т.д.).
Рис. 8: Еще одна схема подключения реле времениНа рисунке 8 приведена схема включения реле времени, здесь способ питания аналогичен предыдущей схеме. Но на выходе устройства реализовано подключение двух независимых групп потребителей от контактов 3 и 5, которые могут иметь индивидуальную логику работы. Такой способ подключения предоставляет куда больший функционал, за счет чего он применяется в местах, где требуется управление сразу несколькими приборами.
Рис. 9: схема включения реле через контакторКак видите на рисунке 9, при подключении мощного оборудования, для которого реле времени не может осуществлять его электроснабжение из-за недостаточной проводимости собственных цепей, применяется подключение логического элемента через силовой контактор. В данной схеме рабочим органом выступает контактор, управляющий сигнал на который подается с контактов реле времени. Основным преимуществом такой схемы подключения является возможность запитать потребитель любой мощности и принципа действия.
Видео в развитие темы
www.asutpp.ru
принцип работы, виды, схемы подключения
Устройство, срабатывающее по факту истечения назначенного временного интервала, называется реле времени – прибор нашёл широкое применение в электротехнике, электрике, электронике. Благодаря его использованию в схемных решениях удаётся реализовывать более гибкие функции управления различной техникой и аппаратами.
В зависимости от конструкции и принципа работы прибора можно организовать различные по сложности исполнения электрические схемы.
Предлагаем разобраться, какие существуют виды реле времени, в чем их специфика работы и применения. Теоретический материал дополнен практическими рекомендациями по подключению и настройке устройства временного управления.
Содержание статьи:
Принцип действия реле времени
Электронные приборы представлены конструктивным разнообразием, поэтому рассматривать принцип устройства реле времени следует с учётом каждой конструктивной вариации в отдельности.
Такой выглядит одна из многочисленных конструкций реле времени. По сути, прибор напоминает обычный коммутатор, действие которого, однако, привязано к циклу течения времени
С точки зрения исполняемых действий, на практике используются электромагнитные, пневматические, электронные конструкции и устройства на часовом механизме.
Вариант #1: электромагнитные приборы
Устройства, поддерживающие электромагнитный принцип действия, как правило, предназначены для работы исключительно в схемах с питанием от постоянного тока.
Конструкция электромагнитного реле времени РЭВ-814: 1 – узел неподвижных контактов; 2 – скоба; 3 – демпферный механизм из меди; 4 – угольник; 5 – сердечник обмотки главного контура; 6 – якорь; 7 – подвижные контакты якоря
Диапазон срабатывания по времени обычно составляет 0,07 – 0,11 сек по включению и 0,5 – 1,4 сек по отключению. Конструкция таких реле времени содержит две рабочих обмотки, одна из которых представляет собой короткозамкнутый контур в виде медного кольца.
Когда через основную обмотку проходит электрический ток, отмечается рост магнитного потока. Этим потоком формируется ток короткозамкнутой обмотки, за счёт чего рост магнитного потока основной обмотки ограничивается.
Как результат, формируется временная характеристика движения якоря исполнительного механизма или, иными словами, создаётся выдержка по времени на включение.
Усовершенствованная конструкция реле времени электромагнитного типа. Этой моделью прибора поддерживается коммутация четырёх независимых каналов нагрузки. Вместе с тем по токовым параметрам устройство выглядит слабее старых моделей (+)
Если прекращается подача тока в контур основной обмотки, благодаря эффекту индуктивности, некоторое время остаётся активным магнитное поле короткозамкнутой обмотки. Соответственно, в течение этого времени реле не отключается.
Вариант #2: пневматические устройства
Конструкции на базе пневматических систем – своего рода эксклюзивные устройства. Подобные устройства оснащены специальной механикой замедления – пневматическим демпферным механизмом.
Регулировать время выдержки пневматических реле можно путём уменьшения или увеличения проходного сечения трубки, через которую осуществляется подвод воздуха. Для этих целей конструкции пневматических реле снабжаются регулировочным винтом.
Одна из распространённых конструкций пневматических приборов. Достаточно простое надёжное исполнение. Параметры коммутируемого тока до 16 ампер. В качестве коммутатора используется мини-переключатель на два канала
Диапазон установки временной задержки пневматических реле составляет в среднем 1 – 60 сек. Однако есть экземпляры, перекрывающие этот диапазон практически вдвое. Правда, на практике отмечены небольшие погрешности (около 10%) в плане точности срабатывания по установленным значениям.
Вариант #3: модификации часового типа
Так называемые часовые реле времени нашли широкое применение в электрике. Этот вид приборов нередко используется в конструкциях , предназначенных для защиты цепей напряжением 500 – 10000 вольт. Диапазон выдержки составляет 0,1 – 20 сек.
Принцип действия часовых моделей построен на работе пружины, взводимой механическим приводом (анкером) электромагнита. Коммутация контактных групп часового реле времени выполняется по факту пройденного времени, значение которого ранее было установлено на шкале прибора.
Представитель достаточно древней серии приборов – реле времени с часовым механизмом. Между тем, этот вид устройств показал надёжную безотказную работу в самых разных условиях
Скорость хода механизма устройства напрямую связана с силой тока, протекающего в обмотке электромагнита. Этот фактор позволяет настраивать прибор под исполнение функций защиты. Особенность такой защиты выражается полной независимостью от влияния окружающей температуры.
Вариант #4: электронные реле
Последние несколько лет практически везде, где могут применяться реле времени, на смену устаревшим электромеханическим моделям пришли электронные версии.
Этот вид приборов обладает целым рядом преимуществ:
- малые габариты корпуса;
- высокая точность срабатывания;
- удобный механизм настройки;
- визуальное отображение информации.
Электронные версии действуют, как правило, на основе цифровых импульсных счётчиков. Многие современные приборы построены на высокопроизводительных микропроцессорах. Реле цифровые обычно рассчитаны на коммутацию мало-индуктивных либо неиндуктивных нагрузок.
Современная разработка – цифровое реле, призванное обеспечить коммутацию по времени. Привлекает удобством управления и контроля, гибкой настройкой и внешним видом
Для настройки реле времени цифрового типа достаточно задать нужные временные параметры с помощью функциональных клавиш, размещённых непосредственно на фронтальной панели корпуса.
Настройка обычно доступна в широких пределах по времени, позволяет охватывать не только секунды, минуты, часы, но также дни недели. Для примера можно рассмотреть модель недельного электронного реле – таймера.
Электронный таймер с функциями автоматических включений-отключений может удачно использоваться в схемах управления разными видами устройств. Так называемое «недельное» реле времени обеспечивает выполнение функций коммутации в соответствии с установленным промежутком времени в рамках недельного цикла. Такие устройства используются в системах .
Например, благодаря прибору открываются возможности:
- коммутировать системы освещения в заданное время;
- запускать или останавливать технологическое оборудование;
- активировать/деактивировать охранные системы.
Прибор небольшой по размерам, имеет несколько функциональных клавиш управления. Применяя системную клавиатуру, пользователь может его легко настраивать (программировать).
Пользовательский функционал цифрового реле времени – панель управления с клавишами установки параметров. Плюс жидкокристаллический дисплей, где отображается вся необходимая информация
Режим программирования активируется нажатием и удержанием кнопки, обозначенной символом «P». Выполнить системный сброс помогает клавиша «Reset». Изменение настроек времени реле осуществляется клавишами установки минут, часов, дней недели при активном режиме программирования.
Стандартной схемой подключения реле времени предусматривается установка одного из двух режимов управления действиями – ручного или автоматического. Удобство настройки реле цифрового типа обеспечивает информационный жидкокристаллический дисплей.
Настройка электронно-механических аналоговых реле
Системы промышленной автоматики, а также различные бытовые модули часто оснащаются электромеханическими устройствами, конструкция которых предусматривает настройку при помощи потенциометров.
Электромеханический тип устройства отсчёта времени с регулировкой параметров потенциометрами. Существуют различные конфигурации подобных приборов, что делает возможным применять их в схемах разной сложности
На передней панели корпуса таких устройств располагается шток потенциометра (или несколько штоков), предназначенный под вращение лезвием отвёртки. По окружности штока (штоков) наносится размеченная шкала значений установки.
Прорезь на штоке под лезвие отвёртки является своеобразным указателем, изменяющим своё положение при вращении штока. Установкой этого указателя напротив определённых значений размеченной шкалы достигается настройка нужного параметра.
Многоканальный прибор электронно-механического типа. Настраивается легко и просто путём вращения потенциометров с помощью отвёртки. На фронтальной панели также имеется светодиодная индикация состояния
Приборы подобного типа (например, NTE8) нашли широкое применение в схемах управления вентиляционными системами, отопительными модулями, приборами искусственного освещения.
Регулировка приборов с цифровой шкалой
Пользование приборами с функциями механической настройки можно продемонстрировать на примере таймера бытового марки REV Ritter, предназначенного для включения в сетевую домашнюю розетку.
Так называемое «розеточное» реле, предназначенное для использования в бытовых условиях. Время действия, как правило, ограничивается суточным диапазоном. Этого времени вполне достаточно для бытового применения
При помощи можно управлять в заданном диапазоне времени практически любой бытовой техникой. Для применения этого суточного таймера достаточно включить устройство в розетку и настроить.
Настройка сопровождается следующими действиями:
- Поднять все сегменты, расположенные по окружности диска настройки.
- Опустить только те сегменты, которые соответствуют времени настройки.
- Поворотом диска настройки выставить указатель диска на текущее время.
Например, если были опущены сегменты между цифрами шкалы 18 и 20, после того, как реле начнёт отсчёт времени, нагрузка будет включена в 18 часов и отключена в 20 часов.
В целом, конструкция механического реле REV Ritter позволяет организовать до 48 включений за полные 24 часа.
Модификация «розеточного» реле времени: 1 – розетка подключения нагрузки; 2 – ручное управление; 3 – шкала, размеченная на 24 часа; 4 – программные сегменты; 5 – указатель текущего времени; 6 – вилка включения в розетку бытовой сети (+)
Вместе с тем, устройство поддерживает функцию внепрограммного включения нагрузки. Для этого имеется отдельная кнопка, расположенная на боковой стороне корпуса. Если пользователь активирует эту кнопку, нагрузка подключается к сети непосредственно, независимо от состояния контактов реле.
Подключение реле времени в схеме управления
Устройство необходимо подключать с учётом соответствия места установки тем условиям, какие заявлены в техническом паспорте прибора. Как правило, монтаж предполагает вертикальную установку прибора при допусках отклонения от вертикали не более чем на 10º.
Температурные границы помещения, где предполагается монтаж и эксплуатация реле времени, обычно не превышают диапазон -20°С + 50°С.
Уровень влажности воздуха в зоне инсталляции прибора не должен превышать значения 80%. Электрическую схему, куда устанавливается таймер, на время установки следует отключить от сетевого питания.
Классическая схема подключения реле времени, в данном случае, для прибора, коммутирующего два канала с нагрузкой. По такому же принципу подключаются устройства на разное число коммутаций (+)
Прибор любой конструкции традиционно имеет технический паспорт, где обозначена схема подключения. Многие таймеры электронно-механические и цифровые дополняются схемой, нанесённой непосредственно на корпусе и показывающей, как и в какой последовательности подключить реле времени.
Классический вариант подключения выглядит так:
- Подключение лини напряжения на клеммы питания прибора.
- Фазная линия через автоматический выключатель соединяется с входным контактом нагрузки реле.
- Выходной контакт нагрузки реле подключается непосредственно к фазной линии нагрузки.
По сути, схема подключения для основной массы приборов выстраивается по идентичному принципу: подключение питания на сам прибор и включение нагрузки через группу коммутируемых контактов.
В зависимости от типа реле (однофазные, трёхфазные), а также от конструктивных особенностей, этих контактных групп может быть несколько.
Простой вариант реле времени можно сделать собственноручно. Схемы различных самоделок описаны в .
Выводы и полезное видео по теме
В видео-ролике рассматривается возможность использования модульного устройства, где присутствуют два независимых коммутирующих по времени устройства. Схема предусматривает включение двух приборов бытовой техники, настройку их работы во временных интервалах и другие функции.
Конечно же, все существующие модификации реле времени не охватить одним скромным обзором. Для рассмотрения всего ассортимента приборов потребуется написать целую книгу. Собственно, справочники по таймерам разных видов доступны, и при желании отыскать необходимые сведения можно всегда.
Есть, что дополнить, или возникли вопросы по работе, выбору, подключению и настройке реле времени? Можете оставлять комментарии к публикации и участвовать в обсуждениях. Форма для связи находится в нижнем блоке.
sovet-ingenera.com
1.2 Электромеханические реле времени
В схемах защиты и автоматики часто требуется выдержка времени между срабатыванием двух или нескольких аппаратов. При автоматизации технологических процессов также может возникнуть необходимость в определенной временной последовательности операций. Для создания выдержки времени служат электрические аппараты, называемые реле времени. Общими требованиями для реле времени являются:
а) стабильность выдержки времени при колебаниях напряжения, частоты питания, температуры окружающей среды и воздействии других факторов;
б) малые потребляемая мощность, масса и габариты.
Возврат реле в исходное положение происходит, как правило, при его обесточивании. Поэтому коэффициент возврата может быть очень низким.
В зависимости от назначения к реле времени предъявляются различные специфические требования. Для схем автоматического управления электроприводом при большой частоте включений требуются реле с высокой механической износостойкостью — до (5-10)-106 срабатываний. Требуемые выдержки времени находятся в пределах 0,25-10 с. К этим реле не предъявляются требования относительно высокой стабильности выдержки времени. Разброс времени срабатывания может достигать 10 %. Реле должны работать в производственных условиях при наличии интенсивных механических воздействий.
Реле для защиты энергосистем должны иметь большую точность выдержки времени. Эти реле работают относительно редко, поэтому к ним не предъявляются особые требования по износостойкости. Износостойкость реле времени защиты порядка (5-10)-103 срабатываний. Выдержки времени таких реле составляют 0,1-20 с.
Для автоматизации технологических процессов необходимы реле с большой выдержкой времени — от нескольких минут до нескольких часов. В этом случае, как правило, используются моторные реле времени. В настоящее время созданы также полупроводниковые реле с таким же большим диапазоном выдержки времени.
Увеличение времени срабатывания или отпускания можно достичь воздействием на время трогания и времени движения до момента замыкания или размыкания. Увеличение времени трогания возможно двумя способами: электрическим или магнитным. При электрическом методе реле включают в схемы (рис. 1.4), изменяющие скорость нарастания или спадания тока в его обмотке.
При магнитном методе замедление достигается с помощью различных медных втулок, коротко замкнутых витков и т. п., уменьшающих скорость нарастания или спадания тока в обмотке реле. Втулки или коротко-замкнутые витки насаживают непосредственно на сердечники под обмотку или рядом с ней, у конца пли начала сердечника.
Втулки, надетые на конце сердечника, увеличивают в основном время срабатывания, а надетые на основание — время отпускания.
Для увеличения второй составляющей (времени движения) обычно применяют воздушные и масляные демпферы или часовые механизмы.
Рассмотрим электрические методы замедления срабатывания и отпускания реле.
а б в г
Рис. 1.4. Электрические методы образования реле времени
На рис. 1.4, а показана схема замедления срабатывания реле с использованием лампы накаливания, включенной параллельно обмотке реле и добавочного резистора R. В холодном состоянии лампа имеет небольшое сопротивление, поэтому при замыкании ключа К в цепи лампы будет протекать большой ток, на резисторе R будет большое падение напряжения и, следовательно, малое напряжение па обмотке реле.
По мере разогрева нити лампы током сопротивление ее увеличивается, растет напряжение на обмотке реле, и оно срабатывает с замедлением.
На рис. 1.4, б показана схема замедления срабатывания реле с помощью шунтирования его обмотки конденсатором С. В этом случае при замыкании ключа К заряд конденсатора происходит по времени. Напряжение заряда конденсатора постепенно возрастает, а время срабатывания реле увеличивается. Эта схема тоже увеличивает время отпускания реле, так как якорь некоторое время остается притянутым за счет энергии, накопленной в конденсаторе.
На рис. 3, в показана схема замедления отпускания реле. После размыкания ключа К через обмотку реле и диод VD некоторое время протекает ток, созданный за счет ЭДС самоиндукции обмотки реле. Этот ток постепенно уменьшается, и реле отключается с замедлением.
В схеме (рис.1,4, г) время отпускания реле увеличивается за счет того что при размыкании ключа К в цепи, состоящей из обмотки реле, конденсатора С и резистора R некоторое время сохраняется ток разряда конденсатора. Чтобы переходной процесс в этой цепи имел апериодический характер, применяют достаточно большой емкости конденсатор и большой величины резистор R.
Работа реле времени с магнитными демпферами осуществляется следующим образом. При появлении тока в рабочей обмотке реле начинает нарастать магнитный поток в сердечнике. Изменение магнитного потока обусловливает появление в короткозамкнутой обмотке (втулке) ЭДС, под действием которой образуется ток, создающий, в свою очередь, магнитный поток. Новый магнитный поток направлен противоположно магнитному потоку рабочей обмотки и поэтому замедляет скорость увеличения результирующего потока в рабочем зазоре. Если короткозамкнутая обмотка (втулка) расположена на конце сердечника, то при подаче питания на реле магнитный поток, образуемый токами во втулке, направлен навстречу основному потоку рабочей обмотки и как бы отталкивает его из рабочего зазора. В результате возрастают потоки рассеяния в сердечнике и у основания, а поток в рабочем зазоре сильно ослабляется.
Таким образом, усиливается влияние короткозамкнутой обмотки на время срабатывания реле (одновременно увеличивался время отпускания).
С помощью магнитного демпфирования можно получить выдержку времени при срабатывании реле 0,1- 0,3 с.
Большие выдержки времени получить невозможно, так как нарастание магнитного потока происходит при большом зазоре между якорем и сердечником. Это определяет индуктивность системы, а следовательно, быстрый рост магнитного потока.
Магнитное демпфирование удобно применять для замедления отпускания реле, так как спад магнитного потока происходит при малом рабочем зазоре, т. е. при большой индуктивности системы, что определяет ее большую инерционность и позволяет получить выдержку времени от 0,2 до 10 с.
Для увеличения времени отпускания реле короткозамкнутую обмотку (втулку) располагают у основания сердечника.
При подаче питания на обмотку реле магнитный поток, образуемый током во втулке, смещает результирующий магнитный поток системы к рабочему зазору, поэтому втулка меньше влияет на время срабатывания реле. включения реле. Время срабатывания реле с электромагнитным замедлением очень мало, так как постоянная времени мала из-за большого начального рабочего зазора, и трогание реле происходит при малом значении МДС обмотки. МДС трогания значительно меньше установившегося значения. Это время составляет 0,05-0,2с при наличии короткозамкнутого витка и 0,02-0,05с при его отсутствии. Таким образом, возможности электромагнитного замедления при срабатывании весьма ограничены. Поэтому используются специальные схемы включения электромагнитных реле (рис. 1.5).
Если необходима большая выдержка времени при замыкании конактов, то целесообразна схема с промежуточным реле К (рис. 1.5,а). Обмотка реле времени КТ все время подключена к напряжению через размыкающий контакт реле К. При подаче напряжения на обмотку К последнее размыкает свой контакт и обесточивает реле КТ. Якорь КТ отпадает, и его размыкающие контакты срабатывают с необходимой выдержкой времени, обусловленной временем срабатывания реле К и временем отпускания реле КТ. В схеме (рис. 1.5, б) роль короткозамкнутого витка играет сама намагничивающая обмотка, которая питается через резистор Rдоб. Напряжение, приложенное к обмотке, должно быть достаточным для насыщения магнитной цепи при притянутом якоре. При замыкании управляющего контакта 5 обмотка реле закорачивается и обеспечивается медленный спад потока в магнитной цепи. Отсутствие специальной короткозамкнутой обмотки позволяет все окно магнитопровода занять намагничивающей обмоткой и создать большой запас по МДС. При этом выдержка времени неизменна при снижении питающего напряжения на обмотке до 0,5 Uhom. Такая схема широко применяется в электроприводе. Обмотка реле включается параллельно ступени пускового реостата в цепи якоря. При закорачивании этой ступени обмотка реле замыкается, а его контакты с выдержкой времени включают контактор, шунтирующий следующую ступень пускового реостата.
Применение полупроводникового вентиля также позволяет использовать реле без короткозамкнутого витка. При включении обмотки ток через вентиль практически равен нулю. При этом через вентиль протекает ток, определяемый этой ЭДС, активным сопротивлением обмотки и вентиля и индуктивностью обмотки.
Для того чтобы прямое сопротивление вентиля не приводило к уменьшению выдержки времени (растет активное сопротивление коротко-замкнутой цепи), оно должно быть на один-два порядка ниже сопротивления обмотки.
При любых схемах обмотки реле питаются от источника либо постоянного, либо переменного тока с мостовой схемой выпрямления.
Реле времени с электромагнитным замедлением.
Конструкция реле с таким замедлением типа РЭВ-800 (рис.1.6) содержит П-образный магнитопровод 1 и якорь 2 с немагнитной прокладкой 3. Маг-нитопровод укрепляется на плите 4 с помощью литого алюминиевого цоколя 5, на котором устанавливается контактная система 6.
На магнитопроводе установлена намагничивающая обмотка 7 и короткозамкнутая обмотка в виде овальной гильзы 8. Усилие возвратной пружины 9 изменяется с помощью регулировочной гайки 10, которая фиксируется шплинтом.
Д
Рис.1.6 Реле времени с электромагнитным замедлением
ля получения большой выдержки времени при отпускании необходима высокая магнитная проводимость рабочего и паразитного зазоров в замкнутом состоянии магнитной системы. С этой целью все соприкасающиеся детали магнитопровода и якоря тщательно шлифуются. Литой алюминиевый цоколь создает дополнительный коротко-замкнутый виток, увеличивающий выдержку времени. У реальных магнитных материалов после отключения намагничивающей обмотки поток спадает до Фост, который определяется свойствами материала магнитопровода, геометрическими размерами магнитной цепи и магнитной проводимостью рабочего зазора. Чем меньше коэрцитивная сила магнитного материала при заданных размерах магнитной цепи и магнитной проводимости рабочего зазора, тем ниже остаточная индукция, а следовательно, и остаточный поток. При этом возрастает наибольшая выдержка времени, которая может быть получена от реле.Применение стали с низким значением Нс позволяет увеличить выдержку времени.
Для получения большой выдержки времени материал магнитопровода должен иметь высокую магнитную проницаемость на ненасыщенном участке кривой намагничивания.
Регулирование выдержки времени. Время срабатывания реле можно плавно регулировать с помощью возвратной пружины 9 (рис. 1.6.) С увеличением сжатия этой пружины увеличивается электромагнитное усилие, необходимое дня трогания якоря и определяемое потоком в магнитной цепи. При большем сжатии пружины поток трогания возрастает. Следовательно, возрастает время трогания.
При разомкнутой магнитной цепи постоянная времени обмотки мала и максимальная выдержка времени также незначительна (около 0,2 с). Выдержка времени значительно увеличивается, если поток трогания близок к установившемуся значению. Однако в этом случае реле работает на пологой части кривой O(t). что вызывает большие разбросы времени срабатывания.
Для получения выдержки времени 1 с и более, необходимо использовать отпускание якоря. Регулировка выдержки реле при отпускании может производиться плавно и ступенчато (грубо).
Плавное регулирование выдержки времени производится изменением усилия пружины 11 (рис. 1.6). Эта пружина верхним концом упирается в шайбу 14, которая удерживается шпилькой 15, ввернутой в якорь реле. Нижний конец пружины посредством специальной пластины 16 передает силу через два латунных штифта 12, которые могут свободно перемещаться в отверстиях якоря. Оси латунных штифтов 12 смещены относительно оси пружины. В притянутом положении якоря 2 штифты 12 перемещаются вверх и пружина 11 дополнительно сжимается. Пружина 11 создает основную силу, отрывающую якорь от сердечника. Начальное сжатие пружины изменяется с помощью гайки 13. С увеличением силы пружины 11 электромагнитное усилие, при котором происходит отрыв якоря, увеличивается и возрастает поток отпускания Фотп. При этом время отпускания уменьшается (рис.1.7.). Чем меньше сила пружины, тем больше выдержка времени. Следует отметить, что при Фотп близком к Фост якорь реле вообще может не отпадать от сердечника.
Возвратная пружина 9 регулируется так, чтобы обеспечить необходимое нажатие размыкающих контактов реле и четкий возврат якоря в положение, показанное на рис. 1.6.(после того как якорь оторвется от сердечника).
Грубое регулирование выдержки времени осуществляется изменением толщины немагнитной прокладки 8. Поскольку при притянутом якоре магнитная цепь насыщена, толщина немагнитной прокладки мало сказывается на установившемся потоке. С уменьшением толщины немагнитной прокладки <растет индуктивность катушки при ненасыщенном магнитопроводе и уменьшается скорость спадания магнитного потока. В результате при неизменном усилии пружины 11 (рис.1.6.) выдержка времени увеличивается (рис.1.8.).
Толщину немагнитной прокладки не рекомендуется брать менее 0,1мм. В противном случае при повторно-кратковременном режиме работы якорь расклепывает немагнитную прокладку и толщина ее уменьшается, что ведет к изменению выдержки времени. При толщине прокладки более 0,1мм этим явлением можно пренебречь.
Следует отметить, что электромеханические реле времени достаточно просты по конструкции и обладают большой ударо-, вибро- и износостойкостью. Допустимое число включений достигает 600 в час. Они могут использоваться в схемах автоматики и электропривода как реле тока, напряжения и промежуточные. Коэффициент возврата их низок и составляет 0,1-0,3. Короткозамкнутые витки создают электромагнитное замедление как при притяжении, так и при отпускании якоря. Поэтому токовые реле с короткозамкнутым витком не реагируют на кратковременные перегрузки. При кратковременных перегрузках МДС обмотки пропорциональна этим перегрузкам.
Поток в магнитопроводе нарастает с постоянной времени Тк, определяемой параметрами короткозамкнутого витка LK /Rk.
Если перегрузка кратковременна и ее длительность tПEP<tсp, то поток к моменту tПEP не достигнет значения потока срабатывания и якорь останется неподвижным. Если tПEP>tсp, то реле сработает. Таким образом, предотвращается отключение нагрузки (двигателя) при больших, но кратковременных токовых перегрузках, не опасных для двигателя.
Промышленностью выпускаются многочисленные модификации реле с электромагнитным замедлением и выдержкой времени при отпускании 0,3-5 с. Современные реле имеют один или два унифицированных контактных узла. Каждый узел имеет один замыкающий и один размыкающий контакты с общей точкой. Постоянный ток включения контактов составляет 10 А при напряжении 110 В и 5 А при 220 В. Ток отключения для индуктивной нагрузки (катушки реле, контакторов) составляет 0,2, для активной 0,5 А.
Реле времени с механическим замедлением
Реле с пневматическим замедлением. В таких реле электромагнит постоянного или переменного тока воздействует на контактную систему через замедляющее устройство в виде пневматического демпфера. Выдержка времени меняется при регулировке этого устройства. Преимуществом такого реле является возможность питания как переменным, так и постоянным током и независимость от напряжения и частоты питания, температуры. Пневматическое реле РВП, применяемое в схемах электропривода станков и других механизмов, показано на рис. 1.9. При срабатывании электромагнита 1 колодка 2 под действием пружины опускается и воздействует на микропереключатель 4. Колонка 2 свя: зана с резиновой диафрагмой 5 пневматического замедлителя. Скорость движения колодки определяется сечением отверстия, через которое засасывается воздух в верхнюю полость замедлителя. Выдержка времени регулируется иглой 6, меняющей сечение этого отверстия. Контактная система 7 срабатывает без выдержки времени.
Реле с пневматическим замедлением позволяет регулировать выдержку времени в диапазоне от 0,4 до 180с с точностью ±10 %. Контактная система микропереключателя допускает длительный ток ЗА, ток отключения 0,2 А при переменном напряжении 380 В
Рис. 1.9. Реле времени с пневматическим замедлением.
В замедлителях в виде анкерного механизма его пружина заводится под воздействием электромагнита. Контакты реле приходят в движение лишь после того, как связанный с ними анкерный механизм отсчитает определенное время уставки.
Выдержка времени у этих реле регулируется в пределах от 7 до 17с с точностью ±10% уставки. В реле имеются и нерегулируемые контакты, которые связаны с якорем электромагнита и используются в цепях, не требующих выдержки времени. Реле надежно работают при напряжении питания до 0,85 Uhom. Так как износостойкость анкерного механизма составляет всего 15000 срабатываний, такие реле не применяются при частых включениях. Моторные реле. Для создания выдержки времени 20-30 мин используются так называемые моторные реле времени, в состав которых входит электродвигатель с заданной частотой вращения. Промышленностью выпускаются большие серии этих реле на выдержки времени от 1 с до 26 мин и с различным исполнением контактов
.
Начальное положение кулачка
при обесточенном реле
Рис. 1.10. Моторное реле времени
Рис. 1.11. Кинематическая схема реле времени ЭВ-215
На рис. 1.10 показано устройство моторного реле. Для пуска реле подается напряжение на электромагнит 1 и двигатель 2. С помощью рычага 12 электромагнит без выдержки времени включает муфту 3, 4 и замыкает выходной контакт 5. Через муфту и зубчатую передачу 6 двигатель начинает вращать диски 7 с кулачками 8 и 9, воздействующими на промежуточные кулачки 10 и 11 и выходные контакты 16 и 13. При соприкосновении кулачков 8 и 10 последний поворачивается против часовой стрелки и дает возможность контактной пластине 14 опуститься вниз под действием силы упругости. При этом контакт 16 размыкается. При соприкосновении кулачков 9 и 11 последний поворачивается и освобождает пластину 15, что вызывает замыкание контакта 13. Выдержка времени работы контактов 16 и 13 регулируется путем изменения начального положения дисков 7. При снятии напряжения с реле диски 7 поворачиваются в начальное положение с помощью спиральной возвратной пружины 17.Точность работы реле ± 5 с. Реле позволяет устанавливать различую выдержку времени в пяти независимых цепях. Выходные контакты реле допускают длительный ток 10 А и при переменном токе могут отключать нагрузку мощностью 800 ВА при напряжении 220 В и 100 Вт при том же напряжении и индуктивной нагрузке постоянного тока. Допустимые колебания напряжения составляют (0,9-1,12) Uном . Износостойкость не менее 1000 циклов. Время возврата не более 1 с.
Реле времени часового (анкерного) механизма. Реле времени предназначено для замедления действия МТЗ с целью обеспечения селективности или избирательности её действия, заключающегося в отключении к ближайшему месту повреждения сети выключателя. Устройство электромагнитного реле времени типа
ЭВ-215 с анкерным часовым механизмом показано на рис. 1.11.
При подаче напряжения на катушку 1 её сердечник втягивается, сжимает пружину 2 и освобождает рычаг 3. Под действием пружины 6 зубчатый сектор 5 поворачивается на оси 4 по часовой стрелке. Шестерня 7 и подвижный контакт 9 будут вращаться в противоположную сторону. Постоянная скорость вращения контакта обеспечивается часовым механизмом 8. Через некоторое время (временя выдержки) контакт 9 замкнет неподвижные контакты 10. Регулируют выдержку времени изменением длины прохождения пути контакта 9 за счет перемещения контактов 10 по шкале выдержек 12, к которой они крепятся винтом 11. Кроме контактов, замыкающихся с выдержкой времени, реле имеет вспомогательные контакты 13,14 мгновенного действия.
Изображение катушки реле времени КТ и его контактов (замыкающего с выдержкой времени при замыкании КТ. 1 размыкающего с выдержкой времени при размыкании КТ.2) показаны на рис. 1.11. В общем случае направление выдержки времени на изображаемом контакте совпадает с направлением «рожек» дуги («рожки» препятствуют движению контакта).
studfile.net
Реле времени — простое и необходимое устройство автоматики
Реле времени считается одним из наиболее простых и в то же время необходимых устройств автоматики. Предназначено это устройство для выполнения задачи отслеживания заданного заранее времени и временного интервала. Реле используется в случаях, когда нужно автоматически выполнить какое-либо действие, но не сразу после появления сигнала, а через небольшой промежуток времени.
Процесс программирования реле времени заключается в установке режима работы, диапазона и необходимого интервала времени. При автоматизации технологических процессов также может возникнуть необходимость производить операции в определенной временной последовательности.
Разновидности
По способу программирования реле времени делятся на два вида: с аналоговым и цифровым программированием. При этом каждый из видов имеет свои преимущества и предназначается для более эффективного использования их функций. К примеру, аналоговое реле времени достаточно легко программируется, перенастраивается, оно гораздо проще в эксплуатации и несколько дешевле по стоимости. Реле цифровое позволяет задать наиболее точный временной интервал и исключает возможность появления программной ошибки. С помощью органов контроля реле времени легко программируются. Они монтируются на DIN-рейку или на лицевую панель. Способ подключения : через специальную колодку, разъем, клеммы Для задания времени используются переключатели, потенциометры и кнопки. У нас имеются многофункциональные, многопрограммные реле времени и таймеры,
Также простые недорогие аналоговые реле времени.
Дополнительные возможности
Некоторые модели реле времени для осуществления бесперебойной работы в особенно критические моменты оснащают встроенными аккумуляторами, которые можно подзаряжать от сетевого питания или использоваться импульсный блок питания. На протяжении длительного времени запрограммированное устройство сохраняет заданные параметры, потому что оно имеет энергонезависимую память. Каждое реле времени оборудовано на передней панели информационным табло, где представляются в наглядном виде все данные, необходимые для анализа. Реле времени не требуют постоянного высококвалифицированного обслуживания, они достаточно надежны, просты в эксплуатации, прекрасно защищены от помех, влаги и пыли.
Требования, предъявляемые к реле времени
Общими требованиями для реле времени являются:
а) стабильность выдержки времени вне зависимости от колебаний питающего напряжения, частоты, температуры окружающей среды и других факторов;
б) малые потребляемая мощность, масса и габариты;
в) достаточная мощность контактной системы.
Возврат реле времени в исходное положение происходит, как правило, при его обесточивании. Поэтому к коэффициенту возврата не предъявляется особых требований, и он может быть очень низким.
В зависимости от назначения реле к ним предъявляются специфические требования.
Для схем автоматического управления приводом при большой частоте включений в час требуются реле времени с высокой механической износостойкостью. Требуемые выдержки времени находятся в пределах 0,25-10 с. К этим реле не предъявляются высокие требования относительно точности работы. Разброс времени срабатывания может достигать 10%. Реле времени должны работать в условиях производственных цехов, при вибрации и тряске.
Реле времени для защиты энергосистем должны иметь большую точность выдержки времени. Эти реле работают относительно редко, поэтому к ним не предъявляются особые требования по износостойкости. Выдержки времени таких реле составляют 0,1-20 с.
Область применения реле времени
Многофункциональное программное реле времени имеет достаточно обширную область применения. Простая схема подключения позволяет применять его для управления освещением в домах, для создания искусственного света, в частности на птицефабриках, для оснащения насосов, которые применяются для подачи воды, в осветительных и рекламных щитах, в холодильном, воздушном, и испытательном оборудовании и т.п. Кроме того, реле времени устанавливается на оросительных системах и термопечах.
Цель применения
Основная цель, которая преследуется при оборудовании систем подобного рода реле времени — это возможность экономии энергоресурсов, снижение нагрузки на себестоимость продукции. Компания ООО «Электрополе» предлагает купить по низкой цене любой тип реле времени, отвечающий самым высоким требованиям при эксплуатации подобных устройств.
Источник: ООО «Электрополе»
www.elec.ru
Испытание электромагнитного реле времени
Цель работы
1. Изучить конструкцию и принцип действия электромагнитных реле времени.
2. Освоить настройку реле типа РВ 235 на заданную выдержку времени.
3. Проверить шкалу уставок реле времени РВ 235.
Основные теоретические положения
Реле времени применяются в схемах релейной защиты и автоматики для создания независимой выдержки времени и обеспечения определенной последовательности работы элементов схемы.
Отечественная промышленность выпускает реле времени с электромагнитным замедлением, пневматическим замедлением, электромагнитные реле времени с часовым или анкерным механизмом, моторные и электронные реле времени.
Реле времени с электромагнитным замедлением применяются только на постоянном токе. Реле этой серии имеют, кроме основной, короткозамкнутую обмотку, которая может иметь всего один виток в виде медной гильзы, надеваемой на сердечник электромагнита. При подаче напряжения на основную обмотку возрастающий магнитный поток пересекает нитки короткозамкнутой обмотки и наводит в ней ЭДС. Магнитный поток, вызванный током короткозамкнутой обмотки, направлен навстречу потоку основной обмотки и снижает его. Скорость нарастания результирующего магнитного потока уменьшается, время трогания якоря увеличивается, чем достигается выдержка времени при включении. Аналогично получается выдержка времени при Отключении реле. Выпускаемые промышленностью реле этой серии имеют выдержку времени при срабатывании от 0,07 до 0,11 с, при отключении — от 0,5 до 1,4 с. Грубая регулировка выдержки времени осуществляется изменением толщины немагнитной прокладки, плавная регулировка натяжением возвратной пружины.
Реле времени с пневматическим замедлением имеет замедляющее устройство в виде пневматического демпфера. Выдержка времени регулируется иглой, изменяющей сечение отверстия, через которое засасывается воздух. Реле с пневматическим замедлением имеют выдержку времени от 0,4 до 180 с, точность срабатывания 10% значения уставки.
В реле с анкерным или часовым механизмом пружина заводится под воздействием электромагнита. Контакты реле приходят в движение лишь после того, как связанный с ними анкерный механизм отсчитает определённое время, установленное на шкале. Выдержка времени регулируется в пределах от 0,1 до 20 с. с точностью 10% уставки.
Реле времени моторные предназначены для создания выдержки времени от 10 с до нескольких часов с числом управляемых цепей до 16. Реле имеют синхронный электродвигатель, редуктор, электромагнит для сцепления и расцепления двигателя с редуктором, контактное устройство. На базе таких реле созданы программные реле времени, например, типа 2РВМ.
Работа электронных реле времени основана на использовании переходных процессов в разрядном контуре RС. Регулирование выдержки времени (от нескольких миллисекунд до десятков секунд) в этих реле достигается с помощью изменения параметров R и С разрядного контура.
В работе испытывается реле времени серии РВ 235. Промышленность выпускает реле времени серий РВ 100 и РВ 200 нескольких типоразмеров. Реле серии РВ 100 предназначены для работы в цепях постоянного тока при номинальном напряжении 24-220В и обеспечивают выдержку времени в диапазоне от 0,1 до 20 с.
Реле времени серии РВ 200 предназначены для работы в цепях переменного тока при номинальном напряжении от 100 до 380В и обеспечивают выдержку времени также в диапазоне 0,1-20 с. Они отличаются от реле времени серии РВ 100 только конструкцией электромагнита и передаточных звеньев, позволяющими создавать большие усилия нажатия контактов.
Реле РВ 235 имеет замыкающий и размыкающий контакты без выдержки времени, а также замыкающий и проскальзывающий контакты с выдержкой времени при возврате. При подаче напряжения на катушку якорь притягивается, срабатывают контакты без выдержки времени и взводится анкерный механизм. Контакты, работающие с выдержкой времени, связаны с анкерным механизмом и приходят в движение после того, как катушка реле потеряет питание. С этого момента начинается отсчет времени. Изменение уставок времени срабатывания производится перемещением неподвижных конечных и неподвижных проскальзывающих контактов по шкале часового механизма. Защита от вибрации контактов осуществляется с помощью короткозамкнутого витка на ярме магнитопровода.
Порядок выполнения работы
1. Ознакомиться на стенде с приборами и аппаратами, необходимыми для испытания реле времени. В работе испытывается только реле времени серии РВ 235.
Рис.3.1 Схема испытания реле времени РВ 235
2. Изучить схему испытания реле РВ 235, приведенную в методических указаниях (рис.3.1).
3. Снять крышку реле времени, установить уставку времени ty=1с. Установить рукоятку переключателя работ на стенде в положение 3, подать питание на стенд, включив автомат «сеть». Включить тумблер
S1 и установить ЛАТРом напряжение на катушке реле времени, равное номинальному значению, Uном=22О В. Реле при этом сработает. В течение всех опытов напряжение на катушке реле времени остается неизменным.
4. Включить тумблер S2, секундомер при этом не включается, так как его обмотка зашунтирована контактом 1КТ. 3атем отключить тумблер S1, катушка реле КТ теряет питание, замыкающий контакт 1КТ размыкается, и секундомер начинает отсчитывать выдержку времени. По истечении выдержки времени, равной уставке, замыкается контакт 2КТ и секундомер отключается.
Опыт проводится для трех уставок времени, заданных преподавателем, в трехкратной повторности. Результаты опытов занести в табл. 3.1.
Таблица 3.1
Уставка времени по шкале, tуст,с | Выдержка времени | Относительная погрешность, % | |||
t1,с | t2,с | t3,с | tср,с | ||
1 |
|
|
|
|
|
2 |
|
|
|
|
|
3 |
|
|
|
|
|
По результатам трех повторностей определить среднее значение времени срабатывания реле и подсчитать относительную погрешность измерений для каждого опыта
КОНТРОЛЬНЫЕ ВОПРОСЫ
1. Назначение реле времени.
2. Назовите основные типы реле времени, их особенности.
3. Устройство и принцип действия реле серии РВ 100 и РВ 200.
4. Как устанавливается уставка выдержки времени на реле РВ 235?
5. Объясните принцип работы схемы, приведённой на рис. 3.1.
б. Как определяется погрешность изучаемого реле времени?
7. Каким образом устраняется вибрация контактов реле времени переменного тока?
Лабораторная работа №4
studfile.net