Posted on

Назначение, схема и принцип работы однополупериодного выпрямителя

⇐ ПредыдущаяСтр 3 из 9Следующая ⇒

Рис.1. Схема однополупериодного выпрямителя.

Выпрямитель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.[1][2]

Большинство выпрямителей создаёт не постоянные, а пульсирующие однонаправленные напряжение и ток, для сглаживания пульсаций которых применяют фильтры.

Устройство, выполняющее обратную функцию — преобразование постоянных напряжения и тока в переменные напряжение и ток — называется инвертором.

Из-за принципа обратимости электрических машин выпрямитель и инвертор являются двумя разновидностями одной и той же электрической машины (справедливо только для инвертора на базе электрической машины).

Данные выпрямители применяются также для обеспеченияпитанием в системах наблюдения и сигнализации. В области малыхмощностей они находят применение для заряда стартерных батарейдизельных двигателей и газовых турбин.

Принцип действия выпрямителя очевиден из приведенного рисунка. Схема с самозапуском – операционный усилитель (ОУ) питается от выпрямленного напряжения.

 

 

24.Назначение, схема и принцип работы двухполупериодного выпрямителя со средней точкой

В том случае если при выпрямлении переменного тока необходимо использовать оба полупериода, то нам потребуется выпрямитель совершенного иного типа. Такая схема называется двухполупериодным выпрямителем. В одной разновидности двухполупериодного выпрямителя, называемой выпрямителем со средней точкой, используется трансформатор с отводом от средней точки вторичной обмотки и два диода, как показано на рисунке ниже.

Выпрямитель Миткевича «два четвертьмоста параллельно» на двуханодной лампе. Здесь вторичная обмотка Н служит для накала катода лампы.

Двухполупериодный выпрямитель со средней точкой

Принцип работы этой схемы нетрудно понять путём анализа по отдельности каждого полупериода. Сначала рассмотрим первый полупериод, когда напряжение источника будет положительным (+) сверху и отрицательным (-) снизу. В этот момент проводит только верхний диод, а нижний блокирует ток, и, следовательно, нагрузка «видит» только первый полупериод синусоиды. В этой части цикла ток протекает только по верхней половине вторичной обмотки трансформатора (см. рисунок ниже).

в этом выпрямителе выпрямленные полупериоды имеют колоколообразную форму, то есть форму близкую к функции .

Площадь под интегральной кривой равна:

Относительное эквивалентное активное внутреннее сопротивление равно , то есть вдвое больше, чем в однофазном полномостовом, следовательно больше потери энергии на нагрев меди обмоток трансформатора (или расход меди).

 

25.Назначение, схема и принцип работы двухполупериодного мостового выпрямителя

Принцип работы двухполупериодного мостового выпрямителя Двухполупериодный мостовой выпрямитель состоит из трансформатора Тр и четырх диодов, подключенных к вторичной обмотке трансформатора по мостовой схеме. К одной из диагоналей моста подсоединяется вторичная обмотка трансформатора, а к другой нагрузочный резистор Rн. Каждая пара диодов Д1, Д3 и Д2, Д4 работает поочередно.

В течение положительной полуволны входного напряжения открываются диоды VD1 и VD3, и в цепи нагрузки возникает импульс тока. Отрицательная волна напряжения открывает диоды VD2 и VD4, что также приводит к протеканию импульса тока через нагрузку. Мостовая схема имеет характеристики, аналогичные предыдущей схеме. Достоинством мостовой схемы является меньшее число витков вторичной обмотки, чем в предыдущей схеме. В настоящее время в схемах выпрямителя наиболее часто используют не отдельные диоды, а диодные сборки (КЦ 402, КД 405 и т.д.), состоящие из 4-х диодов, образующих мостовую схему




Однополупериодный выпрямитель, принцип его работы и схема

Питание электронных схем самого различного назначения требует источника постоянного напряжения. В обычной бытовой сети ток переменный, его частота в большинстве случаев 50 Гц. Форма графика изменения величины напряжения представляет собой синусоиду с периодом в 0,02 секунды, при этом один полупериод оно относительно нейтрали положительное, второй – отрицательное. Для решения задачи его преобразования в постоянную величину применяются выпрямители переменного тока. Они бывают разной конструкции, и их схемы могут отличаться.

однополупериодный выпрямитель

Для того чтобы понять, как работает самый простой однополупериодный выпрямитель, нужно сначала разобраться в природе электрической проводимости. Ток есть направленное движение заряженных частиц, которые могут иметь противоположную полярность, условно их делят на электроны и дырки, иначе – доноры и акцепторы, имеющие проводимости «n» и «p» типов соответственно. Если материал с n-проводимостью соединить с другим, p-типа, то на их границе образуется так называемый p-n-переход, ограничивающий движение заряженных частиц одним направлением. Это открытие позволило использовать полупроводниковую технику, заменив ею большинство ламповой электроники.

выпрямители переменного тока

Однополупериодный выпрямитель в своей основе содержит диод, устройство с одним p-n переходом. Переменное напряжение, поступающее на вход схемы, на выходе содержит лишь его половину, ту, которая соответствует направлению включения выпрямительного диода. Вторая часть периода, имеющая противоположное направление, просто не проходит и «срезается».

однофазный выпрямитель

На схеме изображен однофазный выпрямитель, применяемый чаще всего в простых домашних устройствах и предназначенный для бытовых целей. В промышленных условиях часто используется трехфазная сеть, поэтому и схемы преобразования переменного тока в постоянный могут быть сложнее. Кроме того, как правило, в цепь включают предохранители и фильтры. На входе схемы может включаться понижающий трансформатор или другой источник переменного напряжения. Выпрямительные диоды различаются по своим параметрам, главным из которых является величина тока, на которую диод рассчитан.

однополупериодный выпрямитель

Однополупериодный выпрямитель имеет существенный недостаток по сравнению с двухполупериодным. Напряжение после выпрямления не является в буквальном смысле постоянным, оно пульсирует от максимальной величины до нуля по полусинусовидной форме графика и имеет в промежутке между импульсами нулевое значение. Такую неравномерность подачи обычно компенсируют включением сглаживающего конденсатора довольно большой величины (иногда измеряемой в тысячах микрофарад), рассчитанного на напряжение не меньшее, чем возникает на выходе схемы, как правило, с запасом. Такая мера также не обеспечивает идеальной ровности графика, но величина отклонений от заданного значения значительно снижается, что дает возможность применять однополупериодный выпрямитель для запитывания простых схем, не требующих высокой стабильности напряжения.

В более сложных случаях используются двухполупериодные схемы выпрямления с последующей стабилизацией.

14. Двухполупериодный выпрямитель, принцип действия, коэффициент пульсации выпрямленного тока.

-26-

неизменным по направлению, но изменяющимся по величине во времени. Временные диаграммы изменения напряжений и токов, соответствующих однополупериодному выпрямителю, представлены на рис. 7.4.

Качество выпрямления оценивается коэффициентом пульсации. Для рассматриваемой однополупериодной схемы выпрямления:

K

=

Ai

=

I m π

=

π

=1,57

I ср

2 I m

2

n

 

 

 

 

Это означает, что амплитуда Аi переменной составляющей выпрямленного тока в 1,57 раза больше постоянной составляющей Iср.

Реальный диод должен выдерживать максимальное обратное напряжение выпрямителя, то есть при выборе диода для выпрямителя следует выбирать

U m>U обр.m=3,14U ср

Схема двухполупериодного выпрямителя с нулевой точкой.

-27-

Двухполупериодный выпрямитель с нулевой точкой можно рассматривать как два однополупериодных выпрямителя, работающих поочередно на общую нагрузку.

В этой схеме каждый из диодов проводит ток только в течение той части периода, когда анод имеет более высокий потенциал относительно катода, в этом случае диод открыт.

За период входного напряжения u1 или вторичного напряжения u2 в один полупериод диод VD1 проводит ток i’2, а в другой полупериод — проводит ток i»2 диод VD2. В результате временные диаграммы токов и напряжений приобретают вид, представленный на рисунке 7.6.

Пульсация тока

при

двухполупериодной схеме значительно уменьшается, так как коэффициент пульсации в этом случае равен:

 

 

 

 

 

 

 

 

 

 

-28-

K

n

=

Ai

=0,667 , где

I

 

=

2Im

 

I ср

ср

π

 

 

 

 

 

 

A

=

4Im

 

— амплитуда основной гармоники выпрямленного тока.

i

 

 

 

 

 

 

 

 

По сравнению со схемой с нулевой точкой, мостовая схема обладает меньшей на 20% расчётной мощностью, а внешняя характеристика мостовой схемы является менее жёсткой, чем в однополупериодной и двухполупериодной с нулевой точкой схемах выпрямителей.

Мостовая схема однофазного двухполупериодного выпрямителя переменного тока:

Выпрямители: Трехфазный однополупериодный выпрямитель — Club155.ru

 

Схемы выпрямителей, работающих от трехфазной сети переменного тока, строятся по тем же принципам, что и однофазные выпрямители. Для получения схемы трехфазного однополупериодного выпрямления необходимо использовать три однополупериодных выпрямителя, питающих единую нагрузку, но запитываемых от трех фаз источника входного напряжения со средней точкой (рис. 3.4-11). При таком включении для каждого из трех источников напряжения характерно то, что ток из него поступает в нагрузку только во время одного из двух полупериодов колебаний напряжения (точнее в течение части времени этого полупериода). Три диода выпрямителя открываются по очереди в течение одной трети периода колебаний входного напряжения каждый.

 

Рис. 3.4-11. Трехфазный однополупериодный выпрямитель

 

При рассмотрении схемы однофазного двухполупериодного выпрямителя для расчета среднего напряжения нагрузки использовалась формула:

\( U_{н ср} = \cfrac{2}{T} {\huge \int \normalsize}_{0}^{T/2} U_{вх max} \sin{(\omega t)} \operatorname{d}t = \cfrac{2}{T} {\huge \int \normalsize}_{-T/4}^{T/4} U_{вх max} \cos{(\omega t)} \operatorname{d}t\)  

 

Не трудно показать, что если в общем случае за период колебания входного напряжения \(T\) будут последовательно (но не одновременно) проводить ток \(n\) диодов, то:

 \( U_{н ср \Sigma} = \cfrac{n}{T} {\huge \int \normalsize}_{-T/2n}^{T/2n} U_{вх max} \cos{(\omega t)} \operatorname{d}t\) 

При этом первой из присутствующих на выходе гармоник переменного напряжения будет гармоника с номером \(n\), т.е. основная частота пульсаций на выходе выпрямителя будет в \(n\) раз выше частоты колебаний входного напряжения.

Используя приведенную формулу и проведя разложение выходного напряжения выпрямителя в ряд Фурье, можно получить обобщенные выражения для среднего значения выходного напряжения (\(U_{н ср}\)), амплитуды первой из присутствующих гармоник (\(U_{max 01}\)) и коэффициента пульсаций выпрямителя (\(K_п\)).

\( U_{н рс} = \cfrac{n \cdot U_{вх max}}{\pi} \sin{(\pi / n)}     U_{max 01} = \cfrac{2 \cdot U_{н ср}}{n^2 -1}     K_п = \cfrac{2}{n^2 — 1} \)     (3.4.3)

 

В случае трехфазного однополупериодного выпрямителя \(n = 3\) и согласно приведенных формул:

\( U_{н ср} = \cfrac{3 \cdot U_{вх ф max}}{\pi} \sin{(\pi / 3)} \approx 0,827 \cdot U_{вх ф max}     K_п = \cfrac{2}{3^2 — 1} = 0,25 \) 

Здесь \(U_{вх ф max}\) — амплитуда фазного напряжения на входе выпрямителя. Основная частота пульсаций выходного напряжения равна утроенной частоте входного сигнала.

 

Максимальное обратное напряжение на каждом диоде равно амплитуде линейного напряжения на входе выпрямителя, т.е.:

\( U_{обр max} = U_{вх л max} = \sqrt{3} \cdot U_{вх ф max} \approx 2,1 \cdot U_{н ср}\) 

 

К недостаткам данной схемы следует отнести плохое использование трансформатора, который работает с подмагничиванием постоянным током (это явление описывалось при рассмотрении однофазного однополупериодного выпрямителя), и повышенное обратное напряжение на диодах.

 

 

 

< Предыдущая   Следующая >

Полупроводниковые выпрямители — часть1

2018-01-23 Теория  

Сегодня немножко углубимся в теорию и поговорим о схемах выпрямителей. Рассмотрим сам принцип выпрямления переменного тока, наиболее часто встречающиеся схемы выпрямителей, полупроводниковые элементы, которые применяются в этих схемах.

Выпрямителями называются устройства, предназначенные для преобразования переменного тока в постоянный. Общая схема стандартного однофазного выпрямителя состоит из трансформатора, выпрямительного блока на основе полупроводниковых диодов и сглаживающего фильтра в виде конденсатора.

Трансформатор служит для преобразования переменного напряжения сети 220 V в необходимое выходное напряжение нагрузки. Выпрямительный блок (диодный мост) преобразовывает переменный ток в постоянный пульсирующий, а сглаживающий фильтр преобразовывает его в ток, близкий по форме к постоянному току.

В качестве диодных выпрямителей могут использоваться как четыре отдельных диода, так и диодная сборка в едином корпусе. На схемах диодный мост обычно изображается таким образом:

 

 

 

 

 

Современные выпрямители различают по типу используемых выпрямителей, схеме их включения и числу фаз. Также выпрямители могут быть управляемые и неуправляемые.

Однофазные выпрямители

Основными схемами однофазных выпрямителей являются однополупериодная и двухполупериодная (мостовая или со средней точкой).

Однофазная однополупериодная схема является самой простейшей схемой выпрямителя.

Трансформатор преобразовывает сетевое напряжение первичной обмотки Uc в напряжение вторичной обмотки U2. Так как диод Д имеет одностороннюю проводимость, ток I2 будет протекать только при положительной полуволне вторичного напряжения, при отрицательной полуволне диод будет закрыт. Так как ток в нагрузке протекает только в один полупериод, отсюда и название выпрямителя — однополупериодный.

К недостаткам однополупериодных выпрямителей следует отнести униполярный ток, который, проходя через вторичную обмотку, намагничивает сердечник трансформатора, изменяя его характеристики и уменьшая КПД, высокий уровень пульсаций и большое обратное напряжение на диоде.

Двухполупериодные схемы выпрямления уже значительно интересней. Из них наибольшую популярность приобрела мостовая схема включения диодов.

Схема состоит из трансформатора и четырех диодов,собранных мостом. Одна из диагоналей моста соединена с выводами вторичной обмотки трансформатора, вторая диагональ с нагрузкой. При положительном потенциале в точке a вторичной обмотки трансформатора ток пойдет по цепи точка a вторичной обмотки — A — диод Д1B — нагрузка D — диод Д3. К диодам Д2 и Д4 при этом приложено обратное напряжение, они заперты. При изменении направления Э.Д.С и тока во вторичной обмотке положительный потенциал появится уже в точке b вторичной обмотки трансформатора. Ток при этом пойдет по цепи b — C — диод Д2 — B — нагрузка  — D — диод Д4.

Таким образом ток в нагрузке не меняет своего направления. Кривые напряжения и тока на нагрузке повторяют (при прямом напряжении на диодах U np ≈ 0) по величине и форме выпрямленные полуволны напряжения и тока вторичной обмотки трансформатора. Они пульсируют от нуля до максимального значения.

Кроме мостовой схемы выпрямления может применяться двунаправленная схема.

Схема состоит из трансформатора со средней отпайкой на вторичной обмотке и двух диодов. Когда в точке a имеется положительный потенциал ток протекает по цепи a — диод Д1 — нагрузка  — отпайка 0 вторичной обмотки. При положительном потенциале в точке b вторичной обмотки ток потечет по цепи b — диод Д2 — с — нагрузка  — отпайка 0 вторичной обмотки.

На левом рисунке показана зависимость напряжения вторичной обмотки трансформатора от времени, на правом изменение тока нагрузки. Как следует из работы выпрямителя, направление тока в нагрузке неизменно. Вторичная обмотка трансформатора двухфазная и каждая фаза работает половину периода. Напряжение на нагрузке в любой момент равно мгновенному значению ЭДС фазы, работающей в данный момент.

К основным минусам данной схемы можно отнести необходимость делать отпайку вторичной обмотки трансформатора и большое обратное напряжение диода Uобр = 2U2м = 3,14U0, поэтому она не получила столь широкого распространения как мостовая схема.

Трехфазные выпрямители

Среди трехфазных схем наибольшее распространение получили однонаправленная схема выпрямления или схема Миткевича и мостовая схема, известная также как схема Ларионова.

Рассмотрим сначала однонаправленную схему выпрямителя.

В однонаправленной схеме вторичные обмотки трехфазного трансформатора соединены звездой. К фазам а, b и с подключены диоды Д1, Д2 и Д3, катоды которых соединены в точке 0. Нагрузка подключена между общим выводом трех вторичных обмоток трансформатора и общей точкой присоединения катодов.

Ток на каждом диоде будет протекать только тогда, когда потенциал на аноде будет выше потенциала на катоде. Это возможно в течении 1/3 периода, когда напряжение в данной фазе выше напряжений в двух других фазах. То есть когда U2а>U2b и U2a>U2c, диод Д1 будет открыт, в то время как Д2 и Д3 будут заперты. Под действием напряжения U2а ток замыкается через обмотку фазы а, диод Д1 и нагрузку . В следующую треть периода открывается диод Д2, затем Д3 и т.д.

Напряжение нагрузки будет равно напряжению фазы с открытым диодом и следовательно ток нагрузки изменяется по тому же закону. При этом ток в нагрузке всегда будет больше 0.

Пульсация тока в такой схеме будет относительно невелика, что понижает требования к сглаживающему фильтру. Недостатком данной схемы, также как однофазной однополупериодной является намагничивание сердечника трансформатора.

Большее распространение в трехфазных выпрямителях получила мостовая схема Ларионова, так как она лишена недостатков однотактной схемы.

В такой схеме одновременно пропускают ток два диода — один с наибольшим положительным потенциалом анода относительно нулевой точки трансформатора из катодной группы диодов, другой — с наибольшим отрицательным потенциалом катода. Нагрузка подключается между анодной и катодной группой диодов.

В интервал времени t1-t2 пропускать ток будут диоды Д1 и Д4, так как наибольший положительный потенциал имеет анод фазы а, а наибольшим отрицательным потенциалом обладает катод фазы b. В интервале t2-t3 пропускать ток будут диоды Д1-Д6, в интервале t3-t4 — Д3-Д6, в интервале t4-t5 — Д3-Д2, в интервале t5-t6 — Д5-Д2 и в последнем интервале — Д5-Д4.

Таким образом напряжение на нагрузке будет иметь вид шести пульсаций за период, а интервал проводимости каждого диода — 2π/3. При этом интервал совместной работы двух диодов — π/6. Среднее значение напряжения на нагрузке будет:

  где U2 — действующее значение напряжения на вторичных обмотках трансформатора.

Среднее значение выпрямленного напряжения практически равно максимальному линейному напряжению питающей сети:

где Uab.m — максимальное линейное напряжение вторичной обмотки.

Из достоинств схемы нужно отметить то, что в такой схеме отсутствует вынужденное подмагничивание сердечника трансформатора. Кроме того коэффициент пульсаций значительно ниже, чем у однофазной двухполупериодной схемы и составляет 0,057.

На основе этой схемы можно создать двенадцати, восемьнадцати, двадцатичетырехфазные выпрямители. Для этого используются различные сочетания последовательного и параллельного соединения схем. Чем больше будет фаз и соответственно пар диодов, тем меньше будут выходные пульсации.

Кроме этих схем, могут применяться и управляемые схемы выпрямления, которые наряду с выпрямлением переменного тока обеспечивают и регулировку выходного напряжения (тока). Но об этом мы поговорим в следующий раз.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *