Posted on

Содержание

Параллельное соединение светодиодов

Известно, что светодиоды лучше всего соединять последовательно. В этом случае ток на каждом из них будет одинаковый, что упрощает контроль над ним. Но бывают случаи, что без параллельного соединения не обойтись.

Например, если есть источник питания, и к нему необходимо подключить несколько светодиодных лампочек, суммарное падение напряжений на которых превышает напряжение источника. Иными словами, питания источника не достаточно для последовательно соединенных лампочек, и они не загораются.

Тогда лампочки включают в цепь параллельно и на каждую ветку ставят свой резистор.

По законам параллельного соединения падение напряжений на каждой ветке будет одинаковым и равным напряжению источника, а ток может отличаться. В связи с этим расчеты по определению характеристик резисторов будут проводиться отдельно для каждой ветки.

Image 008

Содержание статьи

Запрет на один резистор

Почему нельзя подсоединить все светодиодные лампочки к одному резистору? Потому что технология производства не позволяет сделать светодиоды с идеально равными характеристиками. Светодиоды имеют разное внутреннее сопротивление, и порой различия в нем очень сильны даже для одинаковых моделей, взятых из одной партии.

Большой разброс сопротивления приводит к разбросу в значении тока, а это в свою очередь приводит к перегреву и перегоранию. Значит, надо проконтролировать ток на каждом светодиоде или на каждой ветке с последовательным соединением. Ведь при последовательном соединении ток одинаковый. Для этого и применяют отдельные резисторы. С их помощью стабилизируют ток.

Основные характеристики элементов цепи

Слегка подумав, становится понятным, что одна ветка сможет содержать максимальное количество светодиодов такое же, как при последовательном соединении и питании от этого же источника.

Например, у нас есть источник на 12 вольт. К нему можно последовательно подсоединить 5 светодиодов по 2 вольта. (12 вольт:2 вольта:1,15≈5). 1,15- это коэффициент запаса, поскольку необходимо рассчитывать, что в цепь будет включен еще и резистор.

Сопротивление резистора рассчитывается с помощью закона Ома: I=U/R, где I будет допустимым током, взятым из таблицы характеристик прибора. Напряжение U получится, если из максимального напряжения источника питания вычесть падения напряжений на каждом светодиоде, входящем в последовательную цепочку (тоже берется из таблицы характеристик).

Мощность резистора находится из формулы:

P=U²/ R= I*U.

При этом все величины записываются в системе Си. Напомним, что 1 A=1000 мA, 1 мA=0,001 A, 1 Ом=0,001 кОм, 1 Вт=1000 мВт.

Сегодня много онлайн калькуляторов, которые предлагают выполнить эту операцию автоматически, просто подставив известные характеристики в пустые ячейки. Но основные понятия знать все-таки полезно.

Преимущество параллельного включения диодов

Параллельное соединение позволяет добавить 2 или 5, или 10 светодиодов, или больше. Ограничением является мощность источника питания и габариты прибора, в котором вы хотите применить такое соединение.

Лампочки для каждой параллельной ветки берут строго одинаковые, чтобы у них были максимально похожие значения допустимого тока, прямого и обратного напряжения.

Преимущество параллельного соединения светодиодов в том, что если один из них перегорит, вся цепь продолжит работать. Лампочки будут светиться и при перегорании их большего количества, главное, чтобы хоть одна ветка оставалась неповрежденной.

Как видно, параллельное соединение – это довольно полезная вещь. Просто надо уметь правильно собрать цепь, не забывая обо всех свойствах светодиодов и о законах физики.

Во многих схемах параллельное соединение комбинируют с последовательным, что позволяет создать функциональные электрические приборы.

Применение параллельного соединения светодиодов

Схема параллельного подключения с двумя выводами позволяет реализовывать двухцветное свечение лампочек, если используются два кристалла разного цвета. Цвет меняется при изменении полюсов источника (изменение направления тока). Широкое применение такая схема находит в двухцветных индикаторах.

Если два кристалла разного цвета соединить параллельно в одном корпусе и подключить к ним импульсный модулятор, то можно менять цвет в широком диапазоне. Особенно много тонов генерируется при сочетании зеленого и красного цвета светодиодов.

Image 009

Как видно на схеме, к каждому кристаллу подключен свой резистор. Катод в таком соединении общий, а вся система подключена к управляющему устройству – микроконтроллеру.

В современных праздничных гирляндах иногда применяется смешанный тип соединения, в котором несколько последовательных рядов соединяются параллельно. Это позволяет гирлянде светиться, даже если несколько светодиодных источников выйдут из строя.

При создании подсветки в помещении тоже могут применять параллельное соединение. Смешанные схемы используются при конструкции многих индикаторных электроприборов и для подсвечивающих устройств.

Несколько нюансов монтажа

Отдельно можно сказать о том, как соединяются светодиоды между собой. Каждый кристалл заключен в корпус, из которого идут выводы. На выводах зачастую стоят отметки «-» или «+», что означает соответственно подключение к катоду и к аноду прибора.

Опытные радиолюбители даже на глаз могут определить полярность, поскольку катодный вывод чуть длиннее и чуть больше выступает из корпуса. Подключение светодиодов необходимо осуществлять, строго соблюдая полярность.

Если речь идет о мощных светодиодах, то в процессе монтажа довольно часто применяют пайку. Для этого используют маломощный паяльник, чтобы ни в коем случае не перегреть кристалл. Время пайки не должно превышать 4-5 секунд. Лучше, если это будет 1-2 секунды. Для этого паяльник разогревают заранее. Выводы сильно не сгибают. Схему собирают на площадке из материала, который хорошо отводит тепло.

le-diod.ru

Расчет светодиодов — параллельное и последовательное включение

Расчет светодиодов — ограничительный резистор в цепи LED-диодов

Расчет светодиодов-1Расчет светодиодов-1

Расчет светодиодов — LED-диод, это неотъемлимый элемент современной электроники, который используется практически во всех радиоэлектронных устройствах. Принцип его работы следующий: при подачи на него определенного значения постоянного тока, прибор начинает светится.

Существуют светодиоды различных цветов свечения, которое обусловливается применяемым материалом для его изготовления.

Специфика включения светодиодного прибора

Вольт-Амперная характеристика у светодиода аналогична той, которую имеет стандартный диод полупроводникового типа. Вместе с тем, когда в цепи светодиода возрастает напряжение прямой направленности, идущий через него ток стремительно увеличивается. Взять для примера фирменный светодиод зеленого свечения, то если подавать на него прямое напряжение в диапазоне от 1.8v до 2v, ток может увеличиться в пять раз, то есть составит 10мА.

Следовательно, включение светодиода по схеме прямой направленности напряжения, даже при незначительном увеличении напряжения, постоянный ток может повысится до критической величины. А при возрастании тока до пикового значении, чревато выходом из строя светодиода.

Поэтому, что бы предохранить данный полупроводниковый прибор от возможного пробоя, подавать на него напряжение необходимо от стабилизированного источника тока, то есть — драйвера.

При использовании драйвера с постоянным стабилизированным током обеспечиваются лучшие характеристики излучения светодиода, и, кроме того, увеличивается срок его работы. Однако такие источники тока дорогие и используются только для ответственных случаев.

В случае, если цепь со стабилизированным напряжением в схеме отсутствует, тогда для защиты светодиода применяется постоянный резистор в качестве ограничивающего ток сопротивления. Такой гасящий резистор включается последовательно в цепь светодиода. Чтобы точно определить номинальное значение такого резистора, нужно воспользоваться ниже приведенной формулой:

Это популярный в радиоэлектронике закон Ома, с помощью которого можно легко определить номинальное значение сопротивления на определенном участке электрического тракта.

Расчет светодиодов-2Расчет светодиодов-2

R=U/I, где:

R — сопротивление, Ом;
U — напряжение на участке цепи, В;
I — ток, протекающий в цепи, А.

В общем, принцип расчета сопротивления такой: определяем требуемую величину рабочего тока прибора — Iсв и номинальное напряжение для его работы — Uсв. При этом нужно учитывать постоянное напряжение, от которого питается вся схема — Uпит, далее уже высчитывается номинальное значение ограничительного сопротивления — Rогр:

Rогр=(Uпит-Uсв)/(Iсв*0,75)

Коэффициент 0,75 в этом случае применяется для сохранения определенного запаса.

Получив номинальное значение сопротивления, теперь необходимо найти наиболее приближенный к нему номинал постоянного резистора.

Теперь нужно определить мощность рассеивания гасящего резистора:

Pрас =Iсв²*Rогр, где:

Pрас — мощность, рассеиваемая на ограничивающем резисторе, Вт;
Iсв — ток светодиода, А;
Rогр – сопротивление ограничивающего резистора, Ом.

Узнав мощность рассеивания ограничительного резистора, теперь нужно найти компонент с предельно допустимыми параметрами.

Включение светодиодов по параллельной и последовательной схеме

Используя параллельное включение LED-источника, следует помнить, что в случае задействования только одного гасящего сопротивления может привести к его перегреву.

Расчет светодиодов-3Расчет светодиодов-3

Применяя схему параллельного включения LED-приборов, необходимо в разрыв цепи диода всегда устанавливать свой, персональный резистор ограничения тока. Способ расчета номинальной мощности и сопротивления этого резистора высчитывается аналогичным методом, приведенным выше. Используя схему последовательного включения, цепь желательно составлять из идентичных друг другу приборов.

Помимо этого, нужно взять во внимание то, что действующее в схеме напряжение должно составлять немногим большее значение, чем потребляющее всеми LED-диодами одновременно

Вычисление номинала ограничительного резистора для использования в схеме последовательного соединения, производится таким же образом, как показано выше. Хотя, есть некоторое исключение, состоящее в том, что при подсчете, взамен значения Uсв применяется значение Uсв*N. В приведенном примере буква N означает число соединенных в цепь LED-приборов.

Расчет резистора для подключения светодиодов на видео

usilitelstabo.ru

Светодиод | Электронные печеньки

Светодиод или светоизлучающий диод (англ. LED Light-emitting diode) — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении. Иными словами, светится, когда через него течет ток. Похоже на простую лампу накаливания, но устроен светодиод сложнее. В статье рассказывается об особенностях светодиода, о том как правильно подключать светодиод и о способе расчёта резистора для светодиода.

Особенности светодиода

Что-бы понимать, как правильно подключать светодиоды нужно разбираться в некоторых особенностях:

  • светодиод питается током. Напряжение, подаваемое на светодиод не имеет значения. Это может быть и 3В, и 1000В. Главное — выдержать необходимый ток. При нехватке тока, светодиод светится тусклее, чем может. При превышении тока светодиод светит ярче, но сильно греется. Светодиод, через который пропускают ток больше, чем он ожидает, перегреется и проработает совсем недолго. В данном случае всегда лучше «недолить».
  • падение напряжения. Важная характеристика светодиода — падение напряжения. Это значение показывает, на сколько
    вольт
    уменьшится напряжение при прохождении через светодиод при последовательном соединении. Например, если падение напряжения на светодиоде 3,4 вольта, то при напряжении питания 12 вольт, после первого светодиода остается 12-3,4= 8,6 вольт. На втором потеряется еще 3,4 вольта. Останется 8,6-3,4=5,2В. А после третьего останется 5,2-3,4=1,8 вольта. Это меньше, чем падение напряжения светодиода. Значит, больше светодиодов запитать мы не сможем.
  • температурный режим. Светодиод нагревается во время свечения. Чем мощнее светодиод, тем сильнее он нагревается. В случае с маломощными светодиодами в пластиковом корпусе, их нагревом можно пренебречь. Если вы имеете дело со сверхмощными яркими светодиодами, нужно думать об охлаждении.
  • полярность. При подключении светодиода нужно соблюдать полярность. Если перепутать плюс и минус, то ничего особенно страшного не случится, но светодиод не будет светить, и ток через него не пройдёт. У светодиода 2 вывода: анод и катод. Анод — положительный вывод. Он подключается к положительному полюсу источника питания. Катод  — отрицательный. Его подключают к минусу (земле). Держа светодиод в руке выводы можно отличить по длине: анод делают длиннее катода. Внутри колбы светодиода выводы можно тоже отличить по размеру. Катод более массивен и по форме напоминает чашу.

Изображение светодиода на схеме

Светодиод. Видна разница в длине катода и анода.

Светодиод. На крупном плане различим катод, напоминающий по форме чашу.

Необходимый ток и падение напряжения можно узнать из спецификации светодиода. Если у вас уже есть светодиод, но вы не знаете его характеристик, можно считать, что нужен ток 25мА, а падение напряжения считать равным 3В. Казалось бы, эти параметры идеально подходят для того, что-бы светодиод подключить напрямую к выводу Arduino. Но всё не так просто. Как отмечалось выше, светодиод токовый прибор. Если обычная лампочка сама себе выберет ток, то светодиод выбирает себе напряжение. То есть, если светодиод требует для себя 3В, а мы подадим на него 5В, то ток вырастет настолько, что светодиод сгорит. Это происходит потому, что он пытается удержать своё напряжение в 3V, а источник пытается выдать свои 5В. Начинается смертельная схватка. Если источник питания слабый, и светодиод сумеет просадить на нём напряжение до нужного — он уцелеет, а нет — источник питания выиграет битву, и светодиод сгорит. Для того, чтобы избежать проблем, нужно стабилизировать ток для светодиода. Простейший стабилизатор тока — резистор. Включаем последовательно со светодиодом резистор, резистор ослабляет источник питания, стабилизируя ток. При подключении больших и мощных светодиодов используют уже специальные стабилизаторы тока, вместо резисторов. Резистор нужно уметь расчитывать.

Ничего сложного в расчёте резистора нет. Из формул нам понадобится разве что закон Ома: сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Для расчёта сопротивления резистора для светодиода (R) нужно знать: напряжение питания (Uпит), падение напряжения на светодиоде (Uсв) и необходимый светодиоду ток(I).

Формула очень простая: R = (Uпит — Uсв) / I

Для простоты расчёта принимается ряд «стандартных» параметров:

Uпит=5 В, Uсв=3 В, I=25 мА=0,025 А

Тогда:

R = 5 — 3 / 0.025 = 80 Ом

Ближайшее стандартное сопротивление резистора — 100 Ом.

Однако, поскольку часто приходится иметь дело со светодиодами, точные параметры которых неизвестны, лично моя рекомендация: исключить падение напряжения из формулы. Так мы получим универсальную формулу для расчёта резистора для любого светодиода, при этом ограничим ток с запасом и не сильно потеряем в яркости. Однако, если вы собираете осветительный прибор и вам важно добиться максимальной светимости светодиода, используйте полную формулу, описанную выше. Итак, по моей упрощённой формуле расчёт будет таким:

R = 5 / 0.025 = 200 Ом

Ближайшее стандартное сопротивление резистора — 220 Ом. С помощью него и будем подключать. Резистор следует включать в цепь между положительным полюсом источника и анодом светодиода.

Подключение одиночного светодиода

Теперь вы знаете, как правильно подключить один светодиод. Но что делать. когда вам нужно подключить несколько светодиодов к одному источнику питания?

При подключении одного светодиода ничего сложного нет. Мы только что обсудили это чуть выше. Но как правильно поступить, если одного светодиода недостаточно? Например, мы хотим подключить 15 светодиодов от источника питания 12В. Параметры светодиода для расчётов возьмём стандартные. Для дальнейших рассуждений придётся опять потормошить старика Ома и вспомнить, что при последовательном соединении напряжение складывается (в данном случае речь о падении напряжения на каждом светодиоде), а сила тока остаётся неизменной. При параллельном — наоборот. Теперь рассмотрим различные варианты подключения светодиодов.

Наиболее простой способ. Все светодиоды подключаем гирляндой друг за другом. Катод первого к аноду второго и т.д. Необходимый светодиодам при параллельном соединении ток не зависит от количества светодиодов и составляет 25мА.  Ещё потребуется учесть падение напряжения на каждом светодиоде. Пытливый читатель, дружащий с математикой, сейчас должен был запнуться. Падение напряжения рассчитывается как сумма падения напряжения для всех светодиодов. Да ещё и нужно оставить запас. Запас стоит оставлять из-за того, что светодиоды не идеальны. Падение напряжения сильно колеблется даже у светодиодов одного производителя и в одной партии. Падение зависит от температуры, да ещё и растёт по мере старения светодиода. У нас падение составит 15*3 = 45В. А источник всего на 12 вольт. Этот вариант отпадает. Последовательно мы можем позволить себе подключить только 12/4 = 4 светодиода. С запасом всего 3 светодиода в параллели. Теперь можно подключить перед цепочкой из трёх светодиодов токоограничительный резистор на 480 Ом (R = 12/0.025 = 480) и радоваться. Все три светодиода теперь получают ток в 25мА. Но неидеальность светодиодов означает, что нам может попасться экземпляр, который рассчитан на ток всего лишь в 20мА. Или чуть меньше. Или чуть больше. Неважно. Важно то, что наши рассчитанные 25mA окажутся избыточными. Такой светодиод начнёт греться и перегорит раньше других. Он перестанет пропускать через себя ток. Тогда все остальные светодиоды тоже погаснут. Последовательное подключение — недостаточно надёжная схема. Один перегоревший светодиод нарушает работу всей цепочки.

Достоинства: простая и дешёвая схема, низкое потребление тока.
Недостатки: необходимость в источнике питания с большим вольтажом, крайне низкая надёжность схемы.

Последовательное подключение трёх светодиодов

Итак, последовательно нам удалось соединить только 3 светодиода. Но что если требуется подключить все 15?

Параллельное подключение светодиодов

Здесь у нас всё наоборот. Силу тока нужно умножить на количество светодиодов, а падение напряжения посчитать только 1 раз.
Сила тока: I = 0,025 * 15 =0,375 А
Нам потребуется источник питания, способный выдать максимальный ток в 0,375 А. Округлим до 0,35 (помните, что лучше «недолить»?). По напряжению тоже укладываемся: 12 — 2 = 10. Остаётся с большим запасом.

Пытливый читатель, запнувшийся парой абзацев ранее, может воскликнуть: «Погодите! Так зачем нам 12 вольт, если мы можем обойтись и пятью?». «Можем!» — ответим ему мы. Но не торопитесь с выводами, это ещё не конец.

Мы определились, что светодиоды будут подключены параллельно. Необходимо ограничить ток в цепи. Допустим, специального драйвера у нас нет. Возьмём резистор. Рассчитаем необходимое сопротивление по давно известной формуле: 12 В * 0,35 А = 4,2 Ом. Подключим его между источником питания и анодами светодиодов:

Неправильное параллельное подключение трёх светодиодов

Вот, казалось бы, и всё. Но есть проблема:

Как отмечалось выше, светодиоды не обязательно имеют те характеристики, которые заявлены производителем. Всегда есть разброс. И вот мы задали ток в 0,35 ампер и смотрим на светящуюся линейку светодиодов. Но всем им нужен разный ток. Одному , как мы и рассчитывали 25мА, другому — 20мА, третьему 21мА, а вот нашёлся совсем кривой светодиод, ему нужно всего 15мА. А мы пропускаем через него 25 — почти в 2 раза больше. Светодиод греется и быстро перегорает. В линейке стало на 1 светодиод меньше. Теперь для питания оставшихся светодиодов нам требуется 35мА. Пока всё не выглядит особенно плохо. Мы ограничили ток с запасом. Мы молодцы. Но не выдержал ещё один светодиод. Осталось 13. Теперь весь наш ток делится не на 15, а на 13 светодиодов. На каждый из них приходится по 26мА. Теперь абсолютно все светодиоды работают на повышенном токе. Очень скоро перегреется следующий. Самые стойкие получат уже по 29мА — 116% от номинала. Всего 2 перегоревших светодиода запустили цепную реакцию. Скоро вся линейка перегорит, а вы так и не поймёте почему (ну или поймёте, мы же только что всё разобрали). Собственно, избавиться от такого печального сценария просто. Нужно к каждому светодиоду поставить по собственному токоограничительному резистору. Для тока в 25мА и напряжения 12В нужен резистор на 480 Ом. Это не спасёт от проблемы «кривых» светодиодов, но их перегорание никак не повлияет на остальные.

Достоинства: высочайшая надёжность.
Недостатки: высокое потребление тока, высокая стоимость схемы.

Правильное параллельное подключение трёх светодиодов

Параллельное подключение светодиодов — идеальный вариант. Всегда стремитесь к тому, чтобы подключать светодиоды параллельно и ограничивать ток каждого светодиода по отдельности своим резистором.  Если вы используете светодиодные драйверы (стабилизаторы тока), то каждому светодиоду нужно подключать свой драйвер. Именно поэтому параллельные схемы с большим количеством светодиодов становятся слишком дорогими. В реальности приходится идти на компромисс и объединять светодиоды в цепочки.

Комбинированный способ подключения светодиодов

Итак. Подключим наши 15 светодиодов комбинированным способом. Вспомним расчёт для последовательного подключения. Там мы выяснили, что от 12 вольт можем безболезненно запитать 3 светодиода. На каждый из 3-х светодиодов потребуется резистор в 480 Ом. Это и будет наша цепочка — 3 светодиода и резистор. Теперь мы параллельно подключим 5 таких цепочек. При параллельном соединении напряжение питания остаётся неизменным, а сила тока для каждой цепочки умножается на количество цепочек. Получается, нужен источник на 12В и 5*0,025=0,125А. Как видим, такой способ подключения сильно экономит ток.

Достоинства: низкое потребление тока при большой плотности светодиодов, каждая цепочка не зависит от соседних, благодаря наличию собственного токоограничительного резистора.
Недостатки: внутри цепочки мы получаем те же проблемы, что и при обычном параллельном соединении. При наличии «кривых» светодиодов в цепочке, она выйдет из строя раньше других.

Комбинированное подключение светодиодов. 3 цепочки по 3 светодиода.

При подключении светодиодов к источнику питания предпочтительно использовать параллельное соединение, снабжая каждый светодиод отдельным стабилизатором. При подключении большого количества светодиодов, для удешевления конструкции возможно комбинирование последовательного и параллельного способов соединения светодиодов для достижения оптимального результата.

Поделиться ссылкой:

Похожее

uscr.ru

Параллельное соединение светодиодов: описание, плюсы и минусы

Новый год – самый светлый и добрый праздник для большинства населения нашей страны. Люди наряжают елки и ждут чего-то светлого и доброго. Однако праздничное настроение невозможно создать без правильной иллюминации, в качестве которой традиционно выступают гирлянды. Их изготавливают из лампочек накаливания, неона. Однако наиболее экономичными и безопасными по праву считаются изделия из светодиодов. Такие гирлянды можно собрать даже своими руками. Необходимо лишь соблюдать некоторые правила монтажа. Сегодняшняя статья расскажет о параллельном соединении светодиодов, как оно выполняется и когда применяется.

Новый год - пора, когда особенно хочется праздничного настроения

Какие виды коммутации LED-элементов существуют

Различают два основных типа соединения – последовательное и параллельное. Каждый из них применяется в своей области. Например, если речь идет о новогодних электрических гирляндах, то здесь чаще выполняется последовательное соединение. Оно позволяет использовать лампочки накаливания или неон, предназначенные для низкого напряжения. К примеру, соединенные последовательно лампочки 4.5 В в количестве 50 шт. свободно выдерживают напряжение 220 В. При подобной коммутации плюс одного излучателя соединяется с минусом другого, и так на протяжении всей цепи.

Но подобное правило не касается светодиодных новогодних электрических гирлянд. Дело в том, что для корректной работы LED-компонентов не подходит переменный ток домашней сети. Для нормального функционирования им необходим стабилизирующий блок питания. Это значит, что напряжение в любом случае должно быть низким. Ведь намного проще стабилизировать 12В, нежели 220 В.

Пример параллельного соединения светодиодов

Нюансы подключения светодиодов

Как известно, существует последовательное и параллельное соединение светодиодов. В таком случае возникает вопрос, почему для гирлянд с лампами накаливания и неоном выбирается одно, а для LED-элементов другое? Здесь дело в характеристиках излучателей. Каждый из светодиодов имеет свой показатель падения напряжения. При условии, что стабилизирующий блок питания не слишком мощный, большое количество LED-элементов последовательно к нему подключить не удастся. Именно по этой причине в гирляндах используется параллельная коммутация.

Кто-то может сказать, что достаточно взять БП помощнее, ведь при этом контролировать напряжение на светодиодах будет проще (оно будет равным на каждом из них). Но здесь встает вот какая проблема. Даже если брать обычную гирлянду из светодиодов на 50 LED-элементов, адаптер будет таких размеров, что под небольшой елкой его спрятать не удастся.

Полезная информация! Если падение напряжения на чипах выше, нежели номинал блока питания, долговременную работу такой адаптер может не выдержать.

Немного информации о соединениях светодиодов можно почерпнуть из следующего видеоролика. В нем наглядно продемонстрировано, что оно собой представляет.

Пример параллельного соединения светодиодов

Что требуется для коммутации LED-элементов

Параллельное соединение светодиодов подразумевает использование ограничительных резисторов и излучателей, максимально приближенных друг к другу по характеристикам. Если подбор LED-элементов по показателям несложен, то сопротивление, необходимое для их корректной работы нужно еще высчитать. Стоит разобраться, какие формулы для этого применяются.

При параллельном соединении светодиодов расчет сопротивления следует начать с вычисления его номинального сопротивления, измеряемого в Ом. Для этого необходимо разность напряжения источника питания и самого LED-элемента разделить на произведение тока светодиода на коэффициент 0.75. Данные по LED-элементам при этом берутся из технической документации.

Для нормальной работы цепи потребуется вычисление еще одного параметра. При параллельном соединении светодиодов расчет резистора по мощности также крайне важен. Он производится следующим образом. Необходимо квадрат разности напряжения источника питания и LED-элемента разделить на полученное из предыдущих вычислений сопротивление.

Светодиодная лента в силиконовой трубке

Как сделать гирлянду из светодиодов своими руками

Рассчитав резисторы и припаяв их к катодам LED-элементов, следует определиться с напряжением блока питания, который будет использоваться. Наиболее удобный вариант – это применение контроллера от старой китайской гирлянды. Это устройство не только выступит в роли стабилизатора, но и избавит от решения вопроса, как сделать мигание светодиодов при параллельном соединении.

Далее необходимо растянуть провод, отметить маркером будущие места расположения излучателей. По отметкам снимаются небольшие отрезки изоляции – по 15-20 мм. Эту работу следует выполнять аккуратно, чтобы не повредить жилу провода. Облудив зачищенные места, можно припаять к ним светодиоды. Получившуюся спайку необходимо заизолировать вместе с частью LED-элемента, в результате чего увеличится прочность соединения. Для этих целей лучше использовать прозрачный скотч, который не будет препятствовать прохождению светового потока.

Коммутация получившейся гирлянды с контроллером

Если открыть корпус китайского устройства, на обратной от питающего провода стороне, с краю, можно увидеть 2 или 3 выходных контакта. Если их 2, сразу понятно, как производить пайку, если же 3, то используются крайние, а центральный остается пустым.

При подобной работе не следует использовать мощный паяльник с толстым жалом – возникает опасность испортить оборудование. Если иного выхода нет, то необходимо намотать на наконечник медный провод без изоляции, сечением 4 или 6 мм2 таким образом, чтобы конец жилы был длиннее на 3-4 см. Результатом подобных действий станет уменьшение температуры жала паяльника и более аккуратная работа.

Такую ленту также можно использовать на улице, однако тут есть ограничения по температуре

После того как параллельно соединенные светодиоды и китайский контроллер стали одной гирляндой, можно произвести ее проверку, включив сделанный своими руками прибор в сеть. Кнопка на корпусе даст возможность переключения режимов мигания.

Параллельное соединение светодиодных лент

Отрезки LED-полосы при подключении к блоку питания не должны быть длиннее 5 м. А вот если требуется большая протяженность, их соединяют. Но делать это нужно только в параллель. Многие «умельцы» говорят, что можно выполнить и последовательную коммутацию, но это очень большое заблуждение. Дело в том, что при подобном подключении резко возрастает нагрузка на токопроводящие нити первой ленты, в результате чего они начинают перегорать. А вот при параллельном соединении светодиодов 12 вольт такого не происходит – дорожки рассчитаны на длину полосы до 5 м.

LED-ленты также используются в качестве гирлянд. Наиболее распространенное их применение – уличная подсветка типа «Дюралайт». Для ее изготовления используется силиконовая трубка, в которую и помещается светодиодная полоса. Такие гирлянды морозоустойчивы и влагонепроницаемы, не боятся осадков и грязи. Применяются в оформлении уличных новогодних елок, стволов деревьев, протягиваются между фонарными столбами.

Особенности пайки SMD-компонентов

Для изготовления LED-ленты используются монтируемые на поверхность СМД-светодиоды. Их особенность в том, что без специального оборудования заменить сгоревший элемент не удастся. Дело в том, что здесь необходима станция – обычным паяльником легко перегреть чипы, которые не переносят слишком высокой температуры. Нередки случаи, когда слишком самоуверенные домашние мастера умудрялись заменить SMD-компоненты при помощи обычного прибора, однако через 2-3 часа беспрерывной работы светодиодная лента снова выходила из строя.

Правильное соединение отрезков светодиодных лент

Вообще, LED-полоса – это универсальное устройство, которое применяется в различных областях. Это может быть подсветка подвесных потолков, мебели, салона автомобиля или компьютерной клавиатуры…всего и не перечислить.

Несколько советов по созданию гирлянды

Выбирая цвет будущего елочного украшения, не стоит обращать внимания на RGB элементы. Сборка для начинающего мастера может стать слишком сложной, а тратить лишние деньги, чтобы после подключить их как обычные компоненты, будет непозволительной роскошью. Лучше всего выполнить параллельное соединение светодиодов разного цвета. Конечно, придется произвести дополнительные расчеты параметров резисторов, однако результат будет намного интереснее, чем при использовании однотонных излучателей.

Понятно, что готовая гирлянда на светодиодах в магазине стоит довольно дешево. Но следует понимать, что изготовленное своими руками изделие покажется во много раз красивее. А удовлетворение от того, что все получилось так, как задумано не измерить никакими деньгами.

При изготовлении подобных украшений следует быть предельно внимательным, следить, чтобы не осталось оголенных участков, а провода внутри контроллера не перехлестнулись. Контакты должны быть пропаяны качественно, во избежание нагрева. Необходимо понимать, что она будет располагаться на елке, а хвоя очень быстро вспыхивает за счет содержащейся в ней смолы.

Светодиодные гирлянды на батарейках удобны и безопасны

Питающий кабель, идущий от контроллера на розетку, имеет смысл заменить – китайские производители стараются экономить на всем. Именно по этой причине жилы этого провода чуть толще волоса. После вскрытия корпуса контроллера имеет смысл проверить качество пайки соединений и контактов – в дешевых моделях это больное место.

Часто допускаемые ошибки при создании параллельного соединения

От этого никто не застрахован, однако следует стараться, чтобы подобного не происходило. Основными ошибками, которые допускают не только новички, а иногда и профессионалы, можно назвать:

  • Игнорирование необходимости подключения светодиода с ограничительным резистором.
  • Коммутация нескольких LED-компонентов через одно сопротивление. В подобном случае если будет пробит один из элементов, ток на остальных значительно повысится. Чем это чревато, говорить не стоит.
  • Последовательное подключение светодиодов с различными характеристиками.
  • Недостаточное сопротивление. Ток, проходящий через излучатель, будет слишком большим, что приведет к повышению температуры и выходу элемента из строя.
  • Подключение светодиодов к бытовой сети без устройства ограничения обратного напряжения. Ток сети 220 В переменный, а значит в момент, когда синусоида пересечет ось, произойдет пробой p-n перехода элемента, что приведет к его выходу из строя.
  • Малая мощность сопротивления. Даже при правильном параллельном соединении светодиодов подобная ошибка приведет к сильному нагреву резистора, плавлению изоляции и короткому замыканию.

Остается посоветовать домашним мастерам, внимательнее относиться к подобной работе и не допускать перечисленных ошибок.

При помощи светодиодов можно собрать гирлянду любой формы

Вместо эпилога

Знать, какое соединение называется последовательным, а какое параллельным и уметь его выполнить обязан каждый уважающий себя домашний мастер. Эти навыки пригодятся не только при изготовлении гирлянд. С различным видами соединений можно столкнуться где угодно. К примеру, в домашней электросети все розетки подключены параллельно, в то время как выключатели имеют последовательную коммутацию. Главное – помнить об основных правилах, соблюдать их и быть внимательным к мелочам. В этом случае любая работа, за которую возьмется домашний мастер, будет выполнена безопасно, надежно и на должном уровне.

fb.ru

Светлый угол — светодиоды • Паралельно и последовательно. Объясните чайнику

Специально для Вас!
……………………………………………………………………………..Применение драйверов на практике

Большинство людей, планирующих использовать светодиоды, совершают типичную ошибку. Сначала приобретаются сами СИД, затем под них подбирается драйвер. Ошибкой это можно считать потому, что в настоящее время мест, где можно приобрести в достаточном ассортименте драйвера, не так уж и много. В итоге, имея на руках вожделенные светодиоды, вы ломаете голову — как подобрать драйвер из имеющегося в наличии. Вот купили вы 10 светодиодов — а драйвера только на 9 есть. И приходится ломать голову — как быть с этим лишним светодиодом. Может быть, проще было сразу на 9 рассчитывать. Поэтому выбор драйвера должен происходить одновременно с выбором светодиодов. Далее, нужно учитывать особенности светодиодов, а именно падение напряжения на них. К примеру, красный 1 Вт светодиод имеет рабочий ток 300 мА и падение напряжения 1,8-2 В. Потребляемая им мощность составит 0,3 х 2 = 0,6 Вт . А вот синий или белый светодиод имеет при таком же токе падение напряжения 3-3,4 В, то есть мощность 1 Вт. Стало быть, драйвер с током 300 мА и мощностью 10 Вт «потянет» 10 белых или 15 красных светодиодов. Разница существенная. Типовая схема подключения 1 Вт светодиодов к драйверу с выходным током 300 мА выглядит так :

подключение светодиодов к драйверу 300 мА

У стандартных 1 Вт светодиодов минусовой вывод больше плюсового по размеру, поэтому его легко отличить.

Как же быть, если доступны только драйвера с током 700 мА ? Тогда придется использовать четное количество светодиодов, включая их по два параллельно.

подключение светодиодов к драйверу 700 мА

Хочу заметить, что многие ошибочно предполагают, что рабочий ток 1 Вт светодиодов — 350 мА. Это не так, 350 мА — это МАКСИМАЛЬНЫЙ рабочий ток. Это означает, что при продолжительной работе необходимо использовать источник питания с током 300-330 мА. Это же верно и для параллельного включения — ток на один светодиод не должен превышать указанной цифры 300-330 мА. Вовсе не значит, что работа на повышенном токе вызовет отказ светодиода. Но при недостаточном теплоотводе каждый лишний миллиампер способен сократить срок службы. К тому же чем выше ток — тем ниже КПД светодиода, а значит, сильнее его нагрев.

Если речь пойдет о подключении светодиодной ленты или модулей, рассчитанных на 12 или 24 вольта, нужно принимать во внимание, что предлагаемые для них источники питания ограничивают напряжение, а не ток, то есть не являются драйверами в принятой терминологии. Это означает, во первых, что нужно внимательно следить за мощностью нагрузки, подключаемой к определенному блоку питания. Во-вторых, если блок недостаточно стабилен, скачок выходного напряжения может погубить вашу ленту. Слегка облегчает жизнь то, что в лентах и модулях (кластерах) установлены резисторы, позводяющие ограничить ток до определенной степени. Надо сказать, светодиодная лента потребляет относительно большой ток. Например, лента smd 5050 , количество светодиодов в которой составляет 60 штук на метр, потребляет около 1,2 А на метр. То есть для запитки 5 метров понадобится блок питания с током не менее 7-8 ампер. При этом 6 ампер потребит сама лента, а один-два ампера нужно оставить про запас, чтобы не перегружить блок. А 8 ампер — это почти 100 ватт. Такие блоки недешевы.
Драйверы более оптимальны для подключения ленты, но найти такие специфические драйвера проблематично.

Подытоживая, можно сказать, что выбору драйвера для светодиодов нужно уделять не меньше, а то и больше внимания, чем светодиодам. Небрежность при выборе чревата выходом из строя светодиодов, драйвера, чрезмерным потреблением и другими прелестями

Юрий Рубан, ООО «Рубикон», 2010 г.

Отсюда!!! http://led22.ru/ledstat/bp/draiver-ili-blok.html

Человек, ищущий что-то, обычно это находит. (Индейская пословица)

ledway.ru

Как правильно подключать светодиоды (упрощённая версия)

(версия для торопящихся)

Новиков М.Г.
02.04.2007

Содержание

Введение

Ранее я уже писал о том, как правильно подключать светодиоды. Статья получилось подробной, большой, но трудной для восприятия. Люди в основной своей массе не хотят вникать в суть вещей, и хватают информацию лишь сверху. А потом тратят уйму времени на задавание вопросов, уже пояснённых в статье. Сейчас я постараюсь изложить основное, не углубляясь в разъяснение причин тех или иных правил, а если что будет непонятно, отсылаю вас к своей предыдущей статье.

Изложенные в статье утверждения и расчёты справедливы только для обычных светодиодов, не имеющих в своём составе электронных драйверов и прочих элементов.

[Вернуться в начало]

Напряжение питания

Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его (ток).

[Вернуться в начало]

Ток

Величина тока для светодиода является основным параметром, и в большинстве случаев составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

R = (Uпит. − Uпад.) / (I * 0,75)

  • R — сопротивление резистора в омах.
  • Uпит. — напряжение источника питания в вольтах.
  • Uпад.— прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
  • I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
  • 0,75 — коэффициент надёжности для светодиода.

Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

P = (Uпит. − Uпад.)2 / R

  • P — мощность резистора в ваттах.
  • Uпит. — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
  • Uпад.— прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
  • R — сопротивление резистора в омах.

[Вернуться в начало]

Параллельное и последовательное включение светодиодов

Параллельное включение светодиодов с общим резистором — плохое решение. Светодиоды имеют разброс характеристик, в результате чего по ним потекут разные токи, и светиться они будут с разной яркостью. Более того, при выходе из строя одного из светодиодов по другим потечет больший ток. Всё это нехорошо.

При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой. Так, к автомобильному аккумулятору 12 вольт можно подключить 12 / 2 = 6 светодиодов с падением напряжения 2 вольта. В этом случае теоретически можно обойтись вообще без резистора, однако из-за расброса характеристик светодиодов проверить ток в цепи будет не лишним. Он не должен превышать номинального тока светодиода. Если ток выше, следует включить в цепь резистор сопротивлением несколько ом.

[Вернуться в начало]

Часто задаваемые вопросы

1. Я знаю электротехнику и уверяю вас, что ток прекрасно регулируется напряжением! Мне не нужен резистор, я отрегулирую ток напряжением источника питания, и запитаю от него сразу несколько светодиодов!

Было бы хорошо, если помимо электротехники Вы бы знали и электронику. Регулировка тока напряжением — мероприятие довольно грубое. Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 миллиампер). Поэтому вам будет необходим очень точный источник питания. Кроме того, включив в него параллельно несколько диодов и померив их токи, Вы сможете убедиться, что они будут иметь существенный разброс. Это результат расброса характеристик полупроводниковых приборов.

2. Я втыкал один и тот же светодиод и в 2 и в 3 вольта, и он нормально светился и не перегорал! Нафига мне мерить ток, если всё и так работает?

Весь вопрос в том, как долго светодиод должен быть исправным. Если Вам достаточно нескольких дней (недель, при качественных светодиодах — месяцев), то втыкайте их как хотите. Если вам нужно надёжное изделие, стабильно работающее годами, потрудитесь посчитать резисторы.

3. Я правильно подсчитал резистор для питания светодиода от сети 220 вольт переменного тока. Однако светодиоды постоянно перегорают.

Ваши светодиоды не выдерживают постоянный электрический пробой обратным полупериодом. В результате происходит необратимый тепловой пробой. Чтобы этого избежать, параллельно светодиоду, но с обратной полярностью, включите любой кремниевый диод, например КД522Б. Он пропустит через себя обратный полупериод, не давая ему пробить светодиод в обратном направлении. Также обратите внимание на то, что в расчёте номинала резистора следует использовать не среднеквадратичное напряжение 220 вольт, а амплитудную его величину 311 вольт. При расчёте же мощности резистора используем привычное нам среднеквадратичное значение напряжения в 220 вольт.

4. У меня светодиоды подключены вместо контрольных ламп в системе автоматики. Из-за большой длинны кабельной линии они постоянно подсвечиваются от наводок. Как этого избежать?

Самый удачный способ избежать свечения отключенных светодиодов — занулить питающий провод при снятии напряжения питания со светодиода. Обычно это делается на противоположной светодиоду стороне переключающим реле. Общий контакт реле подключается к жиле, питающей светодиод, нормально замкнутый контакт зануляется, а на нормально разомкнутый подаётся напряжение. Теперь срабатывание реле зажжёт светодиод, а при его отключении питающая жила будет занулена и все наводки стекут в ноль.

Часто такое подключение требует переделки схемы автоматики. Если на это пойти нельзя, можно придумать альтернативные варианты. Например, использовать рядом со светодиодами промежуточные реле, или извратиться и включить две связки «светодиод-диод-резистор» последовательно — один на стороне автоматики, другой на удалённой панели индикации, поставить их под напряжение, а отключение производить замыканием средней точки на ноль. Тогда светодиод на стороне панели индикации погаснет, а на стороне автоматики загорится ярче. Минусы такого подключения — дополнительные детали (светодиод, диод и резистор), а также более тусклое горение основного индикатора. Можно также попробовать погасить паразитное подсвечивание светодиода резистором, включённым параллельно связке «светодиод-диод-резистор».

5. У меня есть светодиод, но я не знаю его марку, а значит, мне неизвестен ни его ток, ни величина прямого падения напряжения на нём.

Для простейшего способа определения характеристик светодиода вам понадобится источник питания постоянного тока с плавно регулируемым выходным напряжением (например, от 0 до 12 вольт, хотя в большинстве случаев подойдет  диапазон 1,5—2,5 вольта), вольтметр и амперметр. Ставим регулятор напряжения на минимум и, соблюдая полярность, подключаем светодиод к блоку питания. В цепь последовательно со светодиодом включаем амперметр, а параллельно источнику питания — вольтметр.

Напряжение: регулятором медленно поднимаем напряжение до тех пор, пока светодиод не начнет приемлемо светиться. При этом следим, чтобы ток случайно не превысил 20 миллиампер (максимум для большинства светодиодов). Смотрим напряжение (например, 1,82 В). Округляем его до десятых вольта (1,8). Это и будет величина прямого падения напряжения.

Ток: теперь проверяем разницу свечения светодиода при токах 5, 10 и 20 миллиампер (наиболее распространенные величины), аккуратно выставляя их регулятором напряжения. Интуитивно по характеру изменения свечения определяем, какой ток для светодиода будет оптимальным. При этом если разница в свечении не существенна, выбираем меньшее значение тока (чаще всего используется 10 миллиампер).

Сегодня также существуют светодиоды повышенной яркости, которые рассчитаны на токи в сотни миллиампер. Поэтому, если светодиод горит явно тускло при 20 миллиамперах, пробуем увеличивать ток далее. При этом, если при увеличении тока светодиод перестаёт увеличивать яркость, значит, вы уже слишком сильно превысили его токовый предел, и он близок к тепловому пробою. Срочно снижаем ток.

6. Я подключил светодиоды к аккумулятору в автомобиле, но когда двигатель работает — они горят ярче. Это не опасно?

Опасно. Генератор автомобиля при работе двигателя даёт напряжение в бортовую сеть 13,6—14,7 вольта, и светодиоды могут быстро выйти из строя. Кроме того, это напряжение постоянно изменяется и сильно падает при пуске двигателя. Поэтому необходимо стабилизировать это напряжение, например, на 9 вольтах специальной микросхемой КРЕН8А (КР142ЕН8А, 7809) с максимальным током 1,5 ампера или КРЕН8Г (КР142ЕН8Г) с максимальным током 1 ампер, и расчёт резисторов производить уже относительно этого напряжения. Не забывайте, что при большом токе микросхема будет греться, поэтому её следует устанавливать на радиатор.

Более подробно о подключении светодиодов можно узнать из моей предыдущей стататьи.

[Вернуться в начало]

novikov.gq

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *