Инвертор напряжения ⋆ diodov.net
С развитием альтернативных источников энергии, в частности с массовым внедрением солнечных панелей, инвертор напряжения находит все более широкое применение. Поскольку применяется как постоянный, так и переменный ток, то часто возникает необходимость в преобразовании энергии одного рода в другой. Устройства, преобразующие переменный ток в постоянный называются выпрямителями. В качестве выпрямителя чаще всего применяют диодный мост. А устройство, преобразующее постоянный ток в переменный называют инвертором.
По ряду положительный свойств большую популярность завоевал инвертор напряжения. Особенно широко он используется с целью преобразования электрической энергии постоянного тока аккумуляторной, солнечной батареи или суперконденсатор в переменное напряжение 230 В, 50 Гц для питания большинства промышленных устройств.
Принцип работы инвертора напряжения
Представим, что у нас имеется источник электрической энергии постоянного тока такой, как аккумулятор или гальванический элемент и потребитель (нагрузка), который работает только от переменного напряжения. Как преобразовать один вид энергии в другой? Решение было найдено довольно просто. Достаточно подключить аккумулятор к потребителю сначала одной полярностью, а затем через короткий промежуток отключить аккумулятор, а потом снова подключить, но уже обратной полярностью. И такие переключения повторять все время через равные промежутки времени. Если выполнять таких переключений 50 раз за секунду, то на потребитель будет подаваться переменное напряжение частотой 50 Гц. Роль переключателей чаще всего выполняют транзисторы или тиристоры, работающие в ключевом режиме.
На схеме, приведенной ниже, изображен источника питания Uип с клеммами 1-2 и потребитель RнLн, обладающий активно-индуктивным характером, с клеммами 3-4. В один момент времени потребитель клеммами 3-4 подключается к клеммам 1-2 Uип, при этом I от Uип протекает в направлении LнRн, а в следующий момент клеммы 3-4 изменяют свое положение и I протекает в противоположном направлении относительно потребителя электрической энергии.
Схема инвертора напряжения
Наиболее распространённая схема инвертора напряжения состоит из четырех IGBT транзисторов
Входные клеммы инвертора подключаются к Uип. Если таким источником служит диодный выпрямитель, то выход его обязательно шунтируется конденсатором C.
В силовой электронике наибольшее применение нашли транзисторы с изолированным затвором IGBT (именно они показаны на схеме) и GTO, IGCT тиристоры. При оперировании меньшими мощностями вне конкуренции полевые транзисторы MOSFET.
В момент времени t1 открываются VT1 и VT4, а VT2 и VT3 – закрыты. Образуется единственный путь для протекания тока через нагрузку: «+» Uип – VT1 – нагрузка RнLн – VT4 – «-» Uип. Таким образом, на интервале времени t1 ‑ t2 создается замкнутая цепь для протекания iн в соответствующем направлении.
Режим работы схемы
Для изменения направления iн снимаются управляющие импульсы с баз VT1
В связи с этим, на отрезке времени t2 – t3 ток будет протекать через диоды VD2 и VD3, сохраняя прежнее направление на RнLн, но пройдет в обратном направлении через Uип или конденсатор C, если источником энергии является диодный выпрямитель. Поэтому следует обязательно установить конденсатор C, если преобразователь подключен к диодному выпрямителю. Иначе прервется путь протекания iн, в результате чего возникнут сильное перенапряжение, которое может повредить изоляцию потребителя и выведет из строя полупроводниковые приборы.
В момент времени t3 вся запасенная на индуктивности энергия снизится до нуля. Начиная с момента t3 до момента t4
В точке t4, расположенной на оси времени t, снимается управляющий сигнал с VT1,3, а VT1 и VT4 открываются. Однако iн продолжает протекать в ту же сторону, пока не расходуется энергия, запасенная в индуктивности. Это будет происходить на интервале времени t4 – t5
.Работа схемы
Начиная с момента t5 iн изменить направление и потечет от Uип через LнRн по пути через VT1 и VT4. Далее все процессы, протекающие в электрической цепи, будут повторяться. На LнRн форма напряжения будет прямоугольной, но ток на активно-индуктивной нагрузке будет иметь пилообразную форму за счет наличия индуктивности, которая не позволяет ему мгновенно вырасти и снизиться. Если потребитель имеет чисто активный характер (индуктивность и емкость практически равны нулю), то формы iн и uн будет в виде прямоугольников.
Поскольку VT1…VT4 попарно открывались на всей протяженности соответствующих полупериодов, то на выходе преобразователя формировалось максимально возможное uн, поэтому через LнRн протекал iн максимальной величины. Однако часто требуется обеспечить плавное нарастание мощности на потребителе, например для постепенного увеличения яркости освещения или частоты вращения вала двигателя.
Следует пояснить, что сигналы, поступающие из системы управления СУ, подаются не сразу на базы полупроводниковых ключей, а посредством драйвера. Так как современные СУ построены на безе микроконтроллеров, которые выдают маломощные сигналы, не способные открыть IGBT, то для увеличения мощности открывающего импульса применяется промежуточное звено – драйвер. Кроме того на часто драйвер выполняет множество дополнительных функций – защищает транзистор от короткого замыкания, перегрева и т.п.
Инвертор напряжения с регулированием выходных параметров
Самый простой способ изменить величину uн заключается в регулировании величины подводимого Uип, если такая возможность имеется. Например, для регулируемого выпрямителя это не проблема. Но такие источники электрической энергии как аккумуляторная батарея, суперконденсатор или солнечная батарея не имеют данной возможности. Поэтому регулировка частоты и величины выходного uн полностью возлагается на инвертор.
Для регулирования величины uн одну пару диагонально противоположных транзисторов следует открыть несколько ранее, чем в рассмотренном выше случае. Поэтому алгоритмом системы управления следует предусмотреть сдвигу управляющих сигналов. Например, подаваемых на открытие VT1 и VT4 относительно импульсов управления, подаваемых на базы
Обратите внимание, что амплитудное значение uн остается неизменной величины и приблизительно равно значению Uип, но действующее значение uн будет снижаться по мере увеличения угла управления α. Рассмотрим, как это работает.
На интервале времени от t1 до t2 открыта пара транзисторов VT1 и VT4; iн протекает справа налево, как показано на схеме. В момент t2 закрывается первый транзистор и открывается второй. Ток сохраняет прежнее направление, а нагрузка оказывается замкнутой, в результате чего напряжение на ней падает практически до нуля, соответственно снижается и iн.
Далее из системы управления поступает команда и VT2 открывается, а VT4 закрывается. Однако накопленная в индуктивности энергия не позволяет току iн изменить свое направление, и он протекает по прежней цепи, только уже через диоды VD2 и VD3 встречно источнику питания. Длительность этого процесса продолжается до точки времени t4. В точке t4 под действием приложенного Uип iн изменяет знак на противоположный.
Широтно-импульсная модуляция
Такой алгоритм работы полупроводниковых ключей в отличие от предыдущего алгоритма формирует паузу определенной длительности, которая в конечном итоге приводит к снижению действующего значения uн. Для формирования iн синусоидальной формы применяется широтно-импульсная модуляция ШИМ. Преобразователь с ШИМ, а точнее алгоритм его работы, предусматривающий ШИМ, мы рассмотрим отдельно.
Также следует заметить, что рассмотренный алгоритм управления полупроводниковыми ключами называется широтно-импульсным регулированием ШИР, который часто путают с ШИМ, хотя разница огромная.
В преобразовательной технике ШИМ практически вытеснила ШИР, поскольку обладает рядом положительных свойств, благодаря которым повышается КПД всего устройства и снижается уровень электромагнитных помех. Поэтому в дальнейшем мы рассмотрим инвертор напряжения с ШИМ.
Еще статьи по данной теме
Принцип работы инвертора напряжения
Инвертор напряжения (ИН, DC/AC converter) предназначен для преобразования электрической энергии, получаемой от источника постоянного тока в электрическую энергию переменного тока.
Эта технология применяется в различных сферах. Преобразователи работают как автономно, так и в составе сложных систем, предназначенных для обеспечения электрической энергией различных объектов. Востребованность инверторов связана с развитием технологий и появлением риска потери ценных данных и остановки оборудования при отключении питания.
В этой статье мы рассмотрим принцип работы инвертора напряжения с чистым синусом и отметим преимущества данной технологии. Вы узнаете об отличительных особенностях эксплуатации преобразователей от ведущих производителей.
Как работает инвертор напряжения с «чистым синусом»
Принцип работы такого инвертора напряжения выглядит следующим образом.
1. В результате предварительного преобразования формируется напряжение постоянного тока, близкое по значению к выходному синусоидальному напряжению. После этого энергия направляется на мостовой инвертор.
2. На мостовом ИН происходит преобразование постоянного напряжения в переменное. Его форма приближена к синусоидальной. Нужные характеристики достигаются за счет применения специального принципа управления транзисторами (многократной широтно-импульсной коммутации).
Принцип этой технологии заключается в следующем. На интервале каждого полупериода соответствующая пара транзисторов мостового ИН многократно коммутируется на высокой частоте. Длительность подачи импульсов варьируется по синусоидальному закону.
3. Высокочастотный фильтр нижних частот придает напряжению точную синусоидальную форму («чистый синус»).
Кроме описанной выше схемы существуют и другие принципы построения и работы инверторов.
Такое оборудование применяют реже, т. к. устройства имеют существенные недостатки по сравнению с инверторами с «чистым синусом».
Преимущества применения инверторов с «чистым синусом»
Начнем с того, что многие современные аппараты оснащают импульсными блоками питания. Для них форма напряжения не имеет значения. Присутствующие на рынке телевизоры, магнитофоны, зарядные устройства и некоторые другие виды техники будут одинаково хорошо работать при подключении к любому инвертору. На режим работы оборудования повлияет только действующее значение напряжения.
Однако существует большая группа приборов, которая либо совсем не будет работать при подключении к инвертору с прямоугольной/ступенчатой формой напряжения, либо будет работать, но при этом ухудшатся эксплуатационные характеристики и сократится срок службы. Некоторые виды техники могут в скором времени выйти из строя. В эту группу оборудования входят приборы с трансформаторными БП, некоторые LCD-телевизоры, синхронные электродвигатели, насосы и газовые котлы, применяемые в системах отопления, кондиционеры и другие используемые в промышленности и быту агрегаты.
Вывод: преобразователи напряжения с «чистым синусом» универсальны. Режим работы любого устройства, подключенного к такому инвертору, будет правильным и стабильным.
Особенности оборудования ведущих производителей
Основные лидеры рынка — Victron Energy и Out Back Power. Инверторы этих концернов распространены по всему миру и находят применение в различных сферах.
Работа инверторов обеспечивает резервное электроснабжение:
- загородных домов;
- фермерских хозяйств;
- банков;
- медицинских учреждений;
- передвижных лабораторий;
- транспортных средств;
- технических помещений;
- промышленных предприятий;
- коммерческих зданий и других объектов различного назначения.
Инверторные установки Victron Energy имеют ряд преимуществ:
- Надежность. Концерны применяют передовые технологии в процессе производства оборудования. Инверторы устойчивы к двукратным перегрузкам.
- Долговечность. Техника служит десятки лет.
- Простота введения в эксплуатацию. Подключение агрегатов происходит без каких-либо проблем.
- Удобство. Инверторы запускаются в автоматическом режиме. Работа не сопровождается образованием выхлопных газов. Устройства практически бесшумны.
- Большой набор полезных функций. При необходимости вы сможете добавить мощность к сети или генератору или подключить инверторы к альтернативным источникам энергии.
1 декабря 2016
принцип работы, разновидности и области применения
Одна из самых значительных достижений 19-го века была связана не с землей или ресурсами, а с установлением типа электричества, которое все чаще стало внедряться в наши здания. Существует два вида тока: постоянный ток (DC) и переменный ток (AC). Ученых всегда интересовала возможность преобразования одного вида в другой. Так появился инвертор.
История появления преобразователя
В конце 1800-х годов американский электрик-пионер Томас Эдисон (1847−1931) вышел из своей лаборатории, чтобы продемонстрировать, что постоянный ток (DC) является лучшим способом подачи электроэнергии, чем переменный ток (AC), который был новой системой, поддерживаемой его сербским соперником Николой Тесла (1856−1943). Эдисон пробовал всевозможные хитрые способы убедить людей в том, что AC слишком опасен: от электроочистки слона до поддержки использования переменного тока в электрическом стуле для управления смертной казнью. Несмотря на это, система Tesla выиграла тот день, и мир с тех пор довольно много работает на электросети.
Единственная проблема заключается в том, что, хотя многие из наших приборов предназначены для работы с переменным током, маломощные генераторы часто производят постоянный. Это означает, что если вы хотите запустить что-то вроде гаджета с питанием от переменного тока от аккумуляторной батареи постоянного тока в мобильном доме, вам потребуется устройство, которое преобразует DC в AC-инвертор, как его называют.
Электричество постоянного и переменного тока
Когда преподаватели науки объясняют основную идею электричества как поток электронов, они обычно говорят о постоянном токе (DC). Мы узнаем, что электроны немного похожи на линию муравьев, идущих вместе с пакетами электрической энергии так же, как муравьи несут листья. Это достаточно хорошая аналогия для чего-то вроде базового фонарика, где у нас есть схема (сплошная электрическая петля), соединяющая батарею, лампу и выключатель, а электрическая энергия систематически транспортируется от батареи к лампе, пока вся энергия батареи истощается.
В больших бытовых приборах электричество работает по-другому. Источник питания, который поступает от розетки в стене, основан на переменном токе (AC), где электричество переключается в направлении 50−60 раз в секунду (другими словами, на частоте 50−60 Гц). Трудно понять, как AC доставляет энергию, когда он постоянно меняет свое мнение о том, куда он идет. Если электроны, выходящие из настенной розетки, добираются, скажем, на несколько миллиметров вниз по кабелю, тогда нужно обратить вспять направление и вернуться назад, как они когда-либо добираются до лампы на столе, чтобы та засветилась?
Ответ на самом деле довольно прост. Представьте, что между лампой и стеной заполнены электроны. Когда вы щелкаете на переключателе, все электроны, заполняющие кабель, вибрируют назад и вперед в нитях лампы — и это быстрое перетасовка преобразует электрическую энергию в тепло и лампа засвечивается. Электроны необязательно должны вращаться по кругу для переноса энергии: в АС они просто «бегут на месте».
Что предстваляет собой инвертор
Одним из наследий Теслы (и его делового партнера Джорджа Вестингауза, босса Westinghouse Electrical Company) является то, что большинство приборов, которые мы имеем в наших домах, специально разработаны для работы от сети переменного тока. Приборы, нуждающиеся в постоянном токе, но потребляющие электроэнергию от розетки переменного, нуждаются в дополнительной части оборудования, называемой выпрямителем, как правило, из электронных компонентов, называемых диодами, для преобразования AC в DC.
Инвертор выполняет противоположную работу, и довольно легко понять ее суть. Предположим, у вас есть аккумулятор в фонарике, а переключатель закрыт, поэтому DC течет по цепи всегда в том же направлении, что и гоночный автомобиль вокруг дорожки. Теперь, если вы вытащите батарею и развернете ее, предполагая, что это соответствует другому способу, он почти наверняка все еще подаст свет, и вы не заметите какой-либо разницы в освещение, которое вы получаете, — но электрический ток будет протекать противоположным образом.
Предположим, у вас были молниеносные руки, и они были достаточно ловкими, чтобы переворачивать батарею 50−60 раз в секунду. Тогда бы вы стали своего рода механическим инвертором, превратив питание постоянного тока батареи в переменный на частоте 50−60 Гц.
Конечно, инверторы, которые вы покупаете в электрических магазинах, работают не так, хотя некоторые из них действительно механические: они используют электромагнитные переключатели, которые быстро переключаются на текущее направление. Инверторы, подобные этому, часто производят так называемый прямоугольный выход: ток либо протекает в одну сторону, либо наоборот, или он мгновенно переключается между двумя состояниями.
Такие внезапные перемены направления опасны для некоторых видов электрооборудования. При нормальной мощности AC, он постепенно переходит с одной стороны в другую в виде синусоидальной волны.
Электронные инверторы могут использоваться для создания такого рода плавно изменяющегося выхода переменного от входа постоянного тока. Они используют электронные компоненты, называемые индукторами и конденсаторами, для увеличения и снижения выходного тока, чем резкий, прямоугольный выходной сигнал включения / выключения, который вы получаете с помощью базового инвертора.
Инверторы также могут использоваться с трансформаторами для изменения определенного входного напряжения DC на совершенно другое выходное напряжение переменного (выше или ниже), но выходная мощность всегда должна быть меньше входной мощности. Из закона сохранения энергии следует, что инвертор и трансформатор не может выдавать больше энергии, чем они потребляют, и некоторая энергия должна быть потеряна как тепло, поскольку электричество протекает через различные электрические и электронные компоненты. На практике эффективность инвертора часто превышает 90 процентов, хотя базовая физика говорит нам, что какая-то часть энергии — какой бы она ни была — всегда где-то теряется.
Принцип работы устройства
Представьте, что вы аккумулятор постоянного тока, и кто-то хлопает вас по плечу и просит вас вместо этого произвести переменный. Как бы вы это сделали? Если весь ток, который вы производите, вытекает в одном направлении, как насчет добавления простого переключателя на ваш выход? Включение и выключение вашего тока может очень быстро обеспечить импульсы DС, которые могли бы выполнять как минимум половину работы. Чтобы сделать правильный AC, вам понадобится переключатель, который позволит полностью отменить ток и сделать это примерно 50−60 раз в секунду. Визуализируйте себя как человеческую батарею, которая меняет контакты туда и обратно более 3000 раз в минуту.
По сути, старомодный механический инвертор сводится к коммутационному блоку, подключенному к трансформатору. А так как электромагнитные устройства, которые меняют низковольтный переменный на высоковольтный ток или наоборот, используя две катушки провода (называемые первичной и вторичной) ранами вокруг общего железного ядра.
В механическом инверторе либо электродвигатель, либо какой-либо другой механизм автоматического переключения переворачивает входящий ток вперед и назад в основном просто путем изменения контактов и генерирует переменный во вторичном режиме. Коммутационное устройство работает так же, как в электрическом дверном звонке. Когда питание подключено, оно намагничивает переключатель, вытягивает его и очень быстро отключает. Пружина снова вернет переключатель, включив его, и потом будет повторять процесс снова и снова.
Частота переключения задается сигналами управления, формируемыми управляющей схемой (контроллером). Контроллер также может решать дополнительные задачи:
- Регулирование напряжения.
- Синхронизация частоты переключения ключей.
- Защитой их от перегрузок.
Классификация инверторов
Инверторы могут быть очень большими и массивными, особенно если они имеют встроенные батарейные блоки, поэтому они могут работать автономно. Они также генерируют много тепла, поэтому у них большие радиаторы (металлические плавники) и часто охлаждающие вентиляторы. Самые маленькие инверторы — это более портативные коробки размером с автомобильное радио, которое вы можете подключить к гнезду прикуривателя, чтобы произвести AC для зарядки портативных компьютеров или мобильных телефонов.
Так же, как приборы различаются по мощности, которую они потребляют, инверторы различаются по мощности, которую они производят. Как правило, чтобы быть в безопасности, вам понадобится инвертор, рассчитанный на четверть выше максимальной мощности устройства, которое вы хотите использовать. Это позволяет предположить, что некоторые приборы (например, холодильники и морозильники или люминесцентные лампы) потребляют максимальную мощность при первом включении. Хотя инверторы могут обеспечивать максимальную мощность в течение коротких периодов времени, важно отметить, что они не предназначены для работы на пиковой мощности в течение длительного времени.
По принципу действия инверторы делятся на:
- Автономные.
- Инверторы напряжения (АИН).
- Инверторы тока (АИТ).
- Резонансные инверторы (АИР).
- Зависимые (инверторы, ведомые сетью).
Здоровенные приборы в наших домах, которые используют большое количество энергии (такие вещи, как электрические нагреватели, лампы накаливания, чайники или холодильники), не очень заботятся о том, какую форму волны они получают: все, что они хотят, это энергия и как можно больше. Электронные устройства, с другой стороны, намного более суетливы и предпочитают более плавный вход, который они получают от синуидальной волны.
- Многие инверторы работают как автономные устройства с аккумулятором, которые полностью независимы от сети.
- Другие, так называемые утилитарно-интерактивные инверторы или инверторы с привязкой к сетке, специально разработаны для подключения к сети все время. Как правило, они используются для передачи электроэнергии от чего-то вроде солнечной панели обратно в сеть с точно правильным напряжением и частотой.
Это прекрасно, если ваша главная цель — создать собственную силу. Но это не так полезно, если вы хотите иногда быть независимыми от сети, или вам нужен резервный источник питания в случае сбоя, потому что если ваше соединение с сетью опускается, и вы не производите электричество самостоятельно (например, это ночное время, и ваши солнечные панели неактивны), инвертор тоже опускается, и вы полностью без энергии, независимо от того, генерируете ли вы свою силу или нет.
По этой причине некоторые люди используют бимодальные или двунаправленные устройства, которые могут работать как в автономном, так и в сетчатом режиме (хотя и не одновременно). Поскольку у них есть дополнительные части, они, как правило, более громоздки и дороже.
Крупные коммутационные устройства для применений передачи энергии, установленные до 1970 года, преимущественно использовали ртутно-дуговые клапаны. Современные инверторы обычно являются твердотельными (статические инверторы). Современный метод проектирования включает компоненты, расположенные в конфигурации моста H. Этот дизайн также довольно популярен среди небольших потребительских устройств.
Используя трехмерную печать и новые полупроводники, исследователи из Национальной лаборатории Oak Ridge Департамента энергетики создали инвертор мощности, который мог бы сделать электромобили более легкими, более мощными и более эффективными.
Преобразователи напряжения. Виды и устройство. Работа
Преобразователем напряжения называется устройство, которое изменяет вольтаж цепи. Это электронный прибор, который используется для изменения величины входного напряжения устройства. Преобразователи напряжения могут повышать или понижать входное напряжение, в том числе менять величину и частоту первоначального напряжения.
Необходимость применения данного устройства преимущественно возникает в случаях, когда необходимо использовать какой-либо электрический прибор в местах, где невозможно использовать имеющиеся стандарты или возможности электроснабжения. Преобразователи могут использоваться в виде отдельного устройства либо входить в состав систем бесперебойного питания и источников электрической энергии. Они широко применяются во многих областях промышленности, в быту и других отраслях.
Устройство
Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:
- Инвертирующие.
- Повышающие.
- Понижающие.
Общими для указанных видов преобразователей являются пять элементов:
- Ключевой коммутирующий элемент.
- Источник питания.
- Индуктивный накопитель энергии (дроссель, катушка индуктивности).
- Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
- Блокировочный диод.
Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.
Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.
Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение другого значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике.
Устройство трансформатора включает следующие элементы:
- Магнитопровод.
- Первичная и вторичная обмотка.
- Каркас для обмоток.
- Изоляция.
- Система охлаждения.
- Другие элементы (для доступа к выводам обмоток, монтажа, защиты трансформатора и так далее).
Напряжение, которое будет выдавать трансформатор на вторичной обмотке, будет зависеть от витков, которые имеются на первичной и вторичной обмотке.
Существуют и другие виды преобразователей напряжения, которые имеют иную конструкцию. Их устройство в большинстве случаев выполнено на полупроводниковых элементах, так как они обеспечивают значительный коэффициент полезного действия.
Принцип действия
Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия.
Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное.
- Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
- Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
- В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
- Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
- Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
- В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.
Виды
Преобразователи можно классифицировать по ряду направлений.
Преобразователи напряжения постоянного тока:
- Регуляторы напряжения.
- Преобразователи уровня напряжения.
- Линейный стабилизатор напряжения.
Преобразователи переменного тока в постоянный:
- Импульсные стабилизаторы напряжения.
- Блоки питания.
- Выпрямители.
Преобразователи постоянного тока в переменный:
Преобразователи переменного напряжения:
- Трансформаторы переменной частоты.
- Преобразователи частоты и формы напряжения.
- Регуляторы напряжения.
- Преобразователи напряжения.
- Трансформаторы разного рода.
Преобразователи напряжения в электронике в соответствии с конструкцией также делятся на следующие типы:
- На пьезоэлектрических трансформаторах.
- Автогенераторные.
- Трансформаторные с импульсным возбуждением.
- Импульсные источники питания.
- Импульсные преобразователи.
- Мультиплексорные.
- С коммутируемыми конденсаторами.
- Бестрансформаторные конденсаторные.
Особенности
- При отсутствии ограничений по объему и массе, а также при высоком значении питающего напряжения преобразователи рационально использовать на тиристорах.
- Полупроводниковые преобразователи на тиристорах и транзисторах могу быть регулируемыми и нерегулируемыми. При этом регулируемые преобразователи могут применяться как стабилизаторы переменного и постоянного напряжения.
- По способу возбуждения колебаний в устройстве могут быть схемы с независимым возбуждением и самовозбуждением. Схемы с независимым возбуждением выполняются из усилителя мощности и задающего генератора. Импульсы с выхода генератора направляются на вход усилителя мощности, что позволяет управлять им. Схемы с самовозбуждением – это импульсные автогенераторы.
Применение
- Для распределения и передачи электрической энергии. На электростанциях генераторы переменного тока обычно вырабатывается энергия напряжением 6—24 кВ. Для передачи энергии на дальние расстояния выгодно использовать большее напряжение. Вследствие этого на каждой электростанции ставят трансформаторы, повышающие напряжение.
- Для различных технологических целей: электротермических установок (электропечные трансформаторы), сварки (сварочные трансформаторы) и так далее.
- Для питания различных цепей;
— автоматики в телемеханике, устройств связи, электробытовых приборов;
— радио- и телевизионной аппаратуры.
Для разделения электрических цепей данных устройств, в том числе согласования напряжений и так далее. Трансформаторы, применяемые в данных устройствах, в большинстве случаев имеют малую мощность и невысокое напряжение.
- Преобразователи напряжения практически всех типов широко применяются в быту. Блоки питания многих бытовых приборов, сложных электронных устройств, инверторные блоки широко используются для обеспечения требуемого напряжения и обеспечения автономного энергоснабжения. К примеру, это может быть инвертор, который может быть использован для аварийного или резервного источника питания бытовых приборов (телевизор, электроинструмент, кухонная техника и так далее), потребляющих переменный ток напряжением 220 Вольт.
- Наиболее дорогими и востребованными в медицине, энергетике, военной сфере, науке и промышленности являются преобразователи, которые имеют выходное переменное напряжение с чистой формой синусоиды. Подобная форма пригодна для работы устройств и приборов, которые имеют повышенную чувствительность к сигналу. К ним можно отнести измерительную и медицинскую аппаратуру, электрические насосы, газовые котлы и холодильники, то есть оборудование, в составе которых имеются электромоторы. Преобразователи часто необходимы и для продления времени службы оборудования.
Достоинства и недостатки
К достоинствам преобразователей напряжения можно отнести:
- Обеспечение контроля входного и выходного режима тока. Эти устройства трансформируют переменный ток в постоянный, служат в качестве распределителей напряжения постоянного тока и трансформаторов. Поэтому их часто можно встретить в производстве и быту.
- Конструкция большинства современных преобразователей напряжения имеет возможность переключения между разным входным и выходным напряжением, в том числе предполагает выполнение подстройки выходного напряжения. Это позволяет подбирать преобразователь напряжения под конкретный прибор или подключаемую нагрузку.
- Компактность и легкость бытовых преобразователей напряжения, к примеру, автомобильных преобразователей. Они миниатюрны и не занимают много места.
- Экономичность. КПД преобразователей напряжения достигает 90%, благодаря чему существенно экономится энергия.
- Удобство и универсальность. Преобразователи позволяют подключать быстро и легко любой электроприбор.
- Возможность передачи электроэнергии на дальние расстояния благодаря повышению напряжения и так далее.
- Обеспечение надежной работы критических узлов: охранных систем, освещения, насосов, котлов отопления, научного и военного оборудования и так далее.
К недостаткам преобразователей напряжения можно отнести:
- Восприимчивость преобразователей напряжения к повышенной влажности (кроме преобразователей, специально созданных для работы на водном транспорте).
- Занимают некоторое место.
- Сравнительно высокая цена.
Похожие темы:
Принцип работы сварочного инвертора с пояснениями на схеме преобразователя
Сварочные инверторы всё более уверенно занимают нишу производственного сварочного оборудования, приходя на смену традиционной трансформаторной технике. В том, что этот тренд носит глобальный характер, сомневаться не приходится.
Инверторное оборудование объективно успешней справляется со стоящими перед ним задачами.
Преимущества инверторной техники
Превосходство сварочных инверторов над классическими преобразователями трансформаторного типа просматривается как в технологическом, так и в экономическом аспекте.
Если вкратце перечислить преимущества, приобретаемые при внедрении инвертора, получится примерно следующее:
- более высокий коэффициент полезного действия, превышающий 90%, что предопределяет само устройство сварочного инвертора, характеризуемое отсутствием магнитных потерь в стальном сердечнике трансформатора, присущим «классике»;
- способность работать в условиях изменения уровня питающего напряжения в широких пределах, не снижая при этом технологических параметров;
- возможность очень точной установки тока сварки с цифровой индикацией его величины и жёстким поддержанием уровня в процессе сварки;
- кардинально сниженные габаритные размеры и вес конструкции;
- целый ряд совершенно новых возможностей, присущих только инверторным аппаратам, вот только некоторые из них.
К новым возможностям относится наличие специфических функций, среди которых hot start, anti sticking, arc force, и других, делающих процесс сварки доступным даже новичку. Есть возможность использования электродов, предназначенных для сварки, как переменным, так и постоянным током.
Что касается обычно называемых недостатков, присущих данному виду оборудования, то в первую очередь, речь идёт о сравнительно высокой цене этих приборов.
По этому поводу можно сказать следующее. Вспомните, как изменялись цены компьютерных и мобильных новинок буквально в течение нескольких лет. Дальнейшее совершенствование технологии и увеличение массовости производства неизбежно приведут к значительному снижению цен на сварочные инверторы.
Пояснения на схеме
Принцип работы сварочного аппарата, построенного на основе инвертора, иллюстрирует схема.
Структурная схема инвертора для сварки начинается с обозначения входящего тока и выпрямителя. Сетевое напряжение выпрямляется мостом из мощных диодов, установленных на радиаторы для рассеивания выделяющегося тепла.
Форма выпрямленного напряжения, имеющая ярко выраженные пульсации, схематически изображена в квадрате схемы, соответствующем выпрямителю.
Перед входом в инвертор, в общем-то, представляющем собой преобразователь напряжения, пульсации фильтруются с помощью конденсаторов большой ёмкости (на структурной схеме не показаны).
В инверторе, поступающее постоянное напряжение преобразуется в переменное, имеющее высокую частоту. Преобразование осуществляется за счёт переключения с большой частотой мощных ключевых полевых транзисторов, созданных по IGBT технологии.
При работе транзисторов выделяется большая мощность, поэтому их монтируют на массивных алюминиевых радиаторах. В свою очередь, работой транзисторов управляет высокочастотный генератор, основу которого составляет микросхема контроллера, работающего по принципу широтно-импульсного модулирования.
В этой части, принципиальная схема сварочного инвертора повторяет схемы импульсных блоков питания, используемых в радиоэлектронной аппаратуре с прошлого века.
Полученные в результате инвертирования высокочастотные импульсы поступают на трансформатор, где происходит снижение их амплитуды до уровня, на котором будет осуществляться сварка.
Далее, трансформированное высокочастотное напряжение окончательно фильтруется конденсаторами и поступает на выходные клеммы сварочного инвертора.
Частота генерируемого при работе инвертора тока достигает значения нескольких десятков килогерц. Именно высокая частота лежит в основе принципа работы аппарата инверторной сварки.
Благодаря принципу высокочастотного преобразования удалось добиться снижения веса и уменьшения размеров сварочных аппаратов в несколько раз.
В основном это обусловлено очень малой массой и габаритами высокочастотных трансформаторов, конденсаторов и дросселей.
Управление током
Регулирование сварочного тока инвертора производится посредством электронного регулятора с обратной связью, изображённого на схеме. С помощью потенциометра, расположенного на лицевой панели сварочного инвертора, выбирается требуемая величина тока сварки.
При вращении ручки потенциометра, устанавливается некий уровень опорного напряжения на входе логических элементов, построенных на операционных усилителях.
Сигнал, поступающий по линии обратной связи с датчика тока, расположенного на выходе аппарата, сравнивается компаратором с уровнем заданного регулирующим потенциометром напряжения.
При несовпадении уровней напряжения задающей цепи и сигнала датчика тока, происходит изменение амплитуды управляющего импульса, поступающего на контроллер.
При этом происходит изменение скважности импульсов, генерируемых контроллером, что вызывает изменение режима переключения транзисторов и в конечном итоге, величины тока сварки.
То есть, принцип регулирования заключается в том, что схема всегда стремится поддерживать соответствие между значениями заданного и фактического тока, что обеспечивает его стабильность.
В качестве контроллера, формирующего регулируемые сигналы широтно-импульсной модуляции, обычно применяется микросхема TL494, производимая американской фирмой Texas Instruments, либо её аналоги.
Приведённая структурная схема показывает только принцип работы и взаимодействия отдельных функциональных блоков. Детализованная электросхема каждого типа инверторов может иметь индивидуальные особенности.
Автоматические функции сварочного оборудования
Чтобы понять, как работают инверторные сварочные аппараты в различных ситуациях, следует ознакомиться с принципом работы некоторых их функций.
ARC FORCE
Эта функция призвана осуществлять форсирование дуги. В процессе работы сварщика иногда капля расплавленного электрода, не оторвавшись вовремя и не попав в сварочную ванну, зависает, уменьшая зазор.
Это может грозить прилипанием электрода к детали. Принцип работы arc force заключается в кратковременном увеличении тока, который «сдувает» каплю металла.
ANTI STICK
В начале работы, в процессе розжига дуги, электрод может прилипнуть к заготовке. Принцип функции anti stick состоит в том, что в этот момент происходит резкое снижение сварочного тока. После отрыва электрода режим работы аппарата возвращается к норме.
HOT START
Работа этой опции помогает легко зажечь электрическую дугу. Принцип данной автоматической функции прост. При разжигании дуги, в момент отрыва электрода от заготовки, происходит кратковременное увеличение значения сварочного тока, что способствует более надёжному розжигу дуги.
Все функции способствуют более быстрой и надежной работе инвертора, что в итоге приводит к высокому качеству сварного шва.
Принципы работы и сферы применения инверторов
Как известно, большинство бытовых приборов рассчитано на использование переменного тока напряжением 220 вольт, который подаётся обычной городской сетью. При аварийном отключении электричества все эти устройства, естественно, перестают работать. Это неудобно, но приемлемо, если речь идёт о фене, однако есть такое оборудование, которое останавливать нельзя. Поэтому и приходится устанавливать ИБП для котлов, серверов и другого важного оборудования. Частью системы бесперебойного питания являются инверторы. Эти устройства необходимы для превращения постоянного тока в переменный.
Принцип действия инвертора
Обычные аккумуляторные батареи создают в замкнутой цепи движение электронов, направление которого неизменно – от отрицательного полюса к положительному. Если очень быстро менять местами провода, присоединяя их то к одной клемме, то к другой, можно создать некое подобие переменного тока. По крайней мере, направление движения электронов в цепи действительно будет меняться. Но если нарисовать график такого тока – он крайне мало будет напоминать классическую синусоиду. Вместо этого будет виден резкий взлёт от нуля до максимума амплитуды, затем сразу отвесный обрыв назад к оси абсцисс, а после этого такая же «ступенька» вниз, к отрицательным значениям.
Другими словами, налицо будут грубые разнонаправленные импульсы. Их длительность, которая на графике выглядит как ширина «ступеньки», можно регулировать. Это превратит выглядящие хаотично всплески в аккуратные прямоугольники, то возвышающиеся над осью абсцисс, то уходящие под неё. Такой график уже больше похож на переменный ток, однако этого недостаточно. Чтобы образовалась синусоида, импульсы проходят через частотный фильтр, который пропускает лишь те из них, значения которых могут в итоге сформировать плавно поднимающуюся и опускающуюся кривую.
Конструкция инвертора
Первоначально создание знакопеременного напряжения в цепи обеспечивалось буквальным переключением проводов с одной клеммы на другую. Так действовали механические инверторы, которые иногда применяются и сейчас. Это довольно громоздкие устройства с низким КПД.
После развития полупроводниковых технологий появилась возможность обеспечивать смену полюсов без применения механических приспособлений. Для этого используются тиристоры, полупроводниковые приборы, действующие как электронные ключи. Возможно использование и другой элементной базы – транзисторов в сочетании с диодами. Тиристоры коммутируются сигналами управления, генерируемыми автоматически. В простейшем случае их источником может быть обыкновенное реле, действующее через строго определенные промежутки времени. В современных инверторах для создания управляющих импульсов используется программное обеспечение. Это даёт возможность варьировать частоту и амплитуду переменного тока.
Важной частью инвертора является преобразователь. Он повышает напряжение до требуемой величины, чаще всего от 12 вольт на выходе аккумулятора до 220 на входе в тиристорный мост. Преобразователи часто продаются также как отдельные устройства.
Инверторы с модифицированным и чистым синусом
Форма графика выходного напряжения после превращения постоянного тока в переменный зависит от того, были ли использованы частотные фильтры после широтно-импульсной модуляции, выполняемой при помощи перекоммутации тиристоров. Наиболее простые устройства дают на выходе так называемый «модифицированный синус». Это переменный ток, колебания напряжения которого отображаются на графике в виде прямоугольников.
Единственное преимущество инверторов с модифицированным синусом – дешевизна. Существуют нагрузки, для которых создаваемый ими ток вполне подходит (электродрели, резаки, даже компьютеры), но во многих случаях столь простая трансформация неприемлема. В некоторых случаях приборы, присоединенные к инвертору с модифицированным синусом, даже не включаются. А такие устройства, как холодильники, микроволновки, двигатели переменного тока или насосы будут работать недостаточно эффективно.
Таким образом, предпочтительнее выглядят инверторы с «чистым синусом», в которых выходной ток проходит предварительную частотную фильтрацию. Эти устройства, например, позволяют создать бесперебойное питание для газового котла и для многих других видов оборудования.
Высоко- и низкочастотные инверторы
Переменный ток, который подаётся по сети от электростанций, имеет стандартные параметры. Это напряжение 220 вольт и частота в 50 Герц (в США 60). Эти характеристики позволяют обеспечивать бытовые приборы необходимым для них количеством энергии. Такой же ток вырабатывается и низкочастотными инверторами. Частью конструкции этих приборов является трансформатор, довольно тяжелое и громоздкое устройство. Его роль довольно существенна. Во-первых, он обеспечивает постоянное поддержание мощности при прямом подключении. Во-вторых, он даёт возможность быстро зарядить аккумуляторы при обратном протекании тока (то есть при наличии напряжения в сети).
Основной недостаток низкочастотных инверторов – очень большой вес. Он увеличивается вместе с ростом мощности. Но если требуется подключить приборы, не расходующие много энергии, можно воспользоваться высокочастотными инверторами. Таковыми являются почти все автомобильные модели. Они способны, например, обеспечить питание небольшого пылесоса, ноутбука или компактной дрели. Частота создаваемого такими инверторами переменного тока может достигать 30 тысяч Герц. Вес такого устройства колеблется в диапазоне от одного до пяти килограммов, цены обычно невысоки. Вот только уже при подключении холодильника могут быть проблемы, поскольку мощности явно не хватает.
Использование инверторов в солнечной энергетике
Обычные электростанции генерируют переменный ток изначально, его требуется в дальнейшем только синхронизировать для передачи на расстояние. В то же время солнечные панели (которые также называют батареями) действуют совершенно иначе. Они создают постоянный ток высокого напряжения (от 200 до 600 вольт). В таком виде использовать его нельзя. Применяются специальные контроллеры, которые понижают напряжение тока. Эти приборы могут быть отдельными устройствами, или частью инвертора. Во втором случае монтажная схема солнечной электростанции несколько упрощается. Кроме того, стоимость встроенного в инвертор контроллера обычно меньше цены отдельного устройства. Тем не менее такую систему трудно назвать оптимальной. Во-первых, лучшие образцы солнечных контроллеров довольно велики по своим размерам, в корпус инвертора они не помещаются. Во-вторых, происходит избыточное преобразование тока, от высокого напряжения к низкому, а затем в обратную сторону.
Другой вариант – это применение сетевых инверторов. Они тоже обладают встроенным солнечным контроллером, однако не имеют подключения к аккумуляторам. Созданный фотоэлементами постоянный ток высокого напряжения сразу подаётся на тиристорный мост. Такие устройства часто даже не требуют наличия входных и выходных трансформаторов.
К сожалению, пока что сетевые инверторы продаются по довольно высоким ценам. Кроме того, в России пока еще нельзя использовать одно из главных преимуществ таких устройств – закачку избытка энергии в сеть. Следует также отметить, что отказ от аккумуляторов существенно снижает надёжность подобных систем.
Третий и наиболее «продвинутый» вариант – это гибридный инвертор. Это устройство может использовать подключение и к солнечному контроллеру, и к аккумуляторной батарее. Инвертор можно настроить таким образом, чтобы закачка избытка энергии в сеть не выполнялась (в противном случае вырастут показания прибора учета). Такое устройство позволяет сделать автономную сеть электроснабжения максимально гибкой и надёжной – ведь всегда есть возможность перейти на резервное питание от аккумуляторов.
Использование стабилизаторов
Некоторые модели инверторов оснащены встроенными стабилизаторами. Это устройство позволяет поддерживать постоянный уровень напряжения в сети. Такая функция полезна, однако возможности встроенных вариантов обычно невелики. Кроме того, не всегда на высоте и надёжность. При отсутствии подключения к городской электросети применять инвертор со встроенным стабилизатором не следует, поскольку дизель-генераторы обычно не обладают достаточным запасом мощности. Чтобы добиться этого, придется покупать наиболее дорогостоящее оборудование.
Программное управление
Наиболее современные модели инверторов управляются внутренним компьютером, который может контролировать состояние электросети, поддерживать оптимальные параметры работы системы и вести протоколирование всех происходящих событий. Для этого используется специализированное программное обеспечение, обычно распространяемое бесплатно. Применяются несколько разных операционных систем, в том числе и Android.
Инвертор преобразования напряжения. Принцип работы источника бесперебойного питания
Автономный инвертор напряжения предназначен для преобразования постоянного напряжения в переменное. Существую еще и инверторы тока, они преобразуют постоянный ток в переменный. Однако наиболее широкое применение нашли инверторы напряжения. Они применяются для преобразования постоянного напряжения, например выпрямительных установок, аккумуляторных или солнечных батарей, в переменное напряжение, чаще всего частотой 50 Гц или любой другой частоты с возможностью ее регулирования.
Однофазный автономный инвертор напряжения. Принцип действия
Переменное напряжение на нагрузке формируется путем кратковременных чередующихся подключений источника питания постоянного напряжения к противоположным клеммам нагрузки, то есть в один момент времени источник питания своими клеммами 1-2 подключен к клеммам нагрузки 3-4 , а в следующий – к клеммам 4-3 . (рис. 1 ) В результате чего ток через нагрузку сначала протекает в одном направлении, а затем – в другом. С повышением частоты таких переключений возрастает частота переменного тока на нагрузке.
Рис. 1 – Автономный инвертор напряжения. Принцип действия
Еще проще понять процесс формирования переменного напряжения из постоянного можно если представить, что в одной руке находится резистор, а в другой батарейка. При этом резистор все время находится в одном фиксированном положении, а батарейка подключается то полюсом, то минусом к одному и тому же выводу резистора. Таким образом ток через резистор будет протекать то в одном, то в противоположном направлении. В действительности роль переключателей выполняют полупроводниковые ключи.
Принципиальная схема автономного инвертора напряжения показана на рис. 2.
Рис. 2 – Автономный инвертор напряжения. Принципиальная схема
Рассмотрим работу инвертора на примере активно-индуктивной нагрузки, как наиболее распространённой
В некоторый момент времени t 1 (рис. 3 ) одна пара диагонально противоположных транзисторов VT 1 , VT 4 открыта, а вторая VT 2 , VT 3 закрыта. Ток, протекающий через инвертор напряжения и нагрузку, нарастает по экспоненциальному закону с постоянной времени τ= L Н / R Н по пути «+» U ИП – VT 1 – L Н R Н – VT 4 – «-» U ИП . В следующий момент t 2 (рис. 4 ) транзисторы VT 1 , VT 4 закрыты, а VT 2 , VT 3 открыты.
Рис. 3 – Путь протекания тока через элементы инвертора на интервале времени t1-t2
Рис. 4 – Путь протекания тока через элементы инвертора на интервале времени t 2- t 3
Однако из-за наличия индуктивности L Н ток не может мгновенно изменить свое направление. Поэтому в момент t 2 закрытия транзисторов VT 1 , VT 4 и открытия VT 2 , VT 3 ток продолжает протекать через инвертор в том же направлении до тех пор, пока запасенная в индуктивности энергия магнитного поля W L н = L Н I 2 /2 не снизится до нуля (промежуток времени t 2 — t 3 ) (см. рис. 4 ). Поскольку транзисторы VT 1 , VT 4 уже закрыты, то ток будет протекать по такой цепи: L Н R Н – VD 2 – U ИП – VD 3 . На протяжении этого интервала времени энергия с нагрузки отдается источнику питания U ИП .
Если источником питания служит выпрямитель, то его необходимо шунтировать конденсатором C . Это позволит току протекать в обратном направлении.
В момент t 3 (рис. 5 ) ток снизится до нуля, после чего изменится его направление. В промежутке времени t 3 t t 4 ток будет нарастать, протекая по пути: «+» U ИП – VT 2 – L Н R Н – VT 3 – «-» U ИП . В монет времени t 4 транзисторы VT 2 , VT 3 снова закроются, VT 1 , VT 4 откроются. Ток на отрезке времени t 4 t t 5 останется протекать в прежнем направлении, пока не снизится до нуля. Путь прохождения тока: L Н R Н – VD 1 – U ИП – VD 4 .
Рис. 5 – Путь прохождения тока по элементам инвертора на интервале времени t 3- t 4
В следующий момент времени t 5 (рис. 6 ) ток станет равным нулю, а затем, изменив свое направление, начнет возрастать в промежутке времени t 5 t t 6 . В момент t 6 снова произойдет переключение транзисторов и процессы повторятся.
Рис. 6 – Путь прохождения тока по элементам инвертора на интервале времени t 5- t 6
Ток протекает по цепи «+» U ИП – VT 2 –R Н L Н – VT 3 – «-» U ИП . Таким образом транзисторы VT 1 …VT 4 попеременно подключают источник питания U ИП к клеммам нагрузки: сначала плюс U ИП подключен к 3 -й клемме, а минус к 4 -й клемме, затем наоборот.
Рассмотренный выше алгоритм управления транзисторами позволяет сохранять величину выходного напряжения инвертора и соответственно тока нагрузки постоянными, однако в большинстве случаев необходимо изменять напряжения с целью получения требуемой величины тока в нагрузке.
Способы регулирования напряжения автономного инвертора
Существуют два способа регулирования выходного напряжения инвертора:
1) первым способом является изменение величины напряжения источника питания U ИП;
2) второй способ реализуется с помощью так называемых внутренних средств инвертора, а именно за счет изменения формы выходного напряжения.
Первый способ достаточно прост и требует всего лишь регулируемого источника питания. Суть второго способа заключается в следующем. Для изменения напряжения на выходе инвертора необходимо сдвинуть управляющие импульсы, подаваемые на базы транзисторов VT 2 и VT 4 , относительно управляющих импульсов на VT 1 и VT 3 на угол управления α (рис. 7 ).
Рис. 7 – Алгоритмы управления транзисторами однофазного инвертора напряжения
Рассмотрим работу инвертора на при регулировании величины выходного напряжения
На интервале времени t 1 t t 2 (рис. 8 ).открыты транзисторы VT 1 и VT 4 напряжение на нагрузке равно источнику питания u н = U ИП . В следующий момент t 2 закрывается VT 1 и открывается VT 3. В течение времени t 2 t t 3 (рис. 9
Как работает инвертор, как ремонтировать инверторы — общие советы
В этом посте мы попытаемся узнать, как диагностировать и ремонтировать инвертор, всесторонне изучив различные этапы инвертора и как работает базовый инвертор.
Прежде чем мы обсудим, как отремонтировать инвертор, было бы важно, чтобы вы сначала получили полную информацию об основных функциях инвертора и его этапах. Следующее содержание объясняет важные аспекты инвертора.
Этапы инвертора
Как следует из названия, преобразователь постоянного тока в переменный представляет собой электронное устройство, которое способно «инвертировать» постоянный потенциал, обычно получаемый от свинцово-кислотной батареи, в повышенный потенциал переменного тока. Выходной сигнал инвертора обычно вполне сопоставим с напряжением, которое имеется в наших домашних розетках переменного тока.
Ремонт сложных инверторов — непростая задача из-за множества сложных этапов, требующих наличия специальных знаний в данной области. Инверторы с синусоидальными выходами или инверторы, использующие технологию ШИМ для генерации модифицированной синусоидальной волны, могут быть трудными для диагностики и устранения неисправностей для людей, которые относительно плохо знакомы с электроникой.
Тем не менее, более простые конструкции инверторов, основанные на основных принципах работы, могут быть отремонтированы даже человеком, который не является специалистом в области электроники.
Прежде чем мы перейдем к деталям поиска неисправностей, было бы важно обсудить, как работает инвертор, и различные ступени, которые обычно может включать инвертор:
Инвертор в его самой основной форме можно разделить на три основных этапа, а именно. генератор, драйвер и выходной каскад трансформатора.
Генератор:
Этот каскад в основном отвечает за генерацию колебательных импульсов через микросхему или транзисторную схему.
Эти колебания в основном являются производством чередующихся положительных и отрицательных (заземляющих) пиков напряжения аккумуляторной батареи с определенной заданной частотой (числом положительных пиков в секунду). Такие колебания обычно имеют форму квадратных столбов и называются прямоугольными волнами. и инверторы, работающие с такими генераторами, называются преобразователями прямоугольной формы.
Вышеупомянутые генерируемые прямоугольные импульсы слишком слабы и никогда не могут использоваться для управления силовыми выходными трансформаторами. Поэтому эти импульсы подаются на следующий каскад усилителя для выполнения требуемой задачи.
Для получения информации об генераторах инвертора вы также можете обратиться к полному руководству, в котором объясняется, как спроектировать инвертор с нуля.
Бустер или усилитель (драйвер):
Здесь принятая частота колебаний соответствующим образом усиливается до высоких уровней тока, используя либо силовые транзисторы или МОП-транзисторы.
Хотя усиленный отклик является переменным током, он все еще находится на уровне напряжения питания батареи и поэтому не может использоваться для управления электрическими приборами, которые работают с более высокими потенциалами переменного тока.
Таким образом, усиленное напряжение подается на вторичную обмотку выходного трансформатора.
Выходной силовой трансформатор:
Все мы знаем, как работает трансформатор; в источниках питания переменного / постоянного тока он обычно используется для понижения подаваемого входного переменного тока сети до более низких заданных уровней переменного тока за счет магнитной индукции двух его обмоток.
В инверторах трансформатор используется для аналогичной цели, но с противоположной ориентацией, то есть здесь переменный ток низкого уровня от вышеупомянутых электронных каскадов подается на вторичные обмотки, что приводит к индуцированному повышенному напряжению на первичной обмотке трансформатора.
Это напряжение, наконец, используется для питания различных бытовых электроприборов, таких как фонари, вентиляторы, миксеры, паяльники и т. Д. Принцип становится основой всех традиционных конструкций инверторов, от самых простых до самых сложных.
Функционирование показанной конструкции можно понять из следующих пунктов:
1) Плюс батареи питает ИС генератора (вывод Vcc), а также центральный отвод трансформатора.
2) Микросхема генератора при включении начинает производить попеременно переключающиеся импульсы Hi / Lo на своих выходных контактах PinA и PinB с некоторой заданной частотой, в основном 50 Гц или 60 Гц, в зависимости от спецификаций страны.
3) Видно, что эти распиновки связаны с соответствующими силовыми устройствами №1 и №2, которые могут быть МОП-транзисторами или силовыми BJT.
3) В любой момент, когда на PinA высокий уровень, а на PinB низкий, устройство питания №1 находится в проводящем режиме, а устройство питания №2 остается выключенным.
4) В этой ситуации верхний отвод трансформатора соединяется с землей через силовое устройство №1, которое, в свою очередь, заставляет положительный полюс батареи проходить через верхнюю половину трансформатора, запитывая эту часть трансформатора.
5) Аналогично, в следующий момент, когда на контакте B высокий уровень, а на контакте A низкий, активируется нижняя первичная обмотка трансформатора.
6) Этот цикл непрерывно повторяется, вызывая двухтактную проводимость высокого тока через две половины обмотки трансформатора.
7) Вышеупомянутое действие во вторичной обмотке трансформатора вызывает переключение эквивалентной величины напряжения и тока через вторичную обмотку посредством магнитной индукции, что приводит к выработке необходимых 220 В или 120 В переменного тока на вторичной обмотке трансформатора, как показано на схеме.
Преобразователь постоянного тока в переменный, советы по ремонту
В приведенном выше объяснении несколько моментов становятся очень важными для получения правильных результатов от преобразователя.
1) Во-первых, генерация колебаний, из-за которых силовые полевые МОП-транзисторы включаются / выключаются, инициируя процесс индукции электромагнитного напряжения на первичной / вторичной обмотке трансформатора. Поскольку полевые МОП-транзисторы переключают первичную обмотку трансформатора двухтактным образом, это индуцирует переменное напряжение 220 В или 120 В переменного тока на вторичной обмотке трансформатора.
2) Вторым важным фактором является частота колебаний, которая фиксируется в соответствии со спецификациями страны, например, страны, которые поставляют 230 В, обычно имеют рабочую частоту 50 Гц, в других странах, где обычно указывается 120 В. работают на частоте 60 Гц.
3) Никогда не рекомендуется использовать сложные электронные устройства, такие как телевизоры, DVD-плееры, компьютеры и т. Д. С преобразователями прямоугольной формы. Резкие подъемы и спады прямоугольных волн просто не подходят для таких приложений.
4) Однако есть способы с помощью более сложных электронных схем для изменения прямоугольных волн так, чтобы они стали более подходящими для вышеупомянутого электронного оборудования.
Инверторы, использующие другие сложные схемы, могут генерировать сигналы, почти идентичные сигналам, имеющимся в наших домашних розетках переменного тока.
Как отремонтировать инвертор
Если вы хорошо разбираетесь в различных ступенях, обычно встроенных в инверторный блок, как описано выше, устранение неисправностей становится относительно простым. Следующие советы проиллюстрируют, как отремонтировать преобразователь постоянного тока в переменный:
Инвертор «мертв»:
Если ваш инвертор вышел из строя, выполните предварительные исследования, такие как проверка напряжения аккумулятора и соединений, проверка на перегоревший предохранитель , потеря связи и т. д.Если все в порядке, откройте внешнюю крышку инвертора и выполните следующие действия:
1) Найдите секцию генератора; отключите его выход от каскада MOSFET и с помощью частотомера проверьте, генерирует ли он требуемую частоту. Обычно для инвертора 220 В эта частота составляет 50 Гц, а для инвертора 120 В — 60 Гц. Если ваш измеритель не показывает частоту или стабильный постоянный ток, это может указывать на возможную неисправность этого каскада генератора. Проверьте его интегральную схему и соответствующие компоненты на предмет исправления.
2) Если вы обнаружите, что каскад генератора работает нормально, переходите к следующему каскаду, то есть каскаду усилителя тока (силовой MOSFET). Изолируйте МОП-транзисторы от трансформатора и проверьте каждое устройство с помощью цифрового мультиметра. Помните, что вам, возможно, придется полностью удалить MOSFET или BJT с платы во время их тестирования с помощью цифрового мультиметра. Если вы обнаружите, что какое-либо устройство неисправно, замените его новым и проверьте реакцию, включив инвертор. Предпочтительно подключать лампу постоянного тока высокой мощности последовательно с батареей во время тестирования реакции, чтобы быть в большей безопасности и предотвратить любое чрезмерное повреждение батареи
3) Иногда трансформаторы также могут стать основной причиной неисправности.Вы можете проверить наличие обрыва обмотки или слабого внутреннего соединения в соответствующем трансформаторе. Если вы сочтете это подозрительным, немедленно замените его новым.
Хотя не так-то просто узнать все о том, как отремонтировать преобразователь постоянного тока в переменный, из самой этой главы, но определенно все начнет «готовиться», когда вы будете углубляться в процедуру через неустанную практику, а также некоторые методы проб и ошибок.
Все еще есть сомнения … не стесняйтесь задавать здесь свои конкретные вопросы.
О Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!
6.4. Инверторы: принцип работы и параметры
6.4. Инверторы: принцип работы и параметры
Теперь давайте увеличим масштаб и подробнее рассмотрим один из ключевых компонентов цепи согласования мощности — инвертор . Практически любая солнечная система любого масштаба включает инвертор того или иного типа, позволяющий использовать электроэнергию на месте для устройств с питанием от переменного тока или от сети. Различные типы инверторов показаны на Рисунке 11.1 в качестве примеров. Доступные модели инверторов теперь очень эффективны (эффективность преобразования энергии более 95%), надежны и экономичны.В масштабах энергосистемы основные проблемы связаны с конфигурацией системы, чтобы обеспечить безопасную работу и снизить потери преобразования до минимума.
Рисунок 11.1. Инверторы: малогабаритный инверторный блок для бытового использования (слева) и инверторы Satcon для коммунальных служб (справа)
Три наиболее распространенных типа инверторов, предназначенных для питания нагрузок переменного тока, включают: (1) синусоидальный инвертор (для общих приложений), (2) модифицированный прямоугольный инвертор (для резистивных, емкостных и индуктивных нагрузок) и (3) прямоугольный преобразователь (для некоторых резистивных нагрузок) (MPP Solar, 2015).Эти типы волн были кратко представлены в Уроке 6 (рис. 11.2). Здесь мы более подробно рассмотрим физические принципы, используемые инверторами для создания этих сигналов.
Рисунок 11.2. Различные типы сигналов переменного тока, производимые инверторами.
Кредит: Марк Федькин
Процесс преобразования постоянного тока в переменный основан на явлении электромагнитной индукции. Электромагнитная индукция — это создание разности электрических потенциалов в проводнике, когда он подвергается воздействию переменного магнитного поля.Например, если вы поместите катушку (катушку с проволокой) рядом с вращающимся магнитом, в катушке будет индуцироваться электрический ток (рисунок 11.3).
Рисунок 11.3. Схематическое изображение электромагнитной индукции
Кредит: Марк Федькин
Затем, если мы рассмотрим систему с двумя катушками (рисунок 11.4) и пропустим постоянный ток через одну из них (первичную катушку), эта катушка с постоянным током может действовать аналогично магниту (поскольку электрический ток создает магнитное поле). Если направление тока часто меняется на противоположное (например,g., через переключающее устройство), переменное магнитное поле будет индуцировать переменный ток во вторичной катушке.
Рисунок 11.4. Инверторные циклы. Во время 1-го полупериода (вверху) постоянный ток от источника постоянного тока — солнечного модуля или батареи — включается через верхнюю часть первичной катушки. Во время 2-го полупериода (внизу) постоянный ток включается через нижнюю часть катушки.
Кредит: Марк Федькин
Простая двухтактная схема, показанная на рисунке 11.4 создает прямоугольный сигнал переменного тока. Это простейший случай, и если инвертор выполняет только этот шаг, это прямоугольный инвертор. Этот тип вывода не очень эффективен и может даже нанести вред некоторым нагрузкам. Таким образом, прямоугольную волну можно дополнительно модифицировать с помощью более сложных инверторов для получения модифицированной прямоугольной волны или синусоидальной волны (Dunlop, 2010).
Для получения модифицированного выходного сигнала прямоугольной формы, такого как показанный в центре рисунка 11.2, в инверторе можно использовать управление формой сигнала низкой частоты.Эта функция позволяет регулировать длительность чередующихся прямоугольных импульсов. Также здесь используются трансформаторы для изменения выходного напряжения. Комбинация импульсов различной длины и напряжения приводит к появлению многоступенчатой модифицированной прямоугольной волны, которая близко соответствует форме синусоидальной волны. Низкочастотные инверторы обычно работают на частоте ~ 60 Гц.
Для получения синусоидального выходного сигнала используются высокочастотные инверторы. В этих инверторах используется метод изменения ширины импульса: коммутируемые токи с высокой частотой и в течение переменных периодов времени.Например, очень узкие (короткие) импульсы имитируют ситуацию низкого напряжения, а широкие (длинные импульсы) моделируют высокое напряжение. Кроме того, этот метод позволяет изменять интервалы между импульсами: расстояние между узкими импульсами моделирует низкое напряжение (рисунок 11.5).
Рисунок 11.5. Широтно-импульсная модуляция для аппроксимации истинной синусоидальной волны с помощью высокочастотного инвертора.
Кредит: Марк Федкин, модифицированный после Данлопа, 2010 г.
На изображении выше синяя линия показывает прямоугольную волну, изменяемую в зависимости от длины импульса и времени между импульсами; красная кривая показывает, как эти переменные сигналы моделируются синусоидальной волной.Использование очень высокой частоты помогает создавать очень плавные изменения ширины импульса и, таким образом, моделировать истинный синусоидальный сигнал. Метод широтно-импульсной модуляции и новые цифровые контроллеры позволили создать очень эффективные инверторы (Dunlop, 2010).
.Оптимальная конструкция контроллера тока для инвертора, подключенного к сети, для повышения качества электроэнергии и тестирования коммерческих фотоэлектрических инверторов
Инверторы, подключенные к сети, играют решающую роль в выработке энергии, подаваемой в сеть. Фильтр обычно используется для подавления гармоник частоты коммутации, создаваемых инвертором, он является пассивным, а также L- или LCL-фильтром. Последний имеет меньшие размеры по сравнению с L-фильтром. Но выбрать оптимальные значения LCL-фильтра сложно из-за резонанса, который может повлиять на стабильность.В этой статье представлена простая конструкция инверторного контроллера с L-фильтром. Топология управления проста и легко применяется с использованием традиционной теории управления. Анализ быстрого преобразования Фурье используется для сравнения различных топологий управления инверторами, подключенными к сети. Смоделированный инвертор, подключенный к сети, с предлагаемым контроллером соответствует стандарту IEEE-1547, а общее гармоническое искажение выходного тока смоделированного инвертора составило всего 0,25% с улучшенной формой выходного сигнала. Затем представлена экспериментальная работа над коммерческим фотоэлектрическим инвертором, включая влияние сильного и слабого подключения к сети.Представлено влияние инвертора на резистивную нагрузку, подключенную в точке общей связи. Результаты показывают, что напряжение и ток резистивной нагрузки при отключении сети увеличиваются, что может вызвать отказ или повреждение подключаемых устройств.
1. Введение
Понимание требований правил сети очень важно для инвертора, подключенного к сети. Инвертор, подключенный к сети, — это солнечная система, которая работает параллельно с сетью [1]. Электроэнергия, вырабатываемая фотоэлектрическими панелями, может быть экспортирована в сеть или использована местной нагрузкой.Хранение, использующее, например, батареи, не включено, что дает очевидные преимущества по стоимости по сравнению с автономными установками с возобновляемыми источниками энергии. Фотоэлектрическая генерация становится все более распространенной. По мнению авторов [1, 2], солнечная фотоэлектрическая система является третьей по важности возобновляемой энергией после гидро- и ветровой энергии. В 2011 году мировые фотоэлектрические мощности составляли примерно 70 ГВт. Европа является крупнейшим производителем фотоэлектрической энергии с мощностью 51 ГВт, за ней следуют Япония (5 ГВт), а затем США (4,4 ГВт), Китай (3,1 ГВт), Австралия (1.3 ГВт) и Индии (0,466 ГВт) [1, 2]. Фотоэлектрическая генерация была внедрена во многих развивающихся странах. Эти регионы имеют большой пояс и могут иметь установленную мощность 1100 ГВт к 2030 году [3]. По мере увеличения мощности фотоэлектрической генерации потребуются руководящие принципы или стандарты для регулирования импорта и экспорта электроэнергии в сеть и из нее, и их важность будет возрастать. Многие организации имеют дело с фотоэлектрическими кодами и стандартами безопасности, такими как стандарт Института электротехники и электроники (IEEE-1547) и стандарт Международной электротехнической комиссии (IEC-61727).В этой статье инвертор, подключенный к сети, используется для подключения солнечных панелей к сети. Другими словами, инверторы образуют решающее звено в системах возобновляемой энергии между генерирующими компонентами, такими как ветряные турбины, солнечные фотоэлектрические установки и остальной частью сети. Топологии полного моста постоянного / переменного тока обычно используются в инверторах, подключенных к сети, с высокой частотой переключения (например, 15000 Гц). Однако гармоники, генерируемые высокой частотой коммутации, ограничивают эффективность инверторов, подключенных к сети.LCL-фильтр обычно используется для смягчения ограничений и удовлетворения требуемых сетевых стандартов [4]. Однако виртуальный импеданс сети и взаимодействие между основными элементами LCL-фильтра затрудняют разработку эффективного контроллера из-за высокого пикового усиления на резонансной частоте. Были разработаны некоторые способы и методы, чтобы преодолеть эту проблему и улучшить устойчивое состояние и переходные характеристики инвертора сеток соединены, включая контроль повтора, пропорциональные резонансные и апериодическое управление [4-7].Чаннеговда и Джон [8] использовали демпфирующий резистор для уменьшения резонанса LCL-фильтра; хотя это было успешным, потери мощности в демпфирующем резисторе были достаточно высокими, чтобы повлиять на эффективность инвертора. В результате на момент подключения LCL-фильтр в этом приложении все еще имеет плохие динамические характеристики. Фотоэлектрические инверторы
должны иметь определенные конструктивные особенности, такие как отслеживание максимальной точки мощности (MPPT), анти-островок, коррекция коэффициента мощности, снижение гармоник и устранение неисправностей [4].Солнечная фотоэлектрическая генерация предлагает очевидные экологические преимущества, поскольку почти полностью исключает загрязнение в момент генерации и, в отличие от некоторых других форм возобновляемой генерации, является бесшумной, что делает ее в высшей степени подходящей и для жилых районов [1]. Распределенная генерация с использованием фотоэлектрической системы также выгодна в странах, где нет традиционной инфраструктуры мощных сетей. Требования к малым распределенным системам производства электроэнергии — это низкая стоимость, высокая эффективность и устойчивость к широкому диапазону изменений входного напряжения.Инвертор может быть одноступенчатым или многоступенчатым. Одноступенчатые инверторы преобразуют постоянный ток напрямую в переменный без промежуточного каскада. Двухступенчатые инверторы представляют собой преобразователь постоянного тока в постоянный, за которым следует инвертор постоянного тока в переменный [9–12]. Одноступенчатые инверторы имеют простую структуру и низкую стоимость, но многоступенчатые инверторы могут работать в более широком диапазоне входных напряжений. Для инверторов с несколькими ступенями (например, DC / DC и DC / AC преобразователь) сложность и стоимость увеличиваются, а эффективность ниже [1, 9].
L-фильтр подходит для инвертора с высокой частотой коммутации, это фильтр первого порядка с общей частотой 20 дБ / декада.Динамическое взаимодействие между инверторами, использующими L-фильтры, меньше, чем между инверторами с LC- или LCL-фильтрами. Кроме того, изменение условий окружающей среды может привести к генерации несинусоидального тока в сети, который может вызвать падение напряжения и искажения в ней. Liang et al. представлен анализ искажений напряжения [13]; однако их исследование не включало анализ тока в точке общего соединения (PCC). Фотоэлектрические инверторы ограничены несколькими факторами, включая слабое подключение к сети, подключение в автономном режиме и взаимодействие между различными фотоэлектрическими инверторами.Подключение в автономном режиме может быть опасным для коммунальных служб и может помешать интерфейсу коммунального предприятия с защитой G59 повторно подключить сеть к фотоэлектрической системе. Для этого необходимо разработать соединение в режиме защиты от островков, чтобы прекратить подачу электроэнергии в основную сеть. Однако подключение в режиме анти-островного режима может вызвать события перебоев в подаче электроэнергии (отключение электроэнергии). Резервный инвертор может преодолеть это ограничение. Резервный инвертор используется для питания критической нагрузки и не питает сеть. Это связано с тем, что служебный интерфейс с защитой G59 содержит обнаружение мониторинга напряжения (например,г., VMD460) реле, которое представляет собой внешнюю сеть и систему защиты. Это реле используется для отключения электросети общего пользования от фотоэлектрического генератора в случае недопустимых пороговых значений. Реле VMD460 — это устройство, которое контролирует напряжение и частоту сети, и когда напряжение и частота источника энергии находятся в допустимом пороге, реле VMD460 позволяет повторно подключиться к сети общего пользования. Однако взаимодействие может возникнуть, если подключено несколько фотоэлектрических инверторов. Таким образом, мини-сеть переменного тока может использоваться для повышения производительности системы, которая включает в себя несколько фотоэлектрических инверторов.Гармонические помехи большого количества инверторов были проанализированы Enslin et al. [14]. Обсуждается резонанс между фотоэлектрическим инвертором и существующими сетевыми компонентами. Было обнаружено, что выходной импеданс инвертора должен быть высоким, поскольку он является функцией частоты и дает незагрязненную синусоидальную форму волны тока. В исследовании предполагалось, что большинство бытовых приборов будут иметь емкостные нагрузки, а они, как правило, индуктивные. Xue et al. предоставил обзор будущих тенденций развития инверторов [15].В этом случае потребуются улучшения надежности. Было упомянуто, что в будущем фотоэлектрические инверторы потребуются для питания вспомогательных служб в распределительной сети. Как правило, критерии проектирования фотоэлектрических инверторов будут включать в себя подавление мерцания, компенсацию несбалансированной нагрузки, активную балансирующую мощность, активный фильтр, фильтрацию гармоник, падение напряжения и управляющее напряжение для подавления выбросов. Обнаружение антиостровов также было определено как проблема, и должна быть возможность отличить постоянные отключения электроэнергии от кратковременных падений и обеспечить соответствующий ответ в каждом случае.Ограничения этих исследований были представлены в критических обзорах Algaddafi et al. [16]. Новый метод определения выходного импеданса инвертора и импеданса сети был представлен Sun [3], который утверждал, что высокое выходное сопротивление инвертора, подключенного к сети, позволяет успешно работать с более широким диапазоном импедансов сети. Другие вопросы, которые также будут важны, включают управление параллельным сетевым инвертором, выходной фильтр и демпфирование, метод синхронизации с сетью и оптимизацию выходного импеданса.
Недавно He et al. Смоделировали многократный инвертор, использующий эквивалентные схемы Нортона. [17], обсуждая взаимодействие параллельных инверторов. Система Micro-Grid на основе нескольких фотоэлектрических инверторов представила более сложную картину, где взаимодействие фотоэлектрических инверторов вызовет сложный резонанс на различных частотах, поэтому выходной ток будет искажаться, даже если конструкция управления и схема фильтра точно разработаны для одного инвертора. .
Физическая фотоэлектрическая матрица имеет несколько ограничений, поскольку она зависит от погодных условий для испытаний на открытом воздухе и требует большого пространства и системы охлаждения для испытаний в помещении.Эмулятор фотоэлектрической матрицы (PVAE) с быстрым откликом предлагает потенциальное решение. Доступные в настоящее время силовые электронные PVAE имеют низкое время отклика. Это можно преодолеть, используя серийный регулятор с надежным управлением. Нелинейность кривой тока-напряжения ( I — В ) и мощности-напряжения ( P — В ) генератора кривых PVAE также является сложной задачей, и ее характеристики будут меняться в зависимости от солнечной инсоляции, окружающей среды. температура и выходное напряжение [12].Это можно преодолеть с помощью аналоговой вычислительной схемы, представленной в [18]. Однако PVAE, представленный в [18], требует системы охлаждения, где при высокой нагрузке или высокой мощности система может быть нестабильной, и производительность PVAE ухудшится. Следовательно, PVAE не подходит для работы с Sunny Boy (SB 1700E) в настоящее время, даже если он может использоваться с малой мощностью, такой как инвертор Sunny Boy 700. Для простоты и доступности коммерческий фотоэлектрический инвертор, которым является инвертор SB 1700E, был первоначально протестирован с источником Thevenin в этой статье.Работа однофазного инвертора описывается как эквивалентная схема инвертора, подключенного к сети, что помогает понять поведение фотоэлектрического инвертора. На сегодняшний день динамическая модель инвертора не обсуждается должным образом. Уравнение (1) обычно используется для изучения поведения фотоэлектрического инвертора и для определения фазового угла [19].
.Бортовой преобразователь постоянного тока в постоянный ток электромобиля на основе синхронного выпрямления и анализа характеристик
Преобразователь постоянного тока в постоянный является основной частью двухступенчатого бортового зарядного устройства электромобиля. В настоящее время преобразователь постоянного тока в постоянный ток с полным мостом и плавным переключением фаз со сдвигом фазы имеет такие проблемы, как трудности с коммутацией отстающего плеча, колебания напряжения на вторичной стороне трансформатора и низкий КПД. В данной статье предлагается полномостовой преобразователь постоянного тока в постоянный с двумя фиксирующими диодами и синхронным выпрямлением.Фиксирующие диоды используются для подавления колебаний напряжения на вторичной стороне трансформатора и обеспечения энергии коммутации отстающей ветви. Синхронное выпрямление снижает потери коммутирующего устройства. Анализируются принцип работы и способ управления преобразователем постоянного тока в постоянный, рассчитываются потери коммутирующего устройства. Результаты моделирования и экспериментов показывают, что по сравнению с традиционным преобразователем постоянного тока в постоянный импульс напряжения вторичной обмотки трансформатора меньше, КПД выше, а мягкий переключатель может быть реализован в широком диапазоне нагрузок, что удовлетворяет требованиям. требование быстрой зарядки автомобильных аккумуляторов.
1. Введение
Электромобили (EV) быстро развивались благодаря своей высокой эффективности и отсутствию загрязнения окружающей среды. Увеличение количества электромобилей увеличивает технические требования к бортовым зарядным устройствам [1]. Из-за ограниченного внутреннего пространства бортовое зарядное устройство (OBC) должно отвечать требованиям высокой плотности мощности, высокой эффективности зарядки и хорошего эффекта рассеивания тепла [2]. Двухступенчатый OBC включает преобразователь PFC и изолированный преобразователь постоянного тока в постоянный.Первый преобразует переменный ток в постоянный; последний обеспечивает широкий диапазон постоянного тока для зарядки установленных на автомобиле аккумуляторов. Цели исследования бортовых преобразователей электромобилей в основном сосредоточены на повышении эксплуатационной эффективности и сокращении объема [3]. Исследования PFC являются относительно зрелыми, а существующие исследования достигли эффективности более 98% [4]. Следовательно, его общий КПД и удельная мощность больше зависят от конструкции и работы преобразователя постоянного тока. В настоящее время высокочастотный импульсный преобразователь широко используется в преобразователе постоянного тока.Частота переключения обычно находится на уровне десятков кГц [5]. Хотя увеличение частоты переключения значительно уменьшает объем оборудования, оно также вызывает такие проблемы, как увеличение потерь переключения, снижение эффективности и увеличение электромагнитных помех. Для решения этих проблем появились технологии мягкой коммутации, такие как ZVS, ZCS и LLC [6, 7]. Применение этой технологии в традиционной топологии импульсного источника питания может снизить коммутационные потери и шумовые помехи устройств переключения мощности в высокочастотном состоянии преобразователя, что может дополнительно повысить эффективность и плотность мощности, а также уменьшить объем и вес преобразователя.
Традиционные топологии DC-DC преобразователей, используемые в OBC, включают полномостовую схему ШИМ и полномостовую резонансную схему (включая LLC-резонанс и последовательный резонанс) [8]. Преобразователь LLC имеет преимущества в виде скачков напряжения без отключения и небольшой мощности циркулирующего тока. В сочетании с кривой зарядки автомобильных аккумуляторов диапазон выходного напряжения преобразователя постоянного тока в постоянный шире, частота переключения преобразователя будет сильно отклоняться от резонансной частоты, и потери в системе увеличатся [9].Полномостовая схема ШИМ может адаптироваться к широкому диапазону выходного напряжения и фиксированной частоте переключения, но традиционный полномостовой преобразователь ШИМ имеет большую циркуляцию реактивной мощности и не может обеспечить плавное переключение при небольшой нагрузке [10]. По этой причине предлагается фазосдвигающий полномостовой преобразователь с управляемым вспомогательным током, который реализует плавное переключение переключаемых транзисторов при полной нагрузке, но его стоимость высока, а управление затруднено [11]. Потери при обратном восстановлении выпрямительного диода можно уменьшить, используя фазосдвигающее управление вторичной обмоткой трансформатора, но эффективность при полной нагрузке низка [12].В данной статье предлагается усовершенствованный полномостовой преобразователь постоянного тока в постоянный с фазовым сдвигом ZVS. Два ограничивающих диода используются для устранения колебаний напряжения вторичного выпрямителя. Синхронный выпрямитель (SR) используется для уменьшения потерь в системе. Наконец, в лаборатории создается экспериментальный образец.
2. Бортовой способ зарядки электромобилей
2.1. Модель батареи
В настоящее время существуют трехкомпонентные литиевые батареи и литий-железо-фосфатные батареи для электромобилей.Трехкомпонентные литиевые батареи имеют высокую плотность энергии, но низкий ток заряда и быстрое затухание емкости, которые в основном используются в электромобилях Tesla. Литий-железо-фосфатные батареи широко используются во многих электромобилях из-за их высокого тока заряда-разряда, медленного затухания емкости и высокой безопасности. Модель эквивалентной схемы Тевенина литий-железо-фосфатной батареи показана на рисунке 1 [13], где В куб.см — напряжение холостого хода, R e — внутреннее сопротивление батареи, R p — поляризационное сопротивление, а C p — поляризационная емкость.Эквивалентный импеданс Z o батарей составляет
.