Posted on

Клещи-приставка AC/DC Holdpeak HP-605A. для больших токов

Тóковые клещи позволяют производить измерение тока бесконтактным способом — просто обхватив этот провод. Клещи для переменного тока делаются как правило на основе тóкового трансформатора, выпускаются уже очень давно и стоят копейки. Клещи для постоянного тока — имеют в своей основе линейные датчик(и) холла, и стали доступны по цене не так давно. В целом, клещи можно поделить на клещи для переменки и клещи для постоянки, а по конструкции — на автономные и приставки. Из автономных недорогих AC/DC могу назвать ut210e, ms2108A, а из приставок — чуть подороже appa 32, hantek cc65/cc650, ну и вот «новый игрок» в нижнем ценовом диапазоне — Holdpeak.


Вообще, изначально клещи предназначены в пару к мультиметру HP890CN — сам есть соответствующее положение на селекторе. Но в принципе могут работать с любым другим тестером или даже осциллографом, потому что выдают напряжение прямо пропорциональное измеряемому току — 1мВ соответствует 1А.

Клещи имеют размеры 175х80мм (без боковой кнопки, открывающей «пасть»), вес около 300г, длина провода 70см.




В комплекте есть бумажка, назвать инструкцией которую язык не поворачивается. Там написано примерно следующее: подключите клещи к тестеру, включите, выберите на тестере режим «клещи», переключите клещи и тестер в соответствующий AC/DC режим, нажмите на тестере кнопку REL — и измеряйте. Никаких цифр, погрешностей, пределов — ничего. Впрочем, инструкция от HP890cn обещает 2.5%/3% +5 для DC и AC соответственно.

На передней панели кнопка питания, светодиод индицирующий включенное состояние и кнопка AC/DC. Забегая вперед, скажу что отличие AC от DC — во включенном последовательно конденсаторе, ну и подстроечники для AC и DC — разные.

Питаются от «кроны», потребляемый ток 4.4мА

Выходной сигнал — 1мВ=1А

Внутренний мир прост и незатейлив — LDO 7550 на 5В, преобразователь из +5В в -5В 7660 и операционный усилитель TL062


с обратной стороны платы — три подстроечных резисторы, кнопки и светодиод питания.

Дополнительная информация

пара фоток с отпаянными микросхемами и переключателем:



схема (если я ничего не напутал):

Названия микросхем, кнопок, разъемов — условные (скажем, вместо 7550 нарисовал 78L05, разъемы взяты тупо по числу контактов и т.д.). Конденсаторы не отпаивал и не прозванивал, для резисторов указаны надписи на них и их перевод в реальное значение (ибо для 0603 с 1% точности уже обозначение не цифра-цифра-множитель, а целая таблица)

Если я правильно понимаю (а с высокой вероятностью я таки ошибаюсь) — VR1 задаёт начальное смещение, то есть регулирует ноль, а VR2 и VR3 — калибровка по постоянке и переменке соответственно.

Режим AC отличается кроме другой выходной цепи и потенциометра — включенным последовательно конденсатором. Нафига это нужно — как по мне тайна великая есть. Видимо, чтобы отсечь постоянное смещение, которое неминуемо в клещах на датчиках холла. Чем это будет отличаться от переключения тестера в режим AC — уж я и не знаю. Как по мне — лучше бы подстроечник для этой цели ввели, оперативно 0 выставлять на постоянке.

Теперь измерения. Как я уже писал в заголовке — клещи рассчитаны на большие токи. Поэтому на малых токах точность будет никакая, но тем не менее попробуем проверить.

постоянка:

переменка:

Как видим, если на постоянке точность еще куда ни шло, то на переменке ну совсем не в дугу. впрочем, измерение переменных токов меня волнуют мало, а таких высоких — не волнуют вовсе, так что лично для меня это проблемой не является, но если я правильно понимаю, можно при желании подстроить (?) при помощи VR2 и VR3, что я и сделал для постоянного тока, хоть и не сфоткал. Но получилось не более +-0.1А с эталонным тестером, на вышеприведенных же токах, что я считаю вполне себе неплохим результатом. Ну не рассчитаны они на такие токи. Им нужны десятки и сотни ампер — там они покажут точнее и «раскроются в полной мере».

Теперь — маленькая доработка. Так как я планировал использовать данные клещи для диагностики, в частности — измерения стартерного тока, то я решил заменить провод на разъем. Ну и сразу скажу, что в этой роли пока не пробовал — не было возможности, времени и желания. 😉

Для этого я отпаял провод, припаял к нему разъем «тюльпан»-папу, а в клещи поставил соответствующее гнездо. Для установки гнезда я просверлил корпус сверлом 10мм, после чего взял пластиковую пластинку размерами примерно 10х20х1.5мм, просверлился в ней диаметром 6мм, прикрутил к ней гнездо и вставил в корпус — между корпусом и бывшим зажимом провода:






Как по мне — стало не хуже, к тому же появилась возможность подключения «штатным» кабелем. Можно, естественно, поставить разъем BNC, ну либо воткнуть в этот разъем переходник. Высоких частот тут не будет, так что необходимости в BNC разъемах как-то и нету.

После этой доработки можно подключиться к осциллографу. Для этого я собрал на каком-то полевике ключик, который запустил от внешнего генератора и нагрузил на мощный резистор. Понятно, что всё это несерьёзно, ну да что есть — то есть:

Как видим, сигнал достаточно шумный, что вообще говоря неудивительно — я вообще как-то слабо понимаю использование преобразователей типа 7660 в схемах с микровольтными/милливольтными сигналами. Полюс полное отсутствие экранирования, так что и внешние наводки исключать никак нельзя.
По частоте — тоже ничего выдающегося.

Для сравнения — сигнал с ut210e в режиме 20А:

Амплитуда выше, сигнал чище.

Подытоживая.

Честно говоря, впечатления неоднозначные. Так и хочется написать «как за свои деньги…». То есть да, это самая дешманская модель на рынке. «Из коробки» достаточно сильно врёт, что, впрочем, скорее всего особенности конкретного экземпляра, да и вроде как поддаётся подстройке.

Хотелось бы видеть хоть минимальное экранирование, также хотелось бы переключение пределов 600/60А — но тут в принципе понятно что переключения такого нет совершенно осознанно, оно ж идёт «комплектом» к тестеру, где в режиме клещей предел 600А. С другой стороны можно было на тестере сделать 60/600А — но не сделали. В результате имеем низкую цену — но и низкую точность «прицепом», а также не сильно красивый сигнал в плане помех.

Подумываю натыкать пару дросселей по питанию, а также раздумываю над введением режима 60А (точнее, до 60 не дотянуть, где-то 40 наверно будет максимум), и тут мне хотелось бы спросить совета у более грамотных схемотехников. потому что как по мне, то самый «незамутнённый» способ — впереть тупо еще один ОУ на выходе с коэффициентом усиления 10 и не запариваться 😉 Как вариант — изменить коэффициент усиления имеющегося ОУ, но что-то у меня с наскоку не прокатило — вероятно нужно еще ноль будет точнее выставлять в этом случае. Короче говоря, с радостью выслушаю в комментах любые советы кроме выкинуть. 😉

К покупке рекомендую, только если вам нужно проверять десятки-сотни ампер, и при этом цена важнее качества, а «руки не для скуки» и вы готовы тратить время на доработки и калибровки клещей за 20 баксов.

mysku.ru

Токовые клещи постоянного тока — приставка к мультиметру своими руками. Описание

Для замера больших токов, как правило, применяют бесконтактный метод, — особыми токовыми клещам. Токовые клещи – измерительное устройство, имеющее раздвижное кольцо, которым охватывают электропровод и на индикаторе прибора отображается величина протекающего тока.

Превосходство подобного метода бесспорно, — чтобы замерить силу тока нет нужды разрывать провод, что в особенности немаловажно при измерении больших токов. В данной статье приводится описание

токовые клещи постоянного тока, которые вполне возможно сделать своими руками.

Описание конструкции самодельных токовых клещей

Для сборки устройства понадобится чувствительный датчик Холла, к примеру, UGN3503. На рисунке 1 изображено устройство самодельной клещи. Необходим, как уже сказано, датчик Холла, а так же, кольцо ферритовое диаметром от 20 до 25 мм и крупный «крокодил», к примеру, подобный как на проводах для запуска (прикуривания) автомобиля.

Ферритовое кольцо необходимо точно и аккуратно распилить либо разломить на 2-е половинки. Для этого ферритовое кольцо необходимо сначала подпилить алмазным надфилем или пилкой для ампул. Далее, поверхности разлома ошкурить мелкой шкуркой.

С одной стороны на первую половинку ферритового кольца приклеить прокладку из чертежного ватман. С другой стороны на другую половинку кольца наклеить датчик Холла. Приклеивать лучше всего эпоксидным клеем, только нужно проследить, чтобы датчик Холла хорошо прилегал к зоне разлома кольца.

Следующий шаг – соединяем обе половинки кольца и обхватываем его «крокодилом» и приклеиваем. Теперь при нажатии на ручки «крокодила» ферритовое кольцо будет расходиться.

Электронная схема токовых клещей

Принципиальная электрическая схема приставки к мультиметру изображена на рисунке 2. При протекании тока по электропроводу, вокруг него появляется магнитное поле, и датчик Холла фиксирует силовые линии, проходящие через него, и формирует некоторое постоянное напряжение на выходе.

Данное напряжение усиливается (по мощности) ОУ А1 и идет на выводы мультиметра. Соотношение напряжения на выходе от протекающего тока: 1 Ампер = 1 мВольт. Подстроечные сопротивления R3 и R6 — многооборотные. Для настройки необходим лабораторный блок питания с минимальным током на выходе около 3А, и встроенным амперметром.

Сперва подсоедините данную приставку к мультиметру и выставьте её на нуль путем изменения сопротивления R3 и среднем положении R2. Далее, перед любым измерением необходимо будет выставлять ноль потенциометром R2. Выставьте на блоке питания наименьшее напряжение и подсоедините к нему большую нагрузку, например, электролампу, применяемую в фарах автомобиля. Затем на один из проводов, подсоединенный к данной лампе, зацепите «клещи» (рисунок 1).

Повышайте напряжение, до тех пор, пока амперметр блока питания не покажет 2 ампера. Подкрутите сопротивление R6 так, чтобы величина напряжения мультиметра (в милливольтах) соответствовала данным амперметра блока питания в амперах. Еще несколько раз проконтролируйте показания, меняя силу тока. Посредством этой приставки возможно мерить ток до 500А.

Источник: Радиоконструктор, 6/2008

fornk.ru

РадиоКот :: Измерение больших токов

РадиоКот >Схемы >Аналоговые схемы >Измерения >

Измерение больших токов

                                               Измерить ток? Что может быть проще! 

Но есть случаи, когда эти измерения простым тестером или осциллографом не провести. Например, измерение больших токов,  да еще и гальванически связанных с сетью. Под «измерением» я подразумеваю вывод на экран осциллографа. В другом случае, визуализация стартерного тока автомобиля покажет вам состояние поршневой группы двигателя без выкручивания свечей (на многих моделях это уже проблема). Увидев ток бензонасоса или форсунок автомобиля, Вам лапшу на уши автомастер не навесит.  При изготовлении ИБП,  мощных 50Гц трансформаторов с ШИМ управлением желательно, а если конструкция не клон, а новодел, то в обязательном порядке надо видеть, что происходит на высокой стороне. При проектировании сварочных инверторов нужен рабочий сварочный ток и не на шунте, а в реалии. Иначе может получиться конструкция, которая работает только у автора, а повторяющий  страстно мечтает плюнуть в фейс автору. Можно привести еще массу случаев, когда надо бы измерить ток, но сдерживает или отсутствие приборов или ТБ при измерении.

Цель этой статьи поделится практическим опытом измерения (визуализации) больших токов с гальванической развязкой от измерительных приборов. Именно практическим. То что проверено и используется.

1. Датчик тока на микросхеме ACS712

Прекраснейшая микросхема фирмы Allegro. Как называет её фирма «Линейный токовый датчи на эффекте Холла с ультра низким проходным сопротивлением»  Существует 3 клона, на 5А, 20А и 30Ампер. Изготовляется в 8-лапковом SOIC корпусе, выдерживает при этом 30А ток в долговременном режиме, в импульсе до 100А! Неоднократно пропускал 50А  1-2сек. С полной документацией можно ознакомится на сайте производителя. https://www.allegromicro.com/~/media/Files/Datasheets/ACS712-Datasheet.ashx

Коротко о хорошем:

— Гальваническая развязка 

— Возможность работы от постоянного до 80 кГц тока.

0,0012 Ом проходное сопротивление!

— все внутри (из обвязки: два конденсатора, по питанию и в фильтре.)

— хорошая линейность (1,5%)

— дополнительные очень интересные возможности, которые не приводятся в описании.

Из недостатков:

 -шум. Для ACS712 30А клона это 7мВ или в рабочем пересчете на уровне 0,106А измеряемого тока. Но эта м/с не метрологическая и она не для мини токов. Она заточена для использования с микроконтроллером и нивелировать этот шум программно просто. Увеличение емкости конденсатора фильтра к уменьшению шума не приводит (должно бы, но у меня по непонятной причине не получилось).

Фирма Allegro выпускает широкую номенклатуру датчиков тока, с различными параметрами. Выбрать можно для любой поставленной задачи. От 5А до 200Ампер.

В данной статье пойдет разговор, как  сделать ACS712 в применении более удобной для измерений в радио лаборатории. При проведении измерений у неё есть два неудобных параметра:

— коэффициент пересчета тока 66мВ/1А и при отсутствии проходного тока, выходное напряжение равно 1/2 питания. В классическом применении в связке с м/контроллером это правильно и логично. В лаборатории неудобно постоянно тыкать пальцем в калькулятор и совершенно невозможно смотреть переменный ток с небольшой постоянной составляющей. Вход осциллографа не закроеш, а 1/2 постоянки на выходе мешает. 

Решение этой проблемы очень простое. 

Операционным усилителем смещаем выходное напряжение прибора при отсутствии тока через м/с ACS712 на ноль и усиливаем выходное напряжение до коэффициента масштабирования = 0.1В/1А. Напряжение питания схемы (мах допустимое)  выбрал 8В (рекомендованное 5В), и сделал его двуполярным для питания операционного усилителя с помощью м.с. ICL7660. Стало очень удобно и с осциллографом, и с выходом на тестер, в уме умножаем полученное напряжение на 10, получаем измеряемый ток.

У меня получилась вот такая миниатюрная коробочка.

На улицу вывел ручку переменного сопротивления (R7) подстройки ноля, подстроечником R6 подстраиваем масштабирование устройства 1А = 0,1В. Операционный усилитель можно поставить более современный и лучше Rail-to-Rail. Плату приводить нет смысла. Схема очень простая и делается по применяемой металлической коробочке. Именно металлической, м/схема подвержена воздействию внешних магнитных полей.

Но в этом недостатке и есть нестандартные дополнительные возможности!!! В формате этой статьи не получится рассказать о этих возможностях.  Коротко напишу, что это возможность в реальном времени увидеть на экране осциллографа напряженность магнитного поля трансформатора, смотреть петлю Гистерезиса, дистанционно измерять ток. Очень неординарная функция — это измерять напряженность магнитного поля в реальном времени. Мне не встречались любительские приборы (да еще такой элементарной схемотехники) которые позволяют это делать.

2. Токовые клещи. АРРА-30Т.

 

Отличие от широко распространенных клещей — выход на осциллограф. Очень удобный и надежный инструмент, качество изготовления высокое, но для любительского применения получается относительно дороговато. Пользоваться удобно, измеряет как постоянный так и переменный ток на двух пределах 40А и 300А (смотрел сам 500А, но видимо на таких токах большая нелинейность). Очень хорошо смотреть стартерные токи автомобиля с пишущим осцилоскопом. И втягивающее видно и сам стартер и работу каждого цилиндра. Отсутствие цифрового дисплея не напрягает. В любом случае при измерениях тестер рядом. Можно включить паралельно осциллографу если уже приспичит. Дополнительные коннекторы приложены.

3. Пояс Роговского. 

Рисунок из википедии:

Это самый казусный прибор в моей лаборатории. Появился для измерений токов в тысячи ампер. Прикинув, чем можно измерить такие токи остановился на Поясе (кольце) Роговского, так как сделать что то другое проблематично или дорого. Помыкался по инету. Описаний возможностей этого чуда много, готовые изделия в продаже есть.  Реальных измерений ноль, не смотря на массу публикаций.  Плюнул  и за вечер сделал конструкцию. 

Кольца из ламина для пола, кусочки канализационных труб диаметром 100мм и 50мм, ВЧ разьем вот и вся механика.

 

 Кусок от фидера неизвестной породы.

 На него плотно намотан провод D=0,22mm.

Витки не считал, пересчитал по длинне и плотности намотки. Получилось 1500витков. Терпеть не могу мотать катушки, но этот пояс намотал за 20мин. Начало провода припаял к центральной жиле кабеля. Центральная жила в конце намотки и сам конец провода катушки это два выхода катушки.

Пояс удобно встал в уплотняющий паз трубы. Длина пояса конечно была определена заранее.

 

Нагрузил пояс на сопротивление 220ом. Собрал, получил такую конструкцию.

 

Пропустив через экспериментальный проводник синусоидальный ток силой 400Ампер, замерил выходное напряжение поделки, одновременно сняты показания с клещей АРРА-30. Получилось, что ток силой 1000А создает в поясе Роговского ЭДС равную 0.22вольт. У Кита Сукера в книге «Силовая электроника» есть имперический расчет катушки Роговского. Посчитал, получил 0.23вольта. Остался доволен, витки я точно не считал, да и расчет у Кита имперический. Крутит прибор фазу? Ну и Бог с ней, пусть крутит.Поиметь за вечер такой нужный прибор, задаром, очень удачно. Все было хорошо до начала реальных замеров. Подключив мощный 50Гц трансформатор, к автоматике с ШИМ модуляцией тока и увидев на экране ужас электрика, поматерил Википедию,  других авторов-теоретиков, себя и понял почему этот прибор так и не получил широкого распространения появившись аж в 1912г.

Все авторы публикаций характеризуют этот прибор (видимо переписывая друг у друга) как трансформатор тока (это меня и ввело в ступор, хотя формула наводимого ЭДС говорит другое). И бубнят о необходимости интегратора на выходе, для восстановления формы тока. Выходное напряжение пояса Роговского зависит не от силы исследуемого тока, а от скорости и вектора его изменения!

Это далеко не трансформатор тока и никаким интегратором реальную форму тока не восстановить. Прибор, конечно,  используется, другим прибором я и не могу измерить 1000-5000Ампер в проводнике. Результат я получаю правильный, но только тогда, когда форма тока чистая синусоида, 50Гц и я в этом уверен на 100%. В энергетике он применяется видимо тоже с ограничениями. Мои знакомые энергетики о поясе Роговского ни гу-гу.

Устройство специфическое, с массой ограничений в применении итд. Но при необходимости можно работать, так как изготовление быстрое и ничего не стоит. 

Выводы: Измерять большие токи сегодня для радиолюбителя не сложно и дешево. Мой любимый прибор это датчик тока на ACS715. Лет пятнадцаь назад делал автоматику на самодельных трансформаторах тока. Но сегодня во многих конструкциях не рационально их применять. По цене дороже получается, линейность хуже и удлиняется время наладки прибора. С интегральным датчиком, как на калькуляторе посчитал, так в реалии и получил. Хотя конечно трансформаторы тока имеют свою незаменимую нишу в конструкциях.

Скажу коротко, что  эксперименты с датчиком тока на ACS715 в корень развенчали миф аудиофилов о насыщении трансформатора рабочим током. Привели к переосмысливанию и к совершенно новому алгоритму управления сварочным током аппарата контактной сварки. Доводится до ума автомат пуска (с системой защиты и рестартов) трехфазного двигателя в однофазной сети. На них сейчас оформляется патент на полезную модель. Итд Итп. И все это в направлении электрики и электроники, которая жевана-пережевана еще в прошлом веке. Появились новые компоненты и то что было невозможно совсем недавно, сегодня уже рутина.  Но это будет уже другая история.

 

p

Файлы:
Документ PDF
Формула

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Приставка к мультиметру «токовые клещи» — Конструкции средней сложности — Схемы для начинающих

Для измерения больших токов обычно пользуются бесконтактным способом, — специальными «токовыми клещами». Напомню, что это такой электронный измерительный прибор, типа мультиметра, у которого сверху торчит своеобразная прищепка. Эту прищепку цепляют на провод и на цифровом табло появляются показания тока в данном проводе. Преимущества такого способа очевидны, — чтобы измерить силу тока не нужно рвать цепь, что особенно важно при измерении больших токов. «Токовые клещи» для обычного мультиметра можно сделать самостоятельно, если у вас есть чувствительный датчик Холла, например, UGN3503. На рисунке 1 показана конструкция самодельной «клещи». Нужен, как уже сказано, датчик холла, а так же, ферритовое кольцо диаметром 20-25 мм и большой «крокодил», например, для подключения чего-либо к автомобильному аккумулятору. Кольцо нужно точно и аккуратно разломать на две половинки. Для этого кольцо нужно предварительно подпилить медицинской пилкой для ампул. Затем, поверхности слома обработать мелкой шкуркой. С одной стороны на одну из половинок кольца наклеить прокладку из толстой бумаги (чертежный ватман). С другой стороны на одну из половинок кольца наклеить датчик Холла. Клеить удобнее всего эпоксидным клеем, но так, чтобы датчик плотно прилегал к месту разлома кольца. Затем, сложив обе половинки кольца, как показано на рисунке 1, их нужно вставить в «пасть крокодила» и приклеить к «челюстям крокодила» тем же эпоксидным клеем. В результате должна получиться конструкция, схематически показанная на рисунке 1.

При нажиме на ручки «крокодила» ферритовое кольцо должно раскрываться вместе с его «челюстями». Теперь от электронной части. Принципиальная схема приставки к мультиметру показана на рисунке 2. При прохождении тока по проводу вокруг него возникает магнитное поле, силовые линии которого пронизывают датчик Холла, и на его выходе появляется некоторое постоянное напряжение. Это напряжение усиливается по мощности операционным усилителем А1 и поступает на вход мультиметра. Зависимость выходного напряжения от тока: 1А = 1 mV. Подстроечные резисторы R3 и R6 должны быть многооборотными. Для налаживания нужен лабораторный источник питания с выходным током не менее 3А, со встроенным амперметром. Сначала подключите приставку к мультиметру и откалибруйте её на нуль подстройкой R3 при среднем положении R2. Затем, перед каждым измерением нужно будет устанавливать ноль переменным резистором R2. Установите на источнике минимальное напряжение и подключите к нему мощную нагрузку, например, лампу от автомобильной фары. На один из проводов, идущей к этой лампе, нацепите «клещу» (как показано на рисунке 1). Увеличивайте напряжение, пока амперметр источника не покажет 2 — 2.5А. Подстройте R6 так, чтобы показание мультиметра в милливольтах были равны показанию амперметра источника в амперах. Проверьте показания, изменяя силу тока в ту и другую сторону (уменьшая — увеличивая ток и сравнивая с амперметром источника). При помощи данной приставки можно измерять ток до 500А. Например, можно измерить ток потребления автомобильным стартером в момент пуска двигателя.

Радиоконструктор №6 2008г стр. 10

cxema.my1.ru

ПРИСТАВКА ИЗМЕРИТЕЛЬ МАЛЫХ ТОКОВ

Для измерения токов в диапазоне микро- и наноампер, потребуется усилитель с активным преобразователем. Из-за очень большого усиления операционного усилителя падение напряжения во время измерений с помощью амперметра с активным преобразователем может быть исключено. Благодаря этому результаты измерений намного точнее, чем в случае амперметров с шунтом. Поскольку падение напряжения в активном преобразователе близко к нулю, также можно устранить влияние колебаний напряжения на работу устройства. 

Принципиальная схема микро- наноамперметра

Типичный пример амперметра с активным преобразователем приведен на схеме ниже: 

Чтобы эта зависимость выполнялась в реальных условиях, входное напряжение дисбаланса должно быть очень маленьким, а входной поляризационный ток пренебрежимо малым. Эти параметры становятся особенно важными когда дело доходит до измерений токов порядка пикоампер, на результат которых будет влиять входной поляризационный ток. Есть несколько примеров пикоамперметров на основе микросхемы LMC662. Согласно даташита, м/с имеет очень низкий входной поляризационный ток, порядка 2 фемтоампер. 

В этом устройстве использовался усилитель TS1001 от Touch Stone. Схема имеет посредственные параметры и на первый взгляд не подходит измерять такие маленькие токи. Но особенность, которая отличает микросхему TS1001, заключается в чрезвычайно низком энергопотреблении, схема работает нормально даже при напряжении 0,8 В и потребляет ток 0,8 мкА. Следовательно будет отлично работать в аккумуляторных устройствах, а энергопотребление её настолько мало, что даже не требуется пользоваться кнопкой подачи питания! 

TS1001 также имеет относительно небольшой входной поляризационный ток, который обычно составляет 25 пА. Это совершенно низкое значение, когда дело доходит до измерения тока в диапазоне наноампер. Поскольку входное напряжение дисбаланса является постоянным во время измерения, точность не снижается из-за устранения этого значения только путем обнуления. 

На принципиальной схеме ниже амперметр с активным преобразователем на основе микросхемы TS1001. Применяя разное значения резистора, разрешения варьируются от 1 мА / В до 1 мкА / В в четырех поддиапазонах. Используя любой популярный мультиметр можно измерить ток в диапазоне наноампер. Как упоминалось ранее, входной ток смещения усилителя TS1001 составляет 25 пА, поэтому самый низкий диапазон был специально выбран 1 мкА / В. 

Усилитель может питаться от одного напряжения с мультиметром или использовать виртуальную массу. В случае несимметричного источника измеряемый ток должен поступать на неинвертирующий вход усилителя, чтобы напряжение появлялось на выходе. Следовательно, это решение более выгодно для измерений постоянных токов, где поляризация тока может быть заранее определена. Использование виртуальной массы, как показано на схеме ниже, позволяет измерять постоянные и переменные токи. Схема может питаться от одной 1,5-вольтовой батареи.

Поскольку приставка имеет довольно низкое произведение коэффициента усиления и предельной частоты, можно измерять только токи с низкой изменчивостью (до 60 Гц).

Точность используемых резисторов определяет точность всего измерителя. Советуем выбрать с допуском 0,1%. Также важно использовать резисторы с низким температурным коэффициентом. 

Все устройство питается от одной батареи и поскольку оно используется для измерения только постоянного тока, источник питания с виртуальной массой был отложен. 

Если же необходимо измерить более низкие токи или более высокие частоты, то можете выбрать другой операционный усилитель — например AD8603, который совместим с выводами TS1001 и может использоваться для измерения токов в диапазоне пикоампер. 

   Форум по измерениям

   Обсудить статью ПРИСТАВКА ИЗМЕРИТЕЛЬ МАЛЫХ ТОКОВ


radioskot.ru

Выбираем лучшие токоизмерительные (токовые) клещи

В практической работе электрика нередко возникают ситуации, когда есть необходимость измерить ток, протекающего в проводнике, без разрыва цепи. Иногда это позволяет ускорить работу. Бывает, что разорвать цепь просто невозможно (если речь идет об электроснабжении критически важного объекта). Наконец, в ряде случаев измерение тока без разрыва цепи позволяет быстро найти неисправность, на поиск которой иначе ушло бы много времени.

лучшие токовые клещи

Для измерения в “рабочем режиме” применяются устройства, именуемые токоизмерительными клещами. Иногда это устройство именуется просто «токовыми клещами». Простейший вариант — токовые клещи, выполненные в виде приставки к мультиметру. Недостатком таких клещей является необходимость пересчитывать показания мультиметра умножением на определенный коэффициент. Кроме этого, измерение тока клещами имеет свою специфику, и, если токоизмерительные клещи не были изначально разработаны для определенного мультиметра, с которым он применяется, может возникнуть значительная инструментальная погрешность.

Вот почему мы рекомендуем использовать токовые клещи, которые представляют собой функционально законченное устройство (или функционально законченный комплект устройств). При необходимости, для удобства можно использовать и более продвинутые модели токоизмерительных клещей с функциями мультиметра.

Принцип работы токовых клещей

Для того, чтобы выбрать лучшие токовые клещи, нужно хотя бы на базовом уровне разбираться в принципе их работы.

Главное преимущество клещей Дитце — предельная простота их конструкции
Главное преимущество клещей Дитце — предельная простота их конструкции

Наиболее распространенным типом токоизмерительных клещей являются клещи Дитце. Они представляют собой разъемный магнитопровод с намотанной на нем катушкой, который при измерении охватывает проводник. В итоге образуется трансформатор, одной из обмоток которого является провод, в котором осуществляются измерения, а другой — катушка, вмонтированная в клещи.

Преимуществом клещей Дитце является простота конструкции и, как следствие, дешевизна и высокая надежность. К недостаткам относятся невозможность измерения постоянного тока, зависимость точности измерения от частоты, а также относительно низкая чувствительность. Последняя проблема, впрочем, решается простым способом — на клещи наматывается несколько витков провода с измеряемым током, а потом измеренные показания делятся на число витков. Тем не менее, именно клещи Дитце пользуются наибольшей популярностью, так как для большинства применений их возможностей достаточно — электрики работают, как правило, с током частотой 50 Гц, а необходимость в измерении токов без разрыва цепи возникает, главным образом, там, где токи имеют большие значения.

Упрощенная схема токоизмерительных клещей на основе датчика Холла
Упрощенная схема токоизмерительных клещей на основе датчика Холла

В токовых клещах более современной конструкции используются датчики Холла — полупроводниковые устройства, определяющие величину магнитного поля. При этом провод, где проводятся измерения, охватывается не катушкой, а магнитопроводом, в разрыв которого встроен датчик Холла. Для повышения точности измерений нередко встраивают не один, а два датчика Холла — такие измерительные приборы называются клещами с двойным датчиком Холла.

Преимуществами токоизмерительных клещей с датчиками Холла являются возможность измерения постоянного тока, высокая чувствительность, высокая точность. Но их стоимость значительно выше, чем у клещей Дитце.

Конструкция катушки Роговского
Конструкция катушки Роговского

Самым старым типом токовых клещей является катушка (пояс) Роговского. Она представляет собой замкнутый соленоид из немагнитного материала с равномерной намоткой, один из выводов катушки проходит по оси соленоида. Как и для клещей Дитце, можно измерять только переменный ток, результаты измерений сильно зависят от частоты. Уровень сигнала на выходе катушки Роговского очень низкий, поэтому приходится использовать дорогостоящие усилители с высокой чувствительностью. Тем не менее, у катушки Роговского есть одно важное преимущество: результаты измерений мало зависят от того, как соленоид проходит вокруг проводника. Поэтому катушку Роговского можно наматывать на эластичный материал. Данный прибор используют в том случае, если проводник, где проводятся измерения, находится в труднодоступном месте и его можно охватить только эластичным предметом. Токоизмерительные клещи, использующие только принцип катушки Роговского, в настоящее время уже почти не выпускаются. Но гибкая катушка Роговского может входить в комплект поставки некоторых токоизмерительных клещей, основными для которых являются другие принципы.

Важные функции токовых клещей

При выборе токовых клещей следует обратить внимание на некоторые функции, которые могут оказаться полезными для использования прибора в ваших условиях.

В первую очередь, следует отметить функцию True RMS. Дело в том, что измерители переменного тока, в которых такой функции нет, как правило, показывают значение для идеальной ситуации, при которой ток имеет синусоидальную форму. 

Клещи Greenlee GT-CM-1360 (с True RMS)
Клещи Greenlee GT-CM-1360 (с True RMS)

Лет 30 тому назад ассортимент электрического оборудования у потребителей был ограниченный, поэтому ток в электросети был почти идеальной синусоидальной формы. Над тем, что его отклонение от синусоиды может как-то влиять на результаты измерений, никто и не задумывался. Но теперь, когда применяются энергосберегающие и светодиодные лампы, а также импульсные блоки питания, форма тока в сети весьма далека от синусоидальной, прежние подходы к измерениям дают большие погрешности. Тем более, что к измерительным клещам часто прибегают при возникновении аварийных ситуаций, которые, в свою очередь, все чаще связаны с тем, что ток в проводах уж совсем сильно отличается от синусоиды. Функция True RMS позволяет напрямую определить среднеквадратическое значение для переменного тока произвольной формы на основе математических операций с мгновенными значениями тока. Настоятельно рекомендуем вам приобрести токоизмерительные клещи с функцией True RMS, если они вам требуются при проведении аварийных работ, а также в том случае, если вы заняты обслуживанием жилого сектора, где качество нагрузки на практике никем не контролируется. И, кстати, токоизмерительные клещи с функцией True RMS уже давно не являются громоздкими и дорогими приборами, пример тому — компактное устройство Greenlee GT-CM-1360.

Токовые клещи Greenlee GT-CMI-2000 умеют измерять крест-фактор
Токовые клещи Greenlee GT-CMI-2000 умеют измерять крест-фактор

С проблемой нелинейности нагрузки сопряжена и другая полезная функция, реализованная в топовых токовых клещах (в частности, Greenlee GT-CMI-2000) — вычисление крест-фактора, то есть отношения пикового значения тока к его среднеквадратическому значению. Значение крест-фактора нагрузки критически важно для источников бесперебойного питания. В технических характеристиках многих из них указывается максимальное значение крест-фактора, выше которого они работать не будут. Соответственно, если вы используете источники бесперебойного питания, то наличие в токоизмерительных клещах функции определения крест-фактора оказывается полезным.

Клещи Greenlee GT-CM-960 могут определять ориентировочное значение напряжения в сети бесконтактным способом
Клещи Greenlee GT-CM-960 могут определять ориентировочное значение напряжения в сети бесконтактным способом

Измерять без прикосновения к проводам можно не только ток, но и напряжение. Правда, показатели будут носить оценочный характер — какое из стандартных напряжений питания может быть в сети: 20/55/110/220/400 В (либо иные значения, в зависимости от сферы применения). Для этого нужно включить соответствующий режим измерений, соединить клещи с нулевым проводом и  поднести сомкнутые губки клещей на расстояние не более 10 см от провода.

С помощью клещей обычно измеряют токи порядка десятков — сотен ампер. Но чувствительность датчика Холла позволяет измерять и меньшие токи, начиная с 0,2 А. Для этого в некоторых клещах предусмотрен режим повышенной чувствительности. В токовых клещах производства Greenlee применена эксклюзивная технология AmpTip. Она заключается в том, что провод с малыми токами и малым диаметром вводится в специальное углубление в губках клещей, что обеспечивает его точное расположение при измерениях.

Пример использования токоизмерительных клещей с открытым зевом
Пример использования токоизмерительных клещей с открытым зевом

При проведении измерений в тесных электрических шкафах может быть полезна такая редкая разновидность электрических приборов как токоизмерительные клещи с открытым зевом. Очень удобными клещами такого типа являются Greenlee GT-CSJ-100. К недостаткам клещей с открытым зевом можно отнести возможность измерения только переменного тока и более низкую точность по сравнению с другими токовыми ключами, но, подчеркнем, есть ситуации, когда можно использовать либо их, либо гибкую катушку Роговского. Открытый зев предусматривает моноблочную конструкцию измерительного прибора, которая намного удобнее и безопаснее.

Большинство современных моделей токоизмерительных клещей имеют, помимо основной функции измерения тока без разрыва цепи, также еще и функции мультиметра. Измерение тока в режиме мультиметра производится обычным способом, с разрывом цепи. Выбирая клещи, следует учитывать разницу в параметрах измерения тока в режимах собственно клещей и мультиметра. Токовые клещи, поддерживающие, например, измерение постоянного тока в режиме мультиметра, не всегда могут делать это в режиме собственно клещей.
Набор функций мультиметра может быть дополнен функциями тестирования разнообразных электронных компонентов: диодов, конденсаторов и т. п. Также в некоторых моделях клещей (например, Greenlee GT-CMH-1000) есть функция тестирования электродвигателей. Полезной является функция AutoCheck, позволяющая автоматически устанавливать диапазоны измерений (например, у Greenlee GT-CMI-2000 – в пределах от 1,5 до 2000 В). Правда, данная функция имеет некоторые ограничения по использованию на цепях, которые могут быть повреждены низким входным импедансом вольтметра.

Токовые клещи представляют собой настоящую «рабочую лошадку» электрика. Поэтому следует обращать внимание в первую очередь на бренды, которые предлагают наиболее широкий ассортимент токовых клещей. Из него можно выбрать лучшие токовые клещи с оптимальным для вас набором функций.

Если вам нужна профессиональная консультация по диагностике электрооборудования и выбору токовых клещей, просто отправьте нам сообщение!


Смотрите также:

 

Подписаться!

test-energy.ru

Как пользоваться мультиметром с клещами

Практически у каждого мужчины в доме имеется небольшой набор инструментов, и среди них обязательно будет присутствовать мультиметр. Это привычный прибор, и как пользоваться им, знает почти каждый. А вот мультиметр с токовыми клещами уже диковинка.

Что это такое

В повседневной практике токовые клещи используют энергетики, когда нужно измерить силу тока в высоковольтных проводах без их разрыва и последующего подключения амперметра. Внешне они похожи на клещи, прикрепленные к мультиметру, отсюда и название.

На самом деле это токовый трансформатор с раздвижным магнитопроводом, во вторичную обмотку которого включен стрелочный или цифровой амперметр.

Длинные диэлектрические ручки нужны для безопасности. Принцип действия заключается в измерении тока проходящего через токовый трансформатор.

Устройство мультиметра с клещами следующее:

  • усики клещей выполняют из трансформаторной или заменяющей ее стали и покрывают изоляцией;
  • роль первичной обмотки трансформатора играет электрический провод, которые охватывают усики клещей. То есть, на первичной обмотке всего один виток;
  • вторичная обмотка наматывается на эти же клещи, количество витков зависит от того, какие токи предполагается измерять. Обмотка спрятана под изоляцией.

На клещах указывается коэффициент трансформации. Выглядит примерно так: 100/5А. Это отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.

Амперметр, включенный во вторичную обмотку трансформатора, производит измерение тока, наведенного проводом, который охватывают клещи.

Виды

Электроизмерительные клещи бывают двух видов – до 1000 В и высоковольтные. В быту применяются клещи до 1000 В. В современных токовых клещах, для удобства пользователей, совместили функции амперметра для измерения переменного тока с другими приборами типа вольтметра, омметра и получился мультиметр с токоизмерительными клещами.

Кроме этого бывают измерительные клещи для постоянного и переменного тока, основанные на эффекте Холла. Если на тонкую полупроводниковую пластину подать электрический ток и при этом она располагается под прямым углом к какому-нибудь магнитному полю, то на концах пластины появляется напряжение. Оно пропорционально напряженности магнитного поля, действующей на пластину.

Использование эффекта Холла позволяет измерять как переменный, так и постоянный ток, так как датчик реагирует только на амплитуду напряженности, а направление поля для него значения не имеет.

Кроме этого, датчик реагирует мгновенно на изменение напряженности. Поэтому он может фиксировать и форму сигнала.

Конструктивно, измерительные клещи, основанные на эффекте Холла, ничем не отличаются от обычных, измеряющих при помощи трансформаторов тока. Для обычного пользователя это все тот же мультиметр.

Как измерять

Пользоваться мультиметром с клещами несложно. Вначале нужно выставить режим измерения переменного или постоянного тока. С помощью переключателя на мультиметре выбираются необходимый сектор с обозначениями режимов и останавливаются на шкале с предполагаемыми значениями.

После этого нажатием рычага клещи размыкаются. Исследуемый проводник вводится в область захвата, и клещи смыкаются. На дисплее высветятся показания прибора.

На некоторых тестерах с клещами есть специальная кнопка фиксирующая показание. Тогда достаточно нажать на нее для сохранения результата измерения. Это удобно при измерениях в труднодоступных местах.

Если прибор показывает 1, значит, величина тока превышает предел измерения, и нужно поставить переключатель на большее значение. Если показания 0 или близкие к нему, надо перейти на нижнюю шкалу.

Шкалу измерения надо выбирать так, чтобы показания прибора находились в области максимальных значений. В таком случае погрешность измерений будет минимальной.

Иногда, показания мультиметра с токоизмерительными клещами лежат близко к 0, но провести измерения необходимо. В этом случае используют простой способ. Проводник скручивают в несколько витков и клещами захватывают все провода. На приборе зафиксируется какое-то значение.

Его нужно разделить на количество проводов проходящих через клещи и получить искомое значение тока, проходящего через проводник.

Сделать самому

Если человек немного разбирается в электронике, имеет цифровой мультиметр, то можно довольно быстро сделать к нему дополнение. Для этого понадобится любой датчик Холла, в продаже они имеются, и ферритовое кольцо.

Кольцо раскалывают на две части, к одному концу крепится датчик, и к его контактам припаивают провода. Полукольца крепят к прищепке или чему-нибудь подобному. Концы проводов вставляют в гнезда мультиметра. Прибор переводится в режим милливольтметра.

Если в ферритовое кольцо поместить проводник, по которому протекает ток, то на милливольтметре можно будет наблюдать какие-то значения. В зависимости от используемого датчика, коэффициент преобразования напряженности магнитного поля в электрическое напряжение будет разным, но постоянным для конкретного датчика.

С помощью эталонных токов можно отградуировать шкалу. В результате получится простая и удобная приставка к мультиметру.

Как выбрать

На сегодняшний день, на рынке имеется множество тестеров с клещами и без них. Разброс цен не так уж и велик. Возникает проблема выбора. В первую очередь необходимо определиться, для чего он нужен, какие задачи он должен решать.

Если есть потребность в неразрушающем контроле, необходимо оперативно измерить токи на входящих проводах на даче или на счетчике, то приобретение мультиметра с токоизмерительными клещами будет правильным решением.

Если нужно замерить токи в электропроводке автомобиля, то придется приобрести прибор с датчиками Холла, хотя они немного дороже.

Кроме этого, мультиметры, в зависимости от производителя, могут измерять переменные и постоянные токи и напряжения, сопротивления, емкость, частоту, мощность.

Набор функций зависит от разработчиков аппаратуры. Но за универсальностью гнаться не нужно, это сказывается на цене и характеристиках тестера. Хорошо, если в комплекте с прибором идет подробная инструкция по эксплуатации. После учета всех факторов можно делать покупку.

evosnab.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *