Posted on

Содержание

Расчет потерь в кабеле

                                          

    В таблице 1 даны зависимости потерь в кабеле от моментов нагрузки для медных проводников двухпроводных линий при напряжении 220 В.

    В Таблице 2 представлены зависимости потерь в кабеле от моментов нагрузки для четырехпроводных трехфазных линий с нулем на напряжение 380/220 В или трехпроводных без нуля на напряжение 380 В. Таблица 2 справедлива только для случая равенства нагрузок во всех трех фазах. В этом случае в четырехпроводной линии с нулем ток в нулевой жиле кабеля равен нулю. 

     Следует иметь ввиду, что при несимметричной нагрузке в трехфазной линии потери увеличиваются. Чтобы избежать ошибок при большой асимметрии нагрузки в линии с нулем целесообразно потери вычислять для наиболее нагруженной фазы по Таблице 1.

    В таблице 3 даны зависимости потерь в кабеле от моментов нагрузки для медных проводников двухпроводных линий при напряжении 12 Вольт. Таблица предназначена для расчета потерь в линиях, питающих низковольтные светильники от понижающих трансформаторов.

    В данных таблицах индуктивное сопротивление линий не учитывается, так как оно при использовании кабелей пренебрежимо мало по сравнению с активным сопротивлением.

                                                                                               Таблица 1

 

 ΔU, %

Момент нагрузки для медных проводников, кВт∙м, двухпроводных линий на напряжение 220 В

При сечении проводника s, мм2, равном

1,5

2,5

4

6

10

16

0,2

4

6

10

14

24

38

0,4

7

12

19

29

48

77

0,6

11

18

29

43

72

115

0,8

14

24

38

58

96

154

1

18

30

48

72

120

192

1,2

22

36

58

86

144

230

1,4

25

42

67

101

168

269

1,6

29

48

77

115

192

304

1,8

32

54

86

130

216

346

2

36

60

96

144

240

384

2,2

40

66

106

158

264

422

2,4

43

72

115

173

288

461

2,6

47

78

125

187

312

499

2,8

50

84

134

202

336

538

3

54

90

144

216

360

576

3,2

58

96

154

230

384

614

3,4

61

102

163

245

408

653

3,6

65

108

173

259

432

691

3,8

68

144

182

274

456

730

4

72

120

192

288

480

768

4,2

76

126

202

302

504

806

4,4

79

132

211

317

528

845

4,6

83

138

221

331

552

883

4,8

86

144

230

346

576

922

5

90

150

240

360

600

960

                                                                                                           

 

                                                                                                        Таблица 2

   

  ΔU, %

Момент нагрузки для медных проводников, кВт∙м, линий четырехпроводных трехфазных с нулем на напряжение 380/220 В или трехпроводных трехфазных без нуля на 380 В при сечении проводника s, мм2, равном

1.5

2,5

4

6

10

16

25

35

50

70

95

120

150

185

0,2

22

36

58

86

144

230

360

504

720

1 008

1 368

1 728

2 160

2 664

0,4

43

72

115

173

288

461

720

1 008

1 440

2 016

2 736

3 456

4 320

5 328

0,6

65

108

173

259

432

691

1 080

1 512

2 160

3 024

4 104

5 184

6 480

7 992

0,8

86

144

230

346

576

922

1 440

2 016

2 880

4 032

5 472

6 912

8 640

10 656

1

108

180

288

432

720

1 152

1 800

2 520

3 600

5 040

6 840

8 640

10 800

13 320

1,2

130

216

346

518

864

1 382

2 160

3 024

4 320

6 048

8 208

10 368

12 960

15 984

1,4

151

252

403

605

1 008

1 613

2 520

3 528

5 040

7 056

9 576

12 096

15 120

18 648

1,6

173

288

462

691

1 152

1 843

2 880

4 032

5 760

8 064

10 944

13 824

17 280

21 312

1,8

194

324

518

778

1 296

2 074

3 240

4 536

6 480

9 072

12 312

15 552

19 440

23 976

2

216

360

576

864

1 440

2 304

3 600

5 040

7 200

10 080

13 680

17 280

21 600

26 640

2,2

238

396

636

950

1 584

2 534

3 960

5 544

7 920

11 088

15 048

19 008

23 760

29 304

2,4

259

432

691

1 037

1 728

2 765

4 320

6 048

8 640

12 096

16 416

20 736

25 920

31 968

2,6

281

478

749

1 121

1 872

2 995

4 780

6 552

9 360

13 104

17 784

22 464

28 100

34 632

2,8

302

504

806

1 210

2 016

3 226

5 040

7 056

10 080

14 112

19 152

24 192

30 200

37 296

3

324

540

864

1 296

2 160

3 456

5 400

7 560

10 800

15 120

20 520

25 920

32 400

39 960

3,2

346

576

922

1 386

2 304

3 686

5 760

8 064

11 520

16 128

21 888

27 648

34 560

42 624

3,4

367

612

979

1 469

2 448

3 917

6 120

8 568

12 240

17 136

23 256

29 376

36 720

45 280

3,6

389

648

1 037

1 555

2 592

4 147

6 480

9 072

12 960

18 144

24 624

31 104

38 880

47 952

3,8

410

684

1 094

1 642

2 736

4 378

6 840

9 576

13 680

19 152

25 992

32 832

41 040

50 616

4

432

720

1 152

1 728

2 880

4 608

7 200

10 080

14 400

20 160

27 360

34 560

43 200

53 280

4,2

454

756

1 210

1 814

3 024

4 838

7 560

10 584

15 120

21 168

28 728

36 288

45 360

55 944

4,4

475

792

1 267

1 901

3 168

5 069

7 920

11 088

15 840

22 176

30 096

38 016

47 520

58 608

4,6

497

828

1 325

1 987

3 321

5 299

8 280

11 592

16 560

23 184

31 464

39 744

49 680

61 272

4,8

518

864

1 382

2 074

3 454

5 530

8 640

12 096

17 280

24 192

32 832

41 472

51 840

63 936

5

540

900

1 440

2 160

3 600

5 760

9 000

12 600

18 000

25 200

34 200

43 200

54 000

66 600

 

                                                                                                      

                                                                                                   

Расчет потери напряжения в кабеле

В качестве примера расчёта потерь в кабеле рассмотрим схему трансляционной линии с ответвлением:

Пример трансляционной линии Рисунок 1. Пример трансляционной линии

Расстояние между громкоговорителями основной линии составляет 10 м, на ответвлении — 7 м. Расчет осуществляется для кабеля сечением 1 мм2.

Прежде чем начать расчет мощности на громкоговорителях, ответвление линии необходимо заменить эквивалентной нагрузкой.

Расчет эквивалента ответвления Рисунок 2. Расчет эквивалента ответвления

Как следует из расчетов, эквивалентом ответвления будет громкоговоритель, имеющий сопротивление 833,54 Ом или мощность 11,99 Вт (P = U2/R, U=100 В).

С учетом эквивалентной нагрузки рассчитаем напряжение на громкоговорителях главной ветви.

Потери в кабеле главной ветви линии Рисунок 3. Потери в кабеле главной ветви линии

Мы получили значения напряжения на всех громкоговорителях главной ветви. Вычисленные значения для эквивалентной нагрузки позволяют произвести дальнейшие расчёты для громкоговорителей, расположенных на ответвлении.

Расчет потерь в кабеле ответвления Рисунок 4. Расчет потерь в кабеле ответвления

Для расчёта любой трансляционной линии необходимо учитывать потери, связанные с протяженностью кабеля подключения громкоговорителей. Поскольку соединительный кабель имеет конечное, пусть и малое, сопротивление, то часть мощности, подводимой от усилителя, будет рассеиваться в виде тепла. В проектируемых системах оповещения для расчёта уровня звукового давления принципиально важно знать точную величину мощности, поступающей на громкоговорители.

По результатам программы оценивается уровень потерь для разного типа применяемого кабеля

Предлагаемая программа позволяет предельно точно построить 100-вольтную трансляционную линию, учитывая мощность громкоговорителей и характеристики кабеля. По результатам программы оценивается уровень потерь для разного типа применяемого кабеля, а также рассчитывается напряжение в точках подсоединения громкоговорителей и мощность их фактического использования.

Формула расчета падения напряжения в линии. Расчет необходимого сечения кабеля

Во время передачи электроэнергии по проводам к электроприемникам ее небольшая часть расходуется на сопротивление самих проводов, т.е. на их нагрев. Чем выше протекаемый ток и больше сопротивление провода, тем больше на нем будет потеря напряжения. Величина тока зависит от подключенной нагрузки, а сопротивление провода тем больше, чем больше его длина. Логично? Поэтому нужно понимать, что провода большой длины могут быть не пригодны для подключения какой-либо нагрузки, которая, в свою очередь, хорошо будет работать при коротких проводах того же сечения.

В идеале все электроприборы будут работать в нормальном режиме, если к ним подается то напряжение, на которые они рассчитаны. Если провод рассчитан не правильно и в нем присутствуют большие потери, то на вводе в электрооборудование будет заниженное напряжение. Это очень актуально при электропитании постоянным током, так как тут напряжение очень низкое, например 12 В, и потеря в 1-2 В тут будет уже существенной.

Чем опасна потеря напряжения в электропроводке?

  1. Отказом работы электроприборов при очень низком напряжении на входе.

В выборе кабеля необходимо найти золотую середину. Его нужно подобрать так, чтобы сопротивление провода при нужной длине соответствовало конкретному току и исключить лишние денежные затраты. Конечно, можно купить кабель огромного сечения и не считать в нем потери напряжения, но тогда за него придется переплатить. А кто хочет отдавать свои деньги на ветер? Давайте ниже разберемся, как учесть потери напряжения в кабеле при его выборе.

Для того чтобы избежать потерь мощности нам нужно уменьшить сопротивление провода. Мы знаем что, чем больше сечение кабеля, тем меньше его сопротивление. Поэтому эта проблема в длинных линиях решается путем увеличения сечения жил кабеля.

Вспомним физику и перейдем к небольшим формулам и расчетам.

Напряжение на проводе мы можем узнать по следующей формуле, зная его сопротивление (R, Ом) и ток нагрузки (I, А).

Сопротивление провода рассчитывается так:

R=рl/S , где

р — удельное сопротивление провода, Ом*мм 2 /м;

l — длина провода, м;

S — площадь поперечного сечения провода, мм 2 .

Удельное сопротивления это величина постоянная. Для меди она составляет р=0,0175 Ом*мм 2 /м , и для алюминия р=0,028 Ом*мм 2 /м . Значения других металлов нам не нужны, так как провода у нас только с медными или с алюминиевыми жилами.

Приведу небольшой пример расчета для медного провода. Для алюминиевого провода суть расчета будет аналогичной.

Например, мы хотим установить группу розеток в гараже и решили протянуть туда медный кабель от дома длинной 50 м сечением 1,5 мм 2 . Там будем подключаться нагрузка 3,3 кВт (I=15 А).

Учтите, что ток «бежит» по 2-х жильному кабелю туда и обратно, поэтому «пробегаемое» им расстояние будет в два раза больше длины кабеля (50*2=100 м).

Потеря напряжения в данной линии будет:

U=(рl)/s*I=0,0175*100/1,5*15=17,5 В

Что составляет практически 9% от номинального (входного) значения напряжения.

Значит в розетках будет уже напряжение: 220-17,5=202,5 В. Этого будет маловато для нормальной работы электрооборудования. Также свет может гореть тускло (в пол накала).

На нагрев провода будет выделяться мощность P=UI=17,5*15=262,5 Вт.

Также учтите, что здесь не учтены потери в местах соединения (скрутках), в вилке электроприбора, в контактах розетки. Поэтому реальные потери напряжения будут больше полученных значений.

Давайте повторим данный расчет, но уже для провода сечением 2,5 мм 2 .

U=(рl)/s*I=0,0175*100/2,5*15=10,5 В или 4,7%.

Теперь повторим данный расчет, но уже для провода сечением 4 мм 2 .

U=(рl)/s*I=0,0175*100/4*15=6,5 В или 2,9%.

Согласно ПУЭ, отклонения напряжения в линии должны составлять не более 5%.

Поэтому в нашем случае нужно выбирать кабель сечением 2,5 мм 2 для нагрузки мощностью 3,3 кВт (15 А), а не 1,5 мм 2 .

Для постоянного тока такие сечения при указанных длинах использовать нельзя. Допусти, что необходимо запитать электроприбор током 15 А от источника постоянного тока 12 В (например, от аккумулятора или понижающего трансформатора). Используется кабель сечением 2,5 мм 2 длинной 50 м.

Потери тут будут 10,5 В. Это значит, что на входе в электроприбор будет присутствовать напряжение 12-10,5=1,5 В. Это бред и ничего работать не будет. Даже кабель сечением 25 мм 2 не спасет. Тут выход один — это нужно переносить источник питания ближе к потребителю.

Если ваша розетка находится очень далеко от щитка, то обязательно посчитайте потери напряжения в данной линии.

Не забываем улыбаться:

Звонок мужу в командировку:
— Дорогой, а почему в кране нет воды?
— Понимаешь, мы живем на 22 этаже и давления, которое создает насос возможно недостаточно…
— Милый, а почему газа нет?
— Понимаешь, сейчас зима и давление в магистральном газопроводе вследствие большого разбора несколько понижено…
— Родной, но почему же тогда нет электроэнергии?!
— Пойди заплати за коммуналку, дура!

Как правильно и точно сделать расчет сечения кабеля по потере напряжения? Очень часто при проектировании сетей электроснабжения требуется грамотный расчет потерь в кабеле. Точный результат важен для выбора материала с необходимой площадью сечения жилы. Если кабель выбран неправильно, это повлечет за собой множественные материальные затраты, ведь система быстро выйдет из строя и перестанет функционировать. Благодаря сайтам помощникам, где имеется уже готовая программа для расчета сечения кабеля и потери на нем, сделать это можно легко и оперативно.

Как воспользоваться калькулятором онлайн?

В готовую таблицу нужно ввести данные согласно выбранному материалу кабеля, мощность нагрузки системы, напряжение сети, температуру кабеля и способ его про

Калькулятор расчета потерь напряжения

С помощью данного калькулятора можно вычислить потери напряжения (мощности) и подобрать необходимое поперечное сечения кабеля.

Для этого необходимо знать рабочее напряжение, протекающий ток и длину кабеля. Ниже приведен пример расчета.

Расcчитать

Мощность, Вт:

 

Напряжение с учетом потерь, В:

 

Потери напряжения, В:

 

или

 

Потери мощности, Вт:

 

Мощность с учетом потерь, Вт:

 


Сброс

* Общая длина кабелей плюса и минуса
Удельное сопротивление меди в формулах 0,0175 Ом*мм2/м (при 20 Со)

 

Для примера подберем сечение кабеля от солнечных батарей до контроллера на примере солнечной электростанции для дома, состоящую из следующих компонентов:

  1. Монокристаллическая солнечная батарея Suoyang SY-200WM — 4 шт.;
  2. Контроллер заряда ITracer IT6415ND — 1 шт.;
  3. Инвертор PI 2000Вт/12В (чистый синус) — 1 шт.;
  4. Гелевый аккумулятор 200Ач — 2 шт.

Итак, напряжение в точке максимальной мощности у монокристаллической солнечной батареи Suoyang SY-200WM составляет 37,2В, а ток в максимальной мощности 5,38А, именно эти значения мы будем использовать в расчетах. Но для начала нам нужно определиться, как соединить между собой солнечные батареи.

В состав нашего комплекта входит контроллер заряда Epsolar на 60А, с функцией поиска максимальной мощности (MPPT). Максимальное входное напряжение от солнечных батарей в данный контроллер составляет 150В, а выходное напряжение на аккумулятор будет составлять 12/24/36 или 48В, автоматически в зависимости от напряжения аккумулятора, который мы подключили. В нашем случае это два 12 вольтовых гелевых аккумулятора Delta 12-200, соединенных параллельно. 

Имея четыре солнечные батареи SY-200 и выше описанный контроллер мы можем подключить солнечные батареи двумя способами:

1. Параллельное соединение (все четыре штуки параллельно между собой). При этом напряжение у нас останется 37,2В, а максимальный ток от солнечных батарей составит 5,38А * 4 = 21,52А

.

2. Последовательно – параллельное соединение (две последовательных цепочки по две штуки). При этом напряжение будет составлять 37,2В * 2=74,4В, а ток 5,38 * 2 = 10,76А.

Нужно понимать, что мощность в двух случаях будет ОДИНАКОВАЯ. Разность только в токе и напряжении — в первом случае у нас больше ток, но меньше напряжение, а во втором – наоборот. Если мы подключим все четыре солнечные батареи последовательно, то напряжение будет выше, чем допустимое максимальное входное напряжение контроллера заряда, которое составляет 150В, более того нужно учитывать температурный коэффициент и напряжение холостого хода, но сейчас не об этом.

Сечение кабеля подбирается по току, чем больше ток – тем больше сечение!

Подставим в калькулятор расчета потерь напряжения данные первого способа подключения (параллельно все четыре штуки), расстояние от солнечных батарей до контроллера примем равным 15 метров (15 плюс и 15 минус), соответственно общая длина кабеля составит 30 метров, сечение кабеля возьмем равным 6мм²:

  • Напряжение: 37,2В
  • Сечение кабеля: 6мм²
  • Длина: 30м
  • Максимальный ток: 21,52А

Получаем потери напряжения и мощности более 5% (потери напряжения: 1,88В, потери мощности: 40,45Вт).

Подставим второй способ подключения (Две последовательных цепочки по две штуки):

  • Напряжение: 74,4В
  • Сечение кабеля: 6мм²
  • Длина: 30м
  • Максимальный ток: 10,76А

Получаем куда лучший результат, благодаря увеличенному напряжению и меньшему току: потери напряжения и мощности 1,26% (потери напряжения: 0,94В, потери мощности: 10,11Вт)

Выводы: Как видно, благодаря возможности увеличения напряжения, путем последовательно – параллельного соединения солнечных батарей, нам удалось уменьшить ток и при использовании кабеля одного и того же сечения уменьшить потери в нем в 4 раза!

Читайте также:

Расчет сечения кабеля (провода)

 

 

Диэлектрические потери в кабелях



Сечение кабеля, показывающее
изоляция
Диэлектрики (например, изоляционные материалы) при воздействии переменного электрического поля будут иметь некоторую потерю энергии. Изменяющееся электрическое поле вызывает небольшую перестройку слабо связанных молекул, что приводит к выработке тепла. Количество потерь увеличивается при увеличении уровня напряжения. Для низковольтных кабелей потери обычно незначительны и обычно игнорируются.Для кабелей более высокого напряжения потери и выделяемое тепло могут стать важными и должны быть приняты во внимание.

Диэлектрики (например, изоляционные материалы) при воздействии переменного электрического поля будут иметь некоторые потери энергии. Изменяющееся электрическое поле вызывает небольшую перестройку слабо связанных молекул, что приводит к выработке тепла. Количество потерь увеличивается при увеличении уровня напряжения. Для низковольтных кабелей потери обычно незначительны и обычно игнорируются.Для кабелей более высокого напряжения потери и выделяемое тепло могут стать важными и должны быть приняты во внимание.

Диэлектрические потери измеряются с использованием так называемого тангенса угла потерь или тангенса дельты ( tan δ ). Проще говоря, tan delta — это тангенс угла между вектором переменного поля и компонентом потерь материала. Чем выше значение tan δ , тем больше будут диэлектрические потери. Список значений tan δ для различных изоляционных материалов см. В примечании «Свойства кабельной изоляции».

Примечание: в день В кабелях со статическим электрическим полем отсутствуют диэлектрические потери. Следовательно, учет диэлектрических потерь относится только к кабели.

Кабельное напряжение

Диэлектрические потери действительно становятся значительными и должны учитываться при более высоких напряжениях. МЭК 60287 «Электрические кабели. Расчет номинального тока» предполагает, что диэлектрические потери необходимо учитывать только для кабелей со следующими уровнями напряжения:

Тип кабеля U 0 , кВ
Бутилкаучук 18
EDR 63.5
Пропитанная бумага (заполненная маслом или газом) 63,5
Пропитанная бумага (сплошная) 38
PE (высокая и низкая плотность) 127
ПВХ 6
XLPE (заполненный) 63.5
XLPE (незаполненный) 127

Кабель Диэлектрические потери

Емкость кабеля

Емкость кабеля можно получить у производителей или для круглых проводников, рассчитанную по следующей формуле:

C = ε 18ln (D i d c) 10 −9 F. m −1

Учитывая tan δ и емкость кабеля, диэлектрические потери легко вычисляются:

W d = ω C U 0 2 tan δ

Можно использовать вышеупомянутое для других форм проводника, если среднее геометрическое значение заменено на Di и dc .

Символы

d c — диаметр проводника, мм
D и — наружный диаметр изоляции, мм
C — емкость кабеля на единицу длины, F.m -1
U 0 — номинальное напряжение кабеля на землю, В
Вт d — диэлектрические потери на единицу длины, Вт -1
tan δ — коэффициент потерь для изоляции
ε — относительная диэлектрическая проницаемость изоляции
ω — угловая частота (2πf)

См. Также

,

myCableEngineering.com> Диэлектрические потери в кабелях

Сечение кабеля, показывающее
изоляция

Диэлектрики (например, изоляционные материалы) при воздействии переменного электрического поля будут иметь некоторые потери энергии. Изменяющееся электрическое поле вызывает небольшую перестройку слабо связанных молекул, что приводит к выработке тепла. Количество потерь увеличивается при увеличении уровня напряжения. Для низковольтных кабелей потери обычно незначительны и обычно игнорируются.Для кабелей более высокого напряжения потери и выделяемое тепло могут стать важными и должны быть приняты во внимание.

Диэлектрики (например, изоляционные материалы) при воздействии переменного электрического поля будут иметь некоторые потери энергии. Изменяющееся электрическое поле вызывает небольшую перестройку слабо связанных молекул, что приводит к выработке тепла. Количество потерь увеличивается при увеличении уровня напряжения. Для низковольтных кабелей потери обычно незначительны и обычно игнорируются.Для кабелей более высокого напряжения потери и выделяемое тепло могут стать важными и должны быть приняты во внимание.

Диэлектрические потери измеряются с использованием так называемого тангенса угла потерь или тангенса дельта ( tan δ ). Проще говоря, tan delta — это тангенс угла между вектором переменного поля и компонентом потерь материала. Чем выше значение tan δ , тем больше будут диэлектрические потери. Перечень значений tan δ для различных изоляционных материалов см. В примечании «Свойства кабельной изоляции».

Примечание: в день В кабелях со статическим электрическим полем отсутствуют диэлектрические потери. Следовательно, учет диэлектрических потерь относится только к кабели.

Кабельное напряжение

Диэлектрические потери только становятся значительными и должны учитываться при более высоких напряжениях. МЭК 60287 «Электрические кабели. Расчет номинального тока» предполагает, что диэлектрические потери необходимо учитывать только для кабелей со следующими уровнями напряжения:

Тип кабеля U 0 , кВ
Бутилкаучук 18
EDR 63.5
Пропитанная бумага (заполненная маслом или газом) 63,5
Пропитанная бумага (сплошная) 38
PE (высокая и низкая плотность) 127
ПВХ 6
сшитый полиэтилен (заполненный) 63,5
из сшитого полиэтилена (без наполнителя) 27

Кабель Диэлектрические потери

Учитывая tan δ и емкость кабеля, диэлектрические потери легко вычисляются:

W d = ω C U 0 2 tan δ

Можно использовать вышеупомянутое для других проводниковых форм, если вместо геометрических средних Di и DC .

Символы

d c — диаметр проводника, мм
D и — наружный диаметр изоляции, мм
C — емкость кабеля на единицу длины, F.m -1
U 0 — номинальное напряжение кабеля на землю, В
Вт d — диэлектрические потери на единицу длины, Вт -1
tan δ — коэффициент потерь для изоляции
ε — относительная диэлектрическая проницаемость изоляции
ω — угловая частота (2πf)

Кабельная емкость

Емкость кабеля можно получить у производителей или для круглых проводников, рассчитанную по следующей формуле:

C = ε 18ln (D i d c) 10 −9 F.м -1

,Инструмент для определения размеров кабелей постоянного тока

— используйте кабели правильного размера

Этот онлайн-инструмент для расчета размеров кабелей позволяет легко определить правильный размер кабелей для любой системы питания постоянного тока.

Размеры кабелей особенно важны для кабелей аккумуляторных батарей низкого напряжения, солнечных батарей, ветряных турбин и кабелей нагрузки. Потеря или падение напряжения в кабелях неправильного размера являются одной из наиболее распространенных причин сбоев в работе системы низкого напряжения (12 В, 24 В или 48 В).

Если кабель слишком маленький, это может быть очень опасно, так как кабель нагревается и может привести к пожару.Негабаритные кабели также расходуют энергию. И наоборот, слишком большой кабель, и вы просто тратите деньги на хорошую медь.

cable size is vital on low voltage systems
Как использовать Калькулятор размера кабеля

1 — Введите допустимый процент потерь в кабеле [обычно около 2 или 3%].

2 — Введите номинальное напряжение системы [или напряжение PV-матрицы для солнечных кабелей].

3 — Введите максимальный ток, который будет передаваться по кабелю [ампер = ватт / напряжение].

4 — Введите необходимую длину кабеля [источник питания для нагрузки].

5 — Нажмите «Рассчитать» — результаты показаны в ближайших стандартных метрических и AWG кабельных размерах.


Все размеры кабелей, приведенные на этой странице, относятся к одножильному кабелю с резиновой изоляцией HO7RNF, при температуре окружающей среды 30 град. C и температура проводника не более 85 ° C.

Размеры кабелей следует использовать только в качестве ориентировочных, и, если не используется кабель HO7RNF, все цифры следует сверять с данными производителя. Кроме того, все кабели должны быть предохранены / защищены током до их максимального значения или меньше.

Отказ от ответственности: Мы (www.solar-wind.co.uk) не несем юридической ответственности за любые проблемы, вызванные использованием этого калькулятора размеров кабелей.

.
Распределенная акустическая система Cable Loss Calculator
  • Главная
  • Главная AV
    • Подключение оборудования
    • Подключение акустических систем
    • Подключение колонок
    • Подключение оборудования
  • Понимание Audio
  • Калькуляторы
    • Audio Калькуляторы
    • Электрические Калькуляторы
    • Аудио Калькуляторы
    • Электрические Калькуляторы
  • Основы
  • Мифы и Пустяки

Поиск

Geoff the Grey geek - Helping you connect your AV equipment Geoff серого Geek Geoff the Grey geek - Helping you connect your AV equipment Geoff the Grey geek - Helping you connect your AV equipment
  • Главная
  • Главная AV
    • AllConnecting EquipmentConnecting Динамики Geoff the Grey geek - Helping you connect your AV equipment

      Подключение Часто задаваемые вопросы по динамикам

      Geoff the Grey geek - Helping you connect your AV equipment

      Симуляторы селекторного переключателя динамиков

      Geoff the Grey geek - Helping you connect your AV equipment

      Общие сведения об импедансе динамиков

      Geoff the Grey geek - Helping you connect your AV equipment

      Как подключить видеомагнитофон к телевизору с плоским экраном

    • Conne cting Speakers
    • Подключение оборудования
  • Общее представление о звуке
    • Understanding amplifier power - feature image

      Общее представление о мощности усилителя

      Understanding amplifier power - feature image

      Общее представление о чувствительности динамиков

      Understanding amplifier power - feature image

      Как несколько динамиков обмениваются мощностью

      Understanding amplifier power - feature image

      Изменение сопротивления акустических систем Усилитель громкоговорителей

    • 0

      0

      0

  • Калькуляторы
    • AllAudio CalculatorsElectrical Калькуляторы Understanding amplifier power - feature image

      Выступающие в калькулятор серии

      Understanding amplifier power - feature image

      Усилитель мощности, напряжения и тока Калькулятор

      Distributed Speaker System SPL Calculator

      Распределенная акустическая система SPL калькулятор

      distributed speaker systems cable loss calculator

      Распределенная акустическая система Cable Loss Calculator

    • Аудио Калькуляторы
    • Электрические калькуляторы
  • Основы
    • distributed speaker systems cable loss calculator

      Использование мультиметра

      distributed speaker systems cable loss calculator

      переменного и постоянного тока

      distributed speaker systems cable loss calculator

      Закон страшных омов

      distributed speaker systems cable loss calculator

      Что такое электроэнергия?

  • Myths & Trivia
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *