Posted on

Содержание

Мировое потребление энергии Википедия

Мировое потребление энергии означает общее количество энергии, потребляемое человеческой цивилизацией.

Мировой рост потребления энергии[1] Ежегодное мировое производство электроэнергии (1980–2011). Энергоёмкость различных экономик График показывает отношения энергопотребления к ВВП данных стран. Данные ВВП скорректированы по ППС 2004 года и инфляцию[2].

Как правило, оно включает в себя всю энергию, извлекаемую из всех энергоресурсов и потребляемую человечеством во всех промышленных и потребительских секторах экономики в каждой стране. Будучи энергетической мерой цивилизации, мировое потребление энергии имеет серьёзное значение для социально-экономической и политической сфер человеческой цивилизации.

Такие учреждения, как Международное энергетическое агентство (IEA), U.S. Energy Information Administration (EIA) и Европейское агентство по окружающей среде (EEA), ведут учёт и периодически публикуют данные по энергетике. Уточнённые данные и понимание мирового потребления энергии позволяют выявить системные тенденции и шаблоны, сформировать текущие вопросы энергетики и принять оптимальные для всех решения.

По данным МЭА за 2012 год ограничить климатическое потепление 2 °C с каждым годом становится все более сложной и дорогостоящей задачей. Если не будет принято никаких мер до 2017 года, весь допустимый объем выбросов CO2 будет исчерпан энергетической инфраструктурой уже в 2017 году.[обновить данные]

Более 1600 млрд долларов было инвестировано в 2013 году, чтобы обеспечить энергией потребителей в мире, что в два раза больше по отношению к 2000 году. 130 млрд долларов вложены в повышение энергоэффективности. Растёт роль возобновляемых источников энергии, объем инвестиций составлял 60 млрд долларов в 2000 году, достиг максимума в 300 млрд долларов в 2011 году, и составил 250 млрд долларов в 2013 году. 1100 млрд долларов инвестировано в добычу и транспортировку ископаемого топлива, переработку нефти и строительство тепловых электростанций на ископаемом топливе

[3].

Потребление ископаемых энергоресурсов сильно выросло в 2000—2008 годах. [4].[обновить данные] После Чернобыльской катастрофы в 1986 году инвестиции в атомную энергетику были небольшими.

Потребление энергии в разрезе источников, ПВт·ч[5]
ИскопаемыеАтомныеВозобновляемыеИтого
199083,3746,113
13,082
102,569
200094,4937,85715,337117,687
2008117,0768,28318,492143,851
Изменение 2000-200822,5830,4263,15526,164

1 ПВт·ч = 1012кВт·ч

Рост энергопотребления в странах G20 замедлился до 2 % в 2011 году вследствие экономического кризиса. На протяжении последних нескольких лет мировой спрос на энергию определяется растущими китайским и индийским рынками, в то время как развитые страны борются с замедлением экономики, высокими ценами на нефть, приводящими к сохранению или даже снижению потребления энергии.[6]

По данным МЭА с 1990 по 2008 год среднее потребление энергии на душу населения увеличилось на 10 %, тогда как население мира увеличилось на 27 %. Региональное потребление энергии также выросло с 1990 по 2008 год: на Ближнем Востоке — на 170 %, в Китае — на 146 %,

Энергия и человек. Ряд случайных сравнений / Habr

В физике для решения задач иногда применяется полунаучный «метод размерностей», когда зная размерность искомой величины, мы можем догадаться, что на что поделить, сложить, умножить, чтобы получить правильный ответ. Я решил взять размерность «энергия» и сравнить «яблоки с бананами», а именно человека как энергетическую систему с другими системами.
В чем измеряется, энергия?





Disclaimer: все вычисления могут быть не точны и главная цель показать порядок чисел.

Человек — потребитель энергии. 2 кВт*ч, 100 Вт


Человек в среднем потребляет около 2000 ккалорий в день, что дает около 2 кВт*ч или около 100 Ватт, средней мощности. Можно представить, что человек ест, как одна большая лампочка на накаливания на 100 Ватт.

Энергопотребление человека сравнительно небольшое по сравнению с приборами, которые нас окружают. Можно сказать, что человек произвел техническую революцию. Человек принимает «в себя» меньше энергии, чем он использует «для себя» даже только в домашних условиях (средний расчет больше 100 кВт*ч в месяц).

Человек — вычислительная машина. 30 Вт


Распространены оценки, что мозг съедает от 200 до 1000 Ккал (стрессовые ситуации), то есть от 20%-40% энергии, что дает оценку средней мощности 30 Вт.

Мозг — крайне эффективная система. Да современные ноутбуки производят операции гораздо лучше нас и средняя мощность находится около 30 Вт, а телефоны вообще 0.5-1 Вт. Зато современные видеокарты потребляют в среднем от 250 Вт и все равно не могут сравниться с мозгом по скорости и точности обработки визуальной информации. Так что, человек очень неплохой процессор, правда только для специфических задач.

Человек — аккумулятор. 10 кВт*ч


Говорят, человек может не есть 3-7 дней. Понятно, что не питаясь, человек начнет потреблять меньше энергии на внутренние и на внешние нужды. Можно положить, что съев двойную суточную норму, человек будет активен 2 дня (при наличии воды), что дает грубую оценку 10 кВт*ч.

Если посчитать, энергоемкость человека, то мы можем получить крайне разные цифры, вес людей, которые могут прожить N-е количество дней и произвести какую-то полезную работу, крайне разнится от 50 кг — 150 кг. Скорее всего, средняя энергоемкость равна 0.1 кВт*ч/кг, что не так и хорошо и не так плохо. Мы находимся между бензином (10 кВт*ч/кг) и Liion (0.1 кВт*ч/кг), ближе к аккумуляторам.

Человек — потребитель солнечной энергии. 1-2 солнечные панели


Сегодняшняя солнечная панель дает около 300 Ватт в пике, в умеренных широтах средний КИУМ до 20% (солнце светит только днем и слабо). Мы знаем, что человек недолговечный, но все-таки аккумулятор, поэтому в среднем 2 панелей достаточно, чтобы человек питался только солнцем.

Если отбросить условности и сделать небольшие прорывы в технологиях (использование дорогих элементов позволяет достигать до 40% КПД в панелях), человеку будет достаточно носить «солнечную одежду» для того, чтобы получать всю необходимую энергию.

Человек — обогреватель


Процитирую статью про одежду: в покое человеческое тело вырабатывает 80 ватт тепла, а теряет при этом за счет дыхания 10 ватт, теплового излучения — 30 ватт, теплопроводности и конвекции — 20 ватта, испарения влаги — 20 ватт.

Получается человек крайне «слабый» обогреватель. Домашние обогреватели потребляют по 1 кВт и они покрывают нужды на обогрев только частично. Подогрев воды и обогрев помещений в принципе является самым большим энергопотреблением домашнего хозяйства. Приведу свой годовой расклад:

— Перемещение (транспорт, топливо): 8 000 кВт*ч за год.
— Электричество: 2 500 кВт*ч за год.
— Подогрев воды и обогрев: 30 000 кВт*ч за год.

Получается на средний ежедневный подогрев воды и обогрев уходит до 100 кВт*ч в день, что в 50 раз больше, чем человек в принципе потребляет.

Человек — средство передвижения (автомобиль, пешеход, велосипед)


Человек как активное живое существо может перемещаться в пространстве. Допустим человек может переместиться на 30 км за день пешком и на 120 км за день на велосипеде. Это не максимальные значения, конечно, спортсмены пробегают до 100 км и проезжают до 1000 км за день.

Попробуем сравнить человека как эффективную систему передвижения человека.

— Автомобиль с ДВС тратит в среднем 5 л на 100 км, 1 литр = 10 кВт*ч, что дает 500 Втч на км
— Электромобиль — 150-200 Вт*ч на км
— Пешеход — 2 кВт*ч разделить на 10-50 км, 50-200 Вт*ч на км
— Медленный/маленький электромобиль — 50-100 Вт*ч на км
— Электровелосипед — 10 Вт*ч/км (средняя скорость 10-15 кмч)
— Велосипедист — 2 кВт*ч разделить на 100-1000 км, 2-20 Вт*ч на км

Знаете еще интересные совпадения — пишите в комментариях.
Спасибо за внимание.

Энергетика России — Википедия

Энергетика России
Динамика производства электроэнергии в России в 1992—2008 годах, в млрд кВт∙час Динамика мощности всех электростанций в России в 1992—2008 годах, в млн кВт

Энергетика России — отрасль российской экономики. В 2013 году потребление первичных энергоресурсов составило 699,0 млн тонн нефтяного эквивалента, из которых на природный газ пришлось 53,2 %; на нефть — 21,9 %; на уголь — 13,4 %; на гидроэнергию — 5,9 %; на ядерную энергию — 5,6 %[1]. Традиционной, исторически самой значимой отраслью является топливная энергетика. В 20-30-х годах XX века новый толчок энергетическому развитию СССР дало масштабное строительство районных тепловых и гидроэлектростанций в рамках ГОЭЛРО. В пятидесятые годы прогресс в энергетической области был связан с научными разработками в области атомной энергии и строительством атомных электростанций. В последующие годы происходило освоение гидропотенциала сибирских рек и ископаемых ресурсов Западной Сибири.

Страна обладает существенными запасами энергетических ископаемых и потенциалом возобновляемых источников, входит в десятку государств, наиболее обеспеченных энергоресурсами.

Крупнейшая в России тепловая электростанция — Сургутская ГРЭС-2 обеспечивает электроэнергией важнейший для России нефтегазовый промысел в Западной Сибири, сжигает ценное нефтехимическое сырьё и автомобильное топливо — Нефтяной газ

Значение электроэнергетики в экономике России, так же как и её общественной жизни трудно переоценить — это основа всей современной жизни.

По важному показателю — выработке на одного жителя — в 2005 году страна находилась приблизительно на одном уровне с такими энергоимпортирующими государствами как Германия и Дания, имеющими меньшие транспортные потери и затраты на отопление. Однако после спада в 90-х с 1998 года потребление постоянно растёт, в частности в 2007 году выработка всеми станциями единой энергосистемы составила 997,3 млрд кВт·ч (1 082 млрд кВт·ч в 1990 году).

Производство электроэнергии в 2017 году составило 1,091 трлн кВт·ч, что на 0,1% выше уровня 2016 года.

АЭС за этот период нарастили производство на 3,3%, до 203 млрд кВт·ч. Тепловые станции снизили производство на 0,8% — до 700 млрд кВт·ч. Гидроэлектростанции увеличили выработку на 0,3%, до 187 млрд кВт·ч.[2]

В структуре потребления выделяется промышленность — 36 %, ТЭК — 18 %, жилой сектор — 15 % (несколько заместивший в 90-х провал потребления в промышленности), значительны потери в сетях, достигающие 11,5 %. По регионам структура резко отличается — от высокой доли ТЭК в западной Сибири и энергоёмкой промышленности в Сибирской системе, до высокой доли жилого сектора в густонаселённых регионах европейской части.

В 2003 году начат процесс реформирования «ЕЭС России». Основными вехами реформирования электроэнергетики стали завершение формирования новых субъектов рынка, переход к новым правилам функционирования оптового и розничных рынков электроэнергии, принятие решения об ускорении темпов либерализации, размещение на фондовом рынке акций генерирующих компаний. Осуществлена государственная регистрация семи оптовых генерирующих компаний (ОГК) и 14 территориальных генерирующих компаний (ТГК). В отдельную Федеральную сетевую компанию (ФСК ЕЭС), контролируемую государством, выделена основная часть магистральных и распределительных сетей.

Железнодорожный транспорт — крупный и особенно важный для хозяйства страны потребитель энергии

Кроме того действуют и более независимые или изолированные энергокомпании «Янтарьэнерго», «Якутскэнерго», «Дальневосточная энергетическая компания», «Татэнерго», «Башкирэнерго», «Иркутскэнерго» и «Новосибирскэнерго».

В 2008 году владельцем акций межрегиональных сетевых компаний по распределению энергетических ресурсов стал «Холдинг МРСК».

Крупными игроками российской электроэнергетики с конца 2007 года стали германская компания E.ON, теперь контролирующая один из крупнейших энергоактивов — ОГК-4, итальянская ENEL теперь ключевой акционер ОГК-5. С 2008 года финский концерн Fortum контролирует бывшую ТГК-10.

Техническое развитие классической электроэнергетики России связывается введением в энергосистему более эффективных и маневренных парогазовых установок в том числе и в составе теплоцентралей.

Государственная политика[править | править код]

В 2009 году в России вступил в силу федеральный закон «Об энергосбережении и повышении энергетической эффективности в Российской Федерации», целью которого является стимулирование энергосбережения и повышения энерго-эффективности.[3]

Крым: Энергетика Крыма, Альтернативная энергетика Крыма

На 2016 год суммарная установленная мощность электрогенерации в РФ составляла 244,1 гигаватт (для сравнения в США 1072 ГВт, в Китае 1454 ГВт)

Основные источники по установленной мощности:

  • Тепловые станции на горючих ископаемых: 160,2 ГВт (для сравнения в США 776 ГВт, в Китае 1054 ГВт)
  • Гидроэнергетика: 48,1 ГВт (для сравнения в США 79 ГВт, в Китае 198 ГВт)
  • Атомные станции: 27,9 ГВт (для сравнения в США 102 ГВт, в Китае 32 ГВт)
  • Ветроэнергетика: 0,01 ГВт (для сравнения в США 59 ГВт, в Китае 128 ГВт)
  • Солнцеэнергетика 0,08 ГВт (для сравнения в США 3 ГВт, в Китае 42 Гвт)

Производство электроэнергии в 2016 году составило 1064,1 ТВт*ч (для сравнения в США 4047 ТВт*ч., в Китае 5650 ТВт*ч).

По видам энергетики выработка:

  • Тепловые станции: 628,0 ТВт*ч (для сравнения в США 2775 ТВт*ч., в Китае 4503 ТВ*ч)
  • Гидроэнергетика: 186,7 ТВт*ч (для сравнения в США 276 ТВт*ч., в Китае 800 ТВ*ч)
  • Атомные станции: 196,4 ТВт*ч (для сравнения в США 769 ТВт*ч., в Китае 123 ТВ*ч)
  • Ветроэнергетика: 0,09 ТВт*ч (для сравнения в США 140 ТВт*ч., в Китае 186 ТВ*ч)
  • Солнцеэнергетика: 0,16 ТВт*ч (для сравнения в США 4 ТВт*ч., в Китае 38 ТВ*ч)
производство электроэнергии[4][5]
годПроизводство

электро-энергии[6],

млрд кВтч

Изменение

относительно

предыдущего

года,

млн кВтч

Изменение

относительно

предыдущего

года,

%

Общая мощность электростанций

по данным ЕЭС России с 2009г (на начало года)[7][8],

тыс. кВт

Изменение

мощности относительно

предыдущего

года,

тыс. кВт

Изменение

мощности относительно

предыдущего

года,

%

Технологически

изолированные

территориальные энергосистемы вне

ЕЭС России, тыс. кВт[9][10]

Общая мощность

электростанций

(на начало года),

тыс. кВт

Тепловые 

станции

Гидро-

энергетика

Атомные

станции

Ветро-

энергетика

Солнце-

энергетика

Всего
19901 082,2
19911 068,2-14 000-1.2918 898
19921 008,5-59 700-5.59149 51043 33618 89811211 755
1993956,6-51 900-5.15148 73643 43219 84811212 027
1994875,9-80 700-8.44149 65243 78219 84811213 293
1995860,0-15 900-1.82145 84443 76019 84811209 463
1996847,2-12 800-1.49145 84443 76019 84811209 463
1997834,1-13 100-1.55145 94443 76019 84811209 563
1998827,2-6 900-0.83148 25444 07319 84813212 188
1999846,2+19 000+2.3148 32444 24019 84813212 425
2000877,8+31 600+3.73146 67044 34519 84826210 889
2001891,3+13 500+1.54147 34544 68420 79824212 851
2002891-300-0.03147 21344 82820 79377212 911
2003916+25 000+2.81147 95545 22220 79379214 049
2004932+16 000+1.75148 31645 53121 74365215 655
2005953,1+21 100+2.26149 91545 79721 74389217 544
2006995,8+42 700+4.48151 51346 06221 74397219 415
20071 015,3+19 500+1.96153 33546 80421 743100221 982
20081 040,4+25 100+2.47154 77847 06621 74390223 677
2009992-48 400-4.6523 46600210 616,2
20101 038+46 000+4.64143 967,544 432,223 44600211 845,7+1 229,5+0,58
20111 054,8+16 800+1.62146 071,044 531,624 26600214 868,6+3 022,9+1,43
20121 069,3+14 500+1.37149 283,644 596,224 26600218 145,8+3 277,2+1,53
20131 045,016-24 284-2.27151 827,9645 976,8725 26600223 070,83+4 925,03+2,26
20141 047,447+2 431,8+0,23154 549,7546 654,4325 26600226 470,18+3 399,35+1,52
20151 049,905+2 457,6+0,23158 403,4247 712,3926 33600232 451,81+5 981,63+2,64
20161 071,842+21 936,8+2,05160 233,347 855,227 14610,960,2235 305,56+2 853,75+1,237 894.44243 200
20171 073,724+1 882,2+0,18160 242,248 085,9327 929,410,975,2236 343,63+1 038,07+0,447 802,7244 146,4
20181 091,079+17 355,2+1,59162 779,748 449,6527 914,3134,36534,22239 812,2+3 468,57+1,477 055,3246 867,5
2019*417,2164 586,648 506,329 132,2183,9834,2243 243,19+3 430,99+1,43

.* Данные за 2019 год по 05.2019

Ядерная энергетика[править | править код]

Значительный энергообъект Урала и важнейшая технологическая площадка ядерной промышленности — Белоярская АЭС

Россия обладает технологией ядерной электроэнергетики полного цикла от добычи урановых руд до выработки электроэнергии, обладает разведанными запасами руд, на 2006 год оцениваемыми в 615 тыс. т. урана, а также запасами в оружейном виде. Кроме того страна прорабатывает и промышленно применяет технологию реакторов на быстрых нейтронах, увеличивающую запасы топлива для классических реакторов в несколько раз.

Одна из крупнейших российских атомных электростанций — Балаковская АЭС — работает в базовой части графика нагрузки Объединённой энергосистемы Средней Волги.

В 80-е годы было начато развитие и строительство атомных станций теплоснабжения (Горьковская, Воронежская АСТ) способных резко повысить эффективность ядерной энергетики, и по значению поднять до уровня газовой, однако в 90-х годах проекты были заморожены и де-факто отменены.

В современном виде возможности ядерной технологии и разведанные запасы значительно меньше потенциала запасов природного газа, и всё же высокое значение отрасль получила в европейской части России и особенно на северо-западе, где выработка на АЭС достигает 42 %. В целом же за 2018 год атомными электростанциями выработано рекордное за всю историю отрасли количество электроэнергии — 204,3 млрд кВт·ч, что составило 18,7 % от общей выработки в Единой энергосистеме. Загрузка АЭС составляет чуть более 83% от их мощности — атомные станции работают в базовой части графика энергосистем.

Основная уранодобывающая компания Приаргунское производственное горно-химическое объединение, добывает 93 % российского урана, обеспечивая 1/3 потребности в сырье.

В 2007 году федеральные власти инициировали создание единого государственного холдинга «Атомэнергопром» объединяющего компании Росэнергоатом, ТВЭЛ, Техснабэкспорт и Атомстройэкспорт.

Последние реализованные проекты: Калининская АЭС (блоки №3 (2005), №4 (2012)), Ростовская АЭС (№2 (2010), №3 (2015), №4 (2018)), блок №4 Белоярской АЭС с реактором БН-800 (2016), блок №1 Нововоронежская АЭС-2 (2017), блок №1 Ленинградская АЭС-2(2018). Основные стройки: Нововоронежская АЭС-2, Ленинградская АЭС-2 и Курская АЭС-2.

Основным научным направлением является развитие технологии управляемого термоядерного синтеза. Россия участвует в проекте международного экспериментального термоядерного реактора.

Классы энергоэффективности — Википедия

Наклейка с указанием энерго-
экономичности стиральной машины (англ.) в Европейском союзе. В данном случае — изделие соответствует классу «В»

Согласно Директивам Комиссии Евросоюза по энергетике и транспорту ЕС (92/75/CEE, 94/2/CE, 95/12/CE, 96/89/CE, 2003/66/CE, и другим) у большинства бытовых товаров, от лампочки до автомобилей, должен быть указан класс энергоэффективности ЕС — DIRECTIVE 2009/125/EC, диаграмма ясно показывающая энергоэффективные свойства товара. Эффективность использования энергии обозначается классами — от A до G. Класс A имеет самое низкое энергопотребление, G наименее эффективен. Этикетка также даёт другую полезную информацию клиенту, помогая выбирать между различными моделями. Также эта информация должна быть дана в каталогах и размещена интернет-продавцами на их веб-сайтах.

С 2010 года вступила в силу новая Директива по маркировке этикеткой энергетической эффективности № 2010/30/ЕС. Новая Директива охватывает не только бытовую продукцию, но расширяет сферу регулирования на промышленные и торговые приборы и оборудование, а также на продукцию, которая сама не потребляет энергию, но может оказать значительное прямое или косвенное воздействие на её экономию (например, ограждающие конструкции зданий и сооружений).

Маркировка[править | править код]

Лейблы энергии разделены как минимум на четыре категории:

  • Детали прибора: в зависимости от прибора, определенных деталей, модели и её материалов
  • Класс энергоэффективности: цветовой код, связанный с буквенным обозначением (от A до G), который дает общее представление об энергопотреблении прибора.
  • Потребление, эффективность, способность, и т. д.: этот раздел дает информацию по типу прибора
  • Шум: шум, испускаемый прибором, указан в децибелах

Холодильники, морозильники[править | править код]

Таблица классов энергоэффективности (в соответствии со старой Директивой ЕС 94/2, касающейся маркировки энергетической эффективности бытовых холодильных приборов — в настоящее время не действует), индекс вычислен для каждого прибора согласно его потреблению и объему, учитывая тип прибора.

A++A+ABCDEFG
<30<42<55<75<90<100<110<125>125

Этикетка также содержит:

  • ежегодное потребление энергии в кВт·ч
  • Внутренний объём холодильной камеры в литрах
  • Внутренний объём морозильной камеры в литрах
  • уровень шума в dB

Во исполнение новой Директивы № 2010/30/ЕС в том же году была принята новая Директива по энергетической маркировке бытовых холодильных приборов № 1060/2010. Новая Директива по энергетической маркировке холодильных приборов не только вводит новые классы энергетической эффективности А+, А++, А+++, но и устанавливает новый вид этикетки энергетической эффективности для бытовых холодильных приборов, в которой буквенные обозначения заменяются пиктограммами.

Класс энергетической эффективности бытовых холодильных приборов определяется в соответствии с индексом энергетической эффективности в соответствии с таблицей.

A+++A++A+ABCDEFG
EEI < 2222 ≤ EEI < 3333 ≤ EEI < 4444 ≤ EEI < 5555 ≤ EEI < 7575 ≤ EEI < 9595 ≤ EEI < 110110 ≤ EEI < 125125 ≤ EEI < 150EEI ≥ 150

Такая классификация будет действовать до 30 июня 2014 года. С 1 июля 2014 г соответствие индексов энергетической эффективности классам будет определяться в соответствии со следующей таблицей (то есть будут повышены требования к классу А+).

A+++A++A+ABCDEFG
EEI < 2222 ≤ EEI < 3333 ≤ EEI < 4242 ≤ EEI < 5555 ≤ EEI < 7575 ≤ EEI < 9595 ≤ EEI < 110110 ≤ EEI < 125125 ≤ EEI < 150EEI ≥ 150

Стиральные машины, сушилки для белья[править | править код]

Для стиральных машин энергоэффективность вычислена используя хлопковый цикл при температуре 60 °C (140 °F) с максимальным заявленным весом белья (типично 6кг). Индекс эффективности использования энергии определяют в кВт·ч на килограмм белья.

Этикетка энергоэффективности также содержит информацию о следующих параметрах:

  • полное потребление энергии за цикл
  • качество стирки — с классом от A до G
  • качество отжима — с классом от A до G
  • максимальная скорость вращения в оборотах
  • Максимальная загрузка хлопком в кг
  • потребление воды за цикл в литрах
  • шум при стирке и отжиме в децибелах

Для сушилок для белья энергоэффективность вычислена для хлопка, с максимальной загрузкой. Индекс энергоэффективности считается в кВт·ч на килограмм белья.

Конденсационные сушилки

ABCDEFG
<0.55<0.64<0.73<0.82<0.91<1.00>1.00

Вентилируемые сушилки

ABCDEFG
<0.51<0.59<0.67<0.75<0.83<0.91>0.91

Этикетка также приводит параметры:

  • потребление энергии за цикл
  • полная загрузка хлопком в кг
  • уровень шума в децибелах

Для Стиральных машин с функцией сушки — класс энергоэффекивности вычислен используя хлопковый цикл сушки с максимальным заявленным весом белья. Индекс эффективности использования энергии считается в кВт·ч на килограмм веса.

ABCDEFG
<0.68<0.81<0.93<1.05<1.17<1.29>1.29

Этикетка также содержит указание на параметры:

  • потребление энергии за цикл (стирка и сушка)
  • потребление энергии за цикл — только стирка
  • качество стирки — с классом от A до G
  • максимальная скорость вращения
  • максимальная загрузка хлопком (Стирка и сушка отдельно)
  • Потребление воды при максимальной загрузке
  • Уровень шума в децибелах (отдельно для стирки, отжима и сушки)

Посудомоечные машины[править | править код]

Энергоэффективность рассчитана согласно числу предметов посуды. Для прибора на 12 персон применяются следующие классы. Единицы измерения кВт·ч на 12 предметов.

ABCDEFG
<1.06<1.25<1.45<1.65<1.85<2.05>2.05

Этикетка также содержит следующие сведения:

  • потребление энергии в кВт·ч/цикл
  • эффективность мытья с классом от A до G
  • эффективность сушки с классом от A до G
  • Количество персон
  • Потребление воды в литрах на цикл
  • уровень шума в децибеллах

Духовки[править | править код]

Этикетка также содержит:

  • эффективность с классом от A до G
  • потребление энергии в кВт·ч
  • объем в литрах
  • (маленький/средний/большой) тип

Водонагреватели и приборы хранения горячей воды[править | править код]

Маркировка применяется только к приборам мощностью менее 12 кВт.

На каждой этикетке указано:

  • модель,
  • категория эффективности использования энергии от A до G,
  • ежегодное потребление энергии (предельная нагрузка в 500 часов ежегодно)
  • охлаждение, производимое на предельной нагрузке, в кВт
  • отношение эффективности использования энергии к охлаждающей способности на предельной нагрузке
  • тип прибора (только охлаждение, охлаждение/нагрев)
  • способ охлаждения (газ или охлаждающая жидкость)
  • Уровень шума

Для кондиционеров с нагревом также указано:

  • интенсивность обогрева в кВт
  • Энергоэффективность нагрева
ABCDEFG
Cooling EER W/W>3.23.0-3.22.8-3.02.6-2.82.4-2.62.2-2.4<2.2
Heating COP W/W>3.63.4-3.63.2-3.42.8-3.22.6-2.82.4-2.6<2.4

На этикетке указано:

Новый стандарт, который вошёл в силу в начале сентября 2009.

По индексу энергоэффективности, для телевизоров существует такая классификация.

A+++A++A+ABCDEFG
< 10< 16< 23< 30< 42< 60< 80< 90< 100> 100
An Irish Car CO 2 этикетка

Для автомашины это не электрическая эффективность, а выбросы углекислого газа в граммах на километр.

ABCDEFG
<100<120<140<160<200<250>250

Другая информация, которая внесена в этикетку энергоэффективности:

  • марка
  • модель
  • версия
  • топливо
  • тип передачи
  • вес
  • различное потребление топлива
    • смешанное потребление
    • городское потребление
    • шоссейное потребление

Система маркировки энергоэффективности зданий также получила широкое распространение в отдельных странах Европейского Союза, в Северной Америке, Австралии, Новой Зеландии.

Киловатт-час — Википедия

Материал из Википедии — свободной энциклопедии

Килова́тт-час (кВтч) — внесистемная единица измерения количества произведённой или потреблённой энергии, теплоты, а также выполненной механической работы.

Используется преимущественно для измерения потребления электроэнергии в быту, народном хозяйстве и для измерения выработки электроэнергии в электроэнергетике[1].

Киловатт-час равен количеству энергии, потребляемой (производимой) устройством мощностью один киловатт в течение одного часа. Поскольку 1 Вт⋅с = 1 Дж, 1 кВт⋅ч = 1000 Вт ⋅ 3600 с = 3,6 МДж.

Написание[править | править код]

Следует заметить, что правильно писать именно «кВт⋅ч» (мощность, умноженная на время). Написание «кВт/ч» (киловатт в час), часто употребляемое во многих СМИ и даже иногда в официальных документах, неправильно.

Физический смысл единицы измерения «кВт/ч» — скорость изменения мощности: «на сколько киловатт изменится потребляемая или генерируемая устройством электрическая мощность за 1 час». Если провести аналогию с механикой — различие между единицами измерения «кВт⋅ч» и «кВт/ч» такое же, как между расстоянием и ускорением. Хотя такой параметр может иметь практическое применение — например, характеризовать способность электростанции быстро подстраиваться под изменения нагрузки — но служить единицей измерения количества энергии он не может по определению.

Столь же распространённая ошибка — использовать «киловатт» (единицу мощности) вместо «киловатт-час».

Примеры[править | править код]

  • Электроплита мощностью 2 кВт за 15 минут потребит из электросети и преобразует в тепло электроэнергию, равную 2 кВт ⋅ 0,25 ч = 0,5 кВт⋅ч;
  • Электролампа мощностью 100 Вт, включаемая ежедневно на 8 часов, за месяц потребляет 0,1 кВт ⋅ 8 ч/сутки ⋅ 30 дней = 24 кВт⋅ч.
  • Лампа мощностью 10 Вт (типичная светодиодная), включенная постоянно, за месяц потребляет 0,01 кВт ⋅ 24 ч/сутки ⋅ 30 дней = 7,2 кВт⋅ч.
  • Аккумулятор напряжением 12 В и ёмкостью 50 А⋅ч может отдать в нагрузку 0,6 кВт⋅ч энергии (12 В ⋅ 50 А⋅ч = 600 Вт⋅ч = 0,6 кВт⋅ч).
  • Нагревание 1 л воды комнатной температуры до кипения требует около 0,1 кВт⋅ч.

Перевод в другие единицы измерения энергии[править | править код]

Таблица перевода единиц измерения энергии
джоульватт-часэлектрон-вольткалория
1 кг⋅(м/с)² = 1 Вт⋅с12,78⋅10−46,241⋅10180,239
1 кВт⋅ч3,6⋅10610002,247⋅10258,60⋅105
1 эВ1.6⋅10−194,45⋅10−2313,827⋅10−20
1 кал4,18681,163⋅10−32,613⋅10191

Часто используются:

  • 1 тыс. кВт⋅ч = 859,8452 Мкал = 0,86 Гкал.
  • 1 тыс. кВт⋅ч = 3,6 ГДж
  • 1 ккал = 1,163 Вт⋅ч

Мировая энергетика. Часть I

Современная цивилизация существует в основном благодаря использованию огромного, по сравнению с более ранними временами, количества энергии в разнообразных машинах в широком смысле этого слова. Более того, потребление энергии человечества постоянно растёт. При этом энергия в годной к употреблению форме является ограниченным ресурсом, так что относительная доступность энергии оказывает серьёзное влияние на развитие как отдельных стран, так и цивилизации в целом.

Существует несколько организаций, ведущих регулярный статистический учёт производства и потребления энергии. В данной статье, в частности, используются данные Международного энергетического агентства (IEA). Выводы и прогнозы различных организаций часто цитируются, но при этом редко поясняется, каким образом и на каких принципах они строятся, что открывает простор для неверных интерпретаций. В данной статье мы постараемся исправить это упущение.

Первичная энергия

При учёте энергии возникает одна сложность — до потребления энергии в её конечной форме она проходит через цепочку преобразований, иногда довольно длинную. Электрочайник кипятит воду — происходит потребление энергии в форме тепла, преобразованной из энергии в форме электричества в сети. В свою очередь в эту форму энергия была преобразована из механической формы — энергии вращения турбин на электростанции, а та была получена из тепловой энергии пара, полученной путём сжигания какого-то топлива, то есть из потенциальной химической энергии. В таком, казалось бы, простом деле оказалось сразу пять этапов преобразования энергии; причём на каждом этапе часть энергии, конечно же, теряется, так что потребление энергии в конечной форме всегда существенно меньше, чем её производство. На каком этапе вести учёт?

В связи с описанной сложностью, в энергетической статистике фиксируется производство и потребление энергии по возможности ближе к началу цепочки, в форме так называемой первичной энергии. Отслеживается только два вида преобразования первичной энергии: электрогенерация, то есть производство электрической энергии, и теплогенерация, то есть производство тепловой энергии (без последующего преобразования в какую-либо другую форму). Дальнейшие преобразования энергии в статистике не учитываются.

Более подробно поясним понятие первичной энергии чуть позже, а пока перечислим виды источников первичной энергии:

Невозобновляемые, в том числе:

  • Ископаемое топливо, в том числе:
    • Нефть
    • Природный газ
    • Уголь
  • Атомная энергетика

Возобновляемые, в том числе:

  • Гидроэнергетика
  • Биотопливо/биомасса
  • Солнечная энергетика
  • Ветроэнергетика
  • Геотермальная энергетика и пр.

В нашем списке можно увидеть разделение источников на возобновляемые и невозобновляемые. Под возобновляемостью источника подразумевается его потенциальная неисчерпаемость в масштабах человеческой деятельности. Конечно, это разделение во многом условно. Так, например, ископаемое топливо на самом деле в недрах Земли формируется (то есть возобновляется) постоянно, просто делает оно это по меркам наших энергетических нужд настолько медленно, что пытаться его использовать возобновляемым способом совершенно бессмысленно. Более важный пример — это биотопливо, которое включает в себя такую банальную вещь как дрова. Источником дров, как известно, является лес, и его люди на самом деле легко могут исчерпать, так что возобновляемым он является только до определённой границы. Тем не менее, разделение это важное и часто используемое.

Для ископаемого и биологического топлива количество первичной энергии определяется очень просто: это удельная теплота сгорания, умноженная на массу топлива. Удельная теплота сгорания ископаемого топлива зависит от содержания в нём водорода: для метана, в котором на один атом углерода приходится четыре атома водорода, она равна 50 МДж/кг; для угля, в котором на один атом углерода приходится примерно ноль атомов водорода — около 30 МДж/кг; для нефти — примерно посередине. Понятно, что на практике теплота сгорания для разных сортов одного и того же топлива может быть несколько разной, и в статистике это, по возможности, учитывается.

Все остальные, нетопливные, источники энергии используются практически только для электро- и теплогенерации. Первичная энергия для них немного по-разному. В тех случаях, когда электричество вырабатывается из тепловой энергии, то именно она считается за первичную. Так происходит в атомной энергетике, а также на геотермальных и гелиотермальных электростанциях. Если же электричество генерируется напрямую из природного источника, то первичной считается собственно сама произведённая электроэнергия. Так происходит в гидро- и ветроэнергетике, а также фотовольтаике (вид солнечной энергетики).

Для измерения первичной энергии используются различные единицы. Мы будем использовать так называемую тонну нефтяного эквивалента (тнэ), равную 41,868 ГДж. Предполагается, что такое количество тепловой энергии выделяется при сгорании одной среднестатистической тонны нефти. Тысяча кубических метров природного газа содержит в среднем около 0,8 тнэ. Также одна тонна нефтяного эквивалента равна 11 630 киловатт-часов. Если вы знаете, сколько киловатт-часов у вас дома набегает за месяц по электрическому счётчику, то вы сможете представить себе, какое количество энергии содержит 1 тнэ.

Производство энергии: тепло- и электрогенерация

Примерно 40% первичной энергии сегодня используется в ходе тепло- и электрогенерации. Эти процессы рассматривают вместе по причине широкого применения в энергетике когенерации — совместного производства полезного тепла и электричества, например, на теплоэлектроцентрали (ТЭЦ). ТЭЦ является разновидностью тепловой электростанции (ТЭС). ТЭЦ отличается тем, что на ней тепло отработанного пара передаётся в теплосеть, а на остальных ТЭС — в окружающую среду. За счёт этого коэффициент полезного действия (КПД) у ТЭЦ заметно выше и достигает 50-60%, по сравнению с 30-40% у обычных ТЭС. Но давайте рассмотрим по порядку имеющиеся сегодня в нашем распоряжении способы генерации электричества и тепла.

ТЭС существуют с конца 19 века и устроены довольно просто. За счёт сжигания топлива вода в котле превращается в пар с очень высокой температурой и давлением. Этот пар направляется на лопатки турбины и тем самым вращает её. Вращение передается на вал электрогенератора с закреплёнными на нём магнитами; вращающееся магнитное поле создаёт электрический ток в замкнутом проводнике в соответствии с законом электромагнитной индукции. Отработанный пар из турбины попадает в конденсатор, где охлаждается и превращается обратно в воду, которая затем снова поступает в котёл.

Выше описан принцип действия ТЭС с паротурбинной установкой. Существуют ещё и газотурбинные установки: в них турбину вращают непосредственно продукты сгорания топлива в виде потока раскалённых газов (таким образом, газовая турбина является двигателем внутреннего сгорания, а паровая — внешнего). Самый же высокий КПД достигается на комбинированной парогазовой установке, состоящей из двух двигателей в тандеме; в этой установке всё ещё горячие отработанные газы из газовой турбины используются для нагрева котла паровой турбины.

Вообще электрогенератору безразлично, что именно вращает его вал, так что комбинация любого теплового двигателя (в том числе поршневого) с электрогенератором составляет тепловую электростанцию того же типа, что и двигатель. Собственно говоря, принцип тот же и для большинства нетепловых электростанций: сначала с помощью какого-либо двигателя энергия из своей исходной формы преобразуется в механическую, а затем превращается в электрическую энергию с помощью электрогенератора.

Топливом для ТЭС служат уголь, природный газ и, гораздо реже, нефтепродукты (мазут или дизель). В газотурбинных и парогазовых ТЭС используется в основном природный газ; уголь используется практически только на ТЭС с паротурбинными установками. Существуют также ТЭС, работающие на биотопливе. Это могут быть отходы деревообработки или сельского хозяйства в виде прессованных гранул, а также биогаз — продукт жизнедеятельности бактерий, перерабатывающих различные биологические отходы, в том числе бытовые и канализационные.

На атомной электростанции (АЭС) в роли котла для создания пара высокого давления выступает ядерный реактор, использующий энергию распада ядер радиоактивных изотопов в ходе цепной реакции. Больше АЭС ничем принципиально не отличается от паротурбинной ТЭС — полученный пар поступает на турбину, и так далее. На АЭС также может быть реализована когенерация тепла и электричества, тогда получится атомная теплоэлектроцентраль — АТЭЦ. Ядерное топливо производится из урана, добываемого на соответствующих месторождениях с конечными запасами. Это означает, что атомная энергетика является невозобновляемым источником энергии.

Все остальные способы тепло- и электрогенерации используют возобновляемые источники энергии. Так, на гидроэлектростанции (ГЭС) вал электрогенератора вращает, как нетрудно догадаться, гидротурбина. В свою очередь последняя вращается за счёт энергии напора воды. Плотина на ГЭС нужна для того, чтобы создать необходимый перепад высот. Если уклон реки достаточно велик (как зачастую бывает в горах), то можно обойтись и без плотины.

На солнечных электростанциях, как правило, используется явление фотоэлектрического эффекта: частицы света (фотоны) определённой энергии (длины волны) могут выбивать электроны из атомов определённым образом организованного вещества (обычно полупроводниковые фотоэлементы, собранные в солнечные батареи). Такая технология называется ещё фотовольтаикой. Она выгодно отличается от других способов производства электроэнергии полным отсутствием движущихся деталей — энергия солнечного излучения напрямую преобразуется в электрическую, минуя стадию механической энергии.

Другая разновидность солнечной энергетики — это гелиотермальные электростанции, на которых энергия солнца собирается в виде тепла и используется опосредованно для электрогенерации по принципу обычных ТЭС. Для сбора солнечной энергии обычно применяются системы линз и зеркал — это так называемые солнечные электростанции концентрирующего типа (CSP).

Ветряные электростанции преобразуют в электричество механическую энергию вращения лопастей ветрогенератора под действием ветра. Ветрогенератор вполне ожидаемо состоит из ветротурбины и электрогенератора. Циркуляция атмосферы Земли, то есть ветер, существует в основном из-за неравномерного нагрева земной поверхности Солнцем. Следовательно, как и солнечная электростанция, ветрогенератор использует возобновляемую энергию Солнца.

Существуют также геотермальные электростанции, устроенные аналогично тепловым, но использующие для нагрева котла энергию горячих подземных вод. Тепло геотермальных источников можно использовать и напрямую для обогрева. Из-за того, что температура подземных вод сравнительно невелика, КПД геотермальных электростанций довольно низок — всего около 10%.

Наконец, приливные и волновые электростанции используют, соответственно, энергию морских приливов/отливов и волн. В совокупности эти способы получения электроэнергии можно назвать морской энергетикой.

В 2013 году всего в мире было сгенерировано и потреблено 23318 тераватт-часов (или 2008 млн тнэ) электроэнергии, а также 354 млн тнэ теплоэнергии; в сумме тепла и электричества получается 2362 млн тнэ. При этом было израсходовано 5115 млн тнэ первичной энергии в различных формах. Таким образом, средний КПД тепло- и электрогенерации (отношение произведённой энергии к первичной) составил 46%.

На рисунке 1 приведена диаграмма использования различных видов первичной энергии для тепло- и электрогенерации. Из диаграммы видно, что ископаемое топливо (то есть уголь, нефть и природный газ) составляет три четверти затрачиваемой в этих целях первичной энергии. Оставшаяся четверть приходится на атомную и возобновляемую энергетику.

Использование первичной энергии по источникам для тепло- и электрогенерации в 2013 году (всего 5115 млн тнэ).Рисунок 1. Использование первичной энергии по источникам для тепло- и электрогенерации в 2013 году (всего 5115 млн тнэ).

Однако если посмотреть на диаграмму распределения по источникам собственно самой произведённой электроэнергии (рисунок 2), то картина будет заметно отличаться в силу того, что разные способы электрогенерации имеют разный КПД (в смысле отношения произведённой электроэнергии к первичной). Так, КПД фотовольтаики, а также гидро- и ветроэнергетики в рамках энергетической статистики считается равным 100%: как уже говорилось, под первичной энергией у этих источников понимается собственно полученная электроэнергия. Практически по всем остальным источникам — первичной энергией является тепло, которое преобразуется в электрическую энергию через механическую. Электрический КПД этого процесса зависит от типа используемого теплового двигателя и достигаемой температуры, и составляет в среднем около 30—40%. Кроме того, из этих источников производится также и полезное тепло, которое в данные рисунка 2 не включено.

Рисунок 2. Произведённая электроэнергия по источникам в 2013 году (всего 2008 млн тнэ или 23318 ТВт*ч).Рисунок 2. Произведенная электроэнергия по источникам в 2013 году (всего 2008 млн тнэ или 23318 ТВт*ч).

В итоге на рисунке 2 доля гидроэнергетики выросла до 16%, а доля ветроэнергетики стала, по крайней мере, заметной — 3%. Доля солнечной энергетики всё ещё прячется среди 1% «прочих». Для нас, конечно, важнее именно то, какую долю произведённой электроэнергии нам даёт тот или иной источник, поэтому в диаграмме на рисунке 2 больше практического смысла, чем в диаграмме на рисунке 1. А несколько неочевидным понятием первичной энергии удобно пользоваться, если необходимо, например, занизить значение возобновляемых источников. Но это вовсе не означает, что понятие плохое и ненужное. Дело в том, что на тепло- и электрогенерацию тратится лишь около двух пятых используемой во всём мире первичной энергии; остальную мы расходуем другими способами.

Потребление первичной энергии

На рисунке 3 приведена схема мирового потребления энергии в 2013 году с выделением промежуточного этапа тепло- и электрогенерации. На схеме видно, что всего на все нужды за год было израсходовано 13559 млн тнэ первичной энергии. В том числе 5115 млн тнэ первичной энергии было израсходовано на тепло- и электрогенерацию, что дало в результате 2362 млн тнэ готовой к потреблению тепло- и электроэнергии, а 2753 млн тнэ энергии было потеряно в процессе генерации. В так называемом энергетическом секторе — на добычу и переработку энергоносителей, производство энергии, преобразование энергии из одного вида в другой, а также транспорт энергии в виде тепла и электричества — было израсходовано 1686 млн тнэ энергии, в том числе 1291 млн тнэ первичной энергии и 395 млн тнэ вторичной, то есть сгенерированного тепла и электричества. Оставшиеся 7153 млн тнэ первичной энергии было потреблено в различных секторах экономики другими способами; с учётом 1967 млн тнэ вторичной (сгенерированной) энергии общее конечное потребление энергии составило 9120 млн тнэ.

Рисунок 3. Схема мирового потребления энергии по источникам в 2013 году. Все значения в млн тнэ.Рисунок 3. Схема мирового потребления энергии по источникам в 2013 году. Все значения в млн тнэ.

Пройдёмся более подробно по секторам потребления энергии в разрезе её источников.

Название сектора «промышленность» говорит само за себя. Энергия в этом секторе в основном потребляется в металлургической, химической и нефтехимической промышленности, а также при производстве строительных материалов (цемента) и целлюлозно-бумажном производстве. Однако потребление энергии при перевозке товаров, а также добыче и переработке ископаемого топлива сюда не входит. Кроме того, потребление энергоносителей относится к данному сектору только в том случае, когда они используются именно как энергоносители, а не как сырьё или исходный материал для производства.

Ископаемое топливо в промышленности используется в основном для нагрева, то есть когда технология производства требует высокой температуры. Известный всем пример — выплавка металлов. Нагрев необходим и при производстве цемента (барабанные печи), а также на определённых этапах химического и нефтехимического производства. Кроме того, использование нефтепродуктов в качестве топлива для строительной и другой специальной техники тоже отражается в данном секторе. Биоэнергетика в промышленном секторе — это, в основном, утилизация древесных отходов в лесозаготовительной, деревообрабатывающей и целлюлозно-бумажной промышленности.

Транспортный сектор включает в себя потребление энергии в дорожном, воздушном, водном, железнодорожном и трубопроводном транспорте. К этому сектору не относится потребление топлива техникой, основным назначением которой является не перевозка пассажиров и грузов, а другая деятельность, например, строительство, добыча полезных ископаемых, лесозаготовки, рыболовство и т. п. Около 40-50% энергии в данном секторе потребляется легковыми автомобилями.

В транспортном секторе ожидаемо более 90% энергии даёт нефть, то есть топливные нефтепродукты: бензин, дизельное топливо, керосин, мазут и пр. Большая часть оставшегося — это природный газ в различных формах. Применение биотоплива и электроэнергии на сегодняшний день едва заметно, несмотря на то, что, в частности, электровозы в железнодорожном и трамваи с троллейбусами в городском транспорте достаточно широко применяются уже много десятков лет.

В сектор с не вполне прозрачным названием «здания» включается энергия, потраченная в жилых и разного рода общественных (но не промышленных) зданиях в целях обогрева, охлаждения, горячего водоснабжения, освещения, а также для работы бытовых приборов и оборудования для приготовления пищи. Около 40-45% произведённой тепло- и электроэнергии расходуется именно в этом секторе, больше, чем в каком-либо другом. Сравнительно высокая доля природного газа объясняется, очевидно, применением кухонного газа. Также в данном секторе потребляется более 60% всей первичной биоэнергии. В основном это древесное и другое твёрдое биотопливо, очень широко используемое, в частности, в традиционных обществах так называемых развивающихся стран. Таким образом, на сегодняшний день под модным словом «биоэнергетика» скрываются, по большей части, дрова и сухой навоз.

Наконец, в сектор «прочее» входит потребление энергии в сельском хозяйстве и подобных ему отраслях (рыболовство, лесное хозяйство). В этом же секторе учитывается использование ископаемого топлива не для получения энергии, а в качестве сырья для производства смазочных материалов, асфальта, растворителей, продуктов химической и нефтехимической промышленности и т. д. В этом секторе расходуется в основном нефть, причём сюда приходится довольно значительная часть её общего потребления — около 16%.

Использование тепло- и электроэнергии во всех секторах достаточно прозрачно. Отметим лишь, что около 16% произведённой электроэнергии (331 млн тнэ) тратится в энергетическом секторе на добычу и переработку ископаемого и ядерного топлива, а также теряется при передаче по электрическим сетям. Аналогичные потери происходят и при передаче тепловой энергии по теплосетям. Данный расход энергии включён на схеме в так называемый «энергетический сектор».

В этом же «энергетическом секторе» учитываются затраты энергии на добычу и переработку ископаемого топлива, производство биотоплива, преобразование топлива из одной формы в другую (сжижение газа и угля, преобразование газа в жидкость, газификация угля и нефти), коксование угля, а также потери при транспортировке и хранении газа, нефти, угля и биотоплива.

Рисунок 4. Мировое потребление первичной энергии в 2013 году по источникам.Рисунок 4. Мировое потребление первичной энергии в 2013 году по источникам.

На рисунке 4 приведено распределение мирового потребления первичной энергии по источникам в соответствии со схемой на рисунке 3. Таким образом, в целом сегодня человечество получает более 80% первичной энергии из ископаемого топлива (то есть угля, нефти и природного газа), и более 85% — из невозобновляемых источников (то же, плюс атомная энергетика). На возобновляемые источники пока что приходится менее 15% первичной энергии. При этом следует помнить, что, с одной стороны, ряд возобновляемых источников (гидроэнергетика, ветроэнергетика, фотовольтаика) по определению имеют стопроцентный КПД, что резко увеличивает их значимость с точки зрения конечного потребления. А с другой стороны, биоэнергетика, составляющая две трети всех возобновляемых источников и 10% общего потребления первичной энергии, по большей части присуща неиндустриальным обществам; поэтому вряд ли стоит связывать её с инновационностью и продвинутостью, приписываемой прочим возобновляемым источникам энергии.

О том, какие существуют прогнозы в отношении мировой энергетики, расскажем в следующей части.

потребление энергии — это… Что такое потребление энергии?

5.1 Потребление энергии

Транспортные средства, оборудованные антиблокировочными системами, должны сохранять эффективность торможения при полном приведении в действие органа управления рабочим тормозом в течение продолжительного времени. Это условие проверяется с помощью следующего испытания:

5.1.1 Порядок проведения испытания

5.1.1.1 Начальный уровень энергии в резервуаре (резервуарах) должен соответствовать значению, указанному предприятием-изготовителем. Этот уровень должен быть по крайней мере таким, чтобы обеспечилось эффективное торможение, предписанное для системы рабочих тормозов транспортного средства в нагруженном состоянии. Резервуар(ы) для вспомогательных пневматических устройств должен быть отключен.

5.1.1.2 При начальной скорости не менее 50 км/ч на поверхности, имеющей коэффициент сцепления не более 0,35), тормоза груженого транспортного средства полностью приводятся в действие в течение времени t, когда учитывается энергия, потребляемая косвенно управляемыми колесами, при этом все непосредственно управляемые колеса должны оставаться под воздействием антиблокировочной системы.

5) При отсутствии такого пригодного для целей испытания покрытия по усмотрению технических служб могут использоваться шины с предельным износом и более высоким — до 0,4 — коэффициентом сцепления. Полученные фактические значения, тип шин и характеристика покрытия регистрируются.

5.1.1.3 Затем останавливается двигатель транспортного средства, или прекращается подача питания от источника (источников) энергии.

5.1.1.4 При остановленном транспортном средстве четыре раза подряд нажимается до отказа педаль рабочего тормоза.

5.1.1.5 При пятом нажатии на тормоз должна обеспечиваться возможность торможения транспортного средства с эффективностью, предписанной для аварийного торможения груженого транспортного средства.

5.1.2 Дополнительные требования

5.1.2.1 Коэффициент сцепления дорожной поверхности измеряется на рассматриваемом транспортном средстве в соответствии с методом, описанным в 1.1 дополнения 2 настоящего приложения.

5.1.2.2 Испытание на торможение проводится с выключенным сцеплением, когда двигатель работает на холостом ходу на груженом транспортном средстве.

5.1.2.3 Время торможения t определяется по формуле

3.1.30 потребление энергии для отопления или кондиционирования (energy need for heating or cooling): Тепло, которое должно быть подведено к помещению или отведено от него, чтобы обеспечить заданную температуру в заданный период.

Примечания

1 Энергопотребление рассчитывается и измеряется только по затратам.

2 Энергопотребление может изменяться в зависимости от дополнительных теплопоступлений и теплопотерь, возникающих, например, при неравномерном температурном распределении и неидеальном регулировании температуры.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *