давление, температуры, характеристики, таблицы свойств и насыщения
Фреон R410a – двухкомпонентный хладагент, использующийся в современных холодильных установках и системах кондиционирования. Имеет низкую точку кипения и высокое давление пара при испарении.
В этой статье мы расскажем об особенностях хладагента 410, его характеристиках. В публикации вы найдете таблицы физических свойств, зависимости давления от кипения фреона r410a. мы приведем полные таблицы параметров жидкой фазы и пара на линии насыщения в зависимости от температур.
История происхождения
В 1989 году был подписан Монреальский протокол по веществам, разрушающим озоновый слой. Под него попадали такие хладагенты как R22 и R13B, как озоноразрушающие (из-за присутствия в их составе хлора). Для их замены был разработан новый фреон R-410A.
Изначально его использовали для замены устаревших хладагентов (если позволяли характеристики систем). Впоследствии было разработано оборудование, которое могло работать на хладагенте r410a, но не на r22 или r13b. Оно отличалось компактностью и низким энергопотреблением.
За счет этого новые модели стали пользоваться популярностью, хоть и были несколько дороже. Когда производители хладагентов снизили стоимость нового вида фреона, на него перешли изготовители бытовой и коммерческой холодильной и кондиционерной техники. Сейчас хладагент в некоторых сферах используется чаще аналогов, таких как r134a, r404a, r600a, r407c и r507.
После разработки хладагента, многие производители начали патентовать собственные торговые марки. Сейчас полноценными аналогами R410a являются:
- SUVA 9100;
- AZ 20;
- Forane 410a;
- Solkane 410.
Область применения
Согласно Significant New Alternatives Policy (SNAP) Program (Программе политики существенно новых альтернатив), хладагент 410a можно применять в:
- Домашних и коммерческих легких холодильных установках;
- Промышленных холодильных процессах;
- Домашнем и коммерческом кондиционировании воздуха;
- Промышленном кондиционировании воздуха;
- Системах холодильных складов;
- Системах ледяных катков;
- Холодильных автоматах;
- Торговых пищевых холодильных автоматах;
- Перевозках с охлаждением.
Большая часть среднетемпературного и низкотемпературного холодильного оборудования использует фреон r410a. Его технические характеристики позволяют существенно уменьшить установки.
Фреон R410A часто используют в:
- Холодильниках;
- Кондиционерах;
- Морозильных камерах;
- Холодильных и морозильных ларях;
- Тепловых насосах.
Отличия R22 и R410a
По сравнению с фреоном r22, хладагент r410a имеет ряд преимуществ и недостатков. Они обусловлены его техническими характеристиками, физическими свойствами и сложностью производства.
Фреон r22:
Последние публикации:
- Имеет низкую стоимость;
- К 2020 году должен быть выведен из оборота странами, ратифицировавшими Монреальский протокол;
- Является однокомпонентным, в случае утечки возможна дозаправка независимо от количества потерянного хладагента;
- Не сложен в производстве, благодаря чему есть много производителей по всему миру.
Фреон r410a:
- Дороже хладагента R-22;
- Не токсичен, пожаробезопасен;
- Двухкомпонентный, в случае утечки большого количества из системы, ее нужно очистить от остатков и заправлять заново;
- Не разрушает озоновый слой;
- Имеет более высокие рабочие давления, оборудование должно быть более прочным. Оно дорогое, но надежное.
Отдельно стоит сказать про влияние на париковый эффект. Потенциал глобального потепления у хладагента r410a на 32,3% больше, чем у r22. Но если все оборудование полностью перейдет на него, то получится интересный эффект.
Так как хладопроизводительность фреона r410a лучше, его нужно меньше. Было подсчитано, что при переводе системы с 22-го хладагента на 410-ый, ее влияние на парниковый эффект уменьшалось в среднем на 11-13%. С точки зрения экологии, R22 проигрывает.
Что касается энергоэффективности, хладагент 410а лучше 22-го. Как показало исследование, опубликованное в International Journal of Engineering Research & Technology (Международный журнал инженерных исследований и технологий), разница составляет около 5-10% (см. рис).
Результаты исследования энергоэффективности хладагентов r410a, r22 и r404aОсобенности хладагента 410
Фреон R410a не является азеотропным газом. Это смесь двух хладагентов в следующих пропорциях:
- R125, C2F5H (пентафторэтан) – 50%;
- R32, СF2h3 (дифторметан) – 50%.
Азеотро́пная смесь — смесь двух или более жидкостей, состав которой не меняется при кипении, то есть смесь с равенством составов равновесных жидкой и паровой фаз.
Википедия
Но свойства хладагента очень близки к азеотропной смеси. Поэтому при его утечке не всегда нужно менять фреон полностью. В зависимости от системы, пи утечках до 20-60% можно дозаправлять оборудование.
По сравнению с R22, хладагент R410A имеет на 50% большую холодопроизводительность. Для полноценной работы системы его нужно на 33% меньше. при этом его рабочее давление выше. разница между давлением пара R22 и R410a зависит от температуры.
При высоких температурах (более 25 °С) она может составлять 60% и более. За счет этого в системе должны быть более прочные стенки трубок испарителя и конденсатора. Это достигается либо большим диаметром, или большей толщиной стенок. За счет большего количества используемой меди, оборудование дороже.
В отличие от R22, хладагент R410a не растворяется полностью в минеральных маслах. В оборудование заправляют полиэфирные синтетические холодильные масла, такие как:
Последние публикации:
- Bitzer BSE;
- Suniso SL;
- Mobil EAL Arctic;
- Planetelf.
Особенности использования
При заправке или дозаправке систем хладагентом 410а нужно придерживаться следующих требований:
- Не допускать попадания внутрь гидравлического контура грязи и влаги;
- Максимальное допустимое давление после вакуумирования: 130 Па;
- При пайке медных трубок они должны быть заполнены азотом или другим инертным газом;
- Хладагент заправлять или дозаправлять только в жидком состоянии;
- Используйте вакуумный насос с обратным клапаном.
Технические характеристики фреона R410a
Характеристика | Значение | |
---|---|---|
Молекулярная масса (г/моль) | 72.58 | |
Температура кипения при атм. давлении ( ° С ) | -51.58 | |
Массовая доля R125 | 0.5 | |
Массовая доля R32 | 0.5 | |
Плотность жидкости при 25 °С, (кг/м3) | 1062 | |
Плотность насыщенных паров при 25 °С, (кг/м3) | 18.5 | |
Критическая температура (°С) | 72.1 | |
Критическое давление, кПа (абс.) | 5166 | |
Критическая плотность жидкости, кг/м3 | 488.9 | |
Давление пара при 25 °С, кПа (абс.) | 173.5 | |
Теплота парообразования при нормальной температуре кипения, кДж/кг | 264.3 | |
Предел воспламеняемости в воздухе (0,1 МПа), об.% | Нет | |
ODP (потенциал разрушения озона ) | ||
HGWP (потенциал глобального потепления) | 0.45 | |
GWP (потенциал глобального потепления за 100 лет) | 1890 | |
ПДК (предельно допустимая концентрация при вдыхании), млн-1 | 1000 | |
Вес нетто в стандартном металлическом баллоне (кг) | 11.3 | |
Плотность насыщенных паров при температуре кипения, кг/м3 | 4 | |
Скрытая теплота испарения при температуре кипения BTU/pound | 116.7 | |
Удельная теплоемкость жидкости при 25°С BTU/pound ° F | 0.44 | |
Удельная теплоемкость паров при 1 атм. BTU/pound °F | 0.17 |
Характеристики фреона R410a на линии насыщения
Насыщенная жидкость
Температура | Давление | Плотность | Энтальпия | Энтропия |
---|---|---|---|---|
° С | насыщения, МПа | кг/м3 | кДж/кг | кДж/(кг*К) |
-50 | 1.123 | 1339.761 | 131.4 | 0.726 |
-45 | 1.417 | 1325.036 | 137.8 | 0.754 |
-40 | 1.77 | 1309.941 | 144.2 | 0.782 |
-35 | 2.191 | 1294.45 | 150.7 | 0.809 |
-30 | 2.689 | 1278.534 | 157.3 | 0.837 |
-25 | 3.273 | 1262.162 | 164 | 0.864 |
-20 | 3.954 | 1245.297 | 170.9 | 0.891 |
-15 | 4.743 | 1227.897 | 177.9 | 0.918 |
-10 | 5.651 | 1209.914 | 185.1 | 0.945 |
-5 | 6.69 | 1191.292 | 192.5 | 0.973 |
7.872 | 1171.968 | 200 | 1 | |
5 | 9.211 | 1151.863 | 207.7 | 1.028 |
10 | 10.719 | 1130.887 | 215.7 | 1.055 |
15 | 12.41 | 1108.928 | 223.9 | 1.084 |
20 | 14.299 | 1085.849 | 232.5 | 1.112 |
25 | 16.399 | 1061.481 | 241.3 | 1.141 |
30 | 18.725 | 1035.603 | 250.5 | 1.171 |
35 | 21.293 | 1007.926 | 260.2 | 1.202 |
40 | 24.116 | 978.057 | 270.4 | 1.233 |
45 | 27.211 | 945.435 | 281.2 | 1.266 |
50 | 30.592 | 909.218 | 292.8 | 1.301 |
Насыщенный пар
Температура | Давление | Плотность | Энтальпия | Энтропия | Теплота |
---|---|---|---|---|---|
° С | насыщения, МПа | кг/м3 | кДж/кг | кДж/(кг*К) | парообразования, кДж/кг |
-50 | 1.122 | 4.526 | 401.5 | 1.936 | 270.1 |
-45 | 1.415 | 5.616 | 404.6 | 1.924 | 266.8 |
-40 | 1.767 | 6.909 | 407.5 | 1.913 | 263.4 |
-35 | 2.187 | 8.435 | 410.5 | 1.902 | 259.8 |
-30 | 2.683 | 10.224 | 413.3 | 1.891 | 256 |
-25 | 3.265 | 12.312 | 416.1 | 1.882 | 252 |
-20 | 3.944 | 14.738 | 418.8 | 1.872 | 247.8 |
-15 | 4.73 | 17.546 | 421.3 | 1.863 | 243.4 |
-10 | 5.635 | 20.785 | 423.8 | 1.854 | 238.7 |
-5 | 6.67 | 24.511 | 426.1 | 1.846 | 233.6 |
7.849 | 28.79 | 428.3 | 1.837 | 228.3 | |
5 | 9.184 | 33.696 | 430.2 | 1.829 | 222.5 |
10 | 10.688 | 39.317 | 432 | 1.821 | 216.3 |
15 | 12.375 | 45.759 | 433.6 | 1.812 | 209.6 |
20 | 14.26 | 53.149 | 434.8 | 1.803 | 202.4 |
25 | 16.357 | 61.643 | 435.8 | 1.794 | 194.5 |
30 | 18.681 | 71.44 | 436.4 | 1.785 | 185.9 |
35 | 21.247 | 82.798 | 436.6 | 1.774 | 176.4 |
40 | 24.07 | 96.062 | 436.2 | 1.763 | 165.9 |
45 | 27.165 | 111.722 | 435.2 | 1.75 | 154 |
50 | 30.549 | 130.504 | 433.4 | 1.736 | 140.6 |
Температура кипения фреона 410
Температура, ° С | Давление | Температура, ° С | Давление |
---|---|---|---|
+50 | 29.5 | -10 | 4.72 |
+45 | 26.2 | -15 | 3.85 |
+40 | 22.9 | -20 | 2.98 |
+35 | 19.78 | -25 | 2.35 |
+30 | 16.65 | -30 | 1.71 |
+25 | 15 | -35 | 1.22 |
+20 | 13.35 | -40 | 0.73 |
+15 | 11.56 | -45 | 0.25 |
+10 | 9.76 | -50 | 0.08 |
+5 | 8.37 | -55 | -0.22 |
6.98 | -60 | -0.36 | |
-5 | 5.85 | -65 | -0.51 |
Правила вакуумирования под заправку фреона R410a
Лучше всего использовать двухступенчатый вакуумный насос с обратным клапаном. Перед заправкой необходимо удалить остатки влаги.
Чтобы удалить капли воды со стенок системы, нужно ее испарить. Для этого необходимо понизить давление в системе ниже точки кипения. Давление, при котором вскипает вода зависит от температуры следующим образом:
Температура, °С | Давление, Па |
---|---|
5 | 900 |
10 | 1200 |
15 | 1700 |
20 | 2300 |
25 | 4200 |
Когда давление опустилось ниже указанного значения, продолжайте вакуумировать контур на протяжении 10-15 минут. После этого на один час нужно оставить систему под вакуумом.
Двухступенчатый вакуумный насосНадеемся, статья была вам полезна. Свои вопросы, мнения и отзывы вы можете оставить в комментариях. Не забудьте поделиться публикацией с друзьями!
vteple.xyz
Фреон (хладагент) R410a: описание, технические характеристики, применение
Хладон R410a представляет собой состав, содержащий гидрофторуглеводородные соединения дифторметана R32 и пентафторэтана R125, смешанные в равных пропорциях. Он предназначен для использования в современных моделях кондиционеров. По физическим свойствам близкий к азеотропной смеси благодаря минимальному температурному скольжению (изменению температуры кипения) при переходе из жидкого или газообразного агрегатного состояния. Характеризуется экологической чистотой и безвредностью для человека.
Компоненты, входящие в состав фреона, не содержат хлор и не оказывают пагубного воздействия на озоновый слой. При образовании точек утечки состав не меняется и остаётся стабильным в процентном соотношении. Хладагент R410a разработан для замены озоноразрушающего R22, который не производится с 2010 года. В интернет-магазине запчастей для холодильного оборудования «ЗИКУЛ» предоставляется возможность приобрести хладон R410а в специальных баллонах с весом газа 11,3 кг.
Преимущества и недостатки хладона R410a
Фреон R410a отличается от R22 рядом достоинств:
- не оказывает вредного воздействия на окружающую среду, имеет нулевой потенциал влияния на озон;
- характеризуется повышенной холодильной эффективностью;
- является нетоксичным и позволяет работать без ограничения при отсутствии источников открытого огня;
- химически стабильный;
- при образовании точек утечки не происходит процентное изменение состава хладагента, поэтому систему достаточно дозаправить;
- пожаробезопасный, не поддерживает горение;
- высокие термодинамические свойства;
- для заправки системы требуется на 20% меньше, поэтому предоставляется возможность устанавливать в холодильное оборудование более экономные компрессоры;
- дольше сохраняет эксплуатационные параметры.
Хладагент R410a характеризуется высоким индексом SEER глобального потепления, аналогичным R22. Но, поскольку оборудование работает более эффективно, считается, что парниковый эффект в результате оказывается меньший по причине уменьшения теплового выброса. Показатель температурного скольжения не превышает 0,15К. При практической эксплуатации такие отклонения практически не заметные.
В случае перехода в разные агрегатные состояния хладон отличается постоянной температурой, что повышает эффективность кондиционеров по охлаждению. Высокая хладопроизводительность является главным преимуществом фреона. Параметр на 50% выше, если сравнивать с R-407с и R-22. Благодаря возможности дозаправлять холодильный контур необходимым количеством вещества удается избежать полной регенерации хладагента.
Основной недостаток фреона R410a в высоком рабочем давлении. Для эффективной работы системы, заправленной R22, компрессором повышается давление в контуре до 16 атмосфер. Кондиционеры, работающие на R410a, при рабочей температуре требуют давление до 26 атмосфер, поэтому трубопровод должен отвечать требованиям по герметичности, особенно в местах соединения трубок с конденсатором, испарителем и прочими элементами. По этой причине требуется использование прочных деталей, обеспечивающих герметичную циркуляцию в контуре и работоспособность кондиционера. В устройствах применяются медные детали, которые повышают стоимость оборудования.
Хладон имеет другой состав, чем у R22, и не позволяет выполнить ретрофит. Климатические системы, рассчитанные под циркуляцию старого хладагента, нельзя заменить озонобезопасным веществом. Климатические устройства должны проектироваться и рассчитываться для заправки R410a. Для замены хладагента R22 в устройство сплит-системы или другого кондиционера требуется внести конструктивные изменения (уточнения) и повысить герметичность (прочность) контура, поскольку фреон циркулирует при давлении, превышающим в 1,6 раз показания предыдущего хладона.
Следующим недостатком хладона является нерастворимость в минеральном масле. Для 410 фреона нужно специальное полиэфирное масло. Кроме того, при сервисном обслуживании, предусматривающем дозаправку контура, требуется повышенная аккуратность, так как хладагент активно впитывает влагу, которая ухудшает эксплуатационные свойства вещества.
Область применения хладагента R410a
Плотность фреона R410a по сравнению с опасным для озона веществом R22 выше, поэтому компрессор, испаритель и конденсатор устанавливается меньшего размера. Хладон может использоваться в системах кондиционирования, соответствующих требованиям по герметичности, прочности и монтажу фреонной магистрали:
- толщина стенок фреонных трубок не менее 0,8‒1,1 мм;
- используются прочные раструбы;
- пайка выполняется с использованием инертного газа.
Благодаря техническим характеристикам фреон R410a применяется в бытовых и промышленных кондиционерах и сплит-системах, рассчитанных для работы в условиях высокого давления в контуре. Также востребован в тепловых насосах, которые предоставляется возможность изготовить в более компактных размерах, насосных холодильных агрегатах, компрессорах центробежного типа, затопленных испарителях и пр.
Таблица с характеристиками фреона R410a
Основные технические характеристики R410a:
Эксплуатационные параметры |
Единица измерения |
Значение |
Состав |
R125/R32 (в пропорции 1:1) | |
Температура кипения (при давлении в 1 атмосферу) |
°С |
51,53 |
Теплота образования пара (при температуре кипения) |
кДж/кг |
264,3 |
Критическая температура |
°С |
72,13 |
Критическое давление |
МПа |
4,93 |
Температура конденсации |
°С |
54 |
Воспламеняемость на воздухе |
не воспламеняется | |
Озоноразрушающий потенциал |
ODP |
0,0 |
Потенциал всеобщего потепления |
HGWP |
1890 |
Группа безопасности ASHRAE |
A1/A1 |
Особенности работы с фреоном R410a
Для обеспечения эффективной работы кондиционера требуется соблюдать определённые правила. Монтажное оборудование должно точно соответствовать оборудованию, рассчитанному под холодильный агент R410a. Запрещено применять трубки и детали, предназначенные для устройства, работающего на хладоне другого типа. Фреонные трубопроводы и фитинги должны обеспечивать герметичность и надежное соединение. Наружная поверхность трубопровода не должна подвергаться окислению и накоплению загрязнения.
Не допускается попадание грязи внутрь контура при выполнении сервисных работ. Загрязнение масла неизбежно повлечёт поломку компрессора. Для предотвращения нагара внутри трубки при выполнении ремонтных работ с использованием сварки требуется применять инертный газ. Перед заправкой вещества выполняется вакуумирование системы. Поскольку в составе фреона R410a отсутствуют компоненты, содержащие хлор, то для поиска точек утечки хладона применяются течеискатели. Стандартные методы идентификации места разгерметизации неэффективные. Дозаправка хладагентом должна выполняться только в жидкой фазе.
z-cool.ru
Хладагент R410a: описание и свойства
Хладагент R410a — это близкая к азеотропной смесь двух хладагентов.
R410a — альтернатива хладагенту R22.
Общее описание R410a
R410a повсеместно называется как преимущественный долгосрочный хладагент-заменитель для R22 , но он является также альтернативой для R13B1. Эта смесь хладагента представляет собой околоазеотроп с очень низким температурным глайдом.
Существенным отличием от R22 является более высокое давление. Так R410a достигает давления 25 бар уже при температуре сжижения примерно 42°C, R22 напротив, только примерно при 62°C. Большим преимуществом R410a является очень высокая объемная холодопроизводительность, которая может быть до 50% выше чем у R22. Поэтому могут применяться более мелкие компоненты установки, благодаря чему – по сравнению с R22 – можно построить более компактную установку.
Компоненты холодильной установки, как например, компрессоры, должны быть рассчитаны на более высокое давление. Такая разработка уже ведется полным ходом.
Из-за более высоких рабочих давлений R410a не пригоден для переналадки существующих установок с R22. Для подобной переналадки методом ретрофита мы рекомендуем после детальной проверки возможно Solkane 407C.
Возможности замены для хладагента R410a имеются в кондиционерах, тепловых насосах, холодильных складских камерах, для производственного и промышленного охлаждения и при замене R13B1 в диапазоне низких температур. Методы ретрофита для R13B1 уже успешно проводились.
Физические свойства R410a
Границы взравоопасности в воздухе при 25°С и атмосферном давлении (101кПа): отсутствуют.
Применение R410a
R410a предназначен для использования в новых установках и заменит R22 в качестве рабочей среды в холодильных установках, кондиционерах и тепловых насосах.
Экологические характеристики и пожароопасность R410a
ODP=0; HGWP = 0,45.
R410a не горючий и в токсикологическом отношении безопасен. На основе исследований PAFT можно ожидать установления показателя ПДК на 1000 ppm. Показатели AEL для входящих в состав R410a хладагентов R32 и R125 составляют около 1000 ppm.
Термическая стабильность R410a
Термически и химически R410a стабильный.
Взаимодействие R410a с другими материалами
Имеется совместимость с применяемыми обычно в холодильном машиностроении металлами, такими как сталь, медь, алюминий и латунь. Отказаться следует только от цинка, свинца, магния и сплавов алюминия с содержанием магния более 2 % массы.
Лишь незначительное набухание происходит при воздействии R410a на следующие пластмассы или эластомеры: полиамид (PA), фенольная смола, политетрафторэтилен (PTFE), полиацетал (POM), хлорпренкаучук (CR) и гидрированный акрилнитрил-бутадиенкаучук (HNBR). Так как при отдельных пласмассах и эластомерах могут иметься различные формулировки, то мы рекомендуем в каждом случае перед применением провести испытания. Здесь также необходимо учесть возможное влияние смазочного вещества. Типы фторкаучука (FKM) не рекомендуются.
Масла для R410a
Подходящими маслами холодильной машины и для R410a являются эфирные масла.
Монтаж оборудования на R410a
При установке оборудования на R410A необходимо придерживаться следующих основных рекомендаций (аналогичных для R407C):
-
не допускать попадания загрязнений в гидравлический контур;
-
при пайке трубопроводов они должны быть заполнены инертным или слабовзаимодействующим газом, например, азотом с низким содержанием влаги;
-
особенно тщательно производить вакуумирование;
-
дозаправку хладагента осуществлять исключительно в жидкой фазе.
Приведем несколько рекомендаций по выполнению вакуумирования, направленного на полное удаление из контура воздуха и влаги. Для того чтобы перевести воду из жидкого в газообразное состояние без нагревания, потребуется уменьшить давление в контуре. Чем ниже температура контура (наружного воздуха), тем меньше давление, при котором начнется испарение воды.
Давление испарения воды при различных температурах воздуха:
Следовательно, при вакуумировании остаточное давление в контуре должно быть таким, чтобы температура испарения для этого давления была ниже температуры наружного воздуха. Особое внимание следует уделить выбору инструмента. Вакуумный насос может быть как одно-, так и двухступенчатым, но производительность его должна быть не ниже 4–8 м3/ч для систем холодопроизводительностью до 11 кВт и 8–15 м3/ч для более мощных систем. Преимущество двухступенчатых насосов заключается в возможности достижения более низкого остаточного давления. Для предотвращения попадания минерального масла из насоса в контур холодильной установки он должен быть оснащен специальным клапаном. Манометрический коллектор должен быть предназначен для R410A, т.е. иметь шкалу давление/температура соответствующую этому хладагенту, а также увеличенные диаметры портов для подключения гибких шлангов (ввиду существенных различий термодинамических характеристик R410A и R22, R407C).
Очень важно, что измерение глубины вакуума с помощью манометра низкого давления (до 17 бар) на манометрическом коллекторе недопустимо, поскольку не обеспечивает достаточной точности. Необходим специальный манометр для измерения вакуума, только с его помощью можно правильно измерить остаточное давление и убедиться в отсутствии влаги в контуре.
В целом, если вы следуете этим несложным рекомендациям и работаете профессиональным инструментом, применяя его по назначению, то установка и сервисное обслуживание оборудования на R410A не вызовут сложностей, а пользователи смогут оценить надежность и высокую энергетическую эффективность новых систем кондиционирования.
Характеристики R410a на линии насыщения
td/td
www.aboutdc.ru
температура конденсации, рабочая таблица давления, характеристики
Содержание статьи:
Фреон – это смесь газов, благодаря которой кондиционер охлаждает помещение. Хладагент циркулирует в системе, испаряется в теплообменнике и понижает температуру воздуха. Фреон r 410a – рабочий газ большинства современных кондиционеров. Он заменил хладон R22, негативно влияющий на озоновый слой.
Что такое фреон R410a
Информацию о том, что хладагент r 410a стал заменой R22 нельзя воспринимать буквально. Технические характеристики фреонов различаются, сплит-систему спроектированную под один тип газовой смеси, не заполняют другим составом. Хладон r 410a разработан в 1991 году компанией Allied Signal. Спустя 5 лет появились первые кондиционеры, работающие с новым хладоном. Целью разработчиков было заменить устаревшие газовые смеси, содержащие хлор. Соединения группы CFC (хлорфторуглеродные) при попадании в атмосферу разрушали озоновый слой, усиливая парниковый эффект. Новый фреон соответствует всем требованиям Монреальского протокола. Его влияние на истощение защитного слоя Земли равно нулю.
Состав фреона r410a: R32+ R125. Химические формулы соединений: дифторметан CF2h3 (дифторметан) и CF2HCF3 (пентафторэтан). Соотношение компонентов 50% на 50%.
Состав стабилен, инертен к металлам. Не имеет цвета, обладает легким запахом эфира. Под действием открытого огня разлагается на токсичные составляющие.
Таблица давления и кипения
Рабочее давление хладагента пропорционально нагрузке на компрессор. Кроме этого показателя на эффективность работы агрегата влияет разность давления на стороне всасывания и нагнетания. Обе характеристики хладона 410a имеют высокие значения. При одинаковой производительности кондиционеры с этим типом фреона стоят дороже моделей с другими хладагентами. Повышение цены связано с затратами, необходимыми для изготовления более прочных узлов и деталей.
Таблица рабочего давления фреона 410 в кондиционере представляется в виде номограммы. Она составляется по нескольким показателям:
- температура внутри помещения;
- температура окружающей среды;
- рабочее давление всасывания.
Реальный напор хладона меняется несколько раз в сутки. Его значение зависит от колебаний температуры и выбранного режима. В обычных условиях используемый газ кипит при отрицательных показателях термометра. Давление, создаваемое компрессором, позволяет изменить точку кипения.
Таблицу кипения фреона r410a в зависимости от давления используют при проверке на утечку.
T, C | -5 | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
P,бар | 5,85 | 7 | 8,37 | 9,76 | 11,56 | 13,35 | 15 | 16,65 | 19,8 | 22,9 | 26,2 |
Преимущества и недостатки фреона R 410a
Хладагент относится к группе гидрофторуглеродов. Перспективный состав рассматривают как озонобезопасную смесь HFC. Минимальное температурное скольжение (0,15 К) приравнивает его по свойствам к однокомпонентным хладонам.
- Высокий уровень удельной хладопроизводительности не требует установки мощного компрессора.
- В случае утечки количество газа легко восполняется без потери качества хладагента.
- Появляются широкие возможности в плане уменьшения энергопотребления оборудования.
- Производительность по холоду на 50% выше, чем у систем с R22 и 407c.
- Хорошая теплопроводность и низкая вязкость положительно влияют на эффективность работы системы. Тепло переносится быстрее и с меньшими затратами на перемещение.
Минусы хладона:
- Высокое рабочее давление в системе, которое негативно действует на компрессор, приводит к быстрому износу подшипников.
- Разность давлений на стороне всасывания и нагнетания хладагента снижает КПД компрессора.
- Увеличиваются требования к герметичности контура. Толщина стенок медных труб магистрали должна быть больше, чем для R22. Минимальное значение 0,8 мм. Значительное количество меди ведет к удорожанию системы.
- Хладагент не совместим с деталями климатического оборудования, изготовленными из эластомеров, чувствительных к дифтометану и пентафторэтану.
- Полиэфирное масло, используемое в кондиционере, стоит дороже минерального.
Технические характеристики
По физическим свойствам смесь двух гидрофторуглеродов близка к азеотропной. При фазовых переходах ее температурный глайд минимальный, практически равен 0. Это означает, что оба компонента одновременно испаряются и конденсируются. Фреон R 410a обладает высокой холодопроизводительностью. Улучшение характеристики позволяет уменьшать размеры климатического оборудования и холодильных установок. Хладагент не токсичен и пожаробезопасен, на воздухе не воспламеняется.
При температуре конденсации фреона r410a, составляющей 43°C его давление достигает 26 атм. Для сравнения, аналогичный показатель R22 – 15,8 атм.
Физические характеристики фреона r410a
Характеристики | Единицы измерения | Значение |
Молекулярная масса | 72,6 | |
Температура кипения | °C | -52 |
Плотность насыщенных паров при кипении | Кг/м3 | 4 |
Критическая температура | ° C | 72 |
Критическое давление | МПа | 4,93 |
Температурный дрейф | °C | 0,15 |
Теплота парообразования | КДж/кг | 264.3 |
Удельная теплоемкость пара | БТЕ/фунт*°F | 0,17 |
Коэффициент разрушения озона | 0 | |
Потенциал глобального потепления (GWP) | 1890 | |
Группа безопасности по ASHRAE | A1/A1 |
Отсутствие хлора в обоих компонентах хладона не вредит озоновому слою.
Высокий потенциал глобального потепления относится к недостаткам соединения. Эффект выброса аналогичен R22. Дозаправка системы осуществляется только в жидкой фазе. Транспортировка и хранение производится в баллонах розового цвета, выдерживающих давление 48 бар. Емкости заполняются на 75% веса.
Особенности применения
Хладон одинаково эффективен в сплит системах и чиллерах с винтовым компрессором и водяным конденсатором. Сжиженный газ высокого давления требует специальных узлов и деталей. Ведется конструктивная разработка новых моделей климатической и холодильной техники. Технические характеристики позволяют использовать его в устройствах:
- центробежные компрессоры;
- затопленные испарители;
- насосные холодильные агрегаты.
Новый фреон нашел применение в системах кондиционирования, бытовых теплонасосных установках. Смесь с азеотропными свойствами подходит для оборудования с теплообменниками непосредственного испарения и затопленного типа. Благодаря высокой плотности хладон используют в бытовых и промышленных установках:
- транспортные охладительные системы;
- установки кондиционирования воздуха в офисах, общественных зданиях, промышленных объектах;
- бытовые холодильники;
- торговое и пищевое холодильное оборудование.
Совместно с фреоном 410 a применяется синтетическое (полиэфирное) масло. Недостаток продукта – высокая гигроскопичности. При дозаправке исключается контакт с влажными поверхностями. Рекомендуется применение продукции марок PLANETELF ACD 32, 46, 68, 100, Biltzer BSE 42, Mobil EAL Arctic. Минеральные масла не совместимы с хладагентом, их применение испортит компрессор.
Перед заправкой системы рабочий контур необходимо вакуумировать. Не допускается попадание в хладагент влаги и загрязнения. При дозаправке используется специальное оборудование, рассчитанное на высокое давление. Для безопасности следует избегать появления открытого огня рядом с баллонами фреона r 410a.
strojdvor.ru
Хладагент R410A — важные аспекты кондиционеров
Итак, что же такое фреон R410A и с чем его «едят»?
Хладагент R410A это газ пришедший на замену R22, который представляет собой смешанные в равных массовых долях хладагенты R32 и R125. Смесь характеризуется нулевым значением потенциала разрушения озона (ODP), т.к. ни один из составляющих его компонентов не содержит хлора.
Повышенная холодопроизводительность позволила уменьшить габаритные размеры основных элементов гидравлического контура: трубопроводов, теплообменников, и других узлов системы кондиционера.
R410A является псевдо-азеотропной смесью, а именно его температура в фазовых переходах практически не изменяется, поэтому при утечке из системы, состав смеси в контуре остается без изменений, что позволяет добавить необходимое количество после ремонта и избежать полной регенерации хладагента. Вместе с этим новый хладагент характеризуется существенно более высокими значениями рабочих давлений в гидравлическом цикле.
К примеру, при температуре конденсации 43ºС R22 имеет давление 15,8 атм, а R410A – около 26 атм. Поэтому простая замена R22 новым R410A исключена и апгрейд оборудования требует внесения конструктивных изменений в элементы гидравлического контура для увеличения их прочности. Так же как и хладагент R407C он не растворим в минеральном масле, и требует использование синтетического полиэфирного масла.
При установке систем кондиционирования на R410A необходимо следовать следующим правилам, подобным хладагенту R407C:
! — не допускать попадания загрязнений в гидравлический контур;
! — при пайке трубопроводов они должны быть заполнены инертным или слабовзаимодействующим газом, например, азотом с низким содержанием влаги;
! — тщательно производить вакуумирование;
! — дозаправку хладагента осуществлять только в жидкой фазе.
Термин R410A, почему R410A?
ODP — | Потенциал разрушения озона. | GWP — | Потенциал глобального потепления. |
Степень разрушения озона стандартизована относительно хладагента R11,значение ODP которого принято за “1”. хладагент R410A имеет ODP=0. | Потенциал глобального потепления показывает способность газов отражать тепло, сохраняя его в околоземной поверхности при наличии данного газа в атмосфере. для сравнения используется газ [CO2], GWP которого принят за “1”. |
Свойства
R410A – это азеотропная смесь:
Хладагент R410A состоит из смеси хладагентов: R32 — 50% и R125 — 50%
Свойства азеотропной смеси:
В отличии от R407C (зеотропной смеси) фазовые изменения в азеотропной смеси происходят при постоянной температуре в процессе конденсации/испарения.
R 410A имеет очень малый “температурный глайд” и может считаться азеотропным.
! ∆tg = Температурный глайд для R410A практически =0 K
Работа с фреонопроводом R410A
! Используйте только медные дюймовые трубы
для фреонопроводов.
Размеры обработки раструбов для систем, в которых используется R410A больше, чем для систем с другими типами хладагентов, чтобы повысить герметичность:
Минимальная толщина труб для систем на хладагенте R410A:
! Резка труб только с помощью трубореза.
! Тщательно уберите заусенцы.
! Убедитесь что внутрь трубы не попала стружка.
! Паяные соединения должны быть очищены от флюса и окалины.
! Не чистите соединения наждачной бумагой перед пайкой. Припой течет лучше по гладкой поверхности.
! Пайку проводите только под инертным газом. Используйте сухой азот или другой инертный газ.
Пайка без защитного газа приводит к образованию окислов на поверхности труб, которые смываются хладагентом и циркулируют в холодильном контуре.
При высоких температурах в рабочей зоне компрессора эти окислы могут служить причиной разложения хладагента и холодильного масла.
Результат — неисправность установки.
! Трубы должны храниться в сухом помещении с герметично закрытыми концами.
Тест на герметичность
Перед вакуумирование необходимо обязательно провести тест на герметичность.
! Герметичность гидравлического контура на хладагенте R410A проводится в следующим порядке:
1 способ:
— Контур заполняется сухим азотом до давления 1,0 МПа. (проверяется нет ли падения давления в течение 1-го часа)
— Контур заполняется сухим азотом до давления 4,15 МПа.
— Через 24 часа контролируют изменение давления.
Если давление по истечении 24 часов не понизилось, систему можно считать герметичной. Давление в контуре, заполненном азотом меняется при изменении температуры окружающего воздуха.
Для определения изменения давления в контуре пользуйтесь формулой: Р1/Т1=Р2/Т2, где
Р1, Т1 — давление в контуре и температура окружающей среды в начале теста
Р2, Т2 — давление в контуре и температура окружающей среды в конце теста (спустя сутки).
2 способ:
— Контур заполняется хладагентом до давления 0,2 МПа.
— Контур заполняется сухим азотом до давления 4,15 МПа.
Проверка проводиться с помощью электронного течеискателя. (течеискатель для R22 не способен обнаружить утечку хладагента R410A)
Вакуумирование R410A
Основой корректного фукционирования систем кондиционирования является правильное ваккумирование контура.
— Посредством вакуумирования из контура удаляется воздух и влага. Почему гидравлический контур должен вакуумироваться?
Вакуумирование предотвращает следующие последствия:
! Присутствие неконденсирующихся примесей приводит к повышению давления конденсации и рабочей температуры компрессора.
! Присутствие влаги приводит к разложению холодильного масла и замерзанию дросселирующего устройства.
! Полиэфирные масла, используемые с R410A очень гигроскопичны и поглощают влагу из воздуха.
В результате химических реакций в гидравлическом контуре образуются кислоты.
! Кислород, присутствующий в воздухе взаимодействует с холодильным маслом, что приводит к выходу из строя компрессора
Для удаления воды из гидравличесокго контура необходимо её испарить понизив давление с помощью ваккумной помпы.
Точка кипения R410A
В приведенной таблице, показывает зависимость точки кипения воды от давления:
Температура кипения воды на уровне моря = 100°С.
На высоте 4800 м , где атмосферное давление равно 555 мБар вода кипит при 84°C.
Таким образом, чем ниже давление, тем ниже точка кипения воды.
Чем ниже температура окружающей среды, а следовательно и температура воды в контуре, тем большее разряжение необходимо создать с помощью вакуумной помпы для удаления влаги.
Из таблицы видно, что вакуумирование в осенне-зимний период необходимо проводить более длительное время.
Параметры вакуумирования R410A
Для вакуумирования необходимо использовать помпу,обеспечивающую падение давления 65Па за 5мин.
Рекомедуется использовать двухступенчатую помпу с производительностью не менее 8-15м3/ч.
Вакуумная помпа должна быть оснащена обратным капаном во избежание попадания минерального масла помпы в гидравлический контур.
Продолжительность вакуумирования R410A:
После достижения значения вакуума не менее 650 Па продолжать вакуумирование в течение одного часа.
По окончании вакуумирования оставить контур под вакуумом в течение одного часа для проверки на отсутсвие влаги.
По прошествии одного часа допускается поднятие давления в контуре не более чем на 130Па. Измерительные приборы.
! Манометр низкого давления, установленный на манометрическом коллекторе, не подходит для измерения уровня вакуума.
Обычный манометр не обладает достаточной точностью измерения для определения изменения значения давления в системе при вакуумировании.
! Перед вакуумированием обязательно проводиться тест на герметичность гидравлического контура.
! Для систем большой производительности рекомендуется после достижения уровня вакуума 650Па заполнить систему сухим азотом до избыточного давления 0,5 Бар. и продолжить
вакууумирование.
! Для ускорения процесса необходимо проводить вакуумирование одновременно на линиях нагнетания и всасывания.
Вывод: если вы внимательно ознакомились с содержанием данной статьи, у Вас не возникнет затруднений с использованием хладагента R410A
Заправить кондиционеры и другие системы кондиционирования хладагентом R410A, Вы сможете, обратившись к специалистам нашей компании по тел. (495) 789-86-03; (495) 960-82-03; либо через обратную связь, которые проконсультируют Вас и сориентируют по расценкам компании.
airfull.ru
410A — это… Что такое R-410A?
R-410A — фреон, азеотропная смесь из 50% дифторметана R-32 и 50% пентафторэтана R-125, наиболее часто используемый фреон в современных кондиционерах. Ни один из его компонентов не содержит хлора, поэтому он безопасен для озонового слоя (озоноразрушающий потенциал равен нулю). Этот фреон приходит на смену R-22, который разрушает озоновый слой, и производство которого ограничено Монреальским протоколом.
Физические свойства
R-410A является смесью, близкой к азеотропной. Основной недостаток неазеотропных смесей — температурное скольжение, т.е. изменение температуры кипения в процессе фазового перехода (испарения и конденсации). Однако у хладагента R-410A температурное скольжение настолько мало (0.15 К), что им можно пренебречь, т.е. считать смесь азеотропной (для сравнения, температурное скольжение хладагента R-407C составляет 7К [3]).
Химические свойства
Так как оба компонента не содержат хлора, R 410A имеет нулевой потенциал истощения озонового слоя Земли. Он не токсичен (при концентрации менее 400 мг/кг) и непожароопасен. [4]
Преимущества и недостатки R-410A
Хотя и говорят, что фреон R-410A приходит на смену R-22, это не следует понимать буквально: физические и теплотехнические свойства фреонов совершенно различны, поэтому систему расчитанную на R-22 нельзя заправлять фреоном R-410A: система должна быть изначально спроектирована под фреон R-410A. Этим он отличается от фреона R-407C, который специально предназначен для замены R-22 в старых системах. Основным недостатком R-410A по сравнению с R-22 является высокая цена (R-410A приблизительно в семь раз дороже R-22). Кроме того, давление в контуре при рабочих температурах существенно выше (так, при температуре 43°С R22 имеет давление насыщенного пара 15,8 атм, а R410A — около 26 атм.), поэтому более высокие требования предъявляются к герметичности, медные трубки конденсатора и испарителя должны быть более прочными, отсюда большая масса меди и более высокая цена. Еще одним минусом R-410A является несовместимость с минеральным маслом. Если R22 растворяется в любом минеральном масле, то для фреона R410a нужно специальное полиэфирное масло, которое намного дороже, а кроме того, требует более аккуратной заправки (оно очень активно поглощает влагу, теряя свои свойства). [5] С другой стороны, R-410A обладает очень высокой удельной хладопроизодительностью (в полтора раза выше чем R-407C и R22, в два раза выше чем R-134A), что позволяет использовать менее мощный компрессор.
Примечания
dic.academic.ru
Обзор термодинамических характеристик хладагентов R-134А, R-410А и R-407C для системы кондиционирования воздуха
Проводится сравнительный анализ между хладагентами R-134A, R-410А и R-407C. Сравнение проводится по термодинамическим коэффициентам.
Ключевые слова: хладагент, химический состав, рабочее давление, эффективность работы компрессора, удельная холодопроизводительность, холодильный коэффициент
В последнее время наилучшими озонобезопасными хладагентами считаются R-134A, R-410A и R-407C. Хладагенты R-410A и R-407C пришли на замену фреону R-22, а R-134A на замену R-12. [1] У каждого рассматриваемого хладагента имеются определенные достоинства и недостатки.
Основные характеристики этих хладагентов таковы:
1) Изотропность. В хладагентах 134A и R-410A возможна изотропность (дозаправка агрегата в случае утечки), R-407C не имеет возможность дозаправки оборудования (а вот популярный ранее фреон R-22 имел изотропность).
2) Работа на масле. Поршни, работающие в компрессоре необходимо смазывать маслом для уменьшения трения и увеличения срока службы. Для этого в систему вместе с хладагентом добавляют масло. В системе оборудования совершается цикл работы и тем самым смазываются необходимые элементы установки. Все марки хладагента работают на полиэфирных маслах, R-22 работал на минеральном.
3) Давление. В момент, когда температура конденсации достигает 43 градусов, у хладагента R-410A давление в системе составляет 26 атмосфер. Если сравнить, то у R-407C — 18 атмосфер и у R-134A — 10 атмосфер, а у R-22 показатель давления держался на уровне 16 атмосфер.
Химический состав.
Все марки хладагентов очень удобно использовать, т. к. они являются смесями веществ в отличие от традиционных фреонов. Эти хладагенты имеют нулевой потенциал истощения озонового слоя Земли. Также являются нетоксичными и не пожароопасными.
Хладагента R-410A является азеотропной смесью двух фторуглеводородов. Он состоит из 50 % дифторметана R-32 и 50 % пентафторэтана R-125. Такой хладагент считают изотропным, и при его утечке смесь почти не изменяет своих состав, это позволяет дозаправить оборудование. Одним из недостатков таких смесей является температура скольжения. В процессе фазового перехода (испарения или конденсации) температура кипения смеси меняется. За счет температуры скольжения хладагенту R-410А присуще те же достоинства, что R-134А.
К недостаткам хладагента R-410А можно отнести то, что требуется использование только синтетических полиэфирных масел. Они быстро поглощают влагу и вследствие этого теряют свои качества. При этом масла неспособны растворять какие-либо органические соединения или нефтепродукты, которые могут стать загрязнителями.
Хладагент R-407C является, также, азеотропной смесью двух фторуглеводородов.
В состав смеси входят сразу три хладагента — R-134a (его доля составляет 52 %), R-125 (25 %) и R-32 (23 %). Каждая составляющая дает хладагенту часть свойств. Например, высокую производительность дает R-32, отсутствие возгораемости благодаря хладагенту R-125, оптимальный уровень рабочего давления в контуре обеспечивает R-134а.
Температура скольжения по сравнению с R-410А очень мала (0,15К), поэтому им можно пренебречь. Такая смесь хладагентов не является изотропной, в случае, если произошла утечка хладагента, его фракции улетучиваться неравномерно, меняя необходимый состав вещества.
Недостатком хладагента является то, что если холодильный контур разгерметизируется (произойдет утечка), оборудование нельзя будет просто дозаправить — придется сливать остатки хладагента и полностью заправлять новый хладагент. Именно поэтому R-407C сегодня популярен менее, чем должен. Еще одним недостатком марки является то, что она является самым сильным компонентом образования парниковых газов, разрушающих атмосферу.
Рабочее давление.
Абсолютное значение рабочего давления в системе зависит от нагрузки воспринимаемой компрессором. Чем выше давление, тем больше нагрузка на компрессор. С увеличением силы трения в подшипниках, увеличивается износ, что определяет надежность компрессора и всего агрегата. Кроме перечисленного, увеличивается нагрузка при постоянной производительности, приводит к потреблению компрессора большего количества электроэнергии. Разность давления также влияет на эффективность работы компрессора. Чем выше разность, тем выше вероятность протечки хладагента со стороны высоко давления на сторону низкого. [2]
К недостаткам хладагента R-410А относится высокое давление в системе оборудования и разность давления на сторонах всасывания и нагнетания. Если сравнить чиллеры с воздушным и водяным конденсатором, то значения будут сопоставимы. Из таблицы 1 видно, что чиллеры PROXIMUS (на хладагенте R-410А, с водяным конденсатором) и McPower (на хладагенте R-407С, с воздушным конденсатором) имеют примерно одинаковое рабочее давление конденсации.
Таблица 1
Хладагент | Модель | Температура на входе вконденсатор | Тконд., °С | Рконд., бар |
R-410А | PROXIMUS SE | 35 | 40 | 24,4 |
PROXIMUS XE | 35 | 38 | 23,2 | |
R-407C | McPower SE | 35 | 55 | 24,7 |
McPower XE | 35 | 65 | 28,3 |
Исходя из данных, с точки зрения нагрузок на компрессор эффективности работы холодильной машины наиболее целесообразно выбрать чиллер с водяным конденсатором на хладагенте R-410А.
Помимо этого, климатическая техника, работающая на R-410A, имеет ту же производительность, что и кондиционеры, работающие на других хладагентах, однако стоит значительно дороже. Это обусловлено тем, что ее рабочее давление является более высоким, и при температуре конденсации в пределах 43 градусах, его показатель достигает показателя 26 атмосфер. Это может привести к тому, что детали и узлы холодильного контура и всего кондиционера в целом могут быстро выйти из строя, если не будут прочными и надежными. И в любом случае это может существенно увеличить расход меди, сделав систему еще более дорогой.
Удельная холодопроизводительность.
К достоинствам хладагента R-410A относят высокую холодопроизводительность.
Сравним термодинамические параметры идеального холодильного цикла хладагентов R-134A, R-410А и R-407С (см. таблицу 2).
Таблица 2
Температура испарения Тисп.., °С | Температура конденсации Тконд., °С | Перегрев Тперег.., °С | Переохлаждение Тохл., °С | |
R-410А | 3 | 40 | 15 | 15 |
R-407С | ||||
R-134A |
Если почитать удельную холодопроизводительность для данных хладагентов, то получаем следующие параметры: удельная холодопроизводительность для хладагента
R-410А равна 5599 кДж/м3, для R-407С равна 3629 кДж/м3, для R-134A равна 2429 кДж/м3. Для наглядность см. рис. 1.
Рис. 1. Удельная холодопроизводительность, кДж/м3 для хладагентов R-134A, R-410А и R-407C
Как видно по расчетным данным, хладагент R-410А имеет наиболее высокую удельную холодопроизводительность. Чем выше этот показатель, тем меньше необходимо использовать компрессоров в системе кондиционирования воздуха.
Холодильный коэффициент.
Холодильный коэффициент представляет собой отношение количества тепла, отнятого от охлаждаемой среды к теплоте, эквивалентной затраченной внешней работе при данном цикле. Оценивается холодильный коэффициент эффективностью холодильной машины с точки зрения производства холода. Таким образом, система является эффективнее, чем меньше энергии необходимо затратить для производства определенного количества холода.
Суммарная энергетическая эффективность зависит, также, от КПД электродвигателя, эффективности работы компрессора при полной и частичной нагрузке, конструкции теплообменника и используемых материалов для его создания, рабочие условия установки и т. д.
Преимущество использования в системе кондиционирования воздуха хладагента R-410А очевидно. У него отсутствует температурное скольжение, высокий показатель удельной холодопроизводительности. Несмотря на высокое давление в системе, он эффективен в системах кондиционирования воздуха.
Литература:
- Технический бюллетень № 5–2004 г.; статья «Обоснование выбора хладагента для винтовых компрессоров»).
- Отопление, вентиляция и кондиционирование воздуха объектов агропромышленного комплекса и жилищно-коммунального хозяйства: учеб. для вузов / В. М. Свистунов, Н. К. Пушняков. — СПб.: Политехника, 2001. — 422 с.
Основные термины (генерируются автоматически): хладагент, удельная холодопроизводительность, PROXIMUS, рабочее давление, холодильный коэффициент, эффективность работы компрессора, температура конденсации, недостаток хладагента, водяной конденсатор, азеотропная смесь.
moluch.ru