Posted on

Содержание

Как определить полярность конденсатора и не перепутать?

Все конденсаторы имеют высокий показатель удельной емкости. Это объяснятся применением оксидной пленки в качестве диэлектрика, который располагается между обкладками. Этот слой появляется на поверхности металла – AL, Ta, Nb. Она характеризуется большой электрической прочностью, а также своими вентильными свойствами. Ее толщина колеблется от 0,01 до 1мкм.

Если создается напряжение в 100 вольт, создается напряженность на этом слое в 107В на см. Таким образом приближается к максимальному пределу своей прочность, исходя из теории ионной кристаллов.

В статье разобраны все аспекты как определить полярность конденсаторы и что такое полярность конденсаторов. В качестве дополнения есть ролик и скачиваемый файл на эту тему.

Полярность конденсаторов

Полярность конденсаторов.

Параметры, которыми характеризуется конденсаторы

Вообще говоря, таких параметров много. У нас тут не нобелевская лекция, поэтому ограничимся только необходимым минимумом, который пригодится в практической деятельности. Номинальное рабочее напряжение. Конденсатор может использоваться в режимах, когда напряжение на нём не превышает рабочего. Использовать, например, электролитический конденсатор с рабочим напряжением 10 В в цепях +5 В или +3 В можно.

Чем больше рабочее напряжение электролитического конденсатора при равной ёмкости, тем больше его габариты. Рабочее напряжение на керамических и других конденсаторах может явно не указываться или не указываться вообще — особенно, если конденсатор имеет маленькие размеры. ESR (Equivalent Series Resistance) — эквивалентное последовательное сопротивление. Выводы конденсатора и их контакты с обкладками имеет не нулевое, хотя и очень небольшое сопротивление. Это сопротивление активное, поэтому, в соответствии с законами Ома и Джоуля-Ленца, при протекании тока на этом сопротивление будет рассеиваться тепло.

Что такое полярность конденсатора и как ее определить?

Маркировка конденсаторов.

Это приведет к нагреву конденсатора. Поэтому на электролитических конденсаторах обычно указывает максимальную рабочую температуру. В компьютерных блоках питания и материнских платах используются специальные конденсаторы — с пониженным ESR. Величина ESR может для таких конденсаторов быть в пределах от сотых до десятых долей Ома. Что будет, если вместо конденсатора с пониженным ESR при ремонте блоков питания или материнских плат поставить обычный? Некоторое время он поработает. Но так как его ESR больше, то через цепь такого конденсатора будет протекать больший ток, который вызовет ускоренную деградацию конденсатора. Поэтому он быстро выйдет из строя.

Что такое полярность конденсатора и как ее определить?

Величиной ESR можно узнать по специальной маркировке (чаще всего 2 латинских буквы) на корпусе конденсатора. Соответствие этих букв реальным значениям ESR указывается в даташите.

Параллельное соединение

Несколько конденсаторов могут включаться последовательно или параллельно. При параллельном соединении ёмкости всех конденсаторов суммируются. При последовательном соединении общая ёмкость батареи конденсаторов меньше самой маленькой, так как складываются величины, обратные емкости. Но зато напряжение, при котором можно работать такая батарея, будет больше рабочего напряжения одного конденсатора.

Материал в тему: все о переменном конденсаторе.

На материнских платах в цепи низковольтного источника напряжения, питающего ядро процессора, используется несколько однотипных конденсаторов, соединенных параллельно. Интересный вопрос: почему бы не поставить один конденсатор емкостью, эквивалентной емкости батареи конденсаторов? Дело в том, что у параллельно соединенных конденсаторов суммарное ESR будет гораздо меньше, чем ESR одного конденсатора. Потому что при параллельном соединении сопротивлений общее сопротивление уменьшается.

Соединения конденсаторов

Соединения конденсаторов.

Что будет если перепутать полярность

Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя! Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток. Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут  корпус. Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе. Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.

При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу. Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме. Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.

Как определить полярность электролитического конденсатора

Если у вас оказался оксидная емкость со стертой маркировкой, то прежде чем задействовать ее в какой-либо радиолюбительской схеме, нужно обязательно определить полярность, т.к эти радио компоненты нельзя включать, не соблюдая полярность. Иначе из-за огромного тока утечки конденсатор не будет работать правильно Итак, чтобы узнать полярность нужно всего лишь заряжать емкость низким током, сравнимым с этими самыми утечками. При их появлении их, этот компонент, не сумеет зарядиться до напряжения, подаваемого от источника питания.

Что такое полярность конденсатора и как ее определить?

Если его подсоединить в правильной полярности, подавая плюс на положительный, а минус на отрицательный вывод, то конденсатор медленно зарядится. При обратной полярности, он зарядится до меньшего уровня- наполовину или даже ниже.

В последнем случае напряжение будет зависеть от соотношения зарядного тока, определяемого сопротивлением, и тока утечки. Но в любом случае, оно будет заметно ниже. Аналогичным способом определить полярность можно и при помощи миллиамперметра, включенного в разрыв цепи. Если он будет показывать наличие повышенного тока утечки, то конденсатор подключен неправильно.

Как определить полярность электролитического конденсатора

Как определить полярность электролитического конденсатора.

Полярные и неполярные конденсаторы – в чем отличие

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?

В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Интересный материал для ознакомления: что такое вариасторы.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

олярные и неполярные конденсаторы

Полярные и неполярные конденсаторы.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Что такое полярность конденсатора и как ее определить?

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

Полярность конденсатора

Полярность конденсатора.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

полярный и неполярный конденсатор

Полярный и неполярный конденсатор

Полярные (электролитические) конденсаторы

Есть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика. Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки. Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора.

Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны. На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате.

полярный и неполярный конденсатор

полярный и неполярный конденсатор

Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Также допустима замена конденсатора на аналогичный с большим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.

В данной статье были рассмотрены основные особенности трансформаторов.  Больше информации можно найти в скачиваемой версии учебника по электромеханике Электрические конденсаторы В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.nauchebe.net

www.masterkit.ru

www.radiostorage.net

www.texnic.ru

www.radioelementy.ru

Что такое полярность аккумулятора и как ее определить

Автомобильные аккумуляторы рассчитаны на напряжение – 12 В и постоянный ток. Они подключаются с помощью клемм, одна из которых имеет плюсовой заряд, а другая – минусовой. Плюс подключается к электрической система авто, а минус соединяют с кузовом (массой). Полярность – это взаимное размещение клемм. Неправильное подключение АКБ грозит поломкой электрооборудования. Но проблема в том, что выводы на разных батареях и расположены может быть по-разному.

Полярность автомобильного аккумулятора

Разница между прямой и обратной полярностью

Различают следующие виды полярности аккумуляторов:

  • прямая – используется в РФ;
  • обратная – обратная полярность аккумулятора характерна для машин европейской сборки, причём авто, собираемые в странах СНГ, чаще комплектуются прямополярными АКБ.

По компоновке элементов различают четыре типа полярности: по 2 вида для грузовиков и легковушек, хотя встречаются и ещё несколько, менее распространённых.

Аккумулятор прямой полярности отличается от АКБ обратной полярности размещением токовыводов. Но различий в принципе работы нет. Технические характеристики могут быть совершенно идентичными.

Есть ещё модели азиатского типа и американского. В некоторых источниках они указываются как дополнительные виды. Однако это неверно, потому что различия относятся к типоразмеру. АКБ азиатского производства больше высоту, но меньше в ширину. Кроме того, клеммы у таких приборов тоньше. Аккумуляторы американского производства чаще имеют выводы на боковой стороне, которые сделаны под крепление болтом. Причём азиатские модели относятся к обратнополярным, а американские – к прямополярным.

Подробнее разобраться, что такое обратная и прямая полярность автомобильного аккумулятора, поможет анализ разных вариантов АКБ.

Как определить полярность аккумулятора

Способ определения будет частично отличаться для легковых и грузовых автомобилей.

Легковые автомобили

Чтобы определить, какая полярность аккумулятора – прямая или обратная, нужно развернуть прибор выводящими элементами к себе, этикетка будет располагаться перед глазами. Прямополярной считается батарея, если слева направо размещён сначала «+», потом «–». Такие аккумуляторы маркируются цифрой «1» и устанавливают преимущественно на отечественные авто и на отдельные машины зарубежного производства.

У обратнополярных АКБ все наоборот: сначала идёт «минус», затем «плюс». Такая батарея маркируется цифрой «0». Но, несмотря на разницу, не понять, какая полярность у аккумулятора, можно только по незнанию или в спешке.

Грузовые автомобили

Чтобы узнать полярность аккумулятора для грузовой машины, нужно посмотреть на клеммы, развернув прибор этой стороной к себе. Выводы часто расположены на короткой стороне. Если плюсовой вывод находится слева, а минусовой – справа, то это обратнополярная АКБ, и она обозначается цифрой «3».

Клеммы автомобильного аккумулятора

Минус, размещающийся справа, и плюс слева определяют прямополярный аккумулятор для грузового автомобиля, который обозначается цифрой «4».

В редких случаях встречаются ещё другие варианты компоновки батареи:

  • «2» – выводы расположены по диагонали.
  • «6» – стороны батареи одинаковые ширины, и выводы расположены с одной стороны, слева направо «-», затем «+».
  • «9» – токовыводящие элементы размещены по центру коротких сторон.

Дополнительные способы определения полярности

Определение полярности аккумулятора возможно и по внешнему виду отдельных элементов. У прямополярной АКБ:

  • плюсовая клемма больше минусовой;
  • клеммные выводы в целом толще.

Толщина клемм (мм.)

ПрямополярныйОбратнополярный
Плюс19,512,7
Минус17,911,1

Затруднений с определением не должно возникать ещё и по той причине, что производитель выбивает на корпусе рядом с клеммами или непосредственно на клеммах «+» и «–».

Кроме того, маркируются цветами, соответственно, «+» – красный, «–» – синий или чёрный:

  • защитные колпачки на клеммных проводах;
  • наклеммные колпачки.

На сам аккумулятор может быть нанесена маркировка в виде букв «L» или «R». Первая указывает на обратную полярность, вторая – на прямую.

Обратите внимание! В случае затруднений производители предлагают воспользоваться онлайн каталогом для подбора оптимальной модели аккумулятора.

Если никаких обозначений на аккумуляторе нет, то полярность определяют с помощью:

  • мультиметра – в режиме измерения постоянного напряжения тока (U) чёрный щуп подсоединяют к предполагаемому минусу, а красный – к плюсу. Если проверяющий угадал расположение полюсов, то прибор покажет напряжение «12 В». Если полярность не совпала, то напряжение будет « -12 В»;
  • слабого раствора кислоты, например, лимонной. К выводам аккумулятора нужно подсоединить медные провода, одним концом прикрутить по одному проводу к выводам, а другим опустить их в раствор. Важно, чтобы провода не соприкасались. Там, где будет минусовой провод, образуются пузырьки воздуха;
  • сырого картофеля. Также используются медные провода, только их нужно воткнуть в разрезанную пополам картофелину на расстоянии 5-10 мм друг от друга. Там, где «+», картофель позеленеет;
  • осмотра клемм. Кроме того, что плюсовой вывод толще, чем минусовой, у б/у АКБ есть ещё одно отличие – плюсовая клемма имеет белый или зелёный налёт – оксидное загрязнение.

Что будет, если перепутать полярность

Чаще путаница происходит при подзарядке АКБ, но неопытные водители неправильно подключают аккумулятор и к бортовой сети. При этом наблюдается искрение, и все элементы подвергаются серьёзной опасности. Перегоревший предохранитель – самое малое, чем грозит ошибка. Сначала проверяют все предохранители, начиная с распределительных элементов под капотом. Перегоревшие заменяют, подбирая по амперажу.

Вот что будет, если перепутать полярность аккумулятора. Наряду с перегоревшим предохранителем, возможно повреждение:

  • подсветки и электроники приборной панели;
  • сигнализации;
  • проводов;
  • бортового компьютера – электроника очень чувствительна к смене полярности, и если двигатель начинает вращаться в обратном направлении, то электроника выходит из строя;
  • АКБ;
  • блока управления двигателем – мотор перестаёт заводиться либо осложняется управление. В блоке управления может быть установлена защита – так называемый стабилитрон. Его параллельно подключают к питающей шине. Если он пробит и нет запасной детали, можно выполнить подключение напрямую, убрав стабилитрон;
  • генератора – из строя выходят 1 и 2 диод выпрямительного моста. пробой образуется из-за того, что через соединение проходит максимальный ток и он возрастает, поскольку сопротивление диодов нулевое. В результате растёт вероятность воспламенения проводки и повреждения других элементов бортовой сети.

После замены предохранителей необходимо проверить исправность генератора. Двигатель заводят и дают ему проработать на холостых оборотах 10-15 минут, затем определяют температуру генератора. Если он перегрелся, значит, вышел из строя диодный мост. После того, проверяют остальные элементы электрической системы.

Диодный мостик генератораДиодный мостик генератора

Важно! Особенно фатальна ошибка на машинах японского производства.

Однако перепутать прямую или обратную полярность АКБ сложно, и вот по каким причинам:

  • зафиксировать минусовой провод на плюсовом выводе не получается, потому что он слишком толстый;
  • плюсовой провод слишком короткий.

Однако некоторым всё-таки удается поставить аккумулятор неправильно. Первый сигнал при этом – сильное искрение, что свидетельствует о коротком замыкании в цепи.

Гораздо чаще путают полярность при зарядке аккумулятора. Если оплошность была замечена сразу, нужно проверить работоспособность АКБ и подключить зарядку правильно. Если же аккумулятор успел зарядиться и работает, устанавливать его на автомобиль нельзя, потому что его полярность изменилась. Чтобы избежать поломки бортовой системы автомобиля, необходимо полностью разрядить аккумулятор, а потом зарядить его правильно.

Можно ли установить другой полярности

Автомобилистов, которые по неопытности приобрели неподходящий аккумулятор, интересует можно ли как-то поставить его в автомобиль. Теоретически можно. Естественно просто подключить аккумулятор как обычно не получится. Придётся перевернуть АКБ и тянуть провод к соответствующему выводу. Провод иногда коротковат, поэтому его нужно будет наращивать. Кое-как к этому делу не подойти, поскольку нужно тщательно подобрать провод, рассчитав необходимое сечение. И такое подключение уже будет халтурой. Вместо рискованного мероприятия по подключению аккумулятора с неправильной полярностью, опытные водители рекомендуют продать прибор и купить тот, который нужно.

Автомобильный аккумулятор в машине

Чтобы избежать неправильного подключения АКБ, опытные водители советуют новичкам покупать точно такой же аккумулятор, что и был установлен. Однако этот способ не спасает от неправильной установки на подзарядку, поэтому будьте внимательны при покупке и установке батареи.

Как определить полярность связи? Прямая и обратная полярность

Узнаем сегодня, как определить полярность связи и зачем это нужно. Раскроем физический смысл рассматриваемой величины.

Химия и физика

как определить полярность связи

Когда-то все дисциплины, посвященные изучению окружающего мира, объединялись одним определением. И астрономы, и алхимики, и биологи были философами. Но сейчас существует строгое распределение по разделам науки, а большие университеты точно знают, что нужно знать математикам, а что – лингвистам. Впрочем, в случае химии и физики четкой границы нет. Часто они взаимно проникают друг в друга, а бывает, что идут параллельными курсами. В частности, спорным объектом является полярность связи. Как определить, относится эта область знания к физике или химии? По формальному признаку – ко второй науке: сейчас школьники изучают это понятие как часть химии, но без знаний по физике им не обойтись.

Строение атома

полярность связи как определить

Для того чтобы понять, как определить полярность связи, сначала надо вспомнить, как устроен атом. В конце девятнадцатого века было известно, что любой атом нейтрален в целом, но содержит в разных обстоятельствах разные заряды. Резерфод установил, что в центре любого атома располагается тяжелое и положительно заряженное ядро. Заряд атомного ядра всегда целочисленный, то есть он составляет +1, +2 и так далее. Вокруг ядра располагается соответствующее количество легких отрицательно заряженных электронов, число которых строго соответствует заряду ядра. То есть если заряд ядра +32, то вокруг него должны располагаться тридцать два электрона. Они занимают определенные позиции вокруг ядра. Каждый электрон как бы «размазан» вокруг ядра на своей орбитали. Ее форма, позиция и расстояние до ядра определяются четырьмя квантовыми числами.

Почему возникает полярность

как определить полярность связи в соединении

В нейтральном атоме, расположенном вдалеке от других частиц (например, в глубоком космосе, вне галактики), все орбитали симметричны относительно центра. Несмотря на довольно сложную форму некоторых из них, орбитали любых двух электронов не пересекаются в одном атоме. Но если наш отдельно взятый атом в вакууме встретит на своем пути другой (например, войдет в облако газа), то он захочет взаимодействовать с ним: орбитали валентных внешних электронов вытянутся в сторону соседнего атома, сольются с ним. Возникнет общее электронное облако, новое химическое соединение и, следовательно, полярность связи. Как определить, какой атом возьмет себе большую часть общего электронного облака, расскажем далее.

Какими бывают химические связи

как определить полярность связи в молекуле

В зависимости от типа взаимодействующих молекул, разности в зарядах их ядер и силы возникающего притяжения, существуют следующие типы химических связей:

  • одноэлектронная;
  • металлическая;
  • ковалентная;
  • ионная;
  • ван-дер-ваальсова;
  • водородная;
  • двухэлектронная трёхцентровая.

Для того чтобы задаваться вопросом о том, как определить полярность связи в соединении, она должна быть ковалентной или ионной (как, например, у соли NaCl). В целом эти два типа связи различаются только тем, насколько сильно смещается электронное облако в сторону одного из атомов. Если ковалентная связь не образована двумя одинаковыми атомами (например, О2), то она всегда слегка поляризована. В ионной связи смещение сильнее. Считается, что ионная связь приводит к образованию ионов, так как один из атомов «забирает» электроны другого.

Но на самом деле полностью полярных соединений не существует: просто один ион очень сильно притягивает к себе общее электронное облако. Настолько сильно, что оставшимся кусочком равновесия можно пренебречь. Итак, надеемся, стало понятно, что определить полярность ковалентной связи можно, а полярность ионной связи не имеет смысла определять. Хотя в данном случае различие между этими двумя типами связи – это приближение, модель, а не истинное физическое явление.

Определение полярности связи

Надеемся, читатель уже понял, что полярность химической связи – это отклонение распределения в пространстве общего электронного облака от равновесного. А равновесное распределение существует в изолированном атоме.

Способы измерения полярности

определить наибольшую полярность связи в молекуле

Как определить полярность связи? Вопрос этот далеко не однозначный. Для начала надо сказать, что раз симметрия электронного облака поляризованного атома отличается от аналогичной нейтрального, то и рентгеновский спектр изменится. Таким образом, смещение линий в спектре даст представление о том, какова полярность связи. А если требуется понять, как определить полярность связи в молекуле более точно, то надо знать не только спектр испускания или поглощения. Требуется выяснить:

  • размеры участвующих в связи атомов;
  • заряды их ядер;
  • какие связи были созданы у атома до возникновения этой;
  • какова структура всего вещества;
  • если структура кристаллическая, какие в ней существуют дефекты и как они влияют на все вещество.

Полярность связи обозначается как верхний знак следующего вида: 0,17+ или 0,3-. Стоит также помнить, что один и тот же вид атомов будет иметь непохожую полярность связи в соединении с различными веществами. Например, в оксиде BeO у кислорода полярность 0,35-, а в MgO – 0,42-.

Полярность атома

Читатель может задать и такой вопрос: «Как определить полярность химической связи, если факторов так много?» Ответ одновременно и прост, и сложен. Количественные меры полярности определяются как эффективные заряды атома. Эта величина является разностью между зарядом находящегося в определенной области электрона и соответствующей области ядра. В целом эта величина достаточно хорошо показывает некую асимметричность электронного облака, которая возникает при образовании химической связи. Сложность состоит в том, что определить, какая именно область нахождения электрона принадлежит именно этой связи (особенно в сложных молекулах) почти что невозможно. Так что, как и в случае разделения химических связей на ионные и ковалентные, ученые прибегают к упрощениям и моделям. При этом отбрасываются те факторы и значения, которые влияют на результат незначительно.

Физический смысл полярности соединения

как определить полярность химической связи

Каков же физический смысл значения полярности связи? Рассмотрим один пример. Атом водорода H входит как во фтороводородную кислоту (HF), так и в соляную (HCl). Его полярность в HF равна 0,40+, в HCl – 0,18+. Это значит, что общее электронное облако гораздо сильнее отклоняется в сторону фтора, чем в сторону хлора. И значит, что электроотрицательность атома фтора намного сильнее электроотрицательности атома хлора.

Полярность атома в молекуле

Но вдумчивый читатель вспомнит, что, помимо простых соединений, в которых присутствуют два атома, существуют и более сложные. Например, чтобы образовать одну молекулу серной кислоты (H2SO4), требуется два атома водорода, один – серы, и целых четыре кислорода. Тогда возникает другой вопрос: как определить наибольшую полярность связи в молекуле? Для начала надо помнить, что любое соединение имеет некоторую структуру. То есть серная кислота – это не нагромождение всех атомов в одну большую кучу, а некая структура. К центральному атому серы присоединяются четыре атома кислорода, образуя подобие креста. С двух противоположных сторон атомы кислорода присоединяются к сере двойными связями. С двух остальных сторон атомы кислорода присоединяются к сере одинарными связями и «держат» с другой стороны по водороду. Таким образом, в молекуле серной кислоты существуют следующие связи:

Определив по справочнику полярность каждой из этих связей, можно найти наибольшую. Однако стоит помнить, что если в конце длинной цепочки атомов стоит сильно электроотрицательный элемент, то он может «перетягивать» на себя электронные облака соседних связей, повышая их полярность. В более сложной, чем цепочка, структуре вполне возможны иные эффекты.

Чем полярность молекулы отличается от полярности связи?

Как определить полярность связи, мы рассказали. В чем состоит физический смысл понятия, мы раскрыли. Но эти слова встречаются и в других словосочетаниях, которые относятся к данному разделу химии. Наверняка читателей интересует, каким образом взаимодействуют химические связи и полярность молекул. Отвечаем: эти понятия взаимно дополняют друг друга и невозможны по отдельности. Это мы продемонстрируем на классическом примере воды.

В молекуле H2O две одинаковые связи H-O. Между ними угол в 104,45 градуса. Так что структура молекулы воды представляет собой нечто вроде двузубой вилки с водородами на концах. Кислород – это более электроотрицательный атом, он оттягивает на себя электронные облака двух водородов. Таким образом, при общей электронейтральности, зубчики вилки получаются немного более положительными, а основание – немного более отрицательным. Упрощение приводит к тому, что молекула воды имеет полюса. Это и называется полярностью молекулы. Поэтому вода — такой хороший растворитель, эта разница в зарядах позволяет молекулам чуть-чуть оттягивать на себя электронные облака других веществ, разъединяя кристаллы на молекулы, а молекулы – на атомы.

Чтобы понять, почему у молекул при отсутствии заряда существует полярность, надо помнить: важна не только химическая формула вещества, но и строение молекулы, виды и типы связей, которые в ней возникают, разница в электроотрицательности входящих в нее атомов.

Наведенная или вынужденная полярность

прямая и обратная полярность

Помимо собственной полярности, существует еще и наведенная или вызванная факторами извне. Если на молекулу действует внешнее электромагнитное поле, которое значительнее существующих внутри молекулы сил, то оно способно изменить конфигурацию электронных облаков. То есть если молекула кислорода тянет на себя облака водорода в H2O, и внешнее поле сонаправлено с этим действием, то поляризация усиливается. Если поле как бы мешает кислороду, то полярность связи немного уменьшается. Надо отметить, что требуется приложить достаточно большое усилие, чтобы как-то повлиять на полярность молекул, и еще большее – чтобы повлиять на полярность химической связи. Достигается этот эффект только в лабораториях и космических процессах. Обычная микроволновка лишь усиливает амплитуду колебаний атомов воды и жиров. Но это никак не влияет на полярность связи.

В каком случае имеет смысл направление полярности

В связи с термином, который рассматривается нами, нельзя не упомянуть, что такое прямая и обратная полярность. Если речь идет о молекулах, то полярность имеет знак «плюс» или «минус». Это значит, что атом либо отдает свое электронное облако и таким образом становится чуть более положительным, либо, наоборот, тянет облако на себя и приобретает отрицательный заряд. А направление полярности имеет смысл только тогда, когда заряд движется, то есть когда по проводнику идет ток. Как известно, электроны движутся от их источника (отрицательно заряженного) к месту притяжения (положительно заряженного). Стоит напомнить, что существует теория, согласно которой электроны на самом деле движутся в обратную сторону: от положительного источника к отрицательному. Но в целом это не имеет значения, важен лишь факт их движения. Так вот, в некоторых процессах, например при сварке металлических частей, важно, куда именно присоединены какие полюса. Следовательно, важно знать, как подключена полярность: напрямую или в обратную сторону. В некоторых приборах, даже бытовых, это тоже имеет значение.

Полярность аккумулятора прямая или обратная

Если вы впервые покупаете аккумуляторную батарею для своего автомобиля, вас может поставить в тупик вопрос продавца о полярности аккумулятора. Что это вообще такое — полярность? Как ее определить? Что будет, если купить АКБ с не той полярностью? На эти вопросы попытаемся ответить в нашей сегодняшней статье на портале Vodi.su.

Прямая и обратная полярность АКБ

Как известно, аккумуляторная батарея устанавливается в свое строго определенное посадочное место под капотом, которое еще называют гнездом. В верхней части АКБ имеются два токовывода — плюсовой и минусовой, к каждому из них подключается соответствующий провод. Чтобы автолюбители случайно не перепутали клеммы, длина провода позволяет дотянуть его только до соответствующего токовывода на аккумуляторе. Более того, плюсовая клемма толще минусовой, это видно даже на глаз, соответственно, ошибиться при подключении АКБ практически невозможно.

Таким образом, полярность — это одна из характеристик АКБ, которая указывает на расположение токовыводящих электродов. Она бывает нескольких видов, но наибольшее распространение получили только две из них:

  • прямая, «российская», «левый плюс»;
  • обратная «европейская», «правый плюс».

То есть АКБ с прямой полярностью применяются в основном на машинах отечественного производства, разработанных в России. На иномарки же покупают аккумуляторы с обратной евро полярностью.

Как определить полярность АКБ?

Самый простой способ — это внимательно посмотреть на наклейку на передней части и разобрать маркировку:

  • если вы видите обозначение типа: 12V 64 Ah 590A (EN), то это европейская полярность;
  • если в скобках EN нет, значит мы имеем дело с обычной батареей с левым плюсом.

Стоит отметить, что полярность указывается обычно только на тех АКБ, которые продаются в России и бывших республиках СССР, на Западе же все аккумуляторы идут с европейской полярностью, поэтому она отдельно не указывается. Правда, в тех же США, Франции, да и в России в том числе, можно увидеть в маркировке обозначения типа «J», «JS», «Asia», но они не имеют к полярности никакого отношения, а лишь говорят, что перед нами АКБ с более тонкими клеммами специально для японских или корейских авто.

Если по маркировке определить полярность не удается, есть другой способ:

  • ставим АКБ к себе передней стороной, то есть той, где расположена наклейка;
  • если плюсовая клемма слева, то это прямая полярность;
  • если плюс справа — европейская.

Если же вы выбираете АКБ типа 6СТ-140 Ач и выше, то он имеет форму вытянутого прямоугольника и токовыводы расположены на одной из его узких сторон. В таком случае разверните его клеммами от себя: «+» справа означает европейскую полярность, «+» слева — российскую.

Ну, и если предположить, что АКБ старая и на ней невозможно разобрать какие-либо отметки, то понять, где плюс, а где минус, можно измерив толщину клемм штангенциркулем:

  • толщина плюсовой составит 19,5 мм;
  • минусовой — 17,9.

В азиатских батареях толщина плюса 12,7 мм, а минуса — 11,1 миллиметра.

Можно ли ставить АКБ с другой полярностью?

Ответ на этот вопрос простой — можно. Но провода нужно подключать правильно. Из собственного опыта скажем, что на большинстве авто, с которыми имели дело, плюсового провода хватает без проблем. Минусовой же придется наращивать. Для этого придется снять изоляцию и дополнительный кусок провода присоединить с помощью клеммы.

На многих же более современных авто свободного пространства под капотом практически нет, поэтому с наращиванием провода могут возникнуть проблемы, его попросту негде будет разместить. В таком случае новый АКБ без повреждений можно вернуть в магазин в течение 14 суток. Ну, или с кем-то поменяться.

Если перепутать клеммы при подключении

Последствия могут быть самые разные. Самое легкое последствие — перегорят предохранители, защищающие бортовую сеть от короткого замыкания. Самое страшное — пожар, который возникнет из-за плавления оплетки провода и искрообразования. Стоит отметить, что для начала пожара нужно, чтобы АКБ находился в неправильно подключенном состоянии длительное время.

«Переполюсовка АКБ» — интересное явление, благодаря которому вашей машине может ничего не грозить, полюса АКБ при неправильном подключении попросту поменяются местами. Однако, для этого нужно, чтобы батарея была новая или хотя бы в хорошем состоянии. Тем не менее переполюсовка вредна для самой АКБ, так как пластины будут быстро осыпаться и этот аккумулятор у вас никто не примет по гарантии.

Если вы следите за техническим состоянием авто, то краткосрочное неправильное подключение АКБ не приведет к каким-то катастрофическим последствиям, так как ЭБУ, генератор, все остальные системы защищены предохранителями.

Гораздо более серьезные проблемы могут возникнуть, если перепутать клеммы при прикуривании другого автомобиля — короткое замыкание и перегорание предохранителей, причем в обеих машинах.

Загрузка…

«Как определить полярность конденсатора?» – Яндекс.Знатоки

На алюминиевых электролитических конденсаторах как правило наносится маркер минуса на корпус. На конденсаторах с жесткими выводами (Snap-in) обозначение плюса или минуса также может находится на заклепке вывода. У не впаянных конденсаторов с гибкими выводами плюсовая нога длиннее. На больших конденсаторах с болтовым соединением часто обозначения наносятся рядом с клеммами

На танталовых электролитических конденсаторах наоборот на корпусе маркируется плюс

Полярность указывают на плате, под впаянным электролитом ее часто не видно

Также определить полярность можно по соседствующим электронным компонентам, скачав на них тех.документацию(даташит) можно по дорожке определить что приходит к конкретной ноге конденсатора

Как определить полярность проводов по цвету

В большинстве современных кабелей проводники имеют изоляцию разных цветов. Цвета эти имеют определенное значение и выбираются не просто так. Что такое цветовая маркировка проводов и как с ее помощью определить где ноль и заземление, а где — фаза, и будем говорить дальше.

Зачем это надо

В электрике принято различать провода по цветам. Это намного облегчает и ускоряет работу: вы видите набор проводов разных цветов и, по цвету, можете предположить какой для чего предназначен. Но, если разводка не заводская и делали ее не вы, перед началом работ обязательно надо проверить соответствуют ли цвета предполагаемому назначению.

Цвета проводов имеют определенное значение

Для этого берут мультиметр или тестер, проверяют на каждом проводнике наличие напряжения, его величину и полярность (это при проверке сети электропитания) или просто прозванивают куда и откуда идут провода и не меняется ли «в пути» цвет. Так что знание цветовой маркировки проводов — один из необходимых навыков домашнего мастера.

Цветовая маркировка провода заземления

По последним правилам проводка в доме или квартире должна иметь заземление. Последние годы вся бытовая и строительная техника выпускается с заземляющим проводом. Причем заводская гарантия сохраняется только при условии подачи электропитания с работающим заземлением.

Чтобы не путаться для провода заземления принято использовать желто-зеленую окраску. Жесткий одножильный провод имеет зеленый основной цвет с желтой полосой, а мягкий многожильный — основное поле желтого цвета с зеленой продольной полосой. Изредка могут встречаться экземпляры с горизонтальными полосками или просто зеленые, но это — нестандарт.

Цвет провода заземления — одножильного и многожильного

Иногда в кабеле есть только ярко-зеленый или желтый провод. В таком случае именно их используют как «земляной». На схемах «земля» обычно рисуется зеленым цветом. На аппаратуре соответствующие контакты подписываются латинскими буквами PE или в русскоязычном варианте пишут «земля». К надписям часто добавляется графическое изображение (на рисунке ниже).

В некоторых случаях на схемах шина «земля» и подключение к ней обозначается зеленым цветом

Цвет нейтрали

Еще один проводник, который выделяют определенным цветом — нейтраль или «ноль». Для него выделен синий цвет (ярко-синий или темно-синий, изредка — голубой). На цветных схемах эта цепь также прорисовывается синим, подписывается латинской буквой N. Так же подписываются контакты, к которым необходимо подключить нейтраль.

Цвет нейтрали — синий или голубой

В кабелях с гибкими многожильными проводами, как правило, используется более светлые оттенки, а одножильные жесткие проводники имеют оболочку более темных, насыщенных тонов.

Окраска фазы

С фазными проводниками несколько сложнее. Их окрашивают в разные цвета. Исключены уже используемые — зеленый, желтый и синий — а все остальные могут присутствовать. При работе с этими проводами надо быть особенно аккуратными и внимательными, ведь именно на них присутствует напряжение.

Цветовая маркировка проводов: какого цвета фаза — возможные варианты

Итак, наиболее часто встречающаяся цветовая маркировка проводов фазы — красный, белый и черный. Еще могут быть коричневый, бирюзовый оранжевый, розовый, фиолетовый, серый.

На схемах и клеммах фазные провода подписываются латинской буквой L, в многофазных сетях рядом стоит номер фазы (L1, L2, L3). П кабелях с несколькими фазами они имеют разную окраску. Так проще при разводке.

Как определить правильно ли подключены провода

При попытке установить дополнительную розетку, подключить люстру, бытовую технику, требуется знать, какой именно провод является фазным, какой нулевым, а какой — заземляющим. При неправильном подключении техника выходит из строя, а неосторожное прикосновение к токоведущим проводам может окончиться печально.

Надо убедиться что цвета проводов — земля, фаза, ноль — совпадают с их разводкой

Проще всего ориентироваться по цветовой маркировке проводов. Но не всегда все просто. Во-первых, в старых домах проводка обычно однотонная — торчат два-три провода белого или черного цвета. В этом случае надо разбираться конкретно, после чего навешивать бирки или оставлять цветные метки. Во-вторых, даже если в кабеле проводники окрашены в разные цвета, и вы визуально можете найти нейтраль и землю, правильность своих предположений надо проверить. Случается, что при монтаже цвета перепутаны. Потому сначала перепроверяем правильность предположений, потом начинаем работы.

Для проверки понадобятся специальные инструменты или измерительные приборы:

  • индикаторная отвертка;
  • мультиметр или тестер.

Найти фазный провод можно при помощи индикаторной отвертки, для определения нуля и нейтрали нужен будет тестер или мультиметр.

Проверка с индикатором

Индикаторные отвертки бывают нескольких видов. Есть модели, на которых светодиод зажигается при прикосновении металлической частью к токоведущим частям. В других моделях для проверки требуется дополнительно нажать кнопку. В любом случае при наличии напряжения зажигается светодиод.

С индикаторной отверткой работать просто

При помощи индикаторной отвертки можно найти фазы. Металлической частью прикасаемся к оголенному проводнику (при необходимости наживаем на кнопку) и смотрим, горит ли светодиод. Горит — это фаза. Не горит — нейтраль или земля.

Работаем аккуратно, одной рукой. Второй к стенам или металлическим предметам (трубам, например) не прикасаемся. Если провода в проверяемом кабеле длинные и гибкие, можно придержать их второй рукой за изоляцию (держитесь подальше от оголенных концов).

Проверка с мультиметром или тестером

На приборе выставляем шкалу, которая немного больше предполагаемого напряжения в сети, подключаем щупы. Если позваниваем бытовую однофазную сеть 220В, ставим переключатель в положение 250 В. Одним щупом прикасаемся к оголенной части фазного провода, вторым — к предполагаемой нейтрали (синего цвета). Если при этом стрелка на приборе отклоняется (запоминаем ее положение) или на индикаторе загорается цифра, близкая к 220 В. Проделываем ту же операцию со вторым проводником — который по цвету определили как «землю». Если все верно, показания прибора должны быть ниже — меньше чем те, которые были перед этим.

Тестер дает однозначный ответ

В случае, если цветовая маркировка проводов отсутствует, придется перебирать все пары, определяя назначение проводников по показаниям. Пользуемся тем же правилом: при прозвонке пары «фаза-земля» показания ниже, чем при прозвонке пары «фаза-ноль».

Тот кто хоть раз имел дело с проводами и электрикой обратил внимание, что проводники всегда имеют различный цвет изоляции. Сделано это не просто так. Цвета проводов в электрике призваны сделать проще распознавание фазы, нулевого провода и заземления. Все они имеют определенную окраску и при работе легко различаются. О том, каков цвет проводов фаза, ноль, земля и пойдет речь дальше.

Как окрашиваются провода фазы

При работе с проводкой наибольшую опасность представляют фазные провода. Прикосновение к фазе, при определенных обстоятельствах, может стать летальным, потому, наверное, для них выбраны яркие цвета. Вообще, цвета проводов в электрике позволяют быстрее определить которые из пучка проводов наиболее опасны и работать с ними очень аккуратно.

Расцветка фазных проводов

Чаще всего фазные проводники бывают красного или черного цвета, но встречается и другая окраска: коричневый, сиреневый, оранжевый, розовый, фиолетовый, белый, серый. Вот во все эти цвета может быть окрашены фазы. С ними проще будет разобраться, если исключить нулевой провод и землю.

На схемах фазные провода обозначаются латинской (английской) буквой L. При наличии нескольких фаз, к букве добавляют численное обозначение: L1, L2, L3 для трехфазной сети 380 В. В другой версии первая фаза обозначается буквой A, вторая — B, третья — C.

Цвет провода заземления

По современным стандартам, проводник заземления имеет желто-зеленый цвет. Выглядит это обычно как желтая изоляция с одной или двумя продольными ярко-зелеными полосами. Но встречаются также окраска из поперечных желто-зеленых полос.

Такого цвета могут быть заземление

В некоторых случаях, в кабеле могут быть только желтые или ярко-зеленые проводники. В таком случае «земля» имеет именно такой цвет. Такими же цветами она отображается на схемах — чаще ярко-зеленым, но может быть и желтым. Подписывается на схемах или на аппаратуре «земля» латинскими (английскими) буквами PE. Так же маркируются и контакты, к которым «земляной» провод надо подключать.

Иногда профессионалы называют заземляющий провод «нулевой защитный», но не путайте. Это именно земляной, а защитный он потому, что снижает риск поражения током.

Какого цвета нулевой провод

Ноль или нейтраль имеет синий или голубой цвет, иногда — синий с белой полосой. Другие цвета в электрике для обозначения нуля не используются. Таким он будет в любом кабеле: трехжильном, пятижильном или с большим количеством проводников.

Какого цвета нулевой провод? Синий или голубой

Синим цветом обычно рисуют «ноль» на схемах, а подписывают латинской буквой N. Специалисты называют его рабочим нулем, так как он, в отличие от заземления, участвует в образовании цепи электропитания. При прочтении схемы его часто определяют как «минус», в то время как фаза считается «плюсом».

Как проверить правильность маркировки и расключения

Цвета проводов в электрике призваны ускорить идентификацию проводников, но полагаться только на цвета опасно — их могли подключить неправильно. Потому, перед началом работ, стоит удостовериться в том, правильно ли вы определили их принадлежность.

Берем мультиметр и/или индикаторную отвертку. С отверткой работать просто: при прикосновении к фазе загорается светодиод, вмонтированный в корпус. Так что определить фазные проводники будет легко. Если кабель двухжильный, проблем нет — второй проводник это ноль. Но если провод трехжильный, понадобиться мультиметр или тестер — с их помощью определим какой из оставшихся двух фазный, какой — нулевой.

Определение фазного провода при помощи индикаторной отвертки

На приборе переключатель выставляем так, чтобы выбранной была шакала более 220 В. Затем берем два щупа, держим их за пластиковые ручки, аккуратно дотрагиваемся металлическим стержнем одного щупа к найденному фазному проводу, вторым — к предполагаемому нулю. На экране должно высветиться 220 В или текущее напряжение. По факту оно может быть значительно ниже — это наши реалии.

Если высветилось 220 В или чуть больше — это ноль, а другой провод — предположительно «земля». Если значение меньше, продолжаем проверку. Одним щупом снова прикасаемся к фазе, вторым — к предполагаемому заземлению. Если показания прибора ниже чем при первом измерении, перед вами «земля» и она должна быть зеленого цвета. Если показания оказались выше, значит где-то напутали при и перед вами «ноль». В такой ситуации есть два варианта: искать где именно неправильно подключили провода (предпочтительнее) или просто двигаться дальше, запомнив или отметив существующее положение.

Итак, запомните, что при прозвонке пары «фаза-ноль» показания мультиметра всегда выше, чем при прозвонке пары «фаза-земля».

И, в завершение, позвольте совет: при прокладке проводки и соединении проводов соединяйте всегда проводники одного цвета, не путайте их. Это может привести к плачевным результатам — в лучшем случае к выходу аппаратуры из строя, но могут быть травмы и пожары.

Чтобы облегчить труд электромонтажников, выпуск изоляции кабельной продукции подчинен определенным нормам цветовой маркировки. При подключении многожильного кабеля по окраске полимерной оболочки можно идентифицировать жилу и понять, с каким контактом ее следует коммутировать.

Разные цвета проводов в электрике, установленные положениями ГОСТ, помогают ускорить процесс монтажа и обеспечить электробезопасность. Согласитесь, понимание цветовой маркировки пригодится каждому домашнему мастеру.

Предлагаем разобраться в обозначениях электропроводки, узнать стандарты ГОСТ и научиться читать буквенные коды проводов на схемах. Кроме того, мы расскажем, как проверить соответствие подключенной жилы ее назначению, используя индикаторную отвертку или мультиметр.

Что говорится в ГОСТ и ПУЭ о цветовой маркировке

Основным документом, на который стоит опираться при производстве или приобретении кабелей, является ГОСТ 31947-2012. До его появления единообразия и порядка в области цветового обозначения электропроводки не было.

До сих пор в старых домах можно встретить провода в одинаковой оболочке, по цвету которой не определить, что подключено – «фаза», «ноль» или «земля».

В выше обозначенном документе ГОСТ указано, что изоляция кабельной продукции должна отличаться по расцветке. Определенный оттенок должен покрывать провод сплошным слоем – с начала и до конца. Нельзя, чтобы один провод в начале бухты был синим, а конце – белым; также запрещена прерывистая окраска.

Также в нормативных документах содержатся рекомендации по применению различных схем для 3-жильных, 4-жильных и 5-жильных кабелей.

Например, при производстве 3-жильных кабелей приветствуются следующие комбинации:

  • коричневый – синий – зеленый/желтый;
  • коричневый – серый – черный.

Если кабель состоит из 4 жил, то рекомендуется также два типовых варианта окраски:

  • коричневый – серый – черный – зеленый/желтый;
  • коричневый – серый – черный – синий.

Схемы для 5-жильного провода выглядят следующим образом:

  • коричневый – серый – черный – зеленый/желтый – синий;
  • коричневый – серый – 2 черных – синий.

Синим цветом обозначается «нулевая» жила.

Не рекомендуют использовать только два цвета – красный и белый.

Окраска должна наноситься прочно и быть хорошо различимой.

Если обратиться ко второму важному для электромонтажников документу – ПУЭ, то в п.1.1.29 и п.1.1.30 также можно найти информацию о цвете проводов фаза-ноль-земля. Точнее, данные там не расписаны, но есть отсылка к ГОСТ P 50462-92, который уже давно заменен более свежей редакцией ГОСТ Р 50462-2009, действующей и сегодня.

Материал соответствует информации, изложенной в ГОСТ 31947, но есть некоторые уточнения. Например, особым образом должны окрашиваться провода, выполняющие двойную функцию: если нулевой рабочий совмещен с нулевым защитным, то по всей длине он окрашивается в голубой цвет, а по краям имеет зелено-желтые полоски.

Таким образом, все цвета, за исключением синего (голубого) и зеленого/желтого, можно применять для окраски изоляции фазного проводника. В эту группу попадают белый и красный цвета, которые почему-то ГОСТом редакции 2012 года не рекомендованы к использованию.

В приложении А к ГОСТ Р 50462 есть таблица, в которой можно найти буквенные обозначения всех цветов. Например, фазный проводник 1-фазной цепи (L) окрашивается в коричневый цвет, код цвета – BN. Буквенные коды применяют для черно-белых копий схем, на которых не используются различные цвета.

Маркировка жил для электромонтажных решений

Не зря в начале статьи прозвучала мысль о том, что цветовое обозначение проводников значительно упрощает процесс монтажа.

Если вы самостоятельно занимаетесь разводкой электрики в квартире или частном доме, подбираете провода согласно нормам, при подключении электроустойств, монтаже автоматической защиты, распределении жил в распаечных коробках не нужно перепроверять, где фаза, нуль, земля – об этом расскажет цвет изоляции.

Несколько примеров электромонтажа, когда важна маркировка:

Существуют кабели с большим количеством жил, окрашивание которых не представляется целесообразным. Пример – СИП, в котором используется иной способ определения проводников. Один из них помечен небольшой канавкой по всей длине. Рельефная жила обычно выполняет функцию нулевого проводника, остальные играют роль линейных.

Чтобы отличать жилы, их маркируют скотчем, термоусадками, буквенными обозначениями, которые наносят разноцветными маркерами. А в процессе электромонтажных работ обязательно производят прозвон – дополнительную идентификацию.

Проверка правильности подключения

К сожалению, не все электромонтажники строго соблюдают нормы и при подключении ошибаются в выборе проводника. Поэтому при подвешивании люстры, монтаже розетки или другого электроустановочного устройства лучше дополнительно проверить, соответствует ли изоляция каждой жилы ее назначению.

Для идентификации монтажники применяют два способа: первый – проверка индикаторной отверткой, второй – использование тестера или мультиметра. Отверткой обычно определяют фазу, а измерительными приборами – нейтраль и нуль.

Как пользоваться индикатором?

Даже такие простые устройства, как индикаторные отвертки, бывают разными. Одни из них оснащены небольшой кнопкой, другие срабатывают автоматически, при соединении металлического стержня и токоведущей жилы или контакта.

Но во все без исключения модели вмонтирован светодиод, зажигающийся под напряжением.

Отвертка – удобный инструмент для определения фазного проводника. Чтобы узнать, рабочая ли жила, металлическим стержнем отвертки необходимо аккуратно прикоснуться к оголенному проводу.

Если светодиод загорелся – жила находится под напряжением. Отсутствие сигнала говорит о том, что это земля или нуль.

Процедура проверки выполняется одной рукой, следовательно, вторая свободна. Лучше ее также задействовать – например, для фиксации проводов. Но категорически запрещается второй рукой касаться оголенных частей проводников или металлических предметов, находящихся поблизости (труб, арматуры).

Правила применения тестера

Тестер или мультиметр всегда есть в комплекте электромонтажника. Ему приходится работать с подключением жил в электроустановках внутри помещений и при сборке электрощитка. Если проводка монтировалась давно, маркировкой проводов по цвету можно пренебречь.

Даже если цвета изоляции вроде бы выдержаны, не факт, что они подключены по всем правилам.

Перед замерами следует изучить инструкцию, которой сопровождаются все измерительные приборы.

Порядок действий примерно следующий:

  • выставляем значение, которое заведомо больше ожидаемого напряжения, например, 260 В;
  • подключаем щупы в нужные гнезда;
  • прикасаемся щупами к двум проводникам – предположительно фазе и нейтрали;
  • повторяем процедуру с другой парой проводников.

Сочетание жил фаза-ноль должно выдавать результат, близкий к 220 В. Он всегда будет выше пары фаза-земля.

В продаже есть как цифровые, современные приборы, так и устаревшие, со стрелками и шкалами значений. Пользоваться цифровыми удобнее. Перед самостоятельным монтажом электроустройств рекомендуем научиться пользоваться или индикаторной отверткой, или мультиметром – полагаться только на цвет жил не стоит.

Умение использовать мультиметр пригодится домашнему мастеру и для проверки напряжения в розетке. Подробная инструкция по использованию тестера приведена в этой статье.

Выводы и полезное видео по теме

Общепринятые стандарты цветовой маркировки:


Когда все провода одного цвета – проверка контрольной лампой:

Цветовая маркировка жил – замечательный способ идентификации провода при его монтаже. Однако в процессе работы с уже установленными кабелями не стоит полагаться только на внешний вид проводников, так как они могут быть подключены ошибочно.

Обязательно следует использовать дополнительные способы определения жил, и если нельзя поменять сами провода, то нужно промаркировать их цветным скотчем или буквенными символами.

Есть, что дополнить, или возникли вопросы по цветовой маркировке? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом определения проводников. Форма для связи находится в нижнем блоке.

Отвертка-индикатор удобна в работе, но с ней нужно быть осторожным. Большинство из них рассчитаны на работу с напряжением 220 вольт, а ведь иногда к дому подводиться напряжение в 380 вольт. В этом случае отвертка может пропустить заряд, и вас ударит током. Да и контрафактной продукции на рынке сейчас много. Выбирать стоит внимательно и приобретать индикатор в проверенных магазинах.

Добрый день, Антон.

Ваши предупреждения относительно приобретения, использования индикаторов напряжения – полностью поддерживаю.

Хочу подчеркнуть – профессиональная электроэнергетика пользуется оборудованием, приборами, индикаторами, которые подразделяются на категории: «до 1000 вольт» и «свыше 1000 вольт». Для дома, понятно, надо приобретать индикаторы первой категории.

Из вашего комментария следует, что в домашних электросетях вы начали работать. Чтобы повысить квалификацию, получить полезную информацию, страхующую от электрической травмы, советую прочитать «Правила устройства электроустановок», «Правила техники безопасности при эксплуатации электроустановок».

Добавлю: «правильный» указатель напряжения имеет Паспорт, ограничивающий сферу применения устройства. На скриншоте привел часть такого Паспорта указателя Е119.2.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *