Posted on

Содержание

Массовый расход — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 марта 2014; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 марта 2014; проверки требуют 4 правки. У этого термина существуют и другие значения, см. Расход.

Массовый расход — масса вещества, которая проходит через заданную площадь поперечного сечения потока за единицу времени. Измеряется в единицах массы за единицу времени, в системе единиц СИ выражается в килограммах за секунду (кг/с). Обычно обозначается QM{\displaystyle Q_{M}} или m˙{\displaystyle {\dot {m}}}.

Понятие массового расхода используется для характеристики потоков таких сред, как: газы, жидкости, сыпучие вещества и газопылевые смеси.

Для расчёта массовых расходов используют значения средней скорости потока как усреднённой характеристики интенсивности протекания вещества.

Средней скоростью потока в данном сечении называется такая одинаковая для всех точек сечения потока скорость движения вещества, при которой через это сечение проходит тот же расход, что и при действительном распределении скоростей движения вещества.

Массовый расход может быть вычислен через плотность вещества, площадь сечения потока и среднюю скорость потока в этом сечении:

QM=ρVS,{\displaystyle Q_{M}=\rho \,V\,S,}
где:

Формула может быть выражена через объёмный расход:

QM=ρ⋅Q,{\displaystyle Q_{M}=\rho \cdot Q,}
где:
  • Башта Т. М. и др. 1.13. Расход. Уравнение расхода // Гидравлика, гидромашины и гидроприводы. — 2‑е издание, переработанное и дополненное. — Москва: Машиностроение, 1982. — С. 36. — 423 с.

Единицы измерения сжатого воздуха — Юг-привод

Рекомендованная единица измерения давления, которая была введена в 1978 году Международной Системой Измерений (система СИ), это Паскаль (Па):

• Дополнительная единица измерения давления – бар:
1 бар = 105 Па = 0,1 Мпа
В технологии сжатия воздуха, рабочее давление является давлением сжатия и, как правило, выражается в барах. Ранее использовавшиеся единицы измерения давления, такие как атмосфера (1 атм = 0,981 бар), больше не используются.

• По системе СИ, единица измерения температуры – градус Кельвина (°K). Его соотношение с градусом
Цельсия (°C), который также не используется, следующее:
Т(°K) = t(°C) + 273,15

• Объём V используемый в технологии сжатия воздуха особенно широко, например, для определения размеров ресиверов. Он также используется для определения достаточного количества машин производящих или потребляющих сжатый воздух, объёмного расхода воздуха Vэф (равного объёму воздуха производимого или расходуемого в единицу времени). В случае если поток сжатого воздуха течёт со скоростью v по трубе с площадью поперечного сечения А, объёмный расход Vэф:

Vэф = А × v

• При помощи объёмного расхода характеризуют расход машиной сжатого воздуха. Как правило единицы измерения объёмного расхода следующие:
— л/мин
-м3/мин
-м3/час

В практических применениях, для определения объёмного расхода поршневых компрессоров, используется единица измерения л/мин; в случае использования винтовых компрессоров используется м3/мин.

Объёмные расходы могут сравниваться только в том случае, если они определены при одинаковом давлении и одинаковой температуре.

В современной технологии сжатия воздуха, объёмный расход используется только для определения
производительности воздушных компрессоров. К тому же, методики измерения других показателей, определяющих объёмный расход, указаны в стандартах: Германском DIN 1945 и ISO 1217.
Нормированные и наиболее часто используемые значения для давления и температуры воздуха:
ро = 1,013 бар/tо = 20°C или
ро = 1,013 бар/tо = 0°C
• Объёмный расход часто определяется в нормированных кубических метрах в час (м3Н/час). Нормированный кубический метр равен,согласно стандарту DIN, объёму 1 м3 при давлении р = 1,013 бар и температуре t = 0°C.

В процессе сравнения объёмных расходов компрессоров, расположение точек замера также оказывает значительное влияние на полученный результат. Это зависит от погоды при которой проводились замеры на входе или на выходе из компрессора или, например, от нагрузки компрессорного агрегата. Объёмные расходы могут сравниваться только в том случае, если они замерены при одинаковом давлении и температуре и в одних и
тех же местах.

• Еще одна единица измерения заслуживающая внимания при сравнении компрессоров –  удельная потребляемая мощность Руд. Она выражается в кВт (киловатт) и определяет количество энергии необходимой для производства объёмного расхода 1 м3/мин.

Например, если компрессор имеет объёмный расход 6,95 м3 /мин и потребляемую мощность 42,9 кВт, то его удельная потребляемая мощность составляет:

Удельная потребляемая мощность возможно наиболее важный параметр для сравнения различных компрессоров и определения показателя качества их конструкции. Он даёт информацию о количестве полученного сжатого воздуха на затраченную единицу энергии. Впрочем, он имеет значение в качестве критерия сравнения только в случае, если сравниваемые компрессоры имеют одинаковое рабочее давление.При сравнении компрессоров следует также обратить внимание на следующие параметры:
— при каком конечном давлении были замерены значения;
— потребляемая мощность была замерена на вале компрессора или на выходном вале приводного электродвигателя. Наконец, производительность приводного электродвигателя и всевозможных имеющихся ременных или зубчатых передач должны также приниматься в расчёт.

Ошибка 404. Страница не найдена!

Ошибка 404. Страница не найдена!

К сожалению, запрошенная вами страница не найдена на портале. Возможно, вы ошиблись при написании адреса в адресной строке браузера, либо страница была удалена или перемещена в другое место.

 

 

 

Измерение воздушного потока

Приборы для измерения параметров воздушного потока в вентсистемах и газоходах

При контроле работы отопительного оборудования и наладке систем вентиляции возникает вопрос: какой прибор использовать для измерения в воздуховодах (газоходах) таких параметров воздушного потока, как скорость и объемный расход?

На рынке представлено большое количество приборов: крыльчатые анемометры с различными диаметрами крыльчаток, термоанемометры, дифференциальные манометры с различными пневмометрическими (напорными) трубками, комбинированные приборы и так далее. Выбор прибора зависит от того, где проводятся измерения – на вентиляционной решетке или непосредственно в воздуховоде (газоходе), каков диапазон скоростей, температура, запыленность. В этой статье приводятся принципиальные различия между приборами, а также даны советы по выбору приборов в зависимости от задачи наладчика. Технические характеристики приведенных в статье приборов указаны приблизительно, так как существует множество моделей с различными параметрами.

Конструктивные особенности приборов

На рис. 1 показана линейка приборов для измерения параметров воздушного потока на примере одной из фирм-производителей, в порядке перечисления: термоанемометр, крыльчатый анемометр, дифференциальный манометр, пневмометрические трубки, комбинированный прибор со сменными зондами, воронки для определения объемного расхода.

Прибор / характеристикиТермоанемометрКрыльчатый анемометрДифференциальный манометр (дифманометр) с напорной трубкой
Чувствительный элемент«Обогреваемая струна»КрыльчаткаДатчик давления
Принцип измеренияПри прохождении через струну потока воздуха она охлажда-ется, и меняется ее сопротивление, кото-рое пропорционально скорости воздуха.Скорость определяется по числу оборотов вращающейся под действием потока воздуха крыльчатки.Напорные трубки (Пито, НИИОГАЗ и др.) имеют два канала, соединяемые шлангами со штуцерами дифманометра. Они воспринимают полное и статическое давление в воздуховоде, по которым прибор измеряет динамический напор, на основе которого вычисляются скорость потока и объемный расход.
Область примененияВоздуховоды, решетки, аттестация рабочих мест. Приме-няется в основном для измерения малых скоростейДиаметр крыльчатки:
D=16-25мм – воздуховоды,
D=60-100мм — решетки
Воздуховоды
Приблизи-тельный диапазон измерения0,1 … 20-30 м/сот 0,2 … 0,6 м/с
до 15 … 40 м/с
2-4 … 20-100 м/с
Скорость потока в соответствии с ГОСТ 17.2.4.06-90 должна быть не менее 4 м/с.
На практике минимальная скорость может быть от 2 до 10 м/с в зависимости от диапазона измерения давления.
Максимальная скорость ограничивается конструктивными особенностями трубки и техническими средствами проведения поверки.
Относительная погрешность по скоростиоколо 5%3-5%3-5%
Средняя рабочая температура зонда (трубки)-20 … +70 °С-20 … +70 °С-40 … +600 °С

Примечание. Функция усреднения, расчета объемного расхода, а в случае с дифманометром и функция расчета скорости могут быть заложены в прибор или отсутствовать.

Примечание.Дифференциальный манометр чаще всего более надежный и доступный прибор, нежели анемометры.

    

Рис. 1. Приборы testo ag

Комбинированный (многофункциональный) прибор – совокупность перечисленных в таблице выше приборов. Представляет собой измерительный блок с возможностью подключения различных зондов: пневмометрических трубок, зондов-крыльчаток, термоанемометров, зондов скорости вращения, зондов температуры и влажности и др.

Воронки используются совместно с анемометрами для измерения объемного расхода на вентиляционных решетках и диффузорах. С воронками процесс измерения становится проще и точнее, т.к. проводится один замер, а не несколько в случае работы только с анемометром с последующим усреднением результатов. Необходимо, чтобы воронка полностью накрывала решетку (диффузор), то есть размер и форма воронки должны соответствовать размеру и форме решетки (диффузора). При использовании воронки в прибор вносится ее коэффициент, поэтому чаще всего анемометр можно использовать только той фирмы, которая производит и воронки к нему.

Примечание.Когда задача наладчика состоит из измерения нескольких параметров (например, давление, скорость, влажность, температура), удобнее всего воспользоваться комбинированным прибором, но это далеко не всегда дешевле, чем приобрести по отдельности дифманометр, анемометр, гигрометр и т.п.

Ограничения по использованию приборов.

Не рекомендуется использовать термоанемометры и трубки Пито для измерения в потоках воздуха с большой запыленностью, а термоанемометры также и в высокоскоростных потоках (более 20 м/с). В трубках Пито отверстие, воспринимающее полное давление, небольшого диаметра, и оно может засориться. А в термоанемометре может порваться чувствительный элемент – «обогреваемая струна». Большая запыленность может быть, например, при производстве цемента, муки, сахара, в металлургии, при наладке вентсистем в период строительства и др.

Нежелательно использование приборов вне диапазонов рабочих температур для измерительного блока и зондов. При высоких температурах рекомендуем использовать пневмометрические трубки из нержавеющей стали или высокотемпературные крыльчатки из специальных сплавов, нежели скоростные зонды, изготовленные с пластиковыми элементами. Например, при измерениях в газоходах, где чаще всего преобладают высокие температуры.

При проведении замеров необходимо, чтобы чувствительный элемент зонда был направлен строго навстречу потоку воздуха. При отклонении от этой оси увеличивается погрешность измерений, причем, чем больше угол отклонения, тем больше погрешность.

Измерение скорости потока и объемного расхода на вентиляционной решетке.

Для проведения измерений можно использовать любой анемометр или термоанемометр, но замеры будут быстрее, правильнее и точнее, если использовать анемометр с крыльчаткой большого диаметра D=60-100 мм, т.к. в этом случае диаметр крыльчатки будет сопоставим с размерами решетки. Для упрощения измерений и уменьшения погрешности можно использовать воронку вместе с прибором. Если необходимо проводить замеры в труднодоступных местах (например, под потолком), можно использовать либо телескопический зонд, либо зонд с удлинителем.

Анемометр с крыльчаткой большого диаметра D=60-100 мм – наиболее подходящий прибор, так как с ним проводится минимальное количество измерений, что дает более точный результат и минимум затраченного времени.

Анемометр с крыльчаткой малого диаметра D=16-25мм и термоанемометр. При использовании этих приборов необходимо провести большее количество измерений, нежели при использовании анемометра с крыльчаткой большого диаметра. Это занимает больше времени, а также уменьшает точность измерений ввиду того, что увеличивается вероятность отклонения от оси измерений при каждом замере.

При использовании любого из вышеперечисленных приборов желательно, чтобы он имел функцию расчета объемного расхода, а также усреднения по времени и количеству замеров. В противном случае придется эти значения рассчитывать самостоятельно. Для начала необходимо провести измерения скорости потока в нескольких точках, распределенных по решетке, например, как показано на рис. 2, после чего рассчитывать среднюю скорость по формуле:

где vi [м/с] — величина скорости одного измерения, n – кол-во измерений, а из нее уже получать значение объемного расхода:

Q = vср x F x 3600 [м3/ч], где vср [м/с] – средняя скорость потока, F [м2] – площадь поперечного сечения на измеряемом участке (решетки).

Анемометры с функциями расчета и усреднения облегчают работу наладчика – автоматизируют процесс расчета значений параметров воздушного потока, хотя измерения по точкам сечения все равно приходиться проводить, а также вводить в прибор площадь сечения.

Рис. 2. Распределение точек замеров в прямоугольном и круглом сечении воздуховода (решетки) по ГОСТ 12.3.018-79.

Воронки и другие принадлежности. При использовании прибора с воронкой отпадает необходимость проведения множества замеров, что дает более точный результат измерений и экономит время. Проводится всего лишь один замер. В случае с диффузором без воронки вообще очень трудно обойтись. После установки воронки с анемометром на вентиляционную решетку (диффузор), как показано на рис. 3, однородный поток воздуха будет устремлен прямо на чувствительный элемент прибора, благодаря чему будет измерена средняя скорость. Анемометры с функцией расчета объемного расхода отображают его автоматически. При этом надо учесть, что у каждой воронки есть свой коэффициент преобразования, который необходимо предварительно ввести в прибор. Если прибор не рассчитывает объемный расход, то его можно вычислить самостоятельно по формуле:

Q = Kв x vср [м3/ч], где vср [м/с] – средняя скорость потока, Kв – коэффициент воронки.

Иногда замеры необходимо производить в труднодоступных местах, когда решетки находятся на потолке или сразу под потолком. В этих случаях, чтобы не пользоваться стремянкой, можно использовать зонды с телескопической рукояткой или удлинители зондов.

Рис. 3. Установка воронки на вентиляционную решетку

Измерение скорости потока и объемного расхода непосредственно в воздуховоде (газоходе).

Перед работой надо убедиться, что в стенке воздуховода есть отверстие, диаметр которого соответствует диаметру измерительного зонда. Необходимо, чтобы это отверстие было на прямом участке воздуховода, так как в этом случае воздушный поток максимально однороден. Прямой участок должен быть длиной не менее пяти диаметров воздуховода. Точка замера выбирается с условием, что до нее должно быть расстояние, равное трем диаметрам воздуховода, и после нее – двум диаметрам.

Для проведения замеров используются термоанемометры, крыльчатые анемометры с малым диаметром крыльчатки D=16-25 мм и дифференциальные манометры с пневмометрическими трубками. Если в воздуховоде бывают малые скорости (< 2 м/с), то дифференциальный манометр для их измерения не подходит. В этом случае используются крыльчатые анемометры или термоанемометры. Ограничения по использованию приборов приведены выше. Когда воздуховод расположен достаточно высоко, можно использовать зонды с телескопической рукояткой или удлинители зондов, в случае с пневмометрической трубкой – выбирать ее соответствующей длины.

Хотим обратить внимание, что в процессе замера чувствительный элемент прибора должен быть направлен строго навстречу потоку, иначе погрешность заметно увеличится.

Анемометры с крыльчаткой D=16-25 мм и термоанемометры можно применять в чистых воздушных потоках для измерения низких (< 2 м/с) и более высоких скоростей, а анемометры с крыльчаткой также и в запыленных потоках. При высоких температурах (> 80°С) используются высокотемпературные крыльчатки.

Измерения проводятся в тех же точках, что и в случае с вентиляционной решеткой. Примерное расположение точек замеров показано на рис. 2.

При использовании анемометров в зависимости от того, есть ли у прибора функция расчета объемного расхода и функция усреднения по времени и количеству замеров, искомые значения средней скорости и объемного расхода либо рассчитывает прибор, либо вычисляются самостоятельно по указанным выше формулам.

Дифференциальные манометры с пневмометрической трубкой используются при высоких температурах (> 80°С) и/или скоростях более 2 м/с. Приборы можно условно разделить на две группы: одни измеряют только перепад давлений (динамический напор), другие еще имеют функцию усреднения и рассчитывают скорость потока и объемный расход. Обращаем внимание, что у пневмометрических трубок, также как и у воронок, есть коэффициенты, которые также предварительно необходимо ввести в прибор. Кроме того, в прибор также надо вводить площадь сечения воздуховода и температуру потока. Можно использовать дифманометры с автоматическим каналом ввода температуры и пневмометрические трубки со встроенной термопарой для упрощения вычислений. Не советуем использовать пневмометрическую трубку Пито в запыленных потоках, в этом случае лучше проводить измерения горячей струной 

Измерения проводятся в тех же точках, что и в случае с вентиляционной решеткой. Примерное расположение точек замеров показано на рис. 2.

Для дифманометров из первой группы, которые не имеют функции расчета скорости потока и объемного расхода (например, ДМЦ-01О), упрощенные формулы для расчета искомых значений приведены ниже. Точные формулы с расчетом плотности среды в общем случае см. в ГОСТ 17.2.4.06-90.

Динамический напор, измеряемый прибором:

Pd = Pt – Ps [Па или мм вод.ст.], где Pt – полное давление, Ps – статическое давление.

Скорость потока в точке замера:

— для Pdi в [Па] и

— для Pdi в [мм вод.ст.],

где Pdi – динамический напор в точке замера, Тр [°С] – температура

среды, Кт – коэффициент пневмометрической трубки.

Среднее значение скорости потока:

— где vi [м/с] — величина скорости одного измерения, n – кол-во измерений.

Объемный расход:

Q = vср x F x 3600 [м3/ч], где vср [м/с] – средняя скорость потока, F [м2] – площадь поперечного сечения на измеряемом участке.

Блок-схема выбора прибора.

Популярные приборы.

Компания Мир Приборов профессионально занимается приборами для измерения параметров воздушного потока: поставка, продажа, поверка, ремонт. Мы готовы проконсультировать и помочь в выборе прибора. Но из множества приборов, представленных на рынке, хотелось бы выделить наиболее популярные по итогам продаж. По мнению наших многочисленных клиентов, именно эти приборы имеют хорошие показатели по отношению «цена / качество».

  1. Термоанемометр Testo 405.
  2. Крыльчатый анемометр Testo 410-1 и testo 417-1.
  3. Дифференциальный цифровой testo 526-1.
  4. Пневмометрические трубки Пито.
  5. Комбинированный прибор Testo 435.

Расходомер — Википедия

Электромагнитный расходомер.Перейти к разделу «#Электромагнитные расходомеры» Монтаж на наклонном участке уменьшает ошибку измерения вследствие изменения эффективного сечения трубы твердым осадком или завоздушиванием.

Расходоме́р — прибор, измеряющий объёмный расход или массовый расход вещества, то есть количество вещества (объём, масса), проходящее через данное сечение потока, например, сечение трубопровода в единицу времени. Если прибор имеет интегрирующее устройство (счётчик) и служит для одновременного измерения и количества вещества, то его называют счётчиком-расходомером.

Перейти к разделу «#Электромагнитные расходомеры»
Бытовые объёмные счётчики газа Скоростной счётчик — турбинка

Скоростные счётчики[править | править код]

Скоростные счётчики устроены таким образом, что жидкость, протекающая через камеру прибора, приводит во вращение вертушку или крыльчатку, угловая скорость которых пропорциональна скорости потока, а следовательно, и расходу.

Объёмные счётчики[править | править код]

Поступающая в прибор жидкость или газ измеряется отдельными, равными по объёму дозами, которые затем суммируются. Счётчики газа на этом принципе часто встречаются в быту.

Классификация объёмных счетчиков[править | править код]
  • В зависимости от конструктивных особенностей рабочего органа: поршневые, шестеренные.
  • В зависимости от вида движения рабочего органа: поступательного движения, вращательно-ротационного движения, прецессионного, планетарного движения.

В зависимости и от конструкции и от вида движения рабочего органа классифицируются на:

  • поршневые (кольцевые) с планетарным движением кольцевого поршня;
  • шестеренные (круглые) с ротационным вращением круглых шестерен;
  • шестеренные (овальные) с ротационным вращением овальных шестерен;
  • лопастные (камерные) с ротационным вращением лопастей, выполненных в виде камер;
  • лопастные (пластинчатые) с ротационным вращением пластинчатых лопастей.[1]

Ёмкость и секундомер[править | править код]

Возможно, самый простой способ измерить расход — это использовать некоторую ёмкость и секундомер. Поток жидкости направляется в некоторую ёмкость, и по секундомеру засекается время заполнения этой ёмкости. Зная объём ёмкости и поделив его на время заполнения, можно узнать расход жидкости. Этот способ подразумевает прерывание нормального течения потока, однако может давать непревзойдённую точность измерения. Широко используется в тестовых и поверочных лабораториях.

Ролико-лопастные расходомеры[править | править код]

Область применения ролико-лопастных расходомеров очень широка: измерение расходов на испытательных стендах, в гидроприводах станков и технологического оборудования, на стационарных и передвижных бензо- и маслозаправочных станциях, в топливных системах карбюраторных и дизельных двигателей автомобилей, тракторов, строительно-дорожных, сельскохозяйственных, лесозаготовительных машин, тепловозов и судов, как дозаторы при заливке танкеров, ж/д цистерн, резервуаров.

Расходомер оснащен встроенным электронным датчиком и программируемым микропроцессорным прибором с жидкокристаллическим дисплеем. Электроника расходомера имеет автономное питание на 3 — 5 лет и герметизированный выход на вторичный электронный прибор или компьютер, управляющий механизмами дозирования. Для метрологического применения или при необходимости проведения высокоточных измерений в технологических процессах, расходомер оснащен датчиком с высокой разрешающей способностью (до долей см3).

Шестерёнчатые расходомеры[править | править код]

Перейти к разделу «#Электромагнитные расходомеры»
Шестерёнчатый расходомер

Впервые расходомер с овальными шестернями был изобретен компанией Bopp & Reuther (Германия) в 1932 году.

Измеряющий элемент состоит из двух шестерёнок овальной формы. Протекающая жидкость вращает данные шестерёнки. При каждом обороте пары овальных колес через прибор проходит строго определённое количество жидкости. Считывая количество оборотов, можно точно определить, какой объём жидкости протекает через прибор.

Данные расходомеры отличаются высокой точностью, надёжностью и простотой, что позволяет их использовать для жидкостей с высокой температурой и под большим давлением. Отличительной особенностью расходомеров с овальными шестернями является возможность использования для жидкостей с высокой вязкостью (мазут, битум).

Расходомеры на базе объёмных гидромашин[править | править код]

В системах объёмного гидропривода для измерения объёмного расхода рабочей жидкости применяют объёмные гидромашины (как правило — шестерённые или аксиально-плунжерные гидромашины).

Объёмная гидромашина в этом случае работает как гидродвигатель, но без нагрузки на валу. Тогда объёмный расход через гидромашину можно определить по формуле:

Q=q0⋅n,{\displaystyle Q=q_{0}\cdot n,}

где

  • Q{\displaystyle Q} — объёмный расход,
  • q0{\displaystyle q_{0}} — рабочий объём гидромашины (определяется по паспорту гидромашины),
  • n{\displaystyle n} — частота вращения выходного вала гидромашины, которую можно измерить тахометром.

Заметим, что объёмная гидромашина пропускает через себя весь расход жидкости, что для объёмного гидропривода не представляет сложности ввиду малых расходов.

Расходомеры переменного перепада давления[править | править код]

Расходомеры переменного перепада давления основаны на зависимости разницы давлений, создаваемых конструкцией расходомера, от расхода.

Расходомеры с сужающими устройствами[править | править код]

Они основаны на зависимости перепада давления на сужающем устройстве от скорости потока, в результате которого происходит преобразование части кинетической энергии потока в потенциальную.

Принцип действия расходометров этого типа основан на эффекте Вентури. Вентури-расходомер сужает поток жидкости в некотором устройстве, например, диафрагмой и датчиками давления или дифманометром измеряет разницу давлений перед указанным устройством и непосредственно в месте сужения. Этот метод измерения расхода широко используется при транспортировке газов по трубопроводам и использовался ещё во времена Римской империи.

Диафрагма представляет собой диск со сквозным отверстием, вставленный в поток. Дисковая диафрагма сужает поток, и разница давлений, измеряемая перед и за диафрагмой, позволяет определить расход в потоке. Этот тип расходомера можно грубо считать одной из форм Вентури-метров, однако имеющую более высокие потери энергии. Существует три типа дисковых диафрагм: концентрические, эксцентриковые и сегментальные.[2][3]

Трубка Пито[править | править код]

Расходомеры на основе трубки Пито измеряют динамическое давление p∂≈ξρVo22{\displaystyle p_{\partial }\approx \xi {\frac {\rho V_{o}^{2}}{2}}} в застойной зоне потока (англ.).

Зная динамическое давление, с помощью уравнения Бернулли можно определить скорость потока, а значит, и объёмный расход (Q = S * V, где S — площадь поперечного сечения потока, V — средняя скорость потока).

Расходомеры с гидравлическим сопротивлением[править | править код]

Принцип действия гидродинамических расходомеров основан на измерении давления движущей среды, т.е. давления, которое действует на помещенное в поток тело. Достоинствами гидродинамических расходомеров являются: конструктивная простота, надежность и удобство обслуживания. Одним из распространенных вариантов применения является их использование в качестве индикаторов расхода загрязнения жидкостей и газов.

Центробежные расходомеры[править | править код]

Центробежные расходомеры представляют собой колено на трубопроводе, которые охватывают его по всей окружности трубопровода. Отборы давления находятся в верхней части на внешней и внутренней стенках.

Принцип действия центробежных расходомеров основан на том, что при движении среды по криволинейному участку трубопровода появляются центробежные силы, создающие перепад давлений между точками с разными радиусами кривизны. Согласно этому следует, что где больше кривизна, там и центробежная сила больше и больше давление на стенку.[1]

Расходомеры с напорным устройством[править | править код]

Расходомеры с напорным усилителем[править | править код]

Расходомеры ударно-струйные[править | править код]

Расходомеры постоянного перепада давления[править | править код]

p_{{\partial }}\approx \xi {\frac  {\rho V_{o}^{2}}{2}}

Ротаметры[править | править код]

Ротаметры предназначены для измерения расхода чистых жидкостей и газов. Они состоят из вертикальной конической трубы, выполненной из металла, стекла или пластика, в которой свободно перемещается вверх и вниз специальный поплавок. Поток движется по трубе в направлении снизу вверх, заставляя поплавок подниматься до уровня, на котором все действующие силы находятся в состоянии равновесия. На поплавок воздействуют три силы:

  • выталкивающая сила, которая зависит от плотности среды и объёма поплавка;
  • сила тяжести, которая зависит от массы поплавка;
  • сила потока, которая зависит от формы поплавка и скорости потока, проходящего через сечение ротаметра между поплавком и стенками трубы.

Каждая величина расхода соответствует определённому переменному сечению, зависящему от формы конуса измерительной трубы и конкретного положения поплавка. В случае стеклянных конусов, значение расхода может быть считано прямо со шкалы на уровне поплавка. В случае конусов, выполненных из металла, положение поплавка передаётся на дисплей при помощи системы магнитов — не требуется никакого дополнительного источника питания. Различные диапазоны измерения достигаются за счёт многообразия размеров и форм конуса, а также возможности выбора различных форм и материалов изготовления поплавка.

Оптические расходомеры используют свет для определения расхода.

Лазерные расходомеры[править | править код]

Маленькие частички, которые неизбежно содержатся в природных и промышленных газах, проходят через два лазерных луча, направленных на поток от источника. Свет лазера рассеивается, когда частичка проходит через первый лазерный луч. Рассеянный лазерный луч поступает на фотодетектор, который в результате генерирует электрический импульсный сигнал. Если та же самая частица пересекает второй лазерный луч, то рассеянный лазерный свет поступает на второй фотодетектор, который генерирует второй импульсный электрический сигнал. Измеряя интервал времени между двумя этими импульсами, можно вычислить скорость газа по формуле V = D / T, где D — расстояние между двумя лазерными лучами, Т — время между двумя импульсами. Зная скорость потока, можно определить расход (Q = S * V, где S — площадь поперечного сечения потока, V — средняя скорость потока).

Основанные на лазерах расходомеры измеряют скорость частиц — параметр, который не зависит от теплопроводности, вида газа или его состава. Лазерная технология позволяет получать очень точные данные, причём даже в тех случаях, когда другие методы применять не удаётся или они дают большу́ю погрешность: при высоких температурах, малых расходах, высоких давлениях, высокой влажности, вибрациях трубопроводов и акустическом шуме.

Оптические расходометры способны измерять скорости потока от значений 0,1 м/с до более чем 100 м/с.

Принцип ультразвукового измерения расхода

Ультразвуковые время-импульсные[править | править код]

Время-импульсные расходомеры измеряют разницу во времени прохождения ультразвуковой волны по направлению и против направления потока жидкости. Такой принцип измерений обеспечивает высокую точность (± 1 %). При этом он хорошо работает для чистого потока или потока с незначительным содержанием взвешенных частиц. Время-импульсные расходомеры применяются для измерения расхода очищенной, морской, сточной воды, нефти, в том числе сырой, технологических жидкостей, масел, химических веществ и любой однородной жидкости.

Принцип действия ультразвуковых расходомеров основан на измерении разницы во времени прохождения сигнала. При этом два ультразвуковых сенсора, расположенные по диагонали напротив друг друга, функционируют попеременно как излучатель и приёмник. Таким образом, акустический сигнал, поочерёдно генерируемый обоими сенсорами, ускоряется, когда направлен по потоку, и замедляется, когда направлен против потока. Разница во времени, возникающая вследствие прохождения сигнала по измерительному каналу в обоих направлениях, прямо пропорциональна средней скорости потока, на основании которой можно затем рассчитать объёмный расход. А использование нескольких акустических каналов позволяет компенсировать искажения профиля потока.

Ультразвуковые расходомеры на установке висбрекинга

Ультразвуковые фазового сдвига[править | править код]

Ультразвуковые доплеровские[править | править код]

Доплеровский расходомер основан на эффекте Доплера. Он хорошо работает с суспензиями, где концентрация частиц выше 100 ppm и размер частиц больше 100 мкм, но концентрация составляет менее 10 %. Такие расходомеры жидкости легче и менее точные (± 5 %), а также дешевле, чем время-импульсные расходомеры.

Ультразвуковые корреляционные[править | править код]

Другим не столь популярным расходомером является ультразвуковой расходомер с последующей корреляцией (кросс-корреляция). Он позволяет устранить недостатки, свойственные доплеровским расходомерам. Они лучше работают для потока жидкости с твёрдыми частицами или турбулентного потока газа.

Электромагнитный расходомер Принцип электромагнитного измерения расхода

Ещё в 1832 году Майкл Фарадей пробовал определить скорость течения реки Темзы, измеряя напряжение, индуцируемое в потоке воды магнитным полем Земли. Принцип электромагнитного измерения расхода основан на законе индукции Фарадея. В соответствии с данным законом, напряжение создаётся, когда проводящая жидкость проходит через магнитное поле электромагнитного расходомера. Это напряжение пропорционально скорости потока среды.

Индуцированное напряжение измеряется либо двумя электродами, находящимися в контакте со средой, либо ёмкостными электродами, не контактирующими со средой, и передаётся в преобразователь сигналов. Преобразователь сигналов усиливает сигнал и преобразует его в стандартный токовый сигнал (4—20 мА), а также в частотно-импульсный сигнал (например, один импульс на каждый кубический метр измеряемой среды, прошедшей через измерительную трубу). Принцип действия электромагнитных расходомеров основан на взаимодействии движущейся электропроводной жидкости с магнитным полем. При движении жидкости в магнитном поле возникает ЭДС, как в проводнике, движущемся в магнитном поле. Эта ЭДС пропорциональна скорости потока, и по скорости потока можно определить расход.

Кориолисов расходомер

Принцип действия массовых расходомеров основан на эффекте Кориолиса. Массовый расход жидкостей и газов можно рассчитать по деформации измерительной трубы под действием потока. Плотность среды также можно рассчитать по резонансной частоте колебаний вибрирующей трубы. Вычисление силы Кориолиса осуществляется с помощью двух сенсорных катушек. При отсутствии потока оба сенсора регистрируют одинаковый синусоидальный сигнал. При появлении потока сила Кориолиса воздействует на поток частиц среды и деформирует измерительную трубу, что приводит к сдвигу фаз между сигналами сенсоров. Сенсоры измеряют сдвиг фаз синусоидальных колебаний. Этот сдвиг фаз прямо пропорционален массовому расходу.

Вихревой расходомер

Принцип измерения базируется на эффекте вихревой дорожки Кармана. Позади тела обтекания образуются вихри обратного направления вращения. В измерительной трубе находится завихритель, позади которого происходит вихреобразование. Частота вихреобразования пропорциональна расходу. Образующиеся вихри улавливаются и подсчитываются пьезоэлементом в первичном преобразователе в качестве ударных волн. Вихревые расходомеры подходят для измерения самых различных сред.

Расходомеры теплового пограничного слоя[править | править код]

Применяются для измерения расхода в трубах небольшого диаметра от 0,5—2,0 до 100 мм. Для измерения расхода в трубах большого диаметра находят применение особые разновидности термоконвективных расходомеров:

  • парциальные с нагревателем на обводной трубе;
  • с тепловым зондом;
  • с наружным нагревом ограниченного участка трубы.

Достоинством термоконвективных расходомеров является неизменность теплоёмкости измеряемого вещества при измерении массового расхода. Также достоинством является то, что термоконвективных расходомерах отсутствует контакт с измеряемым веществом.  Недостаток и тех и других расходомеров — их большая инерционность.[4]

Калориметрические расходомеры[править | править код]

В калориметрических расходомерах происходит нагревание или охлаждение потока внешним источником тепла, создающим в потоке разницу температур, по которой и определяют расход. Если пренебречь потерями тепла из потока через стенки трубопровода в окружающую среду, то уравнение теплового баланса между теплом, генерируемым нагревателем, и теплом, переданным потоку, приобретает вид:

qt=k0QMcpΔT{\displaystyle q_{t}=k_{0}Q_{M}c_{p}\Delta T},

где

Тепло к потоку в калориметрических расходомерах подводят обычно электро-нагревателями, для которых:

qt=0,24I2R{\displaystyle q_{t}=0,24I^{2}R},

где

  • I{\displaystyle I} — сила тока через нагревательный элемент;
  • R{\displaystyle R} — электрическое сопротивление нагревателя.

На основе этих уравнений статическая характеристика преобразования, которая связывает перепад температур на сенсорах с массовым расходом, приобретёт вид:

QM=0,24I2Rk0cpΔT{\displaystyle Q_{M}={\frac {0,24I^{2}R}{k_{0}c_{p}\Delta T}}}.

Расход определяется путём определения скорости потока через сечение канала, причём скорость определяется по времени переноса на известное расстояние каких-либо меток, искусственно вводимых в поток или изначально присутствующих в потоке.

  1. 1 2 Хансуваров К.И., Цейтлин В.Г. Техника измерения давления, расхода, количества и уровня жидкости, газа и пара: Учебное пособие для техникумов. — М.: Издательство стандартов, -1990.- с. 170-173 287 с, ил.
  2. ↑ Lipták, Flow Measurement, p. 85
  3. ↑ American Gas Association Report Number 3
  4. ↑ Кремлевский П. П. Расходомеры и счетчики количества веществ: Справочник: Кн. 2 / Под общ. ред. Е. А. Шорникова. — 5-е изд., перераб. и доп. — СПб.: Политехника, 2004. — 412 с

Объемный и массовый расход газа

Расход газа – это количество газа, прошедшего через поперечное сечение трубопровода за единицу времени. Вопрос в том, что принять за меру количества газа. В этом качестве традиционно выступает объем газа, а получаемый расход называют объемным. Не случайно чаще всего расход газа выражают в объемных единицах (см3/мин, л/мин, м3/ч и т.д.). Другой мерой количества газа является его масса, а соответствующий расход называется массовым. Он измеряется в массовых единицах (например, г/с или кг/ч), которые на практике встречаются значительно реже.

Как объем связан с массой, так и объемный расход связан с массовым через плотность вещества: , где  – массовый расход,  – объемный расход,  – плотность газа в условиях измерения (рабочие условия). Пользуясь этим соотношением, для массового расхода переходят к использованию объемных единиц (см3/мин, л/мин, м3/ч и т.д.), но с указанием условий (температуру и давление газа), определяющих плотность газа. В России применяют «стандартные условия» (ст.): давление 101,325 кПа (абс) и температура 20°С. Помимо «стандартных», в Европе используют «нормальные условия» (н.): давление 101,325 кПа (абс) и температура 0°С. В результате, получаются единицы массового расхода н.л/мин, ст.м3/ч и т.д.

Итак, расход газа бывает объемным и массовым. Какой из них следует измерять в конкретном применении? Как наглядно увидеть разницу между ними? Давайте рассмотрим простой эксперимент, где три расходомера последовательно установлены в магистраль. Весь газ, поступающий на вход схемы, проходит через каждый из трех приборов и выбрасывается в атмосферу. Утечек или накопления газа в промежуточных точках системы не происходит.

Сравнение показаний расходомера EL-FLOW и поплавковых ротаметров в одной магистрали

Источником сжатого воздуха является компрессора, от которого под давлением 0,5…0,7 бар (изб) газ подаётся на вход поплавкового ротаметра. Выход ротаметра подключен ко входу теплового регулятора расхода газа серии EL-FLOW, производства компании Bronkhorst. В нашей схеме именно он регулирует количество газа, проходящее через систему. Далее газ подаётся на вход второго поплавкового ротаметра, абсолютно идентичного первому. При задании расхода 2 н.л/мин с помощью расходомера EL-FLOW первый поплавковый ротаметр дает показания 1,65 л/мин, а второй – 2,1 л/мин. Все три расходомера дают различные показания, причем разница достигает 30%. Хотя через каждый прибор проходит одно и то же количество газа.

Попробуем разобраться. Какая мера количества газа в данной ситуации остается постоянной: объем или масса? Ответ: масса. Все молекулы газа, попавшие на вход в систему, проходят через нее и выбрасываются в атмосферу после прохождения второго поплавкового ротаметра. Молекулы как раз и являются носителями массы газа. При этом удельный объем (расстояние между молекулами газа) в разных частях системы изменяется вместе с давлением.

Здесь следует вспомнить, что газы сжимаемы, чем выше давление, тем меньше объем занимает газ (закон Бойля-Мариотта). Характерный пример: цилиндр емкостью 1 литр, герметично закрытый подвижным поршнем малого веса. Внутри него содержится 1 литр воздуха при давлении порядка 1 бар (абс). Масса такого объема воздуха при температуре равной 20°С составляет 1,205 г. Если переместить поршень на половину расстояния до дна, то объем воздуха в цилиндре сократится наполовину и составит 0,5 литра, а давление повысится до 2 бар (абс), но масса газа не изменится и по-прежнему составит 1,205 г. Ведь общее количество молекул воздуха в цилиндре не изменилось.

Сравнение показаний расходомера EL-FLOW и поплавковых ротаметров в одной магистрали

Возвратимся к нашей системе. Массовый расход (количество молекул газа, проходящих через любое поперечное сечение в единицу времени) в системе постоянен. При этом давление в разных частях системы отличается. На входе в систему, внутри первого поплавкового ротаметра и в измерительной части расходомера EL-FLOW давление составляет порядка 0,6 бар (изб). В то время, как на выходе EL-FLOW и внутри второго поплавкового ротаметра давление практически атмосферное. Удельный объем газа на входе ниже, чем на выходе. Получается, что и объемный расход газа на входе ниже, чем на выходе.

Эти рассуждения подтверждаются и показаниями расходомеров. Расходомер EL-FLOW измеряет и поддерживает массовый расход воздуха на уровне 2 н.л/мин. Поплавковые ротаметры измеряют объемный расход при рабочих условиях. Для ротаметра на входе это: давление 0,6 бар (изб) и температура 21°С; для ротаметра на выходе: 0 бар (изб), 21°С. Также понадобится атмосферное давление: 97,97 кПа (абс). Для корректного сравнения показаний объемного расхода, все показания должны быть приведены к одним и тем же условиям. Возьмем в качестве таковых «нормальные условия» расходомера EL-FLOW: 101,325 кПа (абс) и температура 0°С.

Пересчет показаний поплавковых ротаметров в соответствии с методикой поверки ротаметров ГОСТ 8.122-99 осуществляется по формуле:

Сравнение показаний расходомера EL-FLOW и поплавковых ротаметров в одной магистрали , где Q – расход при рабочих условиях; Р и Т – рабочие давление и температура газа; QС – расход при условиях приведения; Рс и Тс – давление и температура газа, соответствующие условиям приведения.

Пересчет показаний ротаметра на входе к нормальным условиям по этой формуле даёт значение расхода 1,985 л/мин, а ротаметра на выходе – 1,990 л/мин. Теперь разброс показаний расходомеров не превышает 0,75%, что при точности ротаметров 3% ВПИ является отличным результатом.

Из приведенного примера видно, что объемный расход сильно зависит от рабочих условий. Мы показали зависимость от давления, но в той же мере объемный расход зависит и от температуры (закон Гей-Люссака). Даже в технологической схеме, имеющей один вход и один выход, где отсутствуют утечки и накопление газа, показания объемного расходомера будут сильно зависеть от конкретного места установки. Хотя массовый расход будет одним и тем же в любой точке такой схемы.

Хорошо понимать физику процесса. Но, все же, какой расходомер выбрать: объемного расхода или массового? Ответ зависит от конкретной задачи. Каковы требования технологического процесса, с каким газом необходимо работать, величина измеряемого расхода, точность измерений, рабочие температура и давление, особые правила и нормы, действующие в Вашей сфере деятельности, и, наконец, отведенный бюджет. Также следует учитывать, что многие расходомеры, измеряющие объемный расход, могут комплектоваться датчиками температуры и давления. Они поставляются вместе с корректором, который фиксирует показания расходомера и датчиков, а затем приводит показания расходомера к стандартным условиям.

Но, тем не менее, можно дать общие рекомендации. Массовый расход важен тогда, когда в центре внимания находится сам газ, и необходимо контролировать количество молекул, не обращая внимания на рабочие условия (температура, давление). Здесь можно отметить динамическое смешение газов, реакторные системы, в том числе каталитические, системы коммерческого учета газов.

Измерение объемного расхода необходимо в случаях, когда основное внимание уделяется тому, что находится в объеме газа. Типичные примеры – промышленная гигиена и мониторинг атмосферного воздуха, где необходимо проводить количественную оценку загрязнений в объеме воздуха в реальных условиях.

Измерение расхода сжатого воздуха | ТЭМС

В последние годы, в условиях непрерывного роста цен на различные виды энергии, становится актуальной проблема максимально точного учёта различных видов энергоносителей, в том числе и сжатого воздуха.

Для учёта расхода газов разработано несколько видов расходомеров устройства и принципы действия которых базируются на различных физических эффектах:

  • Устройства базирующиеся на измерении перепада давления – сужающие устройства и напорные трубки.
  • Ротационные счётчики – принцип их действия основан на вытеснении некоторых фиксированных объёмов газа (количество вытесненных объёмов пропорционально числу оборотов роторов данных счётчиков) за единицу времени. Основное применение из ротационных нашли счетчики газа с одинаковыми роторами восьмеркообразной формы. За один оборот роторов вытесняются четыре заштрихованных объема. Протечки газа зависят от зазора между корпусом и прямоугольными площадками, расположенными на концах наибольших диаметров роторов. В зависимости от типоразмера счетчика зазоры могут быть от 0,04 до 0,1 мм. Острые кромки на концах этих площадок способствуют самоочистке счетчика. Синхронизация вращения роторов, как правило, достигается зубчатых колес, укрепленных на обоих концах роторов  вне пределов измерительной камеры. Роторы подвергаются статической балансировке.
  • Турбинные счётчики – они выполнены в виде трубы, в которой расположена винтовая турбинка, как правило с небольшим перекрытием лопаток одной другую. В проточной части корпуса расположены обтекатели перекрывающие большую часть сечения трубопровода, чем обеспечивается дополнительное выравнивание эпюры скоростей потока и увеличение скорости течения газа. Кроме того происходит формирование турбулентного режима течения газа, за счет чего обеспечивает линейность характеристики счетчика газа в большом диапазоне. Высота турбинки как правило не превышает 25-30% радиуса. На входе в счетчик в ряде конструкций предусмотрен дополнительный струевыпрямитель потока выполненный или в виде прямых лопаток или в виде «толстого» диска с отверстиями разного диаметра. Установка сетки на входе турбинного счетчика, как, правило, не применяется, так как ее засорение уменьшает площадь проходного сечения трубопровода, соответственно увеличивает скорость течения потока, что приводит к увеличению показаний счетчика. Преобразование скорости вращения в турбинке в объемные значения количества прошедшего газа осуществляется путем передачи вращения турбинки через магнитную муфту на счетный механизм, в котором путем подбора пар шестеренок (во время градуировки) обеспечивается линейная связь между скоростью вращением турбинки и количеством пройденного газа. Другим методом получения результата количества пройденного газа в зависимости от скорости вращения турбинки является использование для индикации скорости магнитоиндукционного преобразователя. Лопатки турбинки при прохождении вблизи преобразователя возбуждают в нем электрический сигнал, поэтому скорость вращения турбинки и частота сигнала с преобразователя пропорциональны. При таком методе преобразование сигнала осуществляется в электронном блоке, так же как и вычисление объема прошедшего газа. Для обеспечения взрывозащищенности счетчика блок питания должен быть выполнен с взрывозащитой. Однако применение электронного блока упрощает вопрос расширения диапазона измерения счетчика (для счетчика с механическим счетным механизмом 1:20 или 1:30), так как нелинейность характеристики счетчика, проявляющаяся на малых расходах, легко устраняется применением кусочно-линейной апроксимацией характеристики (до 1:50), чего в счетчике с механической счетной головкой сделать нельзя.
  • Вихревые счётчики – принцип их действия основан на эффекте возникновения периодических вихрей при обтекании потоком газа тела обтекания. Частота срыва вихрей пропорциональна скорости потока и, соответственно, объемному расходу. Индикацию вихрей может осуществляться термоанемометром или ультразвуком. В связи с тем, что в данном типе счетчиков отсутствуют подвижные элементы, нет необходимости в системе смазки, необходимой для турбинных и ротационных счетчиков. Появляется возможность использовать данный тип счетчиков для измерения количества кислорода, который измерять турбинными и ротационными счетчиками категорически нельзя из-за сгорания масла в среде кислорода.
  • Ультразвуковые счётчики – принцип действия заключается в направлении ультразвукового луча в направлении по потоку и против потока и определении разницы времени прохождения этих двух лучей. Разница во времени пропорциональна скорости течения газа.
  • Лазерные расходомеры – измеряют расход газа методами лазерной доплеровской интерферометрии. Первые результаты по этой теме были получены в 1964 г., но развитие этих методов долгое время сдерживалось малой надежностью и стабильностью факторов, влияющих на точность. В настоящее время в связи с развитием твердотельной техники и технологии и достаточной статистики по исследованию потоков существуют условия для разработки и внедрения промышленных образцов систем коммерческого учета объемного расхода газа и жидких сред при их транспортировке. В России подобные разработки ведёт  НПФ «Вымпел» в содружестве с Physikalisch-Technische Bundesanstalt (Германия)  с целью создания расходомера (ЛДР) для измерения объемного расхода  газа в трубопроводе большого диаметра.
  • Термоанемометрические счётчики – принцип их действия заключается в измерении скорости потока газа в отдельной точке трубы, с последующим вычислением расхода газа путём умножения данной величины на площадь поперечного сечения трубы и коэффициент зависящий от характера распределения скоростей в потоке газа через поперечное сечение трубы. У измерителей расхода данного типа имеется одно или несколько термосопротивлений через которые течёт электрический ток нагревая их, поток газа, в свою очередь охлаждает эти терморезисторы, скорость охлаждения пропорциональна теплоёмкости окружающей среды, зависящей от массового расхода газа.  
  • Кориолисовы расходомеры – измерение расхода в этих приборах производится за счёт эффекта возникновения сил Кориолиса возникающих при криволинейном движении масс. В этих расходомерах потоки жидкостей и газов протекающие в закрытых трубопроводах создают силы Кориолиса пропорциональные своему массовому расходу.

Одним из преимуществ двух последних видов расходометров (термоанемометрические и кориолисовы), является то что они сразу измеряют массовый расход газов, величину которого достаточно просто перевести в величину расхода в нормированных объёмных единицах (нормокубах), путём простого перемножения массового расхода на коэффициент пропорциональный плотности измеряемой среды в нормальных условиях. Показания кориолисовых расходомеров также независимы и от вязкости рабочей среды.

В остальных типах расходомеров для приведения измеренных показателей к нормальным условиям необходимо применять специальные корректоры расхода, которые изменяют величину объёмного расхода в зависимости от давления и температуры измеряемой среды.

Ниже приводится таблица сравнительных характеристик различных расходомеров.

Тип расходомера-счетчика Диаметр условного прохода, мм Максимальное давление,
кгс/см2
Диапазон
Qmin/Qmax
Qmax,
м3
Ротационные 40—300 16 1:20 (100) 4—1600
Турбинные 50—600 До 100 До 1:50 25—25000
Сужающие устройства и напорные трубки 12,5—1400 Без ограничений До 1:32 До 56 500
Вихревые 15—300 До 16 1:30 (70) 50—20300
Ультразвуковые (акустические) 25—800 До 300 До 1:160 16—160 (400)
Термоанемометры (тепловые) 100-1300 До 16 1:100 6—80 000

где Q – расход газа.

В заключение можно добавить что существуют различные ограничения на возможность применения тех или иных расходомеров в различных газовых средах. Например турбинные и роторные счетчики для кислорода не применимы, так как применяющееся в них масло вступает в реакцию с кислородом, а для ультразвуковых, мембранных и вихревых принципиальных ограничений для работы по типу газа не имеют.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *